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Abstract

A smooth projective surface X over an algebraically closed field k is said to have

bounded negativity if there exists an integer b(X), depending only on X, such that

C2 > −b(X) for all reduced curves C on X . The Bounded Negativity Conjecture (BNC)

asserts that every smooth complex projective surface has bounded negativity. This

conjecture is false in positive characteristic. While it is easy to prove BNC in some

cases, it is open in general in characteristic 0. It is also not known if the existence

of such a lower bound for self-intersections of reduced curves is preserved in the

birational equivalence class of X.

The notion of Harbourne constants was defined in [5] as a way to investigate

the occurrence of curves of negative self-intersection on blow ups of X. Harbourne

constants measure the local negativity of curves on surfaces. In this thesis, we give

lower bounds for the Harbourne constants of transversal arrangements of curves on a

geometrically ruled surface X over a smooth curve. We define a global Harbourne

constant as the infimum of Harbourne constants for arrangements of a specific

type and give a lower bound for it. We also show that the surfaces associated to

transversal arrangements on ruled surfaces that we consider in this thesis are not ball

quotients, i.e., minimal smooth complex projective surfaces of general type satisfying

equality in the Bogomolov-Miyaoka-Yau inequality.
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Chapter 1

Introduction

1.1 Preliminaries

1.1.1 Basics

Definition 1.1. A variety is an integral, separated scheme of finite type over an

algebraically closed field k. A projective variety is a variety which has a closed

embedding into PN for some positive integer N. A curve is a projective variety of

dimension one and a surface is a projective variety of dimension two.

We say that a variety X is smooth if the local ring OX,x is a regular local ring for

all x in X. Smooth projective varieties over k are studied by means of divisors on

them. We write D =
∑
niDi for a divisor D on a smooth projective variety X, where

Di are projective codimension one subvarieties on X and ni are integers such that

only finitely many ni are different from zero. If ni > 0 for all i, then we say that D is

an effective divisor.

Let X be a smooth projective variety, and denote by KX = k(X) the constant sheaf

of rational functions on X. We denote by K∗X the sheaf (of multiplicative groups) of

invertible elements in KX. The sheaf KX contains the structure sheaf OX as a subsheaf

and so there is an inclusion O∗X ⊂ K∗X of sheaves, where O∗X is the sheaf of invertible

elements in OX. We thus have the following exact sequence

0 −→ O∗X −→ K∗X −→ K∗X/O
∗
X −→ 0, (1.1)

where K∗X/O
∗
X is the quotient sheaf on X. The global sections of K∗X/O

∗
X are known as

Cartier divisors on X. We denote by Div(X) the group of all global sections of K∗X/O
∗
X.
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The short exact sequence in (1.1) gives rise to a connecting homomorphism in the

long exact sequence of cohomology:

Div(X) −→ H1(X,O∗X) ∼= Pic(X) (1.2)

given by,

D 7→ OX(D). (1.3)

Here Pic(X) denotes the group of isomorphism classes of line bundles on X. The

kernel of this map is precisely the set of all principal divisors of X. The group Div(X)

modulo principal divisors is known as divisor class group, denoted as Cl(X). It is

known that if X is integral, the induced map Cl(X) → Pic(X) is an isomorphism,

see [30, Chapter II, Proposition 6.15]. Therefore from here onwards we will not

differentiate between a divisor and the corresponding line bundle.

A distinguished divisor in a smooth projective variety X is the canonical divisor.

Definition 1.2 (Canonical Divisors). Let X be a smooth projective variety of

dimension n and let δ : X → X× X be the diagonal morphism. Let ∆ := δ(X) be

the diagonal and I the ideal sheaf of ∆ in X×X. Then, the sheaf of relative differentials

of X is defined to be:

ΩX := δ?(I/I2).

Its dual

TX := Ω∨
X = HomOX

(ΩX,OX)

is called the tangent sheaf of X and the canonical sheaf of X is defined to be its top

exterior power

ωX =
∧n

ΩX.

Note that ωX is an invertible sheaf on X. A canonical divisor on X is any Cartier

divisor KX which corresponds to ωX.

Given a divisor D on a smooth projective variety X, we associate a linear system,

denoted by |D|, which consists of all effective divisors on X linearly equivalent to D.

It has a structure of a projective variety, as it can be viewed as the projective space

corresponding to the vector space of global sections of OX(D) [30].

In this thesis, the main objects of study are smooth projective surfaces over

an algebraically closed field k. From now on, we only look at smooth projective
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surfaces.

Intersection theory: An intersection theory should make it possible to calculate

intersections of subvarieties, counted with "multiplicities". We give here an overview

of the basic terminology for this area of study for surfaces. For a detailed

introduction, see [21]. We will follow the axiomatic approach of [30, Appendix

A], unless otherwise stated, and assume k to be an algebraically closed field.

Definition 1.3. Let X be a smooth projective surface over k. For 0 6 r 6 2, let Zr(X)

be the free abelian group generated by all closed subvarieties Y ⊆ X of codimension

r and define Z(X) as Z(X) := ⊕2r=0Zr(X). An element of Z(X) is called a cycle. A cycle

is positive if each of its coefficients is a positive integer.

To be able to count intersections with multiplicities, we need to be able to "move"

varieties around without changing the result of their intersection. The correct notion

for this is rational equivalence.

Definition 1.4. If M is an A-module, we denote by lengthA(M) the length of M over

A. It is the supremum of all length r chains 0 ( M1 ( M2 ( · · · ( Mr = M of

submodules Mi ⊆M. We write length(A) to denote the length of A as an A-module.

Definition 1.5. Let X be a smooth projective surface over k. If Y ⊆ X is a closed

subvariety and f ∈ k(Y), we set

div(f) :=
∑

codimY(Z)=1

ordZ(f) ·Z.

Recall that the order of an element f ∈ OY,Z is defined to be

ordZ(f) := lengthOY,Z
(OY,Z/(f)).

We then extend this definition to the function field k(Y) = Frac(OY,Z) by defining

ord(f/g) := ord(f) − ord(g).

A cycle of the form div(f) is called rational. The free abelian subgroup of Zr(X),

generated by all rational cycles, is denoted Ratr(X). For W,V ∈ Zr(X), we write

W ∼ V if W − V ∈ Ratr(X). We say that V and W are rationally equivalent in this case.

The Chow ring of X is the graded ring A(X) = ⊕2r=0Ar(X), where Ar(X) is the factor

group

Ar(X) := Zr(X)/Ratr(X).
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The elements of A(X) are called cycle classes. A cycle class is positive if it can be

represented by a positive cycle. We write [Y] for the equivalence class of Y.

A cycle class can now be "moved" along rational cycles. Note that this is a

generalization of the linear equivalence between the divisors Div(X) = Z1(X). Hence,

A1(X) = Pic(X).

Theorem 1.1 in [30, Appendix A] assures the existence of a unique intersection

theory that satisfies certain given properties. These properties imply that, given a

smooth projective surface X, there exists a pairing

Ar(X)×As(X)→ Ar+s(X)

([Y], [Z]) 7→ [Y] · [Z]

for all r and s, that turns A(X) into a commutative graded ring with identity.

Definition 1.6. Let φ : X → X ′ be a morphism of smooth projective surfaces and

Y ⊆ X a closed subvariety. If dim(φ(Y)) < dim(Y), we set φ?([Y]) := 0. Otherwise,

k(Y) is a finite extension of k(Y ′), where Y ′ = φ(Y). We then set

φ?([Y]) := [k(Y) : k(Y ′)] · [Y ′].

On the other hand, if Y ′ ⊆ X ′ is any closed subvariety, denote by Γ(φ) ⊆ X×X ′ the

graph of φ and set

φ?([Y ′]) := p?([Γ(φ)] · [q−1(Y ′)]).

Here p and q are the projections from X×X ′ to X and X ′ respectively.

Proposition 1.7. (See [30, A2]). For any morphism φ : X → X ′ of smooth projective

surfaces, φ? : A(X ′)→ A(X) is a ring homomorphism.

Proposition 1.8. (See [30, A3]). For any proper morphism φ : X→ X ′ of smooth projective

surfaces, φ? : A(X)→ A(X ′) is a homomorphism of graded groups (which shifts degrees).

The following theorem computes, in the more general language of divisors, the

intersection product of two divisors on a smooth projective surface.

Theorem 1.9. Let X be a smooth projective surface. There is a unique pairing

Div(X)×Div(X) −→ Z

(C,D) 7→ C ·D

4



for any two divisors C and D on X such that

1. if C and D are nonsingular curves meeting transversally, then C ·D = #(C∩D), the

number of intersection points of C with D,

2. it is symmetric: C ·D = D ·C,

3. it is additive: (C1 +C2) ·D = C1 ·D+C2 ·D, and

4. it depends only on the linear equivalence classes: if C1 ∼ C2 then C1 ·D = C2 ·D.

Proof. We refer to [30, Section V.1, Theorem 1.1] for a proof.

Two divisors D1 and D2 on a smooth projective surface X are said to be numerically

equivalent, denoted D1 ≡ D2, if D1 ·C = D2 ·C for every irreducible curve C in X. The

Néron Severi group of X is the quotient N1(X)Z := Div(X)/ ≡ . It is a basic fact that the

Néron Severi group N1(X)Z is a free abelian group of finite rank [43, Proposition

1.1.16]. The rank of N1(X)Z is called the Picard number of X, and is denoted by ρ(X).

In algebraic geometry, one of the most important problems is to classify objects

considering a certain fixed set of invariants. Let X be a smooth complex projective

surface. For a divisor D on X, we denote by hi(X,OX(D)) the dimension of

Hi(X,OX(D)) as a k-vector space. The following are some birational numerical

invariants of X:

1. The geometric genus pg(X) := h2(X,OX) = h0(X,OX(KX)).

2. The irregularity q(X) := h1(X,OX).

3. The mth plurigenus Pm(X) := h0(X,OX(mKX)), m > 0.

Chern Classes: Chern classes can be defined for any smooth projective variety X

over an algebraically closed field k. However, we will restrict to the case of surfaces

and introduce Chern numbers of a smooth projective surface. We will follow the

approach of [30, Appendix A], unless otherwise stated, and assume k to be an

algebraically closed field.

Proposition 1.10. Let E be a locally free sheaf of rank r on a smooth projective surface

X. Let P(E) be the associated projective bundle (for the definition, see [30, Section II.7]).

Let h ∈ A1(P(E)) be the class of the divisor corresponding to OP(E)(1). Let π : P(E) → X

5



be the projection. Then π? makes A(P(E)) into a free A(X)-module generated by hk for

0 6 k 6 r− 1.

Definition 1.11. Let E be a locally free sheaf of rank r on a smooth projective surface

X. Using the notation and statement of Proposition 1.10, for each i = 0, · · · , r, we

define the i-th Chern class ci(E) ∈ Ai(X) as elements satisying the following : c0(E) = 1,

and
r∑
i=0

(−1)iπ?(ci(E)).hr−i = 0

in Ar(P(E)). The total Chern class is the sum c(E) :=
∑r
i=0 ci(E). For a formal variable

T , we define the Chern polynomial

cT (E) :=

r∑
i=0

ci(E) · T i.

While this definition is formal, it can be shown that the Chern classes of a surface

are subject to several useful properties:

C1. If E is a line bundle corresponding to a divisor class [D] ∈ A1(X), then

cT (E) = 1+ [D] · T . Indeed, in this case, P(E) = X and OP(E)(1) = E, so h = [D] in

Proposition 1.10. Hence, by definition, c0(E) · [D] − c1(E) = 0.

C2. If φ : X ′ → X is a morphism and E is a locally free sheaf on X, then

ci(φ
?E) = φ?(ci(E)) for each i.

C3. If 0 → E ′ → E → E ′′ → 0 is an exact sequence of locally free sheaves on

X, then cT (E) = cT (E ′) · cT (E ′′).

One can show that these properties uniquely define a theory of Chern classes,

which assigns to each locally free sheaf E on a smooth projective surface X, an

element ci(E) ∈ Ai(X) satisfying properties C1 to C3. For the proof of this, one

requires the following:

Theorem 1.12 (Splitting Principle). Let E ′ be a locally free sheaf of rank r on a smooth

projective surface X ′. Then there exists a surface X and a morphism φ : X→ X ′ such that

φ? : A(X ′)→ A(X) is injective and E := φ?(E ′) splits, i.e., has a filtration

E = E0 ⊇ E1 ⊇ · · · ⊇ Er = 0

6



whose successive quotients Li := Ei−1/Ei are invertible sheaves.

Then, one deduces the following property C4 from property C3. The uniqueness

is then a result of property C1.

C4. If E splits and the filtration has the invertible sheaves L1, · · · ,Lr as quotients,

then cT (E) =
∏r
i=1 cT (Li).

C5. Let E and F be locally free sheaves of rank r and s respectively on a

smooth projective surface X. Using the splitting principle, we can write:

cT (E) =

r∏
i=1

(1+ aiT), cT (F) =

s∏
j=1

(1+ bjT),

where the ak and bk are just formal symbols. Then,

cT (E
∨) =

r∏
i=1

(1− aiT),

cT (
∧p

E) =
∏

16i1<···<ip6r
(1+ (ai1 + · · ·+ aip)T),

cT (E⊗F) =
∏
i,j

(1+ (ai + bj)T).

In the context of Hirzebruch-Riemann-Roch Theorem, the formal calculus of

Chern classes is extended by the notions of exponential Chern character and Todd

class:

Definition 1.13. Let E be a locally free sheaf of rank r on a smooth projective surface

X over k and let cT (E) =
∏r
i=1(1 + aiT) with formal variables ai. We define the

exponential Chern character as

ch(E) :=

r∑
i=1

exp(ai),

where we formally set exp(a) :=
∑∞
k=0

ak

k! . Furthermore, the Todd class of E is the

formal expression

td(E) :=

r∏
i=1

ai
1− exp(−ai)

.

7



Our interest is to be able to effectively compute the Chern classes of certain

locally free sheaves on surfaces. The following lemma will be used to make explicit

calculations:

Lemma 1.14. (See [30, Section 4, Appendix A]). Let E be a locally free sheaf of rank r on a

smooth projective surface X. Let ci = ci(E) for 0 6 i 6 r and ci = 0 if i > r. Then:

ch(E) = r+ c1 +
(c21 − 2c2)

2
+

(c31 − 3c1c2)

6
+

(c41 − 4c
2
1c2 + 2c

2
2)

24
+ · · ·

td(E) = 1+
c1
2

+
(c21 + c2)

12
+
c1c2
24

−
(c41 − 4c

2
1c2 − 3c

2
2)

720
+ · · ·

We recall the following:

Definition 1.15. If E is a sheaf of OX-modules on a smooth projective surface X, then

χ(E) :=
∑
k∈Z

(−1)k.rank(Hk(X,E))

is defined as the Euler characteristic of E.

We now mention a famous result proved by Hirzebruch over C, and later

generalized to any algebraically closed field k by Borel and Serre.

Theorem 1.16. (The Hirzebruch-Riemann-Roch Theorem [10]). For a locally free sheaf E of

rank r on a smooth projective surface X,

χ(E) = deg(ch(E) · td(TX))2,

where ()2 denotes the component of degree 2 in A(X)⊗Q.

Definition 1.17. Let X be a smooth projective surface over an algebraically closed

field k. Let c1 and c2 be the Chern classes of the tangent sheaf TX. As these numbers

depend only on X, we can call them the Chern classes of X, and we will write

c1(X) = c1, c2(X) = c2.

Definition 1.18 (Topological Euler characteristic). Let X be a smooth complex

projective surface. We define the i-th Betti number of X as

bi(X) := dimRH
i(X, R).

8



The topological Euler characteristic of X is defined as

e(X) :=
∑
i

(−1)ibi(X).

We note that because of the Poincaré duality, the Betti numbers satisfy bi(X) =

b4−i(X). Hence, the topological Euler characteristic of a smooth complex projective

surface X can be written as e(X) = 2− 2b1(X) + b2(X). For more details, see [8].

Let us now verify that, in the case of smooth complex projective surfaces, the

topological Euler characteristic and self-intersection number of a canonical divisor

correspond to c2 and c21 respectively.

Proposition 1.19. Let X be a smooth projective surface. Then c1(X) = c1(TX) = −[KX].

Proof. Let cT (ΩX) =
∏2
i=1(1+ aiT) for formal variables ai. By property C5, cT (ωX) =

cT (
∧2ΩX) = 1+ (a1 + a2)T . Together with property C1, this means [KX] = c1(ωX) =

c1(ΩX). Again using property C5, we calculate c1(TX) = c1(Ω∨
X ) = −c1(ΩX) = −[KX].

Proposition 1.20 (Noether’s formula). Let X be a smooth projective surface over an

algebraically closed field k. Let KX be a canonical divisor on X. Then

χ(OX) =
K2X + c2(X)

12
.

Proof. Let E = OX(D) be an invertible sheaf. By Lemma 1.14, we have ch(E) =

1+D+ D2

2 . Also, by Proposition 1.19, we have that c1(TX) = −[KX]. Hence,

td(TX) = 1−
KX
2

+
K2X + c2(X)

12
.

We multiply this by ch(E) and then take the component of degree 2. We let D2

denote both the class in A2(X), and its degree. Thus, by Theorem 1.16, we get:

χ(OX(D)) =
D · (D−KX)

2
+
K2X + c2(X)

12
.

In particular, for D = 0, we have the desired formula.

Proposition 1.21. Let X be a smooth projective surface over C. Then c2(X) = e(X).

9



Proof. We know that ΩX is a locally free sheaf of rank 2. Let ci = ci(ΩX). Then, by

Lemma 1.14, we have that:

ch(ΩX) = 2+ c1 +
c21 − 2c2
2

.

By property C5, we have that c1(ΩX) = c1(
∧2ΩX) = KX. Using that TX is the dual

of ΩX, property C5 gives c2(ΩX) = c2(X). From Proposition 1.19, we know that

c1(TX) = −[KX]. Using this and Lemma 1.14, we can write:

td(TX) = 1−
KX
2

+
K2X + c2(X)

12
.

Using Noether’s formula, we get:

(ch(ΩX) · td(TX))2 =
(c21(X) − 2c2(X))

2
−
K2X
2

+
(K2X + c2(X))

6

= 2χ(OX) − c2(X).

So, using Theorem 1.16, we get that χ(ΩX) = 2χ(OX) − c2(X). On the other hand,

χ(ΩX) = 2q(X) − h
1(ΩX) and χ(OX) = 1− q(X) + pg(X). Hodge theory (see [59]) says

that the Betti numbers can be written as: b1(X) = 2q(X) and b2(X) = h1(ΩX) + 2pg(X).

With all this, we get c2(X) = 2− 2b1(X) + b2(X) = e(X).

Definition 1.22 (Kodaira dimension). Let X be a smooth complex projective surface

and let φmKX be the rational map from X to the projective space associated with

the linear system |mKX|. The Kodaira dimension of X, denoted κ(X), is defined as the

maximum dimension of the images of φmKX for m > 0, or −∞ if |mKX| = ∅ for all

m > 0.

The invariant Pm(X) gives the following classification of surfaces (written in terms

of the Kodaira dimension). This classification is known as the Enriques classification.

Any smooth complex projective surface X falls in one of the classes below:

1. Kodaira dimension −∞, i.e., Pm(X) = 0 for all m:

• X is a ruled surface.

2. Kodaira dimension 0, i.e., Pm(X) is either 0 or 1 for all m:

• X is an abelian surface (projective quotient of C2 by a maximal rank

lattice), or
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• X is a K3 surface, or

• X is an Enriques surface, or

• X is a hyperelliptic surface.

3. Kodaira dimension 1, i.e., Pm(X) grows linearly for m� 0 :

• X has an elliptic fibration.

4. Kodaira dimension 2, i.e., Pm(X) grows quadratically for m� 0:

• X is called a surface of general type.

In this thesis, we are mainly interested in ruled surfaces [Subsection 1.1.10].

These are surfaces of Kodaira dimension −∞.

For a smooth complex projective surface X, one studies the pair (KX, e(X)). The

problem of establishing which pairs of integers (m,n) may appear as m = K2X and

n = e(X) for a surface X of general type is known as the geography problem, and it is

not completely solved yet.

As observed in the Enriques classification of surfaces, if

h0(X,OX(mKX)) ∼ c ·m2

for a positive constant c, then X is said to be a surface of general type.

A very important constraint on the geography of surfaces of general type is given

by the Bogomolov-Miyaoka-Yau inequality [46]:

Theorem 1.23. Let X be a smooth complex projective surface of general type. Then

K2X 6 3e(X). (1.4)

Remark 1.24. The inequality (1.4) is, in fact, true under the milder assumption that

the canonical divisor has some sections asymptotically, i.e.,

h0(X,OX(mKX)) > 0 (1.5)

for m sufficiently large.
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It is natural to ask when equality holds in (1.4). It turns out that there is a

topological answer to this question, see [Theorem 1.28]. We now recall a few

definitions.

Definition 1.25. Let X be a topological space. A covering space of X is a topological

space Y together with a continuous surjective map p : Y → X such that for every

x ∈ X, there exists an open neighborhood U of x, such that p−1(U) is a union of

disjoint open sets in Y, each of which is mapped homeomorphically onto U by p.

The map p is called the covering map.

Definition 1.26. A covering p : Y → X of a topological space X is universal if Y is

simply connected.

Definition 1.27 (Ball Quotients). We say that a minimal smooth complex projective

surface X of general type is a ball quotient if its universal cover is the 2-dimensional

complex unit ball {(z1, z2) ∈ C2 : |z1|
2 + |z2|

2 < 1}.

The following is a fundamental result [45]:

Theorem 1.28. Let X be a minimal smooth complex projective surface of general type. Then

equality holds in (1.4) if and only if X is a ball quotient.

In [35], Hirzebruch was interested in constructing ball quotients by starting with

line arrangements on P2. We study ball quotients in Section 2.5.

There are different notions of positivity of a line bundle on a projective variety.

Definition 1.29. A line bundle L on a smooth complex projective variety X is said

to be very ample if L = φ?(OPN(1)) for some closed embedding φ : X ↪→ PN for some

positive integer N. A line bundle L is called ample if an integral multiple L⊗m of L is

very ample, for some m > 0. A divisor D on X is said to be ample (resp. very ample) if

the corresponding line bundle OX(D) is ample (resp. very ample).

Definition 1.30. A line bundle L on a smooth complex projective variety X is said to

be numerically effective or nef, if L ·C > 0 for every irreducible curve C ⊆ X. A Cartier

divisor D on X is called nef if the corresponding line bundle OX(D) is nef.

We now state some basic results, without proof, about smooth projective surfaces

which we will use extensively in this thesis.
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Proposition 1.31 (Adjunction formula [30]). Let C be a reduced and irreducible curve

on a smooth projective surface X and let KX be the canonical divisor on X. Then there is a

non-negative integer pa(C), called the arithmetic genus of C, such that

C2 +C ·KX = 2pa(C) − 2.

We next recall the Hodge Index theorem (see [30, Chapter V, Theorem 1.9]).

Theorem 1.32 (Hodge Index Theorem). Let H be an ample divisor on a smooth projective

surface X and suppose that D is a divisor on X such that D 6≡ 0 and D ·H = 0. Then D2 < 0.

In fact, the Hodge index theorem states that given a smooth projective surface

X and a divisor D ∈ N1(X)Z with D2 > 0, the intersection form on the space

D⊥ ⊆ N1(X)Z of classes F with F ·D = 0 is negative definite.

In this thesis, we are mostly interested in curves with negative self-intersection

on surfaces.

Definition 1.33 (Negative curve). We say that a reduced and irreducible curve C on

a smooth projective surface is negative, if its self-intersection number C2 is less than

zero.

Example 1.34 (Exceptional divisor, (−1)–curves). Let X be a smooth projective surface

and let x ∈ X be a closed point. Let π : BlxX→ X be the blow up of X at the point x.

Then the exceptional divisor E of π (i.e., the set of points in BlxX mapped by π to x)

is a negative curve. More precisely by [30, Chapter V, Proposition 3.1], E is smooth

rational and E2 = −1.

In fact, Castelnuovo’s result [30, Chapter V, Theorem 5.7] shows that the converse

is also true.

Definition 1.35. A (−1)–curve on a smooth projective surface X is a smooth rational

reduced and irreducible curve C such that C2 = −1.

Theorem 1.36 (Castelnuovo’s Contraction). Let X be a smooth projective surface defined

over C. If C is a (−1)–curve, then there exists a smooth projective surface Y and a projective

morphism p : X→ Y contracting C to a smooth point on Y. In other words, X is isomorphic

to the blow up BlyY for some point y ∈ Y.

13



Thus, if π : BlxP
2
C → P2

C is a blow up of P2
C at a point x ∈ P2

C with exceptional

divisor Ex, the self-intersection of the exceptional divisor E2x is −1. In fact, Ex is

the only reduced and irreducible curve on BlxP
2
C with negative self-intersection

as Pic(BlxP2
C) has a basis given by the pullback of the hyperplane bundle OP2(1)

and the exceptional divisor. In particular, this shows that C2 > −1 for any reduced

curve C on BlxP2
C. The Bounded Negativity conjecture [Conjecture 1.45] attempts at

finding such lower bounds for self-intersection of reduced curves on an arbitrary

nonsingular complex projective surface.

There are other situations in which negative curves on algebraic surfaces appear.

Example 1.37. ([30, Ex. V.1.6]) Let C be a smooth curve of genus g(C) > 2. Then the

diagonal ∆ ⊂ C×C is a negative curve as its self-intersection is ∆2 = 2− 2g(C).

Remark 1.38. It is well-known that a blow up of P2 in 9 general points contains

infinitely many (−1)–curves.

In fact, in [6, Theorem 4.1], it is shown that for every integer m > 0, there exist

smooth projective complex surfaces containing infinitely many smooth irreducible

curves of self-intersection −m. Thus one can produce surfaces with infinitely many

negative curves of any given (fixed) negative self-intersection.

1.1.2 Bounded Negativity

Let X be a nonsingular projective surface over an algebraically closed field k. Given

a reduced curve C ⊂ X, we wish to understand how negative the self-intersection C2

can be. For example, consider the blow up Xr of P2
C at r distinct points on a line l. It

is easy to see that C2 = 1− r, where C is the strict transform of l. Hence, C2 can be

made arbitrarily negative if we vary the surface X. The Bounded Negativity Conjecture

is concerned with self-intersection C2 of reduced curves C on a fixed surface X.

Definition 1.39 (Bounded Negativity). Let X be a nonsingular projective surface over

an algebraically closed field k. We say X has bounded negativity if there exists an

integer b(X), depending only on X, such that C2 > −b(X) for all reduced curves C

on X.

To verify bounded negativity, it suffices to show that the self-intersection of

reduced and irreducible curves is bounded below, by [6, Proposition 5.1]. We include
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the proof here [Proposition 1.41] for the convenience of the reader. The proof uses

Zariski decomposition of effective divisors on any smooth projective surface.

The existence of Zariski decompositions was proved by Zariski [62] for effective

divisors on any smooth projective surface X. He established the following result:

Theorem 1.40. Let D be an effective Q-divisor on a smooth projective surface X. Then there

are uniquely determined effective (possibly zero) Q-divisors P and N with

D = P+N

such that

1. P is nef,

2. N is zero or N =
r∑
i=1
aiCi, where Ci are irreducible, reduced curves, ai > 0 and the

intersection matrix (Ci ·Cj)16i,j6r is negative definite,

3. P is orthogonal to each of the components of N, i.e., P ·Ci = 0, for i = 1, · · · , r.

The decomposition D = P+N is called the Zariski decomposition of D.

Proposition 1.41. ([6, Proposition 5.1]) Let X be a smooth projective surface (over an

arbitrary algebraically closed ground field) for which there is a positive constant b(X) such

that C2 > −b(X) for every reduced, irreducible curve C ⊂ X. Then

C2 > −(ρ(X) − 1) · b(X)

for every reduced curve C ⊂ X, where ρ(X) is the Picard number of X.

Proof. Let C be a reduced curve in X. Let C = P +N be the Zariski decomposition

(see Theorem 1.40), so P is nef. If N = 0, then C2 > 0. Suppose N 6= 0. Then

N = a1C1 + · · ·+ arCr, where the Ci are negative curves, ai are positive rational

numbers and ai 6 1 for all i (because C is reduced). Also, since the intersection

matrix of N is negative definite, we have by Hodge Index Theorem [Theorem 1.32]

that r 6 ρ(X) − 1.

Since P is nef and P and N are orthogonal, we have

C2 = P2 + 2P ·N+N2 > N2 > a21C
2
1 + · · ·+ a2rC2r > −r · b(X) > −(ρ(X) − 1) · b(X),
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as claimed.

We now give some examples of surfaces which are known to have bounded

negativity.

Example 1.42. A smooth surface X has bounded negativity if −mKX is effective for

some positive integer m, where −KX denotes the anti-canonical divisor on X. Indeed,

since −mKX is effective, there are only finitely many reduced, irreducible curves

C such that −mKX ·C < 0. So, apart from these finitely many reduced, irreducible

curves, we have −mKX ·C > 0, in which case the adjunction formula [Proposition

1.31] gives C2 = 2pa(C) − 2−C · KX > −2. Thus, in particular, bounded negativity

holds for K3 surfaces, Enriques surfaces and abelian surfaces. We also remark that

the same argument works for smooth surfaces X with −KX nef.

Example 1.43. Let π : X → P2
C be a blow up of P2

C at atmost nine distinct points.

Then X has bounded negativity. Indeed, since −KX is effective, bounded negativity

follows by the arguments in Example 1.42.

There are surfaces without bounded negativity in positive characteristic.

Example 1.44. (Kollár) Let p be a prime number and C be a smooth projective curve

of genus gC > 2 defined over the finite field Fp. We consider C as a curve over

the algebraic closure k of Fp. Let fn : C → C be the k-linear Frobenius morphism

obtained by taking pn-th powers for n ∈ N. Let X = C× C and Γn ⊂ X be the

graph of fn. Let ∆ be the diagonal of C×C. Note that ∆ is a negative curve as its

self-intersection is ∆2 = 2− 2gC (see Example 1.37).

Let fn × id : X = C× C → X = C× C be given by (x,y) 7→ (fn(x),y). It is then

easy to see that (fn × id)−1(∆) = Γn. Since fn × id is a finite morphism of degree

deg(fn).deg(id) = pn, we have Γ2n = pn ·∆2 = pn(2− 2gC) (see [30, Exercise V.1.10]).

Since Γ2n → −∞ as n→∞, X does not have bounded negativity.

There is a long-standing open conjecture involving boundedness of negativity on

surfaces. Its origins are unclear, but it goes back to F. Enriques.

Conjecture 1.45 (Bounded Negativity Conjecture (BNC)). Every smooth projective

surface X in characteristic 0 has bounded negativity.
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This conjecture is known to hold for some classes of surfaces, for instance,

surfaces in Example 1.42 and Example 1.43 or for smooth projective complex surfaces

equipped with a surjective endomorphism which is not an isomorphism (see [6,

Proposition 2.1]).

It is known (see [19] and [47]) that a smooth complex projective surface admitting

a surjective endomorphism that is not an isomorphism is one of the following types:

1. X is a toric surface;

2. X is a P1-bundle over a curve;

3. X is an abelian surface or a hyperelliptic surface;

4. X is an elliptic surface with Kodaira dimension κ(X) = 1 and topological Euler

number e(X) = 0.

Thus, [6, Proposition 2.1] shows that all surfaces X in the above list have bounded

negativity.

The BNC leads to a number of interesting questions. One such question is:

Question 1.46. If X has bounded negativity and Y is birational to X, does Y have bounded

negativity ?

If the above question has an affirmative answer, then one can focus only on

minimal surfaces to understand bounded negativity.

The following special case of Question 1.46 is also open:

Conjecture 1.47. Let π : Xs → P2
C be a blow up of P2

C at s > 10 points. Then Xs has

bounded negativity.

1.1.3 Bounded Negativity and the Nagata Conjecture

Let Xr be the blow up of P2
C at r distinct points. If the r points are collinear, then

C2 = 1− r, where C is the strict transform of the line containing the r points. It is

easy to see in this case that BNC holds for Xr. Also, if the blown up points lie on a

cubic, BNC holds for Xr, by Example 1.42, since −KXr is effective.
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Bounded negativity of Xr is known for some other special sets of points in P2 as

well (see examples in [15, Remark 3.13]). We include these examples here.

Example 1.48. Let C be an irreducible and reduced rational plane nodal sextic. Then,

it is known that C has exactly 10 nodes. Let X be the blow up of the 10 nodes. Such

surfaces are called Coble surfaces (these are smooth rational surfaces X such that

|−KX| = ∅ but |− 2KX| 6= ∅). Then it is known that BNC holds for X; see [12, Section

3.2].

Example 1.49. Let X be the blow up of 10 points of intersection of 5 general lines

in P2. Then −KX is a big divisor (see Definition 1.56) and by [57, Theorem 1], X is a

Mori Dream Space. For such surfaces, the submonoid of the Picard group generated

by the effective classes is finitely generated. Hence BNC holds for X ([28, Proposition

I.2.5]).

If the points blown up are very general, there is a connection between BNC and

the Nagata Conjecture. We say that a set of points x1, ...., xr on a smooth projective

complex surface X is very general if the tuple (x1, ..., xr) lies outside a countable union

of proper Zariski closed sets in Xr := X×X× ...×X.

Conjecture 1.50 (Nagata Conjecture). Let p1, ...,pr ∈ P2 be very general points with

r > 9. If C ⊂ P2 is a reduced and irreducible curve of degree d passing through pi
with multiplicity mi at pi, then

√
r · d >

r∑
i=1

mi.

If the points blown up are very general, the bounded negativity conjecture is

still open, but there is a conjecture called the SHGH (Segre-Harbourne-Gimigliano-

Hirschowitz) conjecture about linear systems of plane curves, which implies both the

Nagata conjecture and BNC for very general blow ups of P2. We describe it below.

Let π : Xr → P2 be a blow up of P2 at r very general points p1,p2, ...,pr ∈ P2.

Consider the linear system Ld(p
m1
1 ,pm2

2 , ...,pmr
r ) of plane curves in P2 of degree d

passing through p1,p2, ...,pr with multiplicities at least m1,m2, ...,mr, respectively.

Let L denote the linear system on Xr which is the pullback of Ld(p
m1
1 ,pm2

2 , ...,pmr
r )

via π. Let KXr denote the canonical bundle on Xr. One then defines:

V(L) := X(L) − 1 =
L · (L−KXr)

2
,
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to be the virtual dimension of L and

e(L) := max{V(L),−1},

to be the expected dimension of L. We call a system L to be non-special if dim(L) = e(L),

otherwise we call it special, i.e., when dim(L) > e(L) . It is not hard to see

L is non-special ⇔ h0(Xr,L) · h1(Xr,L) = 0.

An example of special divisors is given by the following observation.

F If the linear system L has a multiple of a (−1)–curve in its base locus, then L is

special.

SHGH says F is the only way speciality can arise. An equivalent formulation of

SHGH is:

SHGH Conjecture: Suppose L is a linear system on Xr which is nonempty and

reduced (i.e., a general member of L is reduced), then L is non-special.

Let C be an irreducible and reduced curve of genus g on Xr. If the SHGH

conjecture holds on Xr, then the virtual dimension of OXr(C) is non-negative, which

is equivalent to

C2 > g− 1.

In particular, we have that SHGH implies a following stronger version of the

bounded negativity conjecture for Xr:

Conjecture 1.51. Let Xr be the blow up of P2
C at r very general points. If C is a

reduced and irreducible curve in Xr, then C2 > −1 and C2 = −1 implies that C is a

(−1)–curve.

Thus, if the points blown up are very general, there is a conjectural answer to the

BNC for Xr, namely, Conjecture 1.51. Hence, we see that bounded negativity of Xr
depends on the position of the points that are blown up.

In fact, Conjecture 1.51 can be seen as a strong form of the Nagata conjecture:

Proposition 1.52. Let πr : Xr → P2
C be the blow up of P2

C at r very general points. If

Conjecture 1.51 holds for Xr, then the Nagata conjecture (Conjecture 1.50) holds.
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Proof. Suppose that C is a reduced and irreducible curve violating the Nagata

Conjecture, i.e., r > 9 and
√
r · d <

∑r
i=1mi, where mi = multpi(C) for very general

points p1, · · · ,pr. Let C̃ denote the strict transform of C on the blow up Xr of P2
C

at p1, · · · ,pr. Then C̃ = dH−
∑r
i=1miEi, where H = π?rOP2(1) and E1, ....,Er are the

exceptional divisors of the blow up. Then, for m = m1+...+mr
r and using the Cauchy-

Schwartz inequality m2 6
m2

1+....+m2
r

r , we have

d2 < r
(m1 + ... +mr)

2

r2
= rm2 6 m2

1 + .... +m2
r .

Thus, C̃2 = d2 − (m2
1 + .... +m2

r) < 0 and hence, by Conjecture 1.51, we have C̃2 = −1

and C̃ is a (−1)–curve.

We know that −KXr = 3H− E1 − · · ·− Er. So, −KXr · C̃ = 1. But −KXr · C̃ = 3d−

(m1 + ... +mr) 6
√
rd− (m1 + ... +mr) < 0, which is a contradiction.

1.1.4 Variants of the Bounded Negativity Conjecture

We now mention a few variants of BNC. See [4, Section 3.3 and Section 3.7] for more

details.

Conjecture 1.53 (Weak Bounded Negativity Conjecture (Weak BNC)). For any

smooth projective surface X in characteristic zero and any integer g, there exists a

positive constant b(X,g) only depending on X and g, such that

C2 > −b(X,g)

for any reduced curve C =
∑
Ci in X such that g(Ci) 6 g for all i, where g(Ci)

denotes the geometric genus of Ci (i.e., the genus of the normalization of Ci).

In [26], the Weak BNC is proved for any smooth complex projective surface X.

The Weak BNC is shown to hold for an arbitrary reduced curve in [26, Theorem 2.1]

using Zariski decompositions.

We now quote some earlier results which are valid on specific surfaces, but which

give very precise bounds for C2.

Proposition 1.54 (Bogomolov). Let X be a smooth projective surface with Kodaira

dimension κ(X) > 0. Then for any smooth irreducible curve C ⊂ X of genus g(C), we
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have

C2 > K2X − 4c2(X) − 4g(C) + 4,

where c2 is the second Chern number of the surface X.

The proof of Proposition 1.54 involves Bogomolov’s criterion for unstable bundles

on surfaces and the Bogomolov-Sommese vanishing theorem. See [4, Proposition

3.4.4] and [9, Section 5] for details.

Proposition 1.55. ([4, Proposition 3.5.3]). Let X be a smooth projective surface with

κ(X) > 0. Then for every reduced, irreducible curve C ⊂ X of geometric genus g(C) we have

C2 > K2X − 3c2(X) + 2− 2g(C),

where c2 is the second Chern number of the surface X.

Note that Proposition 1.55 is actually a corollary of the generalized logarithmic

Miyaoka-Yau inequality [46, Theorem 1.1].

There is yet another variant of the BNC. To get to that, we first look at the

following definition:

Definition 1.56. An integral divisor D on a smooth projective surface X is called big

if there is an ample divisor A on X, a positive integer m > 0 and an effective divisor

N on X such that mD is numerically equivalent to A+N.

Conjecture 1.57 (Weighted Bounded Negativity Conjecture (Weighted BNC)). Let

X be a smooth projective surface in characteristic zero. There exists a nonnegative

integer bw(X) ∈ Z such that

C2 > −bw(X)(H ·C)2,

for all irreducible and reduced curves C ⊂ X and all big and nef line bundles H

satisfying H ·C > 0.

This conjecture is open in general.

In [42], the authors give bounds for self-intersection numbers of irreducible and

reduced curves on blow ups of some algebraic surfaces at distinct points, where the

bounds depend on the degree of the curve with respect to an explicitly constructed

big and nef line bundle. We include the statements here.
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Theorem 1.58. ([42, Theorem A]) Let X be a surface of non-negative Kodaira dimension

and let f : Y → X be the blowing up of X along n distinct points. Then there exists a big and

nef line bundle Γ that bounds negativity linearly, i.e.,

C2 > −
1

2

(
δ(X) +C.Γ

)
−n,

for every reduced and irreducible curve C ⊂ Y, where δ(X) = 3e(X) −K2X.

Theorem 1.59. ([42, Theorem B]) Let σ : Y → P2 be the blow up of P2 at n distinct points

in P2, and let C be an irreducible and reduced curve on Y. Then,

C2 > −2n(C.L),

where L = σ?H and H is the class of a line in P2.

1.1.5 Bounded Negativity and Zariski Decomposition

There is another formulation of the BNC using Zariski decomposition, which we

now discuss.

Let X be a smooth projective surface. Zariski [62] showed the existence of Zariski

decomposition for effective divisors, see [Theorem 1.40]. Fujita [20] extended this

notion of Zariski decomposition to the pseudo-effective case. Note that a divisor

D is called pseudo-effective if its numerical class [D] ∈ N1(X)R := N1(X)Z ⊗R lies in

the closure of the convex cone spanned by the classes of effective divisors in N1(X)R,

called the pseudo-effective cone and denoted by Eff(X).

The geometric significance of Zariski decompositions lies in the fact that, given a

pseudo-effective integral divisor D on X with Zariski decomposition D = P+N, one

has for every sufficiently divisible integer m > 1, the equality

H0(X,OX(mD)) = H0(X,OX(mP)) .

In other words, all sections of OX(mD) come from the nef line bundle OX(mP). The

term "sufficiently divisible" here means that one needs to pass to a multiple mD that

clears the denominators in P for the statement to hold.

Thus, we have the following natural question:
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Question 1.60. Let X be a smooth projective surface. Does there exist an integer

d(X) > 1 such that for every pseudo-effective integral divisor D, the denominators

in the Zariski decomposition of D are bounded above by d(X)?

If such a bound d(X) exists, then we say that X has bounded Zariski denominators. In

this case, taking then the factorial d(X)!, one has in fact a uniform number that clears

the denominators in all Zariski decompositions on X. It is an interesting question to

ask whether a given smooth surface satisfies this boundedness condition.

In [7], the authors established the following theorem:

Theorem 1.61. For a smooth projective surface X over an algebraically closed field, the

following two statements are equivalent:

(i) X has bounded Zariski denominators.

(ii) X has bounded negativity.

Remark 1.62. In [7, Theorem 2.2], it is shown that if the self-intersection of reduced

and irreducible curves on a smooth projective surface X is bounded below by −b(X),

then d(X) = b(X)ρ(X)−1 is a bound for the Zariski denominators of integral pseudo-

effective divisors on X, where ρ(X) is the Picard number of X. Further, in [7, Theorem

2.3], it is shown that if the Zariski denominators of a smooth projective surface X

are bounded by d(X), then the self-intersection of irreducible and reduced curves is

bounded below by −b(X), where

b(X) = d(X) · d(X)! · |∆|,

and ∆ is the determinant of the intersection form on N1(X)Z.

Example 1.63. ([7, Example 3.1]). Let C be a smooth projective curve of genus gC > 2

defined over k which is the algebraic closure of a finite field of characteristic p > 0.

Let X = C×C. We saw in Example 1.44 that X does not have bounded negativity.

Thus, by Theorem 1.61, X must have unbounded Zariski denominators. Let F ′ be a

fiber of the second projection X→ C, and consider the divisor Dn = F ′ + Γn, where

Γn is as defined in Example 1.44. The negative part of its Zariski decomposition has

support Γn with coefficient
Dn · Γn
Γ2n

=
1+ Γ2n
Γ2n

.

Since numerator and denominator are coprime for all n, we see that the Zariski

denominator is −Γ2n = pn(2gC − 2) and hence tends to infinity.
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Example 1.64. Let X be a smooth projective surface with −KX nef. We can take

the constant b(X) in BNC as 2 in this case (see Example 1.42). Thus from Remark

1.62, we have that for every pseudo-effective integral divisor D on X, the Zariski

decomposition of (2ρ(X)−1)! ·D is integral.

1.1.6 Bounded Negativity Conjecture and Seshadri Constants

There is an interesting connection between bounded negativity and Seshadri

constants.

The following are very useful numerical criteria to check the ampleness of a line

bundle on a smooth projective surface.

Theorem 1.65. (Nakai-Moishezon criterion [43]). Let L be a line bundle on a smooth

projective surface X. Then L is ample if and only if L2 > 0 and L ·C > 0 for all curves C on

X.

Theorem 1.66. (Seshadri’s criterion [29]). A line bundle L on a smooth projective surface X

is ample if and only if there exists a positive number ε > 0 such that

L ·C
multxC

> ε,

for every point x ∈ X and every irreducible curve C ⊆ X passing through x having

multiplicity multx(C) at x.

We now define the notion of a Seshadri constant at a point.

Definition 1.67 (Seshadri constant at a point). Let X be a smooth projective surface

and L be a nef line bundle on X. The Seshadri constant of L at a point x ∈ X, denoted

ε(X,L, x), is defined as

ε(X,L, x) := inf
x∈C

L ·C
multxC

,

where the infimum is taken over all reduced and irreducible curves C ⊂ X passing

through x having the multiplicity multx(C) at x.

A lot of research is aimed at finding good lower bounds for Seshadri constants

of ample line bundles on surfaces.

It is observed in [4, Section 3.6] that BNC gives a partial answer to the following

question on Seshadri constants posed by Demailly [13, Question 6.9]:
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Question 1.68. Is the global Seshadri constant

ε(X) := inf
x∈X

ε(X, x)

positive for every smooth projective surface X, where

ε(X, x) := inf
L ample

ε(X,L, x)?

This question is still open. It is also unknown whether for every fixed x ∈ X, the

quantity ε(X, x) is always positive.

In [4, Proposition 3.6.2], it was shown that positivity of ε(X, x) is a consequence

of the Bounded Negativity Conjecture. We include the statement here with proof.

Proposition 1.69. Let X be a smooth projective surface (in characteristic 0) and let f : Y → X

be the blow up of X at a point x ∈ X. Suppose the Bounded Negativity Conjecture is true for

Y. Let b(Y) > 0 be a positive integer such that C2 > −b(Y) for all reduced curves C on Y.

Then,

ε(X, x) >
1√

b(Y) + 1
∀x ∈ X.

Proof. Let C ⊂ X be an irreducible curve of multiplicity m at x, and let C̃ ⊂ Y be its

proper transform on the blow up Y of X in x. Then

C2 −m2 = (f?C−mE)2 = C̃2 > −b(Y) .

Note that if m 6
√
b(Y), then

L ·C
m

>
L ·C√
b(Y)

>
1√
b(Y)

On the other hand, if m >
√
b(Y), we have

C2 > m2 − b(Y) > 0

and hence, using the Hodge Index Theorem [Theorem 1.32], we get

L ·C
m

>

√
L2
√
C2

m
>

√
1−

b(Y)

m2
>

√
1−

b(Y)

b(Y) + 1
=

1√
b(Y) + 1

.
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1.1.7 Harbourne constants

The notion of Harbourne constants was defined in [5] in an attempt to understand

and clarify the bounded negativity conjecture.

To illustrate the concept, consider a blow up X of P2
C at r distinct points. It is clear

that the occurrence of negative curves on X depends on the position of the points

that are blown up. For example, if the points are very general, it is conjectured that

C2 > −1 for all reduced and irreducible curves C ⊂ X (see Conjecture 1.51). On the

other hand, C2 = 1− r if the points are collinear and C is the strict transform of the

line containing them. A natural approach to the BNC then is to divide by r and

consider the ratio C2/r for all reduced, not necessarily irreducible, curves C on X.

The problem then is to bound these ratios C2/r.

Definition 1.70 (Harbourne constants). Let X be a nonsingular projective surface

over a field k. Let C ⊂ X be a reduced curve and let P ⊂ X be a finite nonempty set.

Then the Harbourne constant of C at P is defined as

H(X,C,P) :=
C2 −

∑
pi∈P(multpi(C))

2

|P|
, (1.6)

where |P| denotes the cardinality of P.

We also define

H(X,C) := inf
P
H(X,C,P),

where the infimum is taken over all finite nonempty subsets P ⊂ X.

Remark 1.71. Note that if f : Y → X is the blow up of X at a finite nonempty set P

and C̃ is the proper transform of C, then

C̃2 =

(
f?C−

∑
pi∈P

(multpi(C))Ei

)2
= C2 −

∑
pi∈P

(multpi(C))
2,

where E1, . . . ,E|P| are the exceptional divisors of the blow up. Thus we have C̃2 =

|P|.H(X,C,P).

We now define the global Harbourne constant of a smooth projective surface X as

follows:
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Definition 1.72 (Global Harbourne constant). Let X be a nonsingular projective

surface over a field k. The global Harbourne constant of X is defined as

H(X) := inf
C
H(X,C), (1.7)

where the infimum is taken over all reduced curves C ⊂ X.

Remark 1.73. In [5, Remark 2.4], it was observed that if C is a singular reduced curve

and H(X,C,P) < 0 for a finite subset P of X which contains some singular points of

C, then

H(X,C) = inf
P
H(X,C,P),

where the infimum is taken over all nonempty subsets P ⊆ Sing(C), where Sing(C)

denotes the set of singular points of C. Thus, it follows that

H(X) = inf
C
H(X,C), (1.8)

where the infimum is taken over all reduced singular curves C ⊂ X.

Remark 1.74. It is not known if H(X) 6= −∞ for any surface X. (For example, this

is not known for even X = P2.) We remark that if H(X) 6= −∞, then for any s > 1

and any irreducible curve D on the blow up of X at s points, D2 > sH(X). Thus if the

global Harbourne constant is finite on X, the BNC holds for blow ups of X at finite sets

of points; see [5, Remark 2.3].

Example 1.75. In [5, Example 2.2], it was observed that H(X) 6 −2 for any surface X.

To see this, we embed X in a projective space PN as a surface of some degree

d. Choose r general hyperplane sections C1, . . . ,Cr such that Ci and Cj meet

transversally in d2 distinct points, for i 6= j and i, j = 1, 2, . . . , r. Note that Ci is

smooth ∀i = 1, 2, . . . , r. Let C = C1 +C2 + . . .+Cr. Thus C has s = d2
(
r
2

)
nodes.

Now, we have

C2 = (C1 +C2 + . . .+Cr)
2 =

∑r
i=1C

2
i + 2

∑
16i<j6rCi ·Cj = rd2 + 2d2

(
r
2

)
.

Thus,

H(X,C, Sing(C)) =
C2 −

∑s
i=1(multPi(C))

2

s
=
rd2 + 2d2

(
r
2

)
− 4d2

(
r
2

)
d2
(
r
2

)
=
r(2− r)d2

d2
(
r
2

) = −2+
2

r− 1
.
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Thus, H(X,C) 6 −2+ 2
r−1 and hence H(X) 6 −2.

Remark 1.76. In fact, [56, Corollary 4] shows that H(X) 6 −4 for any smooth surface

X.

From the definition of H(X,C,P), it is clear that in order to obtain very negative

values of H(X,C,P), one should consider singular reduced curves C on the original

surface, with the finite set P as the set of singular points of C. It is an open problem

to determine how negative H(X,C, Sing(C)) can be for a reduced singular curve

C ⊂ X, where Sing(C) denotes the set of singular points of C. It is interesting to

study Harbourne constants for reduced and irreducible singular curves on a surface.

When X is the projective plane P2, there is a variant of the Harbourne constant:

Hirr(P
2) := inf

C
H(P2,C, Sing(C)),

where the infimum is over all reduced and irreducible singular curves C ⊂ P2.

One can show that Hirr(P2) 6 −2, see [5, Remark 2.4]. To see this, consider a

general map of P1 into P2 of degree d. The image is a rational curve Cd of degree

d with
(
d−1
2

)
nodes. Then H(P2,Cd, Sing(Cd)) = −2+ 6d−4

d2−3d+2
. Thus we have that

H(P2,Cd, Sing(Cd)) > −2 and limd→∞H(P2,Cd, Sing(Cd)) = −2.

The following question appearing in [5, Remark 2.4] is still open:

Question 1.77. Does there exist an irreducible reduced singular curve C ⊂ P2 such that

H(P2,C, Sing(C)) 6 −2?

In [14], the authors show that Question 1.77 has a negative answer in some cases.

On the other hand, it is also reasonable to consider singular reducible reduced

curves on surfaces whose singularities arise as intersection points of the irreducible

components. Further, one can also assume that the irreducible components are all

smooth and intersect pairwise transversally. The technical advantage behind this

assumption lies in the property that after blowing up all the intersection points just

once, we obtain a simple normal crossing divisor. Also, transversal arrangements

allow us to use some combinatorial identities, which fail when tangencies are

allowed. For all these reasons, it is reasonable to keep this assumption.

28



Definition 1.78 (Transversal arrangement). Let C = {C1,C2, . . . ,Cd} be an arrangement

of curves on a smooth projective surface X. We say that C is a transversal arrangement

if d > 2, all curves Ci are smooth and they intersect pairwise transversally.

Given a transversal arrangement C = {C1,C2, . . . ,Cd}, we have a divisor D =
d∑
i=1
Ci

on X. We use the arrangement C and the divisor D interchangeably.

Let Sing(C) be the set of all intersection points of the curves in a transversal

arrangement C. Note that Sing(C) is precisely the set of intersection points of the

irreducible components of the reduced curve D, since all the irreducible components

of D are nonsingular by hypothesis. Let s denote the number of points in the set

Sing(C).

Definition 1.79 (Combinatorial invariants of transversal arrangements). Let C be a

transversal arrangement on a smooth projective surface X. For a point p ∈ X, let rp
denote the number of elements of C that pass through p. We call rp the multiplicity

of p in C. We say p is an r-fold point of C if there are exactly r curves in C passing

through p. For a positive integer r > 2, tr denotes the number of r-fold points in C.

These numbers satisfy the following well-known equality, which follows by

counting incidences in a transversal arrangement in two ways:

∑
i<j

(Ci ·Cj) =
∑
r>2

(
r

2

)
tr. (1.9)

Let

fi = fi(D) :=
∑
r>2

ritr.

In particular, f0 = s is the number of points in Sing(C).

Definition 1.80 (Harbourne constant of a transversal arrangement). Let X be a

smooth projective surface. Let D =
d∑
i=1
Ci be a transversal arrangement of curves on

X with s > 0. The rational number

H(C) = H(D) :=
1

s

D2 − ∑
p∈Sing(D)

r2p


is called the Harbourne constant of the transversal arrangement C.
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Remark 1.81. Comparing with Definition 1.70, for a transversal arrangement of

curves D =
d∑
i=1
Ci on a smooth projective surface X, we have H(D) = H(X,D, Sing(D)).

Remark 1.82. We can rephrase Harbourne constants of a transversal curve

arrangement C using the number of i-fold points ti. More precisely, if D =
d∑
i=1
Ci is a

transversal arrangement of curves on X with s > 0, where s denotes the number of

points in Sing(C), then

H(D) =
1

s

D2 −∑
r>2

r2tr

 .

Example 1.83. Let X = P2 and C = {L1,L2, . . . ,Ld} be d general lines in X. Then rp = 2

for all p ∈ Sing(C). Let D =
d∑
i=1
Li. Note that s =

(
d
2

)
. Also D2 = d+ 2

(
d
2

)
. Plugging

these values in the definition of H(C) and simplifying, we obtain H(C) = 2
d−1 − 2.

Remark 1.84. If the Harbourne constants H(C) for all transversal curve configurations

C on a fixed surface X are uniformly bounded below by a number H, then BNC holds

for all birational models Y = BlSing(C)X obtained from X by blowing up singular

points of transversal arrangements C with b(Y) = H · s. The reverse implication might

fail i.e., it might happen that there is no uniform lower bound but nevertheless BNC

holds for every such birational model of X.

1.1.8 Line arrangements and Harbourne constants

Line arrangements have played an important role in studying the bounded negativity

problem and Harbourne constants [5].

Let X = P2
k, where k is a field. A line arrangement is a finite set of d > 2 distinct

lines C = {L1,L2, . . . ,Ld} in the projective plane. We note that any line arrangement is

a transversal arrangement.

In this case, there is a variant of Definition 1.80, called the linear Harbourne

constant, see [5, Definition 3.1].
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Definition 1.85 (Linear Harbourne constant). Consider the projective plane P2
k,

where k is a field. Then the linear Harbourne constant of P2
k is defined as

Hlin(P
2
k) = inf

D

1

s

D2 − ∑
p∈Sing(D)

r2p

 ,

where the infimum is over line arrangements D =
d∑
i=1
Li on P2

k with s > 0. Note that

rp denotes the multiplicity of p in C.

We now look at Hlin(P2
k) for different fields k. We also include proofs here for

completeness.

Proposition 1.86. ([27, Example 1.1.3]) Let char(k) = p > 0, and let k be an algebraic

closure of k. Then Hlin(P2
k
) = −∞.

Proof. For each finite field Fq ⊆ k of order q, consider the arrangement of all lines

Cq in P2
k

defined over Fq, where q = pr and r is a positive integer.

It is easy to see that there are q2 + q+ 1 lines in Cq, q2 + q+ 1 points in Sing(Cq)

and q+ 1 lines in Cq that pass through a given point p ∈ Sing(Cq).

We now compute the Harbourne constant of the line arrangement Cq.

H(Cq) =
1

s

D2 − ∑
p∈Sing(D)

r2p


=

(q2 + q+ 1)2 − (q2 + q+ 1)(q+ 1)2

q2 + q+ 1

= −q.

Thus by taking larger and larger finite subfields, one can get arbitrarily negative

Harbourne constants. Hence, Hlin(P2
k
) = −∞.

Remark 1.87. The line arrangement Cq in P2
k

defined over Fq above is an example of

a line arrangement with t2 = 0, i.e., whenever two of the lines Li in the arrangement

cross, there is at least one other line in the arrangement that also goes through that

crossing point.

Over R, line arrangements with d > 3 concurrent lines (i.e., d > 3 lines through a

point p) are the only line arrangements with t2 = 0, due to the following result [44]:
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Theorem 1.88 (Melchior). Given a real line arrangement of d lines with td = 0 (i.e., the

lines are not concurrent), we have

t2 > 3+
∑
r>2

tr(r− 3).

Proposition 1.89. ([5, Theorem 3.15]) Hlin(P2
R) = −3.

Proof. We first show Hlin(P
2
R) > −3.

Let C = {L1,L2, . . . ,Ld} be a line arrangement in the real projective plane. If the

lines are concurrent, we have td = 1 and tr = 0 for r 6= d. Thus H(C) = 0.

So suppose the lines are not concurrent. Then we have d > 3 and td = 0.

By Theorem 1.88, we have

t2 = α+ 3+
∑
r>3

tr(r− 3),

for some α > 0.

By Equation (1.9), we also have(
d

2

)
=

∑
r>2

(
r

2

)
tr.

Thus,

H(C) =
d−

∑
r>2 rtr∑

r>2 tr
>

−
∑
r>2 rtr∑
r>2 tr

=
−(2α+ 6+ 2

∑
r>3(r− 3)tr) −

∑
r>3 rtr∑

r>2 tr

=
−(2α+ 6+ 3

∑
r>3(r− 2)tr)∑

r>2 tr
=

−(2α+ 6+ 3
∑
r>3(r− 2)tr)

α+ 3+
∑
r>3(r− 2)tr

= −3+
α+ 3

α+ 3+
∑
r>3(r− 2)tr

> −3.

Thus, we have Hlin(P2
R) > −3.

To show Hlin(P
2
R) 6 −3, consider the line arrangement Ld of 2d lines, where d

of the lines are the sides of a regular d-gon and the other d lines are the lines of

bilateral symmetry of the d-gon (i.e., angle bisectors and perpendicular bisectors of

the sides).
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The arrangement Ld has one d-fold point at the center of the d-gon, given by

the intersection of the lines of symmetry. The arrangement Ld further has
(
d
2

)
triple

points coming from intersections of pairs of sides with the line of symmetry between

the sides of the pair. Also, Ld has d double points coming as midpoints of sides.

Thus, td = 1, t2 = d, t3 =
(
d
2

)
and tr = 0 for r > 3.

Hence, the Harbourne constant of Ld is H(Ld) = 2d−2t2−3t3−dtd
t2+t3+td

= −3+ 4d+6
d2+d+2

.

As H(Ld) tends to −3 as d→∞, we conclude that Hlin(P2
R) 6 −3.

We now look at line arrangements in the complex projective plane.

Question 1.90 (Open Problem). Classify all line arrangements in the complex projective

plane with the t2 = 0 property.

This question has been studied in [1] and [24].

Remark 1.91. Over k = C, only four kinds of line arrangements in P2
C seem to

be known with t2 = 0. (See [39] for Klein arrangements and [61] for Wiman

arrangements.) We list these arrangements below. It is easy to compute Harbourne

constants for each of these arrangements.

(1) Line arrangement L of d > 3 concurrent lines. In this case, it is easy to see that

H(L) = 0.

(2) The Fermat arrangement Cd of 3d lines for d > 3: the lines of this arrangement

are defined by the factors of (xd−yd)(xd− zd)(yd− zd). Each line contains d+ 1

crossing points, and we have tr = 0 except for t3 = d2 and td = 3 when d > 3

or t3 = 12 when d = 3.

Thus we have H(C3) = −2.25.

For d > 3, we have H(Cd) = 3d−3t3−dtd
t3+td

= −3+ 9
d2+3

. Thus, H(Cd) tends to −3 as

d→∞.

(3) The Klein arrangement K of 21 lines: here tr = 0 except for t4 = 21 and t3 = 28.

For this arrangement, each line contains 4 points where 3 lines cross and 4

points where 3 lines cross. Thus, we have H(K) = 21−3t3−4t4
t3+t4

= −3.

(4) The Wiman arrangement W of 45 lines: here tr = 0 except for t5 = 36, t4 = 45

and t3 = 120. For this arrangement, each line contains 4 points where 5 lines
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cross, 4 points where 4 lines cross and 8 points where 3 lines cross. Thus, we

have H(W) = 45−3t3−4t4−5t5
t3+t4+t5

= −225
67 .

Over C, the linear Harbourne constant of P2 has the following bounds, see [5,

Theorem 3.3] for details:

Proposition 1.92.

−3.358 ≈ −
225

67
> Hlin(P

2
C) > −4.

Remark 1.93. The bound −225
67 > Hlin(P2

C) comes from the Wiman arrangement. The

bound Hlin(P2
C) > −4 comes from applying an inequality due to Hirzebruch [35]:

Given any complex arrangement of d > 3 lines such that td = td−1 = 0, we have

t2 +
3

4
t3 > d+

∑
r>5

(r− 4)tr.

Harbourne constants for arrangements of d lines in P2
k for arbitrary fields k are

studied in [16]. In [16], the authors introduce another variant of the Harbourne

constants called the absolute linear Harbourne constant.

Definition 1.94 (Absolute linear Harbourne constant). The absolute linear Harbourne

constant of d lines in P2
k is defined as

H(d) = min
k

min
D

1

s

D2 − ∑
p∈Sing(D)

r2p



where the inner minimum is taken over all line arrangements D =
d∑
i=1
Li of d lines

in P2
k with s > 0 being the number of points in Sing(D) and the outer minimum is

taken over all fields k.

In [16, Theorem 1.4], the value of H(d) is computed for small values of d. Also

in [16, Theorem 1.6], the authors give the following lower bound on Harbourne

constants.

Theorem 1.95. For d > 6, we have

H(d) > −
1

2

√
4d− 3+

1

2
.

34



1.1.9 Curve arrangements and Harbourne constants

We now state some known results about Harbourne constants for curve arrangements

on surfaces.

In [53], the authors describe a transversal arrangement C of curves in P2 for

which H(C) ≈ −3.571.

The case of arrangements of conics on P2 was studied in [55]. The authors show

the following:

Theorem 1.96. ([55, Theorem A]) Let C = {C1,C2, . . . ,Cd} be a transversal arrangement of

conics in P2 with td = 0. Then H(C) > −4.5.

The author of [56] considers arrangements C of elliptic curves on an abelian

surface or on P2. It is proved in [56, Theorem 1] that H(C) > −4.

Further, the following is shown in [56, Theorem 5]:

Theorem 1.97. There exists a sequence of reduced curves Dn ⊂ P2 (each of which is a union

of elliptic curves) such that limnH(Dn) = −4.

In [54], the authors show the following:

Theorem 1.98. ([54, Theorem 4.2]) Let D = C1 + . . .+ Cd be a reduced divisor on P2,

where Ci are smooth irreducible plane curves of degree n > 3 such that Ci and Cj meet

transversally for all i 6= j. Assume also that d > 4 and td = 0. Let s be the number of

singular points of D. Then

H(D) > −4+
9nd− 5n2d

2s
.

Harbourne constants for line arrangements on a smooth hypersurface X of degree

n > 3 in P3 were first studied in [50]. The bounds obtained there were generalized

in [41]. In [41, Theorem 3.2], it was shown that:

Theorem 1.99. If X is a smooth hypersurface in P3
C of degree n > 4 and L is an arrangement

of d > 2 lines on X such that the union of lines in L is connected as a subset of P3
C, then

H(L) > −n(n− 1).
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Harbourne constants for transversal arrangements of smooth curves on a surface

X with numerically trivial canonical class were studied in [40]. The bounds on

Harbourne constants were given in terms of the number of curves and the second

Chern class of X. This bound was generalized to surfaces with non-negative Kodaira

dimension in [41, Theorem 2.2]. We include the statement here.

Theorem 1.100. Let X be a smooth complex projective surface with non-negative Kodaira

dimension. Let D =
d∑
i=1
Ci be a transversal arrangement of curves on X with d > 2 and

s > 0 as the number of singular points of D. Then

H(D) > −4+
K2X − 3c2(X) +

∑d
i=1(2− 2g(Ci)) + t2
s

As the above survey of the literature illustrates, most of the work on Harbourne

constants for curve arrangements considered surfaces of non-negative Kodaira

dimension or P2. In this thesis, we look at curve arrangements on ruled surfaces

and prove lower bounds on their Harbourne constants.

1.1.10 Ruled surfaces

Definition 1.101. Let C be a smooth projective algebraic curve over an algebraically

closed field k. A geometrically ruled surface or simply a ruled surface, is a smooth

projective surface X, together with a surjective morphism φ : X → C such that the

fiber Xy is isomorphic to P1
k for every closed point y ∈ C, and φ admits a section

(i.e., a morphism α : C→ X such that φ ◦α = idC).

The following proposition characterizes ruled surfaces:

Proposition 1.102. ([30, Proposition 2.2, Chapter V]) If φ : X→ C is a ruled surface, then

X ∼= PC(E) over C for a vector bundle E of rank 2 over C. Conversely, every such PC(E) is a

ruled surface over C. Moreover, E1 and E2 are two vector bundles of rank 2 on C such that

X ∼= PC(E1) ∼= PC(E2) as ruled surfaces over C if and only if there is a line bundle N on C

such that E1 ∼= E2 ⊗N.

We now mention the following theorem from [30, Chapter V, Section 2]:
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Theorem 1.103. If φ : X → C is a ruled surface, then there is a vector bundle F of rank

2 on C such that X ∼= PC(F) as ruled surfaces over C, and F has the following property:

H0(C, F) 6= 0, but H0(C, F⊗N) = 0 for all line bundles N on C with deg(N) < 0.

In this case, e := −deg(∧2F) is an invariant of X uniquely determined by X.

Further in this case, there is a section α0 : C→ X, called the normalised section, such

that Image(α0) = C0 and OX(C0) = OX(1).

Thus from the above theorem, we have the following definition:

Definition 1.104. A vector bundle E of rank 2 on a smooth irreducible projective

curve C is said to be normalized if H0(C,E) 6= 0 and H0(C,E⊗ L) = 0 for all line

bundles L on C with deg(L) < 0.

Let φ : X → C be a ruled surface over a smooth complex curve C of genus g

with invariant e > 0. We fix a section C0 of X with OX(C0) = OX(1). Let f denote the

numerical class of a fiber of φ.

Then

1. Pic(X) ∼= Z ·OX(1)⊕φ?(Pic(C)), and

2. N1(X)Z
∼= Z ·C0 ⊕Z · f satisfying C20 = −e, C0 · f = 1 and f2 = 0.

Thus any element of N1(X)Z has the form aC0 + bf, for a,b ∈ Z.

Any canonical divisor on X, denoted by KX, is numerically equivalent to −2C0 +

(2g− 2− e)f.

If an irreducible curve on X, different from C0 and f, is numerically equivalent to

aC0 + bf, then a > 0 and b > ae. A divisor on X which is numerically equivalent to

aC0 + bf is ample if and only if a > 0 and b > ae.

For more details, see [30, Chapter V, Section 2].

1.2 Aim of the thesis

In this thesis, we study the Bounded Negativity Conjecture (BNC) and Harbourne

constants on ruled surfaces. We state our results in Section 1.2.1. These results are
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proved in Section 2.4 and Section 2.5 of Chapter 2. Section 1.2.1 is a joint work with

Krishna Hanumanthu which has appeared in Manuscripta Math. [25].

1.2.1 Harbourne constants on ruled surfaces

We prove our results under the following assumption (see Assumption 2.41):

Assumption 1.105. Let C = {C1,C2, . . . ,Cd} be a transversal arrangement of curves on

a ruled surface X over a smooth curve with invariant e > 4 such that the following

conditions hold:

1. All the curves Ci in C are linearly equivalent to a fixed divisor A on X, where

A is numerically equivalent to aC0 + bf, for a,b ∈ Z with a > 0 and b > ae.

2. d > 4 and td = 0, i.e., all curves do not go through a common point.

3. Either a > 2, or a = 1 and there exists a subset of four curves in C such that

there is no point common to all the four curves.

We prove the following main theorems:

Theorem 1.106. Let X be a ruled surface with e > 4 over a smooth curve of genus g. Let

C be a transversal arrangement of curves satisfying Assumption 1.105. In particular, each

curve in C is numerically equivalent to aC0 + bf with a > 0 and b > ae. Then we have the

following bound on the Harbourne constant of C:

H(C) >
−9

2
−
8

f0
+
d

f0

(
(ae− 2b)

2
(3a− 2) − 2a(g− 1)

)
+
16g+ 4t2 + t4

2f0
+
9t3
8f0

.

If the curves in the arrangement C do not intersect the normalized section C0, we

obtain an improved bound for the Harbourne constants:

Theorem 1.107. Let X be a ruled surface with e > 4 over a smooth curve of genus g. Let C

be a transversal arrangement of curves satisfying Assumption 1.105. Assume further that

no curve in C intersects the normalized section C0. Then we have the following bound on the

Harbourne constant of C:

H(C) >
−9

2
+
d

f0

(
ae(2− 3a) − 4a(g− 1)

2

)
+
16g+ 4t2 + t4

2f0
+
9t3
8f0

.
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For proving Theorem 1.106 and Theorem 1.107, we construct a surface Y of

non-negative Kodaira dimension associated to a transversal arrangement of curves

C on a ruled surface X with invariant e > 4 satisfying Assumption 1.105.

We now state a corollary which gives a lower bound on the self-intersection of

the strict transform of the divisor associated to an arrangement of curves.

Corollary 1.108. Let C be a transversal arrangement on the ruled surface X satisfying

Assumption 1.105. Let f : X̃ → X be the blow up of X at Sing(C). Let D̃ denote the strict

transform of D, which is the divisor defined as the sum of all the curves in C. Then

D̃2 > −8−
9

2
s+ d

(
(ae− 2b)

2
(3a− 2) − 2a(g− 1)

)
+ 8g+ 2t2 +

t4
2
+
9t3
8

.

Further, if all curves in the arrangement do not intersect the normalized section C0, then

D̃2 >
−9

2
s+ d

(
ae(2− 3a) − 4a(g− 1)

2

)
+ 8g+ 2t2 +

t4
2
+
9t3
8

.

In Section 2.4, we define the global Harbourne constant of a ruled surface for a

fixed pair of integers a,b as follows:

Definition 1.109. Let X be a ruled surface with invariant e > 4. Let a > 0 and b > ae

be positive integers. We define the global Harbourne constant Ha,b(X) of X as:

Ha,b(X) := inf
C
H(C),

where the infimum is over all transversal arrangements C satisfying Assumption

1.105.

We then give lower bounds for Ha,b(X) for a ruled surface X.

Corollary 1.110. Let X be a ruled surface over a smooth curve of genus g with invariant

e > 4. Let a > 0 and b > ae be positive integers. Then

Ha,b(X) >
−11

2
+

(ae− 2b)

2
(3a− 2) − 2ag. (1.10)

Further, if ae = b, then

Ha,b(X) >
−9

2
+
ae(2− 3a) − 4ag

2
. (1.11)
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We also prove the following result:

Theorem 1.111. Let X be a ruled surface with e > 4. There does not exist any transversal

arrangement C on X satisfying Assumption 1.105 such that the associated surface Y is a ball

quotient.

1.3 Strategy of proofs

The basic tool in studying Harbourne constants for curve arrangements on surfaces

is a method developed by Hirzebruch in [35]. The idea is to consider a branched

abelian covering Z of X branched along the given configuration C. In order to prove

that such a branched covering does in fact exist for the ruled surface X, we use a

result by Namba [48, Theorem 2.3.20]. We then consider the desingularization Y of

Z. Assumption 1.105 ensures that Y has non-negative Kodaira dimension. Then one

considers Hirzebruch-Miyaoka-Sakai type inequalities involving the Chern numbers

of Y, see [37, Theorem 3, Page 144]. Hirzebruch described the Chern numbers of Y

in terms of certain invariants of the surface X and certain combinatorial invariants of

the arrangement C. In the end, one obtains inequalities on combinatorial invariants

of C which can then be used to obtain the required bounds on Harbourne constants

H(C) as in Theorem 1.106 and Theorem 1.107.

In order to prove Theorem 1.111, we use the theory of constantly branched covers

developed in [3].

1.4 Organization of the thesis

In Chapter 2, we give detailed proofs of the results about Harbourne constants on

ruled surfaces.

In Section 2.1, we recall basic definitions and properties about ramified and

unramified morphisms. We also study the notion of constantly branched covers and

regular constantly branched covers for surfaces and include some results on the

behaviour of canonical divisors on such covers. We also state a few results on the

topological Euler characteristic.
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In Section 2.2, we introduce the curve arrangements that we study. We also

mention some well-known combinatorial properties of these curve arrangements

that we use.

In Section 2.3, using a result of Namba, we construct an abelian cover Z → X

branched on the given curve arrangement and then consider the desingularization

Y → Z; see Figure 2.2. We also compute the Chern numbers of Y and relate these to

the combinatorial data of the curve arrangement on X.

In Section 2.4, we first show that Y has non-negative Kodaira dimension which

enables us to apply a Hirzebruch-Miyaoka-Sakai type inequality. Using this, we

prove our results about Harbourne constants on ruled surfaces.

Finally, in Section 2.5, we show that the surface Y is not a ball quotient.
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Chapter 2

Harbourne constants on ruled surfaces

2.1 Preliminaries

2.1.1 Ramified and Unramified Morphisms

Throughout this subsection, k denotes a field and all varieties are defined over k.

We recall several definitions and results about certain finite morphisms π : Y → X

of varieties. These morphisms are the algebraic analogues of branched (ramified)

covers in Euclidean topology. Our references are [23] and [34].

Definition 2.1. A branched covering π : Y → X is a finite surjective morphism between

normal varieties. Denote by G the group of automorphisms α : Y → Y such that

π(α(y)) = π(y) for all y ∈ Y. The group G is called the group of covering automorphisms

of π. If G acts transitively on all fibers of the cover π, then the covering is called

Galois. We say that a branched covering π : Y → X is an abelian covering if π : Y → X is

Galois and additionally the group of covering automorphisms is abelian.

For any finite surjective morphism π : Y → X of varieties, the degree of π, denoted

deg(π), is the degree of the finite field extension k(Y) over π?k(X). It is equal to the

cardinality of the generic fibers of π. The closed set where the fibers are of smaller

cardinality is the ramification locus of the covering. We now make this notion

precise.

Definition 2.2. Let π : Y → X be a finite morphism of Noetherian k-schemes. Let

q ∈ Y be any point and set p := π(q). We say that π is unramified at q if π]q : OX,p → OY,q
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satisfies mp ·OY,q = mq and the induced map between residue fields k(p)→ k(q) is a

finite separable extension. Otherwise, we say that π is ramified at q. We denote by

Rπ ⊆ Y the set of points where π is ramified and call it the ramification locus of π. The

set Bπ := π(Rπ) is called the branch locus of π. The morphism π is called unramified if

it is nowhere ramified (i.e., Rπ = ∅).

A result of O. Zariski [63, Proposition 2] assures that Bπ and Rπ are divisors. We

include the statement here without proof.

Theorem 2.3. Suppose π : Y → X is a finite dominant morphism of smooth varieties such

that k(X)→ k(Y) is separable. If Rπ 6= ∅, then Rπ and Bπ are pure of codimension one (i.e.,

all irreducible components have codimension one).

Definition 2.4. Let π : Y → X be a finite morphism of Noetherian k-schemes. Let

q ∈ Y be a closed point and set p := π(q). Let Yp := Y ×X Spec(k(p)) be the scheme-

theoretic fiber of p under π. It is well-known that sp(Yp) is homeomorphic to π−1(p),

see [30, Exercise II.3.10] . We define

eπ(q) := lengthOYp,q(OYp,q)

and call it the ramification index of π at q. If Z = q is the closure of q, we write

eπ(Z) := eπ(q). If char(k) = 0, or if char(k) > 0, but char(k) does not divide eπ(q),

we say that the ramification is tame, otherwise the ramification is wild.

Proposition 2.5. With notation as in Definition 2.4, OY,q/(mp ·OY,q) ∼= OYp,q.

Proof. We may assume that X = Spec(A) and hence, Y = π−1(X) = Spec(B) is also

affine. By definition, OYp,q = (B⊗A k(p))q. Also,

(B⊗A k(p))q = (B⊗A (Ap/mp))q
∼−→ Bq/(mp.Bq)

b⊗ (a + mp)

h
7→ a.b

h
+ (mp.Bq)

is an isomorphism: For injectivity, ab ∈ mp.Bq implies ab = a ′b ′ with a ′ ∈ mp and

b ′ ∈ Bq, but then b⊗ (a + mp) = b
′ ⊗ (a ′ + mp) = 0.

There is a connection between the ramification index and the notion of π being

ramified:
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Corollary 2.6. Let π : Y → X be a finite morphism of smooth varieties. Let q ∈ Y and

p := π(q). Then, eπ(q) = 1 if and only if π is unramified at q.

Proof. Note that eπ(q) = 1 if and only if OYP ,q is a field, i.e., if and only if it is equal

to k(q). By Proposition 2.5, this is equivalent to

OY,q/(mp ·OY,q) = OYp,q = k(q) = OY,q/mq.

The following corollary connects the above definition of the ramification index

with the one given in [30, IV.2]:

Corollary 2.7. Let π : Y → X be a finite, dominant morphism of regular integral Noetherian

k-schemes. Let q ∈ Y be a point of codimension one (i.e., {q} is of codimension one) and

p := π(q). Let f be a uniformizing parameter at p, i.e. mp = (f). Let vq : k(Y)→ Z denote

the valuation corresponding to OY,q. Then eπ(q) = vq(π]q(f)).

Proof. By [17, Proposition 11.1], since Y is regular, vq can be evaluated on OY,q as

follows: If h is a uniformizing parameter at q, i.e., mq = (h), then any element

y ∈ OY,q can be written as y = uhv for some unit u and v = vq(y). Let e := vq(π]q(f)).

Then Proposition 2.5 yields

OYp,q = OY,q/(π
]
q(f)) = OY,q/(h

e),

which has length e over itself.

Remark 2.8. By Theorem 2.3 and Corollary 2.6, there is a finite number of points q

of codimension one where π is ramified, and these are the points with eπ(q) > 1.

Definition 2.9. Let π : Y → X be a finite morphism of Noetherian k-schemes. Let

q ∈ Y be a closed point. Let p := π(q). Then we call

fπ(q) := [k(q) : k(p)]

the inertia degree of π at q. This is the degree of the restricted morphism q→ p.

A very important tool in the analysis of branched coverings is the following

formula:
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Theorem 2.10. [Degree formula [23, Page 329]] Let π : Y → X be a finite, dominant

morphism of integral regular Noetherian k-schemes. Then, for any closed point p ∈ X,

deg(π) =
∑
π(q)=p

eπ(q) · fπ(q).

As an application, one can show that an unramified morphism has constant fiber

cardinality:

Corollary 2.11. Let π : Y → X be an unramified, finite and surjective morphism of smooth

varieties over an algebraically closed field k. Then,

|π−1(p)| = deg(π)

for each closed point p ∈ X.

Proof. Since π is unramified, Corollary 2.6 and Theorem 2.10 give

deg(π) =
∑
π(q)=p

[k(q) : k(p)] =
∑
π(q)=p

1 = |π−1(p)|,

since k(q) ∼= k(p) ∼= k and k is algebraically closed.

2.1.2 Constantly branched coverings

We will now restrict to a special class of finite morphisms. These constantly branched

coverings for surfaces will be the objects of study for the rest of this section. Their

branch locus is required to be a so-called strict arrangement. The notion of a constantly

branched cover was introduced by Hirzebruch in [3] for complex surfaces.

Definition 2.12. Let C = {C0,C1,C2, ...,Cl} be a transversal arrangement of curves on

a smooth projective surface X, with D =
∑l
i=0Ci the associated divisor on X. We

say that C is a strict arrangement if, in addition, the Ci intersect transversally (or

equivalently, D has normal crossings). Recall that for a point p ∈ X, rp denotes the

number of elements of C that pass through p. We say that p is an r-fold point of C if

rp = r. Also for a positive integer r > 2, tr denotes the number of r-fold points in C.

Definition 2.13. Let C = {C0,C1,C2, ...,Cl} be a transversal arrangement of curves on

a smooth projective surface X. We say that a point p ∈ X is a redundant intersection of
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C if rp > 3. We denote by Rd(D) the set of all redundant intersections of C and refer

to as the redundant part of D.

Remark 2.14. Let C = {C0,C1,C2, ...,Cl} be a transversal arrangement of curves on

a smooth projective surface X. Then C is strict if and only if it has no redundant

intersections.

In the next section, we will be interested in transversal curve arrangements on

ruled surfaces satisfying an additional condition (see Assumption 2.34). These

arrangements have a redundant part.

We can now define a constantly branched covering. Let n > 0 be an integer.

Recall that for a field k containing all the n-th roots of unity, a Kummer extension is

an algebraic extension of the form

k[ n
√
x1, · · · n

√
xl],

where xi ∈ k. Our reference is [11, 4.9]. One assumes that char(k) = 0 or char(k) > 0

and char(k) does not divide n. In this case, the extension is automatically Galois.

Notation 2.15. Let A be a domain, k := Frac(A) and k its algebraic closure. For any

nonzero x ∈ A, we understand n
√
x as a set. More precisely, n

√
x = {y ∈ k | yn = x}.

Definition 2.16. Let k be a field. Let n > 0 be an integer. A finite, surjective

morphism π : Y → X of smooth projective surfaces over k is called n-fold locally

Kummer if char(k) = 0 or char(k) > 0 and char(k) does not divide n and for every

closed point q ∈ Y, with p = π(q), there exist germs y1, · · · ,yl ∈ OY,q with

OY,q = OX,p[y1, · · · ,yl]

for xi = yni ∈ OX,p.

Definition 2.17. An n-fold locally Kummer morphism π : Y → X of surfaces is

called an n-fold constantly branched covering, if Bπ is a transversal arrangement with

OX(−Bπ)p = (x1 · · · xr). An n-fold constantly branched covering π : Y → X of surfaces is

called regular if Bπ is a strict arrangement.

Remark 2.18. For an n-fold constantly branched covering π : Y → X of surfaces, we may

assume that xi ∈ mp if and only if i 6 r.

Notation 2.19. Whenever we use the term "constantly branched covering", we will

implicitly assume that the base field k is algebraically closed and X is smooth. We
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make this assumption as all constantly branched coverings in this thesis have a

smooth base and we are only interested in working over algebraically closed fields.

Remark 2.20. If π is an n-fold constantly branched cover of surfaces, each component

of the branch locus has ramification index n. To see this, just choose a closed 1-point

of Bπ. By assumption, the ramification is always tame.

Proposition 2.21. [33, Fact 2.20] Let π : Y → X be an n-fold regular constantly branched

covering of surfaces. For any closed r-fold point p of Bπ and any q ∈ π−1(p), there exist

local coordinates x1, x2 ∈ OX,p and y1,y2 ∈ OY,q such that

1. If r = 1, then I(Bπ)p = (x1) and I(Rπ)q = (y1) such that x1 = yn1 and x2 = y2.

2. If r = 2, then I(Bπ)p = (x1, x2) and I(Rπ)q = (y1,y2) such that x1 = yn1 and x2 = yn2 .

Proof. We can find a coordinate system with the desired properties around p as Bπ

is a strict arrangement. Let ξ1, · · · , ξl ∈ OX,p be such that

OY,q = OX,p[ψ1, · · · ,ψl]

with ψni = ξi. We may assume that ξi = xi for 1 6 i 6 r. For i > r, we know that

ξi is a unit. Consequently, ψi is also invertible for i > r. If r = 1, replacing OX,p by

OX,p[ψ2, · · · ,ψl], we may therefore assume that

OY,q = OX,p[y1],

where yn1 = x1. Consequently,

mq = mp.OY,q + (y1) = (y1, x2).

If r = 2, replacing OX,p by OX,p[ψ3, · · · ,ψl], we may therefore assume that

OY,q = OX,p[y1,y2],

where yn1 = x1 and yn2 = x2. Consequently,

mq = mp.OY,q + (y1,y2) = (y1,y2).
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2.1.3 Euler Characteristic

In this subsection, we state some results about the Euler characteristic which will be

used in the computations carried out in Section 2.3.

We recall that a morphism π : Y → X between complex varieties Y and X

corresponds to a morphism πh : Yh → Xh between corresponding associated complex

analytic spaces Yh and Xh respectively. For more details, see [30, Appendix B].

Definition 2.22. (Euler characteristic) Let X be a smooth complex variety and Xh be

the associated complex analytic space. The Euler characteristic of X is defined as

e(X) := e(Xh),

where e(Xh) is the topological Euler characteristic of Xh.

Proposition 2.23. If π : Y → X is an unramified finite surjective morphism of degree

N between smooth complex varieties, then πh is an N- fold covering map. In particular,

e(Y) = N.e(X).

Proof. This follows from [60, Corollary 6.11] and Corollary 2.11.

Proposition 2.24. Let X be a complex smooth variety and Y ⊆ X a closed subvariety. Let

U := X\Y, then e(X) = e(Y) + e(U).

Proof. See, [22, Exercise,Page 95].

Intuitively, the reason for this result is that Y is a neighborhood retract of X in the

classical topology. An application of Mayer-Vietoris then yields the desired result.

Lemma 2.25. If C is a nonsingular, complex curve of genus g(C), then e(C) = 2− 2g(C).

Proof. C has a cellular decomposition with 2g(C) cells in dimension one and one cell

in each of the dimensions zero and two, as explained in [31, Chapter 0]. Thus, we

are done by [31, Theorem 2.44].

Proposition 2.26. If D = C0+ · · ·+Cl is any transversal arrangement inside a nonsingular

complex surface X, then

e(D) =

l∑
i=0

(2− 2g(Ci)) −
∑
r>2

(r− 1) · tr.
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Proof. Let Zi ⊂ Ci be the (finite) set of points where Ci intersects with some other

part of the arrangement. Let Z := ∪li=0Zi and Z ′ := tli=0Zi, where t denotes the

disjoint union. Clearly,

|Z| =
∑
r>2

tr and |Z ′| =
∑
r>2

rtr, (2.1)

since in the disjoint union Z ′, each point p ∈ Z is counted exactly rp times. Hence,

by Proposition 2.24, we have

e(D) =

l∑
i=0

e(Ci\Zi) +
∑
p∈Z

e(P) =

l∑
i=0

e(Ci) − e(Z
′) + e(Z).

Since the Euler number of a finite set is the cardinality of the set, we get the desired

result by (2.1) and Lemma 2.25.

2.1.4 Canonical Divisors

In this subsection, we study the behaviour of canonical divisors under constantly

branched coverings.

For a regular constantly branched cover π : Y → X of complex surfaces, we are

going to express KY in terms of the pullbacks of KX and the branch locus Bπ.

Theorem 2.27. (Ramification Formula). Let π : Y → X be a finite dominant morphism

between smooth complex projective varieties of same dimension. Denote by KX and KY
canonical divisors on X and Y, respectively. Then,

KY ∼ π?(KX) +
∑

codimY(Z)=1

(eπ(Z) − 1) ·Z. (2.2)

Proof. See [38, Theorem 5.5] and [2, Lemma 16.1].

Corollary 2.28. If π : Y → X is an n-fold regular constantly branched cover of complex

surfaces, then

KY ∼ π?(KX) +
n− 1

n
π?(Bπ). (2.3)

Proof. Since eπ = n on components of Rπ and otherwise eπ = 1, Theorem 2.27 gives

KY ∼ π?(KX) +
∑

codimY(Z)=1

(eπ(Z) − 1) ·Z = π?(KX) + (n− 1).Rπ.
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Also, π?(Bπ) = n.Rπ by the local description in Proposition 2.21.

From this representation (2.3) of KY , K2Y can be expressed by the data in X. To do

this, we use the following fact (see [2, Chapter II.10, Page 67]):

Fact 2.29. Let π : Y → X be a proper surjective morphism of smooth complex

projective surfaces of degree deg(π), and let D,D ′ be two divisors on X. Then

π?D · π?D = (deg(π))D ·D ′.

Putting it all together now yields a formula for the self-intersection number of a

canonical divisor of Y.

Corollary 2.30. Let π : Y → X be an n-fold regular constantly branched cover of complex

surfaces. Then,

K2Y = deg(π) ·

(
KX +

n− 1

n
Bπ

)2
.

Proof. This follows from Corollary 2.28 and Fact 2.29.

In the case of complex curves, we have the following formula:

Proposition 2.31. (Hurwitz formula) Let f : Y → X be a surjective morphism of smooth

complex projective curves, and let R =
∑
p∈X(ep − 1) · p be the ramification divisor of f. Let

n = deg(f). Then

2g(Y) − 2 = n.(2g(X) − 2) +
∑
p∈X

(ep − 1).

Proof. We take the degree of the divisors in (2.2). Note that degree of the canonical

divisor of a smooth curve of genus g is 2g− 2 by [30, IV, Example 1.3.3]. Also, by

[30, II, Proposition 6.9],

deg(f?KX) = deg(f) · deg(KX).

Proposition 2.32. Let π : Y → X be an n-fold regular constantly branched cover of complex

surfaces with branch locus D. Denote by D the disjoint union of its components. Then,

n2

deg(π)
·K2Y = n2(K2X +KX ·D+ T) − 2nT + (T −KX ·D),
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where T = 2t2 − e(D).

Proof. Let D = C0 ∪ · · · ∪Cl be the irreducible decomposition of D. By the adjunction

formula and Lemma 2.25,

−e(Ci) = C
2
i +Ci ·KX,

for each i. Also, 2t2 =
∑l
i=0

∑
i 6=jCi ·Cj. Thus, we conclude

T = 2t2 −

l∑
i=0

e(Ci) =

l∑
i=0

(∑
j 6=i
Ci ·Cj +C2i +Ci ·KX

)

= D2 +KX ·D.

By Corollary 2.30,

K2Y
deg(π)

=

(
KX +

n− 1

n
D

)2
= K2X +

(
2n− 2

n

)
KX ·D+

(
n2 + 1− 2n

n2

)
D2.

Thus, we obtain

n2

deg(π)
·K2Y = n2K2X + 2(n

2 −n)KX ·D+ (n2 + 1− 2n)(T −KX ·D).

2.1.5 Regularization

In Section 2.3, we will construct a constantly branched abelian covering π : Z→ X

of the ruled surface X, branched along an arrangement C satisfying Assumption

2.34. Such an arrangement C will have redundant intersections. Hence, the covering

will not be regular. But we can transform such a covering into a regular one by

resolving the singularities of Z. This is always possible by blowing up the redundant

intersections and their preimages.

The following theorem shows that any n-fold constantly branched cover of a

complex surface can be desingularized by a sequence of blow ups.

Theorem 2.33. (Regularization) Let π : Y → X be an n-fold constantly branched cover of

complex surfaces. Then there exists a commutative diagram (see Figure 2.1) such that the

following properties hold:
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1. Each πi is an n-fold constantly branched cover with branch locus Bπi = α
−1
i (Bπi−1

).

2. Each αi+1 is the blow up of Xi along a redundant intersection pi of Bπi and βi+1 is

the blow up along π−1i (pi).

3. The branch locus of π̃ is a strict arrangement.

4. Let β := β1 ◦ · · · ◦ βm. The morphism β is a resolution of singularities, i.e., Ỹ is a

nonsingular complex surface and β is an isomorphism outside the singular locus of Y.

Thus, π̃ is an n-fold regular constantly branched cover. We call π̃ a regularization of π.

Ỹ

π̃
��

Ym

πm

��

βm // Ym−1

πm−1

��

βm−1 // · · ·
...

β2 // Y1

π1

��

β1 // Y0

π0

��

Y

π

��
X̃ Xm

αm // Xm−1
αm−1 // · · · α2 // X1

α1 // X0 X

Figure 2.1: Construction of the surface Ỹ

Proof. See [33, Theorem 2.35].

2.2 Combinatorics of transversal curve arrangements on

ruled surfaces

In this section, we introduce the curve arrangements that we study on ruled surfaces

and include some well-known combinatorial properties of these curve arrangements.

Assumption 2.34. Let X be a ruled surface over a smooth curve of genus g > 0 with

invariant e > 4. Let C = {C1,C2, . . . ,Cd} be a transversal arrangement of curves on X

with d > 4 and td = 0. Suppose that all the curves Ci in C are linearly equivalent to

a fixed divisor A on X, where A is numerically equivalent to aC0 + bf, for a,b ∈ Z

with a > 0 and b > ae. Note that under these assumptions, Ci ·Cj = 2ab− a2e for all

curves Ci,Cj ∈ C.

Lemma 2.35. Let C = {C1,C2, . . . ,Cd} be a transversal arrangement of curves on a ruled

surface X satisfying Assumption 2.34. Then we have the following.

1. For every curve Ci ∈ C, we have
∑
p∈Ci

(rp − 1) = (2ab− a2e)(d− 1).
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2. f2 − f1 =
∑
k>2 k(k− 1)tk = (2ab− a2e)d(d− 1).

Proof. First we prove (1). Given a multiple point p ∈ Ci, rp − 1 is the number of

curves of the arrangement passing through p different from Ci. As every curve

meets every other curve in 2ab− a2e distinct points, the expression
∑
p∈Ci

(rp − 1)

counts all curves of the arrangement different from Ci, 2ab− a2e times each. So (1)

holds.

The first equality in (2) follows from the definition of f2, f1. As
∑
Ci∈C

∑
p∈Ci

(rp −

1) =
∑
k>2 k(k− 1)tk, the second equality in (2) follows from (1).

2.3 Construction of the abelian cover

Our arguments follow the model developed by Hirzebruch in [35]. These ideas have

been used by several recent authors. See [18, 50, 54–56], for example.

Let X be a ruled surface over a smooth curve C of genus g. Let C = {C1, . . . ,Cd}

be a transversal arrangement of curves on X satisfying Assumption 2.34. Our goal is

to give bounds for the Harbourne constant H(C). The starting point is to consider a

branched covering of X branched along the curves in C. In order to prove that such

a branched covering does in fact exist for the ruled surface X, we use a result of

Namba, which we recall below.

As above, let D =
∑d
i=1Ci. Let Div(X,D) be the subgroup of the Q-divisors on X

generated by all the integral divisors and the following Q-divisors: C1
2 , C2

2 , . . . , Cd
2 .

Let ∼ be linear equivalence in Div(X,D), where G ∼ G ′ if and only if G−G ′ is an

integral principal divisor. Let Div0(X,D)/ ∼ denote the kernel of the first Chern class

map:
Div(X,D)/ ∼ → H1,1(X, R)

G 7→ c1(G)

We use the following result of Namba [48, Theorem 2.3.20]. In our special case, it

says the following.

Theorem 2.36 (Namba). There exists a finite abelian cover Z→ X with branch locus equal

to D and ramification index 2 at each Ci if and only if for every j = 1, . . . ,d, there exists an
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element of finite order vj =
∑ aij

2 Ci + Ej of Div0(X,D)/ ∼, where Ej are integral divisors

and ajj ∈ Z is odd for every j = 1, . . . ,d.

In this case, the subgroup of Div0(X,D)/ ∼ generated by the vj is isomorphic to the Galois

group of the abelian cover Z→ X.

Set v1 = v2 =
C1−C2
2 and vj =

C1−Cj

2 for j = 3, . . . ,d and Ej = 0 for every j. Then,

by Theorem 2.36, there exists an abelian cover π : Z → X ramified over C with

ramification index 2. The Galois group G of π is generated by v1 = v2, v3, . . . , vd and

no proper subset of {v2, . . . , vd} generates G. Note that every element of G has order

2. So the Galois group of π is (Z/2Z)d−1. Note that π is a 2-fold constantly branched

cover with branch locus C. We denote by ρ : Y → Z the minimal desingularization of

Z.

For a singular point p of C, recall that rp denotes its multiplicity. Let τ : X̃ → X

be the blow up of X at the f0 − t2 =
∑
k>3 tk singular points of C with multiplicities

k > 3. Let D̃ =
∑d
i=1 C̃i be the strict transform of D in X̃ and let Ep := τ−1(p) be the

exceptional divisor over the point p.

Note that the singular locus of Z is precisely the pre-image, under π, of the

singular points of C of multiplicity at least 3 (see [49, Proposition 3.1], for example).

Since τ is defined to be the blow up of the singular points of C of multiplicity at least

3, there exists a morphism σ : Y → X̃, by the universal property of blow ups. (See

Theorem 2.33.) See the commutative diagram in Figure 2.2.

From the commutativity of the diagram, it is easy to see that σ is a regular

constantly branched abelian cover with Galois group (Z/2Z)d−1, branch divisor D̃

and ramification index 2 at every irreducible component of D̃. Then σ?Ep is a divisor

in Y consisting of 2d−1−rp disjoint curves Fp, each with multiplicity 2. See [34, II.3.2]

for more details. For a point x ∈ Ep which is not in the branch locus of σ, σ−1(x)

consists of 2d−1 distinct points and these are contained in the 2d−1−rp disjoint curves

Fp. Since each Fp occurs with multiplicity 2 in σ?Ep, the number of elements in a

single Fp that map to x is 2d−1

2(2d−1−rp )
= 2rp−1. So each Fp is a finite cover of Ep of degree

2rp−1. The branch locus of the map Fp → Ep is precisely the rp intersection points

of Ep and D̃. Since the ramification index is 2 and the degree of the map Fp → Ep is

2rp−1, there are 2rp−1

2 = 2rp−2 points in Fp that map to any point in the branch locus.

Hence the degree of the ramification divisor is 2rp−2rp.
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Y
ρ //

σ
��

Z

π
��

X̃
τ // X

Figure 2.2: Construction of the surface Y

By the above discussion, we have σ?Ep =
∑
2Fp with 2d−1−rp terms in the

summand. So

−2d−1 = 2d−1(Ep)
2 = (σ?Ep)

2 = 4(2d−1−rp)F2p,

which implies that F2p = −2rp−2 for every point p ∈ Sing(C) with rp > 3. If a

singularity p of D is a double point, then Y is smooth over p and the fiber of τ ◦ σ
above p has 2d−3 points.

Using the Hurwitz formula (see Proposition 2.31) to compute the Euler

characteristic of Fp, we get

e(Fp) = 2− 2g(Fp) = 2
rp−1(2) − 2rp−2rp = 2

rp−2(4− rp). (2.4)

We will calculate the Chern numbers c2, c21 of Y, where c2 is same as the Euler

characteristic e(Y) of Y and c21 is the self-intersection number of a canonical divisor

of Y.

Note that

Y \
⋃

p,rp>3

σ−1Ep = (τ ◦ σ)−1
(
(X \ C)∪ (C \ Sing(C))∪ {p ∈ Sing(C)|rp = 2}

)
.

If A → B is an étale map of degree n, then e(A) = ne(B) (see Proposition 2.23).

Since σ is an étale map on Y \
⋃

p,rp>3
σ−1Ep, using Proposition 2.24 and Corollary 2.11,

we get

e

Y \ ⋃
p,rp>3

σ−1Ep

 = 2d−1e(X \ C) + 2d−2e(C \ Sing(C)) + 2d−3t2. (2.5)

By Proposition 2.26, we have

e(C) = 2
∑

(1− g(Ci)) −
∑
k>2(k− 1)tk.
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Using the additivity of the topological Euler characteristic (see Proposition 2.24),

we have the following:

e(C \ Sing(C)) = 2
∑

(1− g(Ci)) −
∑
k>2 ktk,

e(X \ C) = e(X) + 2
∑

(g(Ci) − 1) +
∑
k>2(k− 1)tk.

Substituting these values in (2.5), we have

e

Y \ ⋃
p,rp>3

σ−1Ep

 = 2d−1

e(X) + 2∑(g(Ci) − 1) +
∑
k>2

(k− 1)tk

+

2d−2

−2
∑

(g(Ci) − 1) −
∑
k>2

ktk

+ 2d−3t2.

It is easy to check that

e(X) = 4− 4g and 2g(Ci) − 2 = −a2e+ 2ab+ ae+ a(2g− 2) − 2b.

Note also that
∑
k>2(k− 1)tk = f1 − f0.

So we get

e

Y \ ⋃
p,rp>3

σ−1Ep

 = 2d−1
(
4− 4g+ d(−a2e+ 2ab+ ae+ a(2g− 2) − 2b) + f1 − f0

)
+

2d−2
(
−d(−a2e+ 2ab+ ae+ a(2g− 2) − 2b) − f1

)
+ 2d−3t2.
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There are 2d−1−rp curves with Euler characteristic e(Fp) in Y over each exceptional

divisor Ep in X̃. So (2.4) gives

e(Y) = e

Y \ ⋃
p,rp>3

σ−1Ep

+
∑
k>3

2d−1−ktke(Fp)

= e

Y \ ⋃
p,rp>3

σ−1Ep

+
∑
k>3

2d−1−ktk

(
2k−1(2− k) + k2k−2

)

= e

Y \ ⋃
p,rp>3

σ−1Ep

+ 2d−3
∑
k>3

tk(4− k)

= e

Y \ ⋃
p,rp>3

σ−1Ep

+ 2d−3(4f0 − f1 − 2t2)

Now using the value of e

(
Y \

⋃
p,rp>3

σ−1Ep

)
computed above and simplifying, we

get

1

2d−3
e(Y) = 16− 16g+ d(−2a2e+ 4ab+ 2ae+ 4ag− 4a− 4b) + f1 − t2. (2.6)

Next we calculate c21(Y). By canonical divisor on a surface, we mean the class of

the canonical divisor in the Neron-Severi group of that surface.

For the divisor D =
∑d
i=1Ci on X, we know that τ?D−

∑
p∈Sing(C),
rp>3

rpEp is the strict

transform of D in X̃. The divisors σ?(τ?D−
∑
rpEp) and σ?Ep of Y(p ∈ Sing(C), rp > 3)

are divisible by 2. For a canonical divisor KX of X, τ?KX +
∑
Ep is a canonical divisor

of X̃. Applying Corollary 2.28 or [2, Page 42, Lemma 17.1] to the ramified covering

σ : Y → X̃, we get the following:

Lemma 2.37. Let Y be the surface constructed in Figure 2.2. The canonical divisor of Y is

given by KY = σ?T for the Q-divisor T on X̃ defined as

T := τ?KX +
∑

Ep +
1

2

(∑
Ep + τ

∗D−
∑

rpEp

)
,

where the summations are taken over all the points p ∈ Sing(C) such that rp > 3.

Thus, T2 = K2X +KX ·D−
∑
k>3 tk +

∑
k>3(k− 1)tk +

1
4(D

2 −
∑
k>3(k− 1)

2tk).
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We have the following:

K2X = 8(1− g),

KX ·D = d (ae+ a(2g− 2) − 2b),∑
k>3 tk = f0 − t2,

∑
k>3(k− 1)tk = f1 − f0 − t2, and

D2−
∑
k>3(k− 1)

2tk = d(−a
2e+ 2ab)+ f1− f0+ t2. For this equality, use Lemma

2.35(2).

Substituting these values in the expression for T2 and noting that c21(Y) = 2
d−1T2,

we get:

1

2d−3
c21(Y) = 32− 32g+ d(−a

2e+ 2ab+ 4ae+ 8ag− 8a− 8b) − 9f0 + 5f1 + t2. (2.7)

Now we have, by (2.6) and (2.7),

1

2d−3
(3e(Y)− c21(Y)) = 16− 16g+d[(2b−ae)(5a− 2)+ 4a(g− 1)]+ 9f0− 2f1− 4t2. (2.8)

Remark 2.38. By (2.4), Fp is rational if and only if rp = 3 and Fp is elliptic if and only if

rp = 4. Thus we know that Y contains 2d−4t3 disjoint (−2)-curves (above the 3-points)

and contains 2d−5t4 elliptic curves (above the 4-points), each of self-intersection −4.

2.4 Harbourne Constants

In this section, we will first show that the surface Y (constructed in the last section;

see Figure 2.2) has non-negative Kodaira dimension. This will allow us to apply a

Hirzebruch-Miyaoka-Sakai inequality involving the Chern numbers of Y and certain

curves on Y coming from the arrangement C on X (see Theorem 2.44). Using this we

obtain a Hirzebruch-type inequality (2.17). We prove our bound for the Harbourne

constant of C in Theorem 2.45.

We will use the notation of Section 2.3. Recall that T is a Q-divisor on X̃ defined

in Lemma 2.37. We start with the following.

Lemma 2.39. Let X be a ruled surface with e > 4. Let C be a transversal arrangement of

curves satisfying Assumption 2.34. Then T · Ep > 0 for every p ∈ Sing(C) such that rp > 3.
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Proof. T · Ep = −1+
−1+rp
2 > −1+ −1+3

2 = 0.

Lemma 2.40. Let X be a ruled surface with e > 4. Let C be a transversal arrangement of

curves satisfying Assumption 2.34. Let C ′j = τ
?Cj −

∑
p∈Cj,rp>3

Ep be the strict transform of

Cj ∈ C, for j = 1, 2, . . . ,d. Then T ·C ′j > 0.

Proof. Let fj0 denote the number of multiple points on Cj and let tjk denote the

number of k-fold points on Cj.

Now,

T ·C ′j = KX ·Cj +
D ·Cj
2

− T ·
∑

p∈Cj,rp>3

Ep. (2.9)

We now compute each of the terms individually.

KX ·Cj = 2ae− 2b+ (2g− 2− e)a,

D ·Cj = d(2ab− a2e),

T · Ep =
rp − 3

2
; p ∈ Cj, rp > 3.

By Lemma 2.35 (1), we have

T ·
∑

p∈Cj,rp>3

Ep =
∑

p∈Cj,rp>3

rp − 3

2

=
∑

p∈Cj,rp>2

rp − 1

2
− fj0 +

t
j
2

2

=
(2ab− a2e)(d− 1)

2
− fj0 +

t
j
2

2
.

Plugging the values computed above in (2.9), we get

T ·C ′j = 2ae− 2b+ (2g− e− 2)a+
2ab− a2e

2
+ fj0 −

t
j
2

2
. (2.10)

To prove the lemma, it suffices to show

f
j
0 −

t
j
2

2
> −

(
2ab− a2e

2

)
− 2ae+ a(e+ 2) + 2b. (2.11)
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Let k be the maximum of the multiplicities of the points on Cj. By Lemma 2.35 (1),

we have

t
j
2 + 2t

j
3 + . . .+ (k− 1)tjk = (2ab− a2e)(d− 1).

Now,

f
j
0 −

t
j
2

2
=
t
j
2

2
+ tj3 + . . .+ t

j
k

>
t
j
2 + 2t

j
3 + . . .+ (k− 1)tjk

k
=

(2ab− a2e)(d− 1)

k

> 2ab− a2e,

where last inequality holds since k 6 d− 1.

Thus in order to show (2.11), it suffices to show the following inequality:

2ab− a2e > −

(
2ab− a2e

2

)
− 2ae+ a(e+ 2) + 2b. (2.12)

Now we have the following:

(2.12) ⇔ 6ab− 4a− 4b > 3a2e− 2ae

⇐ b >
4a

3a− 2

⇐ ae >
4a

3a− 2
⇐ e > 4.

The last inequality holds by Assumption 2.34.

We now make a further assumption on our arrangement C. This is required for

our argument showing that KY is nef.

Assumption 2.41. Let X be a ruled surface over a smooth curve with e > 4. Let C be

a transversal arrangement of curves on a ruled surface X satisfying Assumption 2.34.

Assume further that C satisfies one of the following conditions:

1. a > 2, or

2. a = 1 and there exists a subset of four curves in C such that there is no point

common to all the four curves.
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Question 2.42. We do not know any example of a transversal arrangement for which

Assumption 2.41 does not hold. Does this assumption always hold for any arrangement

satisfying Assumption 2.34?

Theorem 2.43. Let X be a ruled surface with e > 4 and let C be a transversal arrangement

of curves satisfying Assumption 2.41. Let Y be the surface constructed in Figure 2.2. Then

KY is nef.

Proof. Recall (see Lemma 2.37) that T is a divisor on X̃ given by

T := τ?KX +
3

2

∑
rp>3

Ep +
1

2

∑
C ′i, (2.13)

where C ′i is the strict transform of Ci by τ and Ep = τ−1(p). Note that KY = σ?T . We

have τ?Ci = C ′i +
∑
p∈Ci,rp>3 Ep.

We want to express T as a positive sum of effective divisors on X̃. The negative

terms in the expression occur because of the term involving KX = −2C0+(2g− 2− e)f.

We consider two different cases.

Case (1): Assume a > 2. Let C1,C2 ∈ C.

For q := a− 2 > 0,p := 2g− e− 2+ b > 0, we have KX = pf+ qC0 −
C1+C2
2 . Note

that p > 0, since b > ae and e > 4.

Thus, (2.13) becomes,

T = τ?(pf+ qC0) −
1

2

C ′1 + ∑
p∈C1,rp>3

Ep +C
′
2 +

∑
p∈C2,rp>3

Ep

+
3

2

∑
rp>3

Ep +
1

2

d∑
i=1

C ′i

= τ?(pf+ qC0) +
1

2

d∑
i=3

C ′i +
∑

λpEp, for some λp.

Note that λp is non-negative for every point p ∈ Sing(C) with rp > 3. Indeed,

λp = 3
2 if p /∈ C1 ∪C2; λp = 1 if p belongs to exactly one of the curves C1 or C2; and

λp =
1
2 if p ∈ C1 ∩C2. Thus T is effective and we have

KY = σ?T = σ?τ?(pf+ qC0) + σ
?

(
1

2

d∑
i=3

C ′i

)
+ σ?(

∑
λpEp).
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If C is a curve in Y not contained in σ?Ep for all p and not contained in σ?C ′i for all i,

KY ·C = σ?τ?(pf+ qC0) ·C+ σ?

(
1

2

d∑
i=3

C ′i

)
·C+ σ?

(∑
λpEp

)
·C > 0.

If C is a curve in Y such that C is either contained in σ?C ′i for some i or contained

in σ?Ep for some p, Lemma 2.39 and Lemma 2.40 imply that KY · C > 0. Thus

KY ·C > 0 for every curve C in Y. Hence, KY is nef.

Case (2): Suppose that a = 1. By Assumption 2.41, there are four curves, say

C1,C2,C3,C4, in C such that no point is contained in all the four curves.

Let p := 2g− 2− e+ 2b > 0. Then KX = pf− C1+C2+C3+C4
2 .

Thus,

T = τ?(pf) −
1

2

 4∑
i=1

C ′i +
∑

p∈Ci,rp>3

Ep

+
3

2

∑
rp>3

Ep +
1

2

d∑
i=1

C ′i.

= τ?(pf) −
1

2

 ∑
p∈Ci,rp>3

Ep

+
3

2

∑
rp>3

Ep +
1

2

d∑
i=5

C ′i.

= τ?(pf) +
1

2

d∑
i=5

C ′i +
∑

λ ′pEp, for some λ ′p.

We have λ ′p = 3
2 if p /∈ C1 ∪C2 ∪C3 ∪C4. By Assumption 2.41 and the choice of

C1,C2,C3,C4, there are no points in the intersection C1 ∩C2 ∩C3 ∩C4. If p belongs to

three of them, then λ ′p = 3
2 −

3
2 = 0. So we have λ ′p > 0 for all p ∈ Sing(C) with rp > 3.

Thus T is effective and we have

KY = σ?τ?(pf) +
1

2
σ?

(
d∑
i=5

C ′i

)
+ σ?

(∑
λ ′pEp

)
.

If C is a curve in Y not contained in σ?Ep for all p and not contained in σ?C ′i for

all i,

KY ·C = σ?τ?(pf) ·C+ σ?

(
1

2

d∑
i=5

C ′i

)
·C+ σ?

(∑
λ ′pEp

)
·C > 0.
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If C is a curve in Y such that C is either contained in σ?C ′i for some i or contained

in σ?Ep for some p, Lemma 2.39 and Lemma 2.40 imply that KY · C > 0. Thus

KY ·C > 0 for every curve C in Y. Hence, KY is nef.

The following result of Hirzebruch [37, Theorem 3, Page 144] is crucial in our

computations. It strengthens earlier results of Miyaoka and Sakai.

Theorem 2.44 (Hirzebruch). Let X be a smooth surface of non-negative Kodaira dimension

and E1, . . . ,Ek configurations (disjoint to each other) of rational curves on X (arising from

quotient singularities) and C1, . . . ,Cp smooth elliptic curves (disjoint to each other and

disjoint to the Ei). Let c21(X), c2(X) be the Chern numbers of X. Then

3c2(X) − c
2
1(X) >

p∑
j=1

(−C2j ) +

k∑
i=1

m(Ei).

Hirzebruch proved Theorem 2.44 under the assumption that X is of general

type and remarks that the theorem also holds when X has non-negative Kodaira

dimension. We use the theorem in this case.

The numbers m(Ei) mentioned in the theorem are positive numbers defined

using certain invariants (Euler characteristics, self-intersections) of the arrangements

Ei. Hirzebruch gives a formula to compute them in [37, Page 144, (5)] which shows

that if Ei is a single (−2)-curve, then m(Ei) =
9
2 . See also [32].

Now we are ready to prove the main result of this thesis.

Theorem 2.45. Let X be a ruled surface with e > 4 over a smooth curve of genus g. Let C be

a transversal arrangement of curves satisfying Assumption 2.41. In particular, each curve in

C is numerically equivalent to aC0 + bf with a > 0 and b > ae. Then we have the following

bound on the Harbourne constant of C:

H(C) >
−9

2
−
8

f0
+
d

f0

(
(ae− 2b)

2
(3a− 2) − 2a(g− 1)

)
+
16g+ 4t2 + t4

2f0
+
9t3
8f0

. (2.14)

Proof. By Remark 2.38, the surface Y (constructed in Figure 2.2) contains 2d−4t3
disjoint rational (−2)-curves Ei (above the 3-points) and contains 2d−5t4 elliptic

curves Cj (above the 4-points), each of self-intersection −4.
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By Theorem 2.43, KY is nef. Thus, by Theorem 2.44:

3c2(Y) − c
2
1(Y)

2d−3
>

∑
(−C2j ) +

∑
m(Ei)

2d−3
. (2.15)

As noted earlier, m(Ei) =
9
2 for all rational curves Ei of self-intersection −2.

From (2.8), we have,

1

2d−3
(3e(Y) − c21(Y)) = 16− 16g+ d[(2b− ae)(5a− 2) + 4a(g− 1)] + 9f0 − 2f1 − 4t2.

Also, from our discussion above,we have

∑
m(Ei) =

9

2
2d−4t3, and∑

(−C2j ) = 4t42
d−5.

Plugging these values in (2.15) and simplifying, we have :

16− 16g+d(2ae− 5a2e+ 10ab+ 4ag− 4a− 4b)+ 9f0− 2f1− 4t2− t4−
9

4
t3 > 0. (2.16)

Simplifying and re-arranging (2.16), we obtain the following Hirzebruch-type

inequality for C:

t2 +
3

4
t3 > −16+ 16g+

∑
k>5

(2k− 9)tk + d(e(5a
2 − 2a) − 10ab− 4ag+ 4a+ 4b). (2.17)

Now we bound H(C). We have

H(C) =
(2ab− a2e)d2 −

∑
k>2 k

2tk

f0
=

(2ab− a2e)d2 − f2
f0

=
(2ab− a2e)d− f1

f0
,

where the last equality follows from Lemma 2.35(2).

From (2.16), we have

−f1 >
−16+ 16g+ d

(
e(5a2 − 2a) − 10ab− 4ag+ 4a+ 4b

)
− 9f0 + 4t2 +

9
4t3 + t4

2
.
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Thus,

H(C) >
d(−a2e+ 2ab) − 8+ 8g+

d(e(5a2−2a)−10ab−4ag+4a+4b)−9f0
2 + 2t2 +

9
8t3 +

t4
2

f0

=
−9

2
−
8

f0
+
d

f0

(ae
2
(3a− 2) − 2ag− 3ab+ 2a+ 2b

)
+
16g+ 4t2 + t4

2f0
+
9t3
8f0

.

This completes the proof of the theorem.

If the curves in the arrangement C do not intersect the normalized section C0,

then we obtain an improved bound for the Harbourne constants as shown in the

following proposition. We obtain an improved bound in this case because Y contains

some additional rational curves.

Proposition 2.46. Let X be a ruled surface with e > 4 over a smooth curve of genus g. Let

C be a transversal arrangement of curves satisfying Assumption 2.41. Assume further that

no curve in C intersects the normalized section C0. Then we have the following bound on the

Harbourne constant of C:

H(C) >
−9

2
+
d

f0

(
ae(2− 3a) − 4a(g− 1)

2

)
+
16g+ 4t2 + t4

2f0
+
9t3
8f0

. (2.18)

Proof. As in the previous theorem, by Remark 2.38, the surface Y contains 2d−4t3
disjoint rational (−2)-curves Ei (above the 3-points), 2d−5t4 elliptic curves Cj

(above the 4-points), each of self-intersection −4. Further, since the curves in the

arrangement do not intersect C0, the surface X̃ has an isomorphic copy of C0. Hence

Y contains 2d−1 copies of a rational curve H of self-intersection −e.

Hirzebruch gives a formula to compute the value m(H) in [37, Page 144, (4)].

Applying this formula, we have that for rational curves H of self-intersection −e,

m(H) = 2+ e+ 1
e .

By Theorem 2.43, KY is nef. Thus, by Theorem 2.44, the inequality in (2.15) is

satisfied.

From (2.8), we have,

1

2d−3
(3e(Y) − c21(Y)) = 16− 16g+ d[(2b− ae)(5a− 2) + 4a(g− 1)] + 9f0 − 2f1 − 4t2.
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We have

∑
m(Ei) +

∑
m(H) =

9

2
2d−4t3 + 2

d−1(2+ e+
1

e
), and∑

(−C2j ) = 4t42
d−5.

Plugging these values in (2.15) and simplifying, we have:

16−16g+d(2ae−5a2e+10ab+4ag−4a−4b)+9f0−2f1−4t2− t4−
9

4
t3−4(2+e+

1

e
) > 0.

(2.19)

Simplifying (2.19), with ae = b, we arrive at the following modified Hirzebruch-type

inequality for C :

t2 +
3

4
t3 > 4(e+

1

e
) − 8+ 16g+

∑
k>5

(2k− 9)tk + d(−5a
2e+ 2ae− 4ag+ 4a). (2.20)

Since e > 4, we have 4(e+ 1
e) > 17. So (2.20) becomes:

t2 +
3

4
t3 > 9+ 16g+

∑
k>5

(2k− 9)tk + d
(
−5a2e+ 2ae− 4ag+ 4a

)
. (2.21)

From the above inequality (2.21), we have

−f1 >
9+ 16g+ d

(
e(2a− 5a2) − 4ag+ 4a

)
− 9f0 + 4t2 +

9
4t3 + t4

2
.

We now bound H(C).

H(C) >
d(−a2e+ 2ab) + 8g+

d(e(2a−5a2)−4ag+4a)−9f0+9
2 + 2t2 +

9
8t3 +

t4
2

f0

>
−9

2
+
d

f0

(
−7a2e

2
+ 2ab+ ae− 2ag+ 2a

)
+
16g+ 4t2 + t4

2f0
+
9t3
8f0

.

Since ae = b, we get

H(C) >
−9

2
+
d

f0

(
ae(2− 3a) − 4a(g− 1)

2

)
+
16g+ 4t2 + t4

2f0
+
9t3
8f0

,

as required.

We now define the global Harbourne constant of a ruled surface for a fixed pair

of integers a,b as follows.
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Definition 2.47. Let X be a ruled surface with invariant e > 4. Let a > 0 and b > ae

be positive integers. We define the global Harbourne constant Ha,b(X) of X as :

Ha,b(X) := inf
C
H(C),

where the infimum is over all transversal arrangements C satisfying Assumption

2.41.

In order to bound the constant Ha,b(X), we make the following observation.

Lemma 2.48. Let C = {C1,C2, . . . ,Cd} be a transversal arrangement on the ruled surface X

satisfying Assumption 2.41. Then f0 > d.

Proof. This is proved in [18, Lemma 6.1]. We write the proof here for the convenience

of the reader.

Let s = f0 and h = 2ab− a2e. Let Sing(C) = {p1, . . . ,ps}. Consider the Q−vector

space Qs with the usual dot product: if v = (a1, . . . ,as) and u = (b1, . . . ,bs), then

v · u := a1b1 + . . .+ asbs.

For every curve Ci ∈ C, we associate a vector vi ∈ Qs by setting the l-th entry of

vi equal to 1, if Ci passes through pl, and 0 otherwise.

Note that if i 6= j, then vi · vj is precisely the number of points common to Ci
and Cj. By our hypothesis, we have vi · vj = h. Also vi · vi is the number of multiple

points that are contained in Ci.

We claim that each curve Ci contains at least h+ 1 intersection points with other

curves in the arrangement. Since there are at least two curves in C, we have vi · vi > h.

If vi · vi = h, then all the curves in C intersect Ci in the same h points. This contradicts

the assumption td = 0. Thus vi · vi > h for all i.

To prove the lemma, it suffices to show that the set {v1, v2, . . . , vd} is linearly

independent. If it is not linearly independent, without loss of generality, let v1 =∑d
j=2 ajvj for aj ∈ Q.
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Consider v1 · (v1 − vq) where q > 2. Then

(v1 · v1) − h = v1 · (v1 − vq)

=

 d∑
j=2

ajvj

 · (v1 − vq)
=

d∑
j=2

aj

(
h− (vj · vq)

)
= aq (h− (vq · vq))

So aq =
(v1·v1)−h
h−(vq·vq) < 0. Since this holds for all q > 2, v1 is a linear combination

of v2, . . . , vd with negative coefficients. But the entries of vi for any i = 1, . . . ,d are

either 0 or 1 and we obtain the required contradiction.

Corollary 2.49. Let X be a ruled surface over a smooth curve of genus g with invariant

e > 4. Let a > 0 and b > ae be positive integers. Then

Ha,b(X) >
−11

2
+

(ae− 2b)

2
(3a− 2) − 2ag. (2.22)

Further, if ae = b, then

Ha,b(X) >
−9

2
+
ae(2− 3a) − 4ag

2
. (2.23)

Proof. We first claim that f0 > 2ab− a2e+ 1. Indeed, if not, f0 6 2ab− a2e+ 1. Then

(2ab− a2e)d(d− 1) =
∑
k>2

k(k− 1)tk, by Lemma 2.35(2)

6 (d− 1)(d− 2)f0, since k 6 d− 1

6 (d− 1)(d− 2)(2ab− a2e+ 1).

This gives

(2ab− a2e)d 6 (d− 2)(2ab− a2e+ 1)

⇒ 2(2ab− a2e) 6 (d− 2)

⇒ 2(d− 1) 6 2(2ab− a2e) 6 (d− 2), by Lemma 2.48

⇒ d 6 0.
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This is a contradiction and the claim follows.

Now, since b > ae, e > 4 and a > 0 by our assumptions, the claim gives

f0 > 2ab− a2e+ 2 > 2a(ae+ 1) − a2e+ 2 > 4a2 + 2a+ 2 > 8. Thus f0 > 8 and hence
−8
f0

> −1.

By Theorem 2.45, we have H(C) > −9
2 − 8

f0
+ d
f0

(
(ae−2b)

2 (3a− 2) − 2a(g− 1)
)

. Note

that (ae−2b)
2 (3a− 2) − 2ag is a negative number as b > ae. Hence, as −8

f0
> −1, Lemma

2.48 gives (2.22).

Similarly, by Proposition 2.46, we have H(C) > −9
2 + d

f0

(
ae(2−3a)−4a(g−1)

2

)
. Since

ae(2−3a)−4ag
2 is a negative number, Lemma 2.48 gives (2.23).

We now state a corollary which gives a lower bound on the self-intersection of

the strict transform of the divisor associated to an arrangement of curves.

Corollary 2.50. Let C be a transversal arrangement on the ruled surface X satisfying

Assumption 2.41. Let f : X̃ → X be the blow up of X at Sing(C). Let D̃ denote the strict

transform of D, which is the divisor defined as the sum of all the curves in C. Then

D̃2 > −8−
9

2
s+ d

(
(ae− 2b)

2
(3a− 2) − 2a(g− 1)

)
+ 8g+ 2t2 +

t4
2
+
9t3
8

.

Further, if all curves in the arrangement do not intersect the normalized section C0, then

D̃2 >
−9

2
s+ d

(
ae(2− 3a) − 4a(g− 1)

2

)
+ 8g+ 2t2 +

t4
2
+
9t3
8

.

Proof. Indeed, note that f0 = s and D̃2 = sH(C). The corollary now follows from

(2.14) and (2.18).

2.4.1 Examples

It is not easy to construct arrangements which have small Harbourne constants.

Most easy to construct examples of curve arrangements have much larger Harbourne

constants than our bounds predict. For example, if C = {C1, . . . ,Cd} is a general

arrangement of curves on a ruled surface X satisfying our assumptions, then it is

easy to see that H(C) = −2(d−2)
d−1 . Indeed, all singular points of C have multiplicity 2

and consequently, t2 =
(
d
2

)
C21 and tk = 0 for k > 3. Now an easy calculation gives
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H(C) =
−2(d−2)
d−1 . But this value is much larger than the bounds given by our main

results Theorem 2.45 or Corollary 2.49.

This situation is analogous to the case of line arrangements in P2. The best

bound we have in this case is given in [5, Theorem 3.3] which proves that H(L) > −4

for all line arrangements L in P2. But for a general line arrangement or for many

simple examples, the Harbourne constant is at least −2. However, there do exist line

arrangements in the plane which have small Harbourne constants. We can use these

to obtain fairly small Harbourne constants for curve arrangements on ruled surfaces.

We illustrate this with two examples below.

Example 2.51. Let X = Xe be a rational ruled surface with invariant e > 1. Given a

line arrangement in P2, one can obtain an arrangement of curves on Xe, following a

construction outlined in [18, Example 15]. Let π : X→ P1 be the natural projection

map given by [s1 : s2; x1 : x2] 7→ [s1 : s2]. Let ψ be an isomorphism between a fiber of

π and P1.

Let ρ : X1 → P2 be the blow up of a point p that is not on the line arrangement.

Define the morphism η : X→ X1 as:

η([s1 : s2; x1 : x2]) = [se1 : s
e
2;ψ([s1 : s2; x1 : x2])].

The morphism η is of degree e and is branched upon two fibers of X1. Choosing

appropriate coordinates on P2, we can choose two lines passing through p that

intersect the line arrangement transversally such that the pull-back of these lines by

ρ gives the two fibers of the branch locus of η.

So we can pull-back lines in P2 by ρ ◦ η to Xe which are in the class (1, e). If L is

a line arrangement of d lines in the plane, its pull-back gives a curve arrangement C

of d curves in Xe.

To be more precise, suppose that L has s singularities and tk denotes the number

of singular points of L of multiplicity k. Then the singular points of C are precisely

the pre-images of singularities of L. So C has es singular points and the number of

singular points of multiplicity k is etk. Note that each curve in C is in the class (1, e)

and has self-intersection e. So the self-intersection of the divisor associated to C is

d2e.
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Hence we have

H(C) =

d2e− e
∑

p∈Sing(L)
r2p

se
=

d2 −
∑

p∈Sing(L)
r2p

s
= H(L).

We now assume e > 4. First we consider the Klein arrangement [39], denoted by

L1. This arrangement consists of 21 lines with t3 = 28, t4 = 21 and tk = 0 for k 6= 3, 4.
It is easy to see that H(L1) = −3. So if C1 is the curve arrangement in X obtained

from L1, then H(C1) = −3.

Now we calculate the bound given by Proposition 2.46. (Note that since ae = b,

this bound is better than the one given by Theorem 2.45.) We have d = 21, f0 =

49e,a = 1,b = e,g = 0, t2 = 0, t3 = 28e, t4 = 21e. So Proposition 2.46 gives

H(C1) >
−9

2
+
21

49e

(
4− e

2

)
+
21e

98e
+
9(28)

8(49)
=
42

49e
− 3.857.

Next let L2 denote the Wiman configuration [61]. This arrangement consists of

45 lines with t3 = 120, t4 = 45, t5 = 36 and tk = 0 for k 6= 3, 4, 5. It is easy to check that

H(C2) = −3.359, where C2 is the arrangement of curves in X given by L2.

As above, using Proposition 2.46, we obtain

H(C2) >
−9

2
+

45

201e

(
4− e

2

)
+
45e

402e
+
9(120)

8(201)
=

90

201e
− 3.828.

2.5 Ball quotients

Ball quotients are algebraic surfaces for which the universal cover is the 2-dimensional

unit ball. Equivalently, ball quotients are minimal smooth complex projective

surfaces Y of general type satisfying equality in the Bogomolov-Miyaoka-Yau

inequality. In other words, they are minimal smooth complex projective surfaces Y

such that KY is nef and big and K2Y = 3e(Y), where KY denotes the canonical divisor

and e(Y) is the topological Euler characteristic. See [58] for more details on ball

quotients.

Hirzebruch [37] gave examples of ball quotients using line arrangements in P2.

To a line arrangement in P2, he associated a surface Y (by first an abelian cover of
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P2 branched on that line arrangement and then taking a desingularization). He

exhibited three specific line arrangements whose associated surfaces Y are ball

quotients.

In this section, we show that the surfaces associated to transversal arrangements

on ruled surfaces that we consider in this thesis are not ball quotients. In order to do

this, we use the theory of constantly branched covers developed in [3]. The crucial

idea is the following. Let Y be a ball quotient which arises from the abelian cover

construction we used in Section 2.3. Then if E is a curve contained in the (reduced)

ramification divisor of σ : Y → X̃, then the relative proportionality of E is zero. This is

defined as prop(E) := 2E2 − e(E). For more details, see [3, Section 1.3]. See also [36]

for a nice introduction. In the notation of [36], one says that Y is a good covering of X̃

via σ.

The same method was used in [51] and [52] to study ball quotients.

Let X be a ruled surface with e > 4. Let C = {C1,C2, . . . ,Cd} be a transversal

arrangement of curves on the ruled surface X satisfying Assumption 2.41. Let Y be

the associated surface constructed in Section 2.3; see Figure 2.2. By Theorem 2.43, KY
is nef and consequently, Y is a minimal surface of non-negative Kodaira dimension.

In fact, Y is a surface of general type most of the time as the following remark shows.

Remark 2.52. Let C be a transversal arrangement on the ruled surface X satisfying

Assumption 2.41. Assume in addition that a > 8. By (2.7), we have

K2Y = 2d−3 (32+ (8ad− 32)g+ d(a(2b− ae) + 4a(e− 2) − 8b) + 5f1 − 9f0 + t2) .

Using a > 8 and Assumption 2.41, it is easy to see that K2Y > 0. Thus Y is a minimal

surface of general type.

We define the Hirzebruch polynomial as

HC(2) :=
1

2d−3
(3e(Y) − c21(Y)).

Note that by equation (2.8), we have

HC(2) = 16− 16g+ d ((2b− ae)(5a− 2) + 4a(g− 1)) + 9f0 − 2f1 − 4t2.

Since KY is nef, we have by Remark 1.24 and (1.4) that HC(2) > 0. If Y is a ball

quotient then HC(2) = 0.
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We now check whether there exists a transversal arrangement C on X satisfying

Assumption 2.41 such that the associated surface Y is a ball quotient.

As noted above, the relative proportionality of curves contained in the (reduced)

ramification divisor of σ is zero. There are two kinds of curves which are contained in

the ramification divisor of σ. The first kind are the irreducible components Fp of σ?Ep
for p ∈ Sing(C) with rp > 3. Since F2p = −2rp−2, (2.4) gives prop(Fp) = 2rp−2(rp − 6).

So, if the associated surface Y is a ball quotient, then for any point p ∈ Sing(C)

with rp > 3, we have rp = 6. Hence the arrangement C satisfies tk = 0 for k 6= 2, 6.

For any Ci,Cj ∈ C, let a ′ := Ci ·Cj = 2ab− a2e and b ′ := KX ·Ci = 2ae+ a(2g− 2−
e) − 2b.

For any j ∈ {1, . . . ,d}, let tjk denote the number of k-fold points of Cj. Since tk = 0

for k 6= 2, 6, Lemma 2.35(1) gives

a ′(d− 1) = 5tj6 + t
j
2. (2.24)

The second kind of curves contained in the (reduced) ramification divisor of σ

are irreducible components of Dj := σ?(C ′j), where C ′j is the strict transform of Cj
under the blow up τ. We note that σ?(C ′j) consists of disjoint union of irreducible

curves which are taken to one another by automorphisms of Y.

We now calculate the relative proportionality prop(Dj).

Note that KY = σ?(T), where T was defined in Lemma 2.37. We also recall that,

by (2.10), we have T ·C ′j = b ′ + a ′

2 + fj0 −
t
j
2
2 . Finally, note that C ′2j = C2j −

∑
k>3 t

j
k =

a ′ −
∑
k>3 t

j
k.

Then prop(Dj) = 2D2j − e(Dj) = 3D2j + KY ·Dj = 3
(
(2

d−1

22
)C ′j

2
)
+ (2

d−1

2 )(T · C ′j) =

2d−3
(
3a ′ − 3

∑
k>3 t

j
k

)
+ 2d−3

(
2b ′ + a ′ + 2fj0 − t

j
2

)
= 2d−3

(
4a ′ + 2b ′ − tj6 + t

j
2

)
.

For the final equality above, we use the fact that tk = 0 for k 6= 2, 6. If Y is a ball

quotient, then prop(Dj) = 0. This gives

4a ′ + 2b ′ = tj6 − t
j
2. (2.25)
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Solving the linear equations (2.24) and (2.25) for tj2 and tj6, and using the easy

combinatorial identity
∑d
j=1 t

j
k = ktk, we get

t2 =
a ′d2 − 21a ′d− 10b ′d

12
, t6 =

a ′d2 + 3a ′d+ 2b ′d

36
. (2.26)

If there exists an arrangement C on X satisfying Assumption 2.41 and having

only double and sixfold points such that the associated surface Y is a ball quotient,

then HC(2) = 0. This gives

16− 16g+ d[(2b− ae)(5a− 2) + 4a(g− 1)] + t2 = 3t6. (2.27)

Plugging the values of t2 and t6 obtained above in (2.27) and simplifying, we get

16− 16g = −d ((3a− 1)(2b− ae) + 2a(g− 1)) . (2.28)

We can rewrite (2.28) as

− 16 = d[(3a− 1)(2b− ae) − 2a] + (2ad− 16)g. (2.29)

Thus by our assumptions, we have

d[(3a− 1)(2b− ae) − 2a] > d[(3a− 1)ae− 2a] = ad[e(3a− 1) − 2]

> 0.

Note that d > 4 by Assumption 2.34. So if a > 2 or if a = 1,d > 8, then (2ad−16)g > 0

and thus the right-hand side of (2.29) is a positive number, a contradiction.

Let a = 1 and 4 6 d 6 7. Then it is easy to directly check that (2.27) is not possible.

First note that the largest value of t6 is attained when tk = 0 for k 6= 6 and in this

case we have t6 =
a ′d(d−1)

30 , by Lemma 2.35(2).

If Y is a ball quotient, then (2.27) holds and we have

0 = 16− 16g+ d[(2b− ae)(5a− 2) + 4a(g− 1)] + t2 − 3t6

> 16− 16g+ d(6b− 3e+ 4g− 4) −
a ′d(d− 1)

10

> 16− 16g+ 4gd− 4d+ (2b− e)

(
3d−

d(d− 1)

10

)
> 16− 4d+ 4

(
3d−

d(d− 1)

10

)
, since d > 4,b > e > 4.
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Now it is easy to check that the last term above is positive for 4 6 d 6 7, giving a

contradiction.

The above arguments prove the following theorem.

Theorem 2.53. Let X be a ruled surface with e > 4. There does not exist any transversal

arrangement C on X satisfying Assumption 2.41 such that the associated surface Y is a ball

quotient.
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