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Abstract

This thesis consists of two problems: Problem 1 deals with the study of the homoge-

neous coordinate ring of Torus quotient of the homogeneous space. More precisely, let G

be a simple adjoint group over the field of complex numbers C. We fix a maximal torus T of

G. Let B be a Borel subgroup of G containing T. For any dominant character χ of T, let Lχ

be the corresponding T-linearized line bundle on the flag variety G/B. Let T\\(G/B)ss
T (Lχ)

be the GIT quotient of G/B by T with respect to the line bundle Lχ. We are interested in the

following question: When the homogeneous coordinate ring of T\\(G/B)ss
T (Lχ) is isomor-

phic to a polynomial ring; equivalently, when T\\(G/B)ss
T (Lχ) is isomorphic to a weighted

projective space. We prove that it is a polynomial ring if χ satisfies a combinatorial property

in terms of a "Coxeter element" of the Weyl group W of G.

Problem 2: We use the same notations as above. Let Z(w, i) be the Bott-Samelson-

Demazure-Hansen variety (the desingularization of the Schubert variety X(w)) corre-

sponding to a reduced expression i of w ∈ W. We compute the connected component

Aut0(Z(w, i)) of the automorphism group of Z(w, i) containing the identity automorphism.

In particular, the Bott-Samelson-Demazure-Hansen varieties corresponding to the different

reduced expressions of w need not be isomorphic. We also prove that the Bott-Samelson-

Demazure-Hansen varieties are rigid for simply laced groups and their deformations are

unobstructed in general.
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Chapter 1

Introduction

This thesis consists of two problems: The first problem is related to the torus quotients

of homogeneous spaces and the second problem is about the automorphism group of the

Bott-Samelson-Demazure-Hansen variety.

1.1 Torus Quotients

There are two central problems in the theory of invariants:

1. The study of the ring of invariants.

2. The study of the quotient variety under the action of an algebraic group.

1.1.1 Ring of Invariants

The standard setting of invariant theory is as follows: If G is a finite group acting linearly

on a vector space V over an algebraic closed field k, then it induces an action on k[V],

the algebra of polynomial functions on V, the action is given by (g f )(v) := f (g−1.v) for

all g ∈ G, for all v ∈ V, f ∈ K[V]. The ring of G-invariant polynomials is defined by

k[V]G := { f ∈ k[V] : g f = f ∀ g ∈ G}. If G is a linear algebraic group acting on an affine

variety X, then it defines an action on the coordinate ring k[X] of X. Let k[X]G := { f ∈

k[X] : g f = f ∀ g ∈ G}. When X = V is a representation of G, the action of G on k[V]

preserves degree and k[V]G ⊆ k[V] inherits the grading.

The basic question in invariant theory is the following: What is the structure of the ring

k[V]G ? For example, when k[V]G is finitely generated? If it is finitely generated then find

the generators and relations for k[V]G , and the degree bounds for the generators. When is

the ring k[V]G of invariants a polynomial ring ?

1
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In general, it is a difficult problem to compute the ring of invariants. This was a major

topic of research in nineteenth century. In 1868, Paul Gordan proved that (constructively)

for the action of G = SL2(C) on the finite dimentional complex vector space V of homo-

geneous polynomial of degree n in two variables, the ring C[V]G of invariants is finitely

generated over C. In 1890, David Hilbert proved that (in a non-contructive way) when-

ever G is linearly reductive acting on a finite dimensional complex vector space V, the ring

C[V]G of invariants is finitely generated C-algebra and he proposed a general question of

finite generation of invariant rings for arbitrary groups. This problem is now known as

Hilbert’s fourteenth problem.

The following theorem describes when the ring of invariants for the linear action of a

finite group is a polynomial ring.

Theorem 1.1. (Chevalley, Serre, Shephard-Todd, [Che55, Ser68, ST54]). Let V be a finite dimen-

sional representation of a finite group G over a field k. Assume that the characteristic of k does not

divide the order of G. Then, k[V]G is a polynomial algebra if and only if G is generated by pseudo-

reflections. In such a case, |G| = ∏
n
i=1 deg( fi), where n = dim(V) and { f1, f2, . . . , fn} is a set of

algebraically independent generators of k[V]G .

If G is a subgroup of GL(V) generated by pseudo reflections, but the characteristic of k

divides the order of G, then the ring k[V]G of invariants need not be a polynomial algebra.

For example, let k be an algebraic closed field of characteristic 3 and let W be the Weyl

group of an algebraic group of type F4 over k. Note that order |W| of the Weyl group W

is 1152 and 3 divides 1152. The ring of invariants is not a polynomial algebra (see [NS02,

Chapter 7, page 192]).

The above results gives a characterization for k[V]G to be a polynomial algebra if G is

finite, but there is no simple characterization for a semisimple algebraic group G.

Theorem 1.2 (Chevalley, [Hum72]). For any semisimple algebraic group G over C, the ring C[g]G

of G-invariants of the coordinate ring of the adjoint representation g of G is a polynomial algebra

(see [Hum72, page 127]).

Theorem 1.3 (Steinberg, [Ste65]). For any semisimple simply connected algebraic group G (over

any algebraically closed field k) acting on itself by inner conjugation, the ring k[G]G of G-invariants

is a polynomial algebra (see [Ste65, page 41]).

When G = T is a torus, D. Wehlau in [Weh94] gave two constructive criteria each of

which determines those representations of T for which the ring of invariants is a polynomial

ring (see [Weh94, Theorem 5.8]).
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1.1.2 Torus action

Since torus is a reductive group, studying the invariants of torus is an interesting problem.

The study of the action of a maximal torus T ⊂ GL(n) on the Grassmannian Gr(n, k) is

connected to various interesting problems in geometry.

Classical problem in invariant theory is the study of binary quantics. The main object is

to give an explicit description of the ring k[V]SL2 , where V is the space of all homogeneous

forms of degree n in two variables and to study the geometric properties of SL2 quotients

of projective space for a suitable choice of linearization. The natural generalization of this

classical problem is the following;

Let G = SLn(k), the special linear group and P2 is the maximal parabolic subgroup of

SLn(k) associated to the simple root α2, one knows that G/P2 is the Grassmannian G2,n

of all two- dimensional subspaces of an n-dimensional vector space over k. Let N be the

normalizer of a maximal torus T in G. Then, one also has an isomorphism:

N\\(G/P2)
ss(L2) = N\\(G2,n)

ss(L2) ≃ SL2\\(P(V))ss,

where V is the vector space of all homogeneous polynomials of degree n in two vari-

ables and L2 is the line bundle associated to the fundamental weight ω2, and the variety

SL2\\P(V)ss is precisely the space of binary quantics (see the proof of Theorem-1 and the

proof of Theorem-4 of [Ses68]). Generally, one has the following isomorphism:

T\\(G/Pr)
ss(Lr) = T\\(Gr,n)

ss(Lr) ≃ SLr\\(P
r−1)n,

where Pr is the maximal parabolic subgroup of ⊂ G = SLn(k) associated to the simple root

αr, Gr,n is the Grassmannian of r-dimensional subspaces of an n dimensional vector space

and Lr is the line bundle on G/Pr = Gr,n associated to ωr.

A more general question in this setting is the study of GIT related problems on the flag

variety G/P associated to a semisimple algebraic group G for the action of a maximal torus

T and its normalizer N in G.

When G = SLn(k) and Pr is the maximal parabolic subgroup of G associated to the sim-

ple root αr and Lr the line bundle associated to the fundamental weight ωr. S. Senthamarai

Kannan proved in [Kan98] the following result:

(G/Pr)
ss
T (Lr) = (G/Pr)

s
T(Lr)

if and only if r and n are co-prime.
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Further, in [Kan99], when G is semisimple algebraic group G, the parabolic subgroups

P of G for which there is a T-linearized ample line bundle L on G/P such that

(G/P)ss
T (L) = (G/P)s

T(L)

has been classified.

In [Str00], Strickland gave a shorter proof of these results. In [Zhg07] and [Zhg08],

Zhgun studied that how the quotient vary as the line bundle varies. That is, there is a

decomposition of the Weyl chamber C into GIT-equivalence classes of characters χ of B

determining the same sets of semi-stable points (G/B)ss
T (Lχ). In [Sko09], Skorobogatov

described the automorphism group of the quotient T\\(G/P)ss
T (L), where P is a maximal

parabolic subgroup of G.

It is an interesting problem to study the minimal dimensional Schubert varieties in

G/P admitting semi-stable points with respect to the T-linearized ample line bundle L on

G/P. In [KP09b], when G is simply connected semisimple algebraic group, P is a maximal

parabolic subgroup of G and L = Lω, where ω is a minuscule fundamental weight, it

is shown that there exists a unique minimal Schubert variety X(w) admitting semi-stable

points with respect to the line bundle L. Note that this includes the all maximal parabolic

subgroups of a simple algebraic group of type A.

Let G be a simple algebraic group of type B, C or D and P is a maximal parabolic

subgroup of G. Let L be an ample line bundle on G/P. In [KP09a], authors described all

the minimal Schubert varieties in G/P admitting semi-stable points with respect to the line

bundle L. In the same paper [KP09a], they described all the Coxeter elements w ∈ W for

which the corresponding Schubert variety X(w) admits a semi-stable point for the action of

a maximal torus T with respect to a non trivial line bundle on G/B.

In [Pat14], for any simple, simply connected algebraic group G of exceptional types

E6, E7, E8, F4, or G2 and for any maximal parabolic subgroup P of G, the author describe all

minimal Schubert varieties in G/P admitting semi-stable points for the action of a maximal

torus T with respect to an ample line bundle on G/P.

In this thesis, we study the homogeneous coordinate ring of T\\(G/B)ss
T (Lχ) for some

dominant character χ of B.

More precisely, let G be a simple algebraic group of adjoint type over C. Let T be a maxi-

mal torus of G and let B be a Borel subgroup of G containing T. For any dominant character

χ of T, let Lχ be the corresponding T-linearized line bundle on G/B. Let T\\(G/B)ss
T (Lχ)

be the GIT quotient of G/B by T with respect to Lχ. We are interested in studying the fol-

lowing question: For which dominant character χ of B, the homogeneous coordinate ring
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of T\\(G/B)ss
T (Lχ) is isomorphic to a polynomial ring; equivalently, for which character χ

of B, the quotient T\\(G/B)ss
T (Lχ) is isomorphic to a weighted projective space.

Definition 1.4. A non trivial dominant character χ of T is said to be decomposable if there

is a pair of non trivial dominant characters χ1, χ2 of T such that χ = χ1 + χ2. Otherwise,

we call χ is indecomposable.

Recall that w in W is said to be a Coxeter element if it has a reduced expression of the

form si1 si2 · · · sin such that ij 6= ik whenever j 6= k ( refer to [Hum11]).

A further study about the dominant characters χ of T for which there is a Coxeter

element w such that X(w)ss
T (Lχ) is non empty, we observed that in the case of A2, given an

indecomposable dominant character χ of T which is in the root lattice; X(w)ss
T (Lχ) is non

empty for some coxeter element w in W if and only if χ must be one of the following: α1 + α2,

2α1 + α2 and α1 + 2α2. We also observed that for all these three dominant characters χ, the

ring of T-invariants of the homogeneous coordinate ring
⊕

d∈Z≥0
H0(PGL3(C)/B,L⊗d

χ ) is a

polynomial ring.

In case of B2 as well, given an indecomposable dominant character χ of T which is in

the root lattice, X(w)ss
T (Lχ) is non empty for some coxeter element w in W if and only

if χ must be one of the following: α1 + α2, α1 + 2α2. We also observed that for these

two dominant characters χ, the ring of T-invariants of the homogeneous coordinate ring
⊕

d∈Z≥0
H0(SO(5, C)/B,L⊗d

χ ) is a polynomial ring.

The computations in the above mentioned special cases tempt us to ask the following

question:

Let G be a simple adjoint group over C, the field of complex numbers. Let T be a

maximal torus of G, B be a Borel subgroup of G containing T. Then, for any indecom-

posable dominant character χ of T such that there is a Coxeter element w in W such that

X(w)ss
T (Lχ) is non empty, is the ring of T- invariants of the homogeneous coordinate ring

⊕
d∈Z≥0

H0(G/B,L⊗d
χ ) a polynomial algebra ?

We prove the following result:

Theorem 1.5. ([KCP14, Theorem 4.8]). For any indecomposable dominant character χ of a max-

imal torus T of a simple adjoint group G such that there is a Coxeter element w ∈ W for which

X(w)ss
T (Lχ) 6= ∅, the graded algebra

⊕
d∈Z≥0

H0(G/B,L⊗d
χ )T is a polynomial ring if and only if

dim(H0(G/B,Lχ)T) ≤ rank of G.

Equivalently, suppose that there exists a Coxeter element w ∈ W such that

X(w)ss
T (Lχ) 6= ∅. Then T\\(G/B)ss

T (Lχ) is isomorphic to a weighted projective space if
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and only if dim(H0(G/B,Lχ)T) ≤ rank of G. In fact, when this holds, T\\(G/B)ss
T (Lχ) is

isomorphic to a projective space in its antitautological embedding (that is, the polynomial

generators of its homogeneous coordinate ring all lie in degree 1). In particular, the polar-

ized variety (T\\(G/B)ss
T (Lχ), M) is projectively normal, where M is the descent of Lχ

to the quotient T\\(G/B)ss
T (Lχ).

Now, we state the second result on torus quotients.

Let g be the Lie algebra of G and let h ⊂ g be the Lie algebra of T. Let α0 denote the

highest root. Since H0(G/B,Lα0) is an irreducible self dual G module with highest weight

α0, the G modules H0(G/B,Lα0), Hom(g, C) are isomorphic.

On the other hand, the natural T-invariant projection from g to h induces a isomorphism

Hom(h, C) → Hom(g, C)T. So, we have an isomorphism Hom(h, C) → H0(G/B,Lα0)
T.

Thus, we have a homomorphism f : C[h] −→
⊕

d∈Z≥0
H0(G/B,L⊗d

α0
)T of C-algebras.

We prove the following theorem.

Theorem 1.6. ([KCP14, Theorem 3.3]). The homomorphism f : C[h] −→
⊕

d∈Z≥0
H0(G/B,L⊗d

α0
)T is an isomorphism if and only if X(w)ss

T (Lα0) is non empty for

some Coxeter element w in W.

Equivalently, the GIT quotient T\\(G/B)ss
T (Lα0) is isomorphic to the projective space

P(h) if and only if there exists a Coxeter element w ∈ W such that X(w)ss
T (Lα0) is nonempty.

As a consequence, the polarized variety (T\\(G/B)ss
T (Lα0), M) is projectively normal,

where M is the descent of Lα0 to the quotient T\\(G/B)ss
T (Lα0).

Let P(g) be the projective space of all one-dimensional subspaces of g.

By Chevalley restriction Theorem, we deduce the following:

Corollary 1.7. ([KCP14, Corollary 3.4]). NG(T)\\(G/B(Lα0 ))
ss
T ≃ G\\P(g) if and only if

X(w)ss
T (Lα0) is non empty for some Coxeter element w in W.

1.2 Cohomology of the Tangent bundle of Bott-Samelson-

Demazure-Hansen variety

Let G be a simple algebraic group of adjoint type over the field C of complex numbers.

Let B be a Borel subgroup of G containing a maximal torus T of G. let W be the Weyl

group of G. For w ∈ W, let X(w) := BwB/B denote the Schubert variety in G/B corre-

sponding to w. Given a reduced expression w = si1 si2 · · · sir of w, with the corresponding
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tuple i := (i1, . . . , ir), we denote by Z(w, i), the desingularization of the Schubert variety

X(w), which is now known as the Bott-Samelson-Demazure-Hansen variety. It was first

introduced by Bott and Samelson in a differential geometric and topological context (see

[BS58]). Demazure in [Dem74] and Hansen in [Han73] independently adapted the construc-

tion in algebro-geometric situation, which explains the reason for the name. For the sake

of simplicity, we will denote a Bott-Samelson-Demazure-Hansen variety by BSDH-variety.

In [Bot57], R. Bott proved that all the higher cohomology groups Hi(G/B, TG/B) for the

tangent bundle TG/B on the flag variety G/B vanish. Recall that the vanishing results of the

cohomology groups of the restriction of the homogeneous vector bundle to the Schubert

varieties have been an important area of the research in the theory of algebraic groups (see

[And85], [BKS04], [BK07], [Dem76], [Jan07], [Lit98], [MR85] and [Ses07])

Recently, in [Kan13], author proved that the cohomology groups Hi(X(w), TG/B) = 0

for all i ≥ 1, where TG/B is the restriction of the tangent bundle of G/B to X(w).

In this thesis, we prove the following vanishing results of the tangent bundle TZ(w,i) on

Z(w, i) (see [CKP15, Section 3]):

Theorem 1.8.

1. H j(Z(w, i), TZ(w,i)) = 0 for all j ≥ 2.

2. If G is simply laced, then H j(Z(w, i), TZ(w,i)) = 0 for all j ≥ 1.

As a consequence, it follows that the BSDH-varieties are rigid for simply laced

groups and their deformations are unobstructed in general (see [CKP15, Section 3]). The

above vanishing result is independent of the reduced expression i of w. By computing

H1(Z(w, i), TZ(w,i)) for non simply laced group, we observed that this cohomology group

very much depend on the choice of a reduced expression i of w.

1.3 Automorphism group of a Bott-Samelson-Demazure-Hansen

variety

The construction of the Bott-Samelson-Demazure-Hansen variety Z(w, i) depends on the

choice of the reduced expression i of w. So, it is natural to ask that for a given w ∈

W whether the Bott-Samelson-Demazure-Hansen varieties corresponding to two different

reduced expressions of w are isomorphic? We study the automorphism group of the Bott-

Samelson-Demazure-Hansen varieties in order to answer this question.
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We compute the connected component Aut0(Z(w, i)) of the automorphism group of

Z(w, i) containing the identity automorphism. We show that Aut0(Z(w, i)) contains a

closed subgroup isomorphic to B if and only if w−1(α0) < 0, where α0 is the highest

root of G with respect to T and B. We prove Aut0(Z(w0, i)) is a parabolic subgroup of

G, where w0 denote the longest element of W . It is also shown that this parabolic sub-

group depend very much on the chosen reduced expression i of w0 and we describe all the

parabolic subgroups of G that occur as Aut0(Z(w0, i)). If G is simply laced, then we show

that for every w ∈ W, and for every reduced expression i of w, Aut0(Z(w, i)) is a quotient

of the parabolic subgroup Aut0(Z(w0, j)) of G for a suitable choice of a reduced expression

j of w0 (see [CKP15, Theorem 7.3] ). We also describe the kernel of the homomorphism

Aut0(Z(w0, j)) −→ Aut0(Z(w, i)) of algebraic groups (see [CKP15, Corollary 7.4 ]). Thus,

we have a complete description of Aut0(Z(w, i)) for any reduced expression i of w in the

simply laced case.

We recall the following notation before describing the results: We denote the set of roots

of G with respect to T by R. Let B+ be a Borel subgroup of G containing T. Let B be the

Borel subgroup of G opposite to B+ determined by T. That is, B = n0B+n−1
0 , where n0 is

a representative in NG(T) of w0. Let R+ ⊂ R be the set of positive roots of G with respect

to the Borel subgroup B+. Note that the set of roots of B is equal to the set R− := −R+

of negative roots. We use the notation β > 0 for β ∈ R+ and β < 0 for β ∈ R−. Let

S = {α1, . . . , αn} denote the set of all simple roots in R+, where n is the rank of G. The

simple reflection in the Weyl group corresponding to a simple root α is denoted by sα. For

simplicity of notation, the simple reflection corresponding to a simple root αi is denoted by

si.

Let g denote the Lie algebra of G, let b ⊂ g be the Lie algebra of B and h ⊂ b be the

Lie algebra of T. Let X(T) denote the group of all characters of T. We have X(T)⊗ R =

HomR(hR , R), the dual of the real form hR of h. The positive definite W-invariant bilinear

form on HomR(hR, R) induced by the Killing form of g is denoted by ( , ). We use the

notation 〈 , 〉 to denote 〈ν, α〉 = 2(ν,α)
(α,α) for ν ∈ X(T)⊗ R and α ∈ R.

Given a reduced expression w = si1 si2 · · · sir , let i := (i1, . . . , ir). Set

J
′
(w, i) := {l ∈ {1, 2, . . . , r} : 〈αil

, αik
〉 = 0 for all k < l},

J(w, i) := {αil
: l ∈ J

′
(w, i)} ⊂ S.

Note that the simple reflections {sij
: j ∈ J′(w, i)} commute with each other.

Let WJ(w,i) be the subgroup of W generated by {sj ∈ W | αj ∈ J(w, i)}. Let

PJ(w,i) := BWJ(w,i)B
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be the corresponding standard parabolic subgroup of G. By abuse of notation, here WJ(w,i)

in the definition of the parabolic subgroup PJ(w,i) means any lift of elements of WJ(w,i) to

NG(T). Let N = |R+|.

Then, we have the following theorem:

Theorem ([CKP15]).

1. For any reduced expression i of w0, Aut0(Z(w0, i)) ≃ PJ(w0,i).

2. For any reduced expression i of w, Aut0(Z(w, i)) contains a closed subgroup iso-

morphic to PJ(w,i) if and only if w−1(α0) < 0. In such a case, PJ(w,i) = PJ(w0,j) for

any reduced expression w0 = sj1 sj2 · · · sjN
of w0 such that j = (j1, j2, . . . , jN) and

(j1, j2, . . . , jr) = i.

3. If G is simply laced, Aut0(Z(w, i)) is a quotient of Aut0(Z(w0, j)), where j is as in (2).

4. If G is simply laced, Aut0(Z(w, i)) ≃ PJ(w,i) if and only if w−1(α0) < 0. In such a case,

we have PJ(w,i) = PJ(w0,j) where j is as in (2).

5. The rank of Aut0(Z(w, i)) is at most the rank of G.

Let gw : Aut0(Z(w0, j)) −→ Aut0(Z(w, i)) be the quotient map in the above Theorem

part (3). Now, we will describe the kernel of the map gw.

Recall that ≤ is the Bruhat-Chevalley ordering on W and supp(w) := {j ∈ {1, 2, . . . , n} :

sj ≤ w}, the support of w. For simplicity of notation we denote supp(w) by Aw. Let T(w) :=
⋂

k∈Aw
Ker(αk). Set J1 := ({1, 2, . . . , n} \ Aw) ∩ J′(w0, j). Let U+ be the unipotent radical of

B+. For j ∈ J1, let U+
αj

denote the one-dimensional T-stable closed subgroup of U+ (for the

conjugation action of T on G) corresponding to αj. Let R+(w) := {β ∈ R+ : w(β) ∈ R−}

and Rw := R+ \ (
⋃

v≤w R+(v−1)).

Corollary ([CKP15]). The connected component of the kernel of the map gw is the closed

subgroup of Aut0(Z(w0, j)) generated by the torus T(w), {U−β : β ∈ Rw} and {U+
αj

: j ∈ J1}.

Consider the left action of T on G/B and let w ∈ W. Note that the Schubert vari-

ety X(w−1) is T-stable. We use the notion of semi-stable points introduced by Mum-

ford [MFK94]. Let α0 be the highest root of G with respect to T and B+. We denote by

X(w−1)ss
T (Lα0), the set of all semi-stable points of X(w−1) with respect to the T-linearized

line bundle Lα0 corresponding to the character α0 of B.

The following result is a formulation of the above theorem using semi-stable points.

Corollary ([CKP15]).
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1. Aut0(Z(w, i)) contains a closed subgroup isomorphic to PJ(w,i) if and only if

X(w−1)ss
T (Lα0) 6= ∅.

2. If G is simply laced, Aut0(Z(w, i)) ≃ PJ(w,i) if and only if X(w−1)ss
T (Lα0) 6= ∅.

Remark: By the above theorem, the automorphism group of the BSDH-variety Z(w, i)

depends on the choice of the reduced expression i of w.

Example: Let G = PSL(4, C). Consider the following different reduced expressions for

w0:

1. (w0, i1) = s1s2s1s3s2s1, J(w0, i1) = {α1}.

2. (w0, i2) = s2s1s2s3s2s1, J(w0, i2) = {α2}.

3. (w0, i3) = s3s2s3s1s2s3, J(w0, i3) = {α3}.

4. (w0, i4) = s1s3s2s3s1s2, J(w0, i4) = {α1, α3}.

By the above Theorem, we see that Aut0(Z(w0, i1)), Aut0(Z(w0, i2)), Aut0(Z(w0, i3)) and

Aut0(Z(w0, i4)) are isomorphic to P{α1}, P{α2}, P{α3}, P{α1,α3} respectively.

Therefore, observe that Aut0(Z(w0, i1)) and Aut0(Z(w0, i4)) are not isomorphic and

hence we conclude that the BSDH-varieties Z(w0, i1) and Z(w0, i4) are not isomorphic. And

also observe that Z(w0, i1) and Z(w0, i2) are not isomorphic as P{α1} and P{α2} are not iso-

morphic.

Remark: Even if the automorphism groups of the BSDH-varieties are isomorphic, it is

not clear that the BSDH-varieties are isomorphic.
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1.4 Organization of the Thesis

The organization of the thesis is as follows:

In Chapters 2, we recall some basic concepts and preliminaries that will help to present

our results in this thesis.

In Chapter 3, we present the results on the torus quotients of homogeneous spaces.

In Chapter 4, we prove some results on cohomology of line bundles and the vanish-

ing results of cohomology of the tangent bundle of the Bott-Samelson-Demazure-Hansen

variety.

In Chapter 5, we describe our results on the automorphism group of the Bott-Samelson-

Demazure-Hansen variety.





Chapter 2

Preliminaries

To make this thesis self contained, in this chapter we review basic definitions and results on

algebraic groups, Lie algebras, Schubert varieties and GIT, from the literature which will

be used in the rest of the thesis. Good references for this are [Hum72], [Hum75], [Jan07],

[BL00], [MFK94] and [New78].

2.1 Algebraic groups and Lie algebras

2.1.1 Algebraic groups

Throughout this thesis, we assume that all algebraic groups are affine.

Let G be an algebraic group over algebraically closed field k of arbitrary characteristic.

Let H be a closed subgroup of G. Denote by G/H, the set of all left cosets of H in G.

One would like to know whether the set G/H is endowed with a structure of an algebraic

variety such that the natural map

π : G → G/H

is a morphism of varieties.

The following theorem of Chevalley gives an affirmative answer to this question:

Theorem 2.1 (Chevalley). Let G be an algebraic group, H be a closed subgroup of G. Then, there

is a rational representation ρ : G → GL(V) and a non-zero vector v ∈ V such that H = {g ∈ G :

ρ(g)v ∈ kv}.

Let P(V) be the projective space corresponding to the vector space V. Then, the action

of G on V via ρ (as above) induces an action of G on P(V). Further, the action map

13
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G × P(V) −→ P(V) is a morphism. Also, there exists a point [v] ∈ P(V) such that the

stabilizer of [v] in G coincides with H. The orbit G · [v] is open in its closure and thus has a

structure of a quasi-projective variety with an algebraic transitive G-action. The orbit map

G → P(V), g 7→ g · [v] defines a bijection G/H → G · [v], and induces a structure of a

quasi-projective variety on G/H such that the natural map G → G/H is a morphism of

varieties. In fact, we have :

Corollary 2.2.

1. The set G/H admits a unique structure of a quasi-projective algebraic variety such that the

natural map G → G/H is a morphism of varieties.

2. In addition, if H is a closed normal subgroup of G, then the quotient group G/H has a unique

structure of an affine algebraic group such that the natural map G → G/H is a homomorphism of

algebraic groups.

Remark: The variety G/H is called a homogeneous space for G.

Definition 2.3. A Borel subgroup of G is a maximal closed connected solvable subgroup.

Theorem 2.4. Let B be any Borel subgroup of G. Then,

1. The homogeneous space G/B is a projective variety.

2. Any two Borel subgroups of G are conjugate in G.

Corollary 2.5.

1. The maximal tori of G are those of Borel subgroups of G.

2. The maximal connected unipotent subgroups of G are those of Borel subgroups of G.

3. Any two maximal tori (respectively, maximal connected unipotent subgroups) of G are conjugate.

Definition 2.6. A closed subgroup H of G is called a parabolic subgroup if G/H is projec-

tive.

Corollary 2.7.

1. A closed subgroup of G is parabolic if and only if it contains a Borel subgroup.

2. In particular, a connected closed subgroup H of G is a Borel subgroup if and only if H is solvable

and G/H is projective.

Remark: The homogeneous space G/B is the largest homogeneous space for G having the

structure of projective variety.

Definition 2.8.

1. A maximal closed connected normal solvable subgroup of G is called the radical of G

and we denote it by R(G).
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2. A maximal closed connected normal unipotent subgroup of G is called the unipotent

radical of G and we denote it by Ru(G).

Remark: The radical (respectively, unipotent radical) of G is the identity component in the

intersection of all Borel subgroups (respectively, of their unipotent parts).

An algebraic group G is called semisimple if its radical R(G) = e. For example, G =

SL(n, k). An algebraic group G is called reductive if its unipotent radical Ru(G) = e. For

example, G = GL(n, k) or G is any torus. Note that any semisimple algebraic group is

reductive.

2.1.2 Lie Algebra of an Algebraic Group

Let G be an algebraic group. G acts on k[G] by the left (respectively, right) translation,

(λx f )(y) = f (x−1y) (respectively, ρx f (y) = f (yx)) for x, y ∈ G.

Let Der(k[G]) be the set of all derivations of k[G]. Note that Der(k[G]) admits a Lie

algebra structure. Let L(G) be the space of all left invariant derivations of k[G] (i.e L(G) =

{δ ∈ Der(G) : δλx = λxδ, f or all x ∈ G}. Note that L(G) is a Lie subalgebra of Der(k[G]).

We call L(G), the Lie algebra of G.

Theorem 2.9. Let G be an algebraic group. Then,

1. The Lie algebra L(G) of G is isomorphic to Te(G), the tangent space of G at the identity element

e of G.

2. Let g = L(G). If φ : G −→ G′ is a morphism of algebraic groups, then the induced map

dφe : g −→ g′ is a homomorphism of Lie algebras.

2.1.3 Abstract root system

Since we use frequently root systems in this thesis, we recall some definitions and results

in this subsection.

Let V be a vector space over R with a positive definite bilinear form (−,−). Define the

reflection corresponding to a non zero vector α ∈ V to be the linear transformation on V

given by

sα(v) = v −
2(v, α)

(α, α)
α.

Note that sα(α) = −α and it fixes the hyperplane (i.e a subspace of co-dimension one)

perpendicular to α. Since the number 2(v,α)
(α,α) occurs frequently, we denote it by 〈v, α〉. Notice

that 〈−,−〉 is linear only in the first variable.
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Definition 2.10. An abstract root system R in V is defined by the following axioms:

1. R is a finite subset of V, spans V and 0 /∈ R.

2. If α ∈ R, the only multiples of α in R are ±α.

3. sα(R) = R for every α ∈ R.

4. 〈α, β〉 ∈ Z for all α, β ∈ R.

The elements of R are called roots. The rank of the root system R is defined to be the

dimension of the vector space V.

A subset S = {α1, . . . , αn} of R is called a basis of the root system R if,

1. S is a basis of the vector space V and

2. For any α =
n
∑

i=1
ciαi ∈ R, where ci is a non negative integer for all i or ci is a non positive

integer for all i.

The elements of S are called simple roots. The reflections corresponding to the simple

roots are called the simple reflections. Let R+ be the set of all α′s in R such that the

coefficients of the simple roots S in the expression for α are non negative. R+ is called the

set of positive roots with respect to the simple roots S. Similarly, R− is the set of all α′s in R

such that the coefficients of the simple roots S in the expression for α are non positive. R−

is called the set of negative roots with respect to the simple roots S. Clearly, R is a disjoint

union of R+ and R−.

The connected components of the complement of the union of the hyperplanes core-

sponding to the roots are called Weyl chambers. These chambers are in one-one correspon-

dence with the set of all bases of the root system.

We recall that the Dynkin diagram is a graph with vertices indexed by the simple roots

and the number of edges between αi and αj for i 6= j is 〈αi, αj〉〈αj, αi〉 with arrow pointing

to the smaller of the two roots if they have different lengths. The integers 〈αi, αj〉, 1 ≤ i, j ≤

n, are called the Cartan integers, and these completely determine the root system up to

an isomorphism. Note that the Dynkin diagrams contains the information of the Cartan

integers. We extensively use in this thesis properties of the Cartan integers, for more details

on Cartan integers we refer to [Hum72].

A root system R is said to be irreducible if it cannot be partitioned into a union of two

proper subsets R1 and R2 such that each root α in R1 is orthogonal to each root β in R2. All

irreducible root systems have been completely classified by the Dynkin diagrams.

We denote the subgroup of GL(V) generated by the reflections sα, α ∈ R by W. Note

that W permutes the finite set R. Hence W is a subgroup of the symmetric group on R.

In particular, W is finite. W is called the Weyl group of the root system R. Every w ∈ W

can be written as a product of simple reflections. The length l(w) of w ∈ W is defined to
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be the minimum among the lengths of all expressions for w ∈ W as a product of simple

reflections. The simple reflection in the Weyl group corresponding to a simple root α is

denoted by sα. For simplicity of notation, the simple reflection corresponding to a simple

root αi is denoted by si.

If l(w) = r, then the expression w = si1 si2 . . . sir is called a reduced expression for w.

Note that for a given w ∈ W, the reduced expression may not be unique. There is a unique

element in W of largest length, denoted by w0 and called the longest element of the Weyl

group W. The longest element w0 is characterized by the property w0(R+) = R−.

For any vector λ ∈ V with 〈λ, α〉 ∈ Z for all α ∈ R is called an abstract weight. The set

of all abstract weights forms a lattice Λ called the weight lattice. Note that R is contained

in Λ. The lattice Λr generated by R is called the root lattice. There is a partial order ≤ on Λ

defined by µ ≤ λ if λ − µ is non negative integer linear combination of simple roots. This

is called a dominance ordering on Λ.

Fix a basis S of R. An element λ ∈ Λ is called dominant if 〈λ, α〉 ≥ 0 for all α ∈ R+;

and regular (or strongly) dominant if 〈λ, α〉 > 0 for all α ∈ R+. We denote the set of all

dominant weights by Λ+. Each weight in V is conjugate under W to one and only one

dominant weight. If λ is dominant, then w(λ) ≤ λ, for all w ∈ W. Moreover, for λ ∈ Λ+

the number of dominant weights µ such that µ ≤ λ is finite.

Let S = {α1, α2, . . . , αn}. Note that {2αi/(αi, αi) : i = 1, 2, . . . , n} is forms a basis of

V. Let {ω1, ω2, . . . , ωl} be the dual basis, i.e., 2(ωi, αj)/(αi, αi) = δij. ωi’s are called the

fundamental dominant weights. Every element λ ∈ V can be written as λ = ∑ miωi, where

mi = 〈λ, αi〉. Therefore, Λ = Zω1 ⊕ · · · ⊕Zωl and Λ+ = Z≥0ω1 ⊕ · · · ⊕ Z≥0ωl. Since Λ

and Λr are of same rank, the group Λ/Λr is finite; called the fundamental group of the root

system R.

2.1.4 Root system of algebraic groups

Throughout this section let G be a connected and semisimple algebraic group. Let T be a

maximal torus in G.

Definition 2.11.

1. A homomorphism χ : T −→ Gm (respectively, χ : B −→ Gm) of algebraic groups is said

to be a character of T (respectively, of B), where Gm is the multiplicative group k∗.

2. A homomorphism λ : Gm −→ T (respectively, λ : Gm −→ B) of algebraic groups is said

to be a one-parameter of T (respectively, of B).
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Let X(T) := Hom(T, Gm) be the group of all characters of T. Let Y(T) := Hom(Gm, T)

be the group of all one-parameter subgroups of T. Note that these groups are free Abelian

of rank n = dim(T) = rank(G). There is a non-degenerate pairing (− ,− ) : X(T) ×

Y(T) −→ Z, sending the pair (χ, λ) to the integer r = 〈χ, λ〉 which satisfy: χ(λ(t)) = tr for

all t ∈ Gm.

Let V be a finite dimensional T-module. Then, we have a decomposition

V =
⊕

χ∈X(T)

Vχ ,

where Vχ = {v ∈ V : t · v = χ(t)v for all t ∈ T}. The spaces Vχ are called the weight

spaces with respect to T; and χ ∈ X(T) is called a weight in V if Vχ 6= 0.

Adjoint representation of G: Let g be the Lie algebra of G. For any g ∈ G, Int(g) : G −→ G

is the automorphism of the algebraic group G defined by Int(g)(h) = ghg−1, f or all h ∈ G.

This induces an isomorphism Ad(g) : g −→ g of Lie algebras. Hence, we get the morphism

of algebraic groups Ad : G −→ GL(g), called the adjoint representation of G.

By the above discussion, if we restrict the adjoint representation of G to the maximal

torus T, we have the following decomposition of g, called Cartan decomposition.

g = t⊕
⊕

α∈X(T)

gα ,

where gα = {x ∈ g : Ad(t)(x) = α(t)x f or all t ∈ T}. We denote the set of non zero weights

of g by R. The weight spaces gα for α ∈ R are called root spaces and α are called roots

relative to the maximal torus T.

Recall that for any λ ∈ X(T) and φ ∈ Y(T), we have λ ◦ φ ∈ End(Gm) ≃ Z. Hence,

there is a unique integer 〈λ, φ〉 such that λ ◦ φ : a 7→ a〈λ,φ〉 for all a ∈ Gm. Note that

the paring 〈−,−〉 : X(T) × Y(T) → Z is bilinear and induces an isomorphism Y(T) ≃

HomZ(X(T), Z). Therefore, we can identify X(T) with Y(T)∗. Using this identification we

get a W-invariant non-degenerate bilinear form on X(T)⊗ R.

Then we have,

Theorem 2.12. The set The set R forms an abstract root system by viewing in side the vector space

X(T)⊗ R.

For each α ∈ R, fix a basis xα of the one-dimensional root space gα. The set {xα : α ∈ R}

along with {hi : 1 ≤ i ≤ n} forms the Chevalley basis of g (for definition of Chevalley

basis see [Hum72, Chapter VII]). By theorem of Serre, g is generated as a Lie algebra by

Chevalley basis with some relations.
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Let B be the Borel subgroup of G corresponding to R+. Let U be the unipotent radical

of B. Then, we have

U ≃ ∏
α∈R+

Uα ,

product is taken in some order.

Remark: Note that BwB = Bw′B if and only if w = w′ in W.

Theorem 2.13 (Bruhat Decomposition). Let B be a Borel subgroup of G, and let T be a maximal

torus of G contained in B. Then, G is the disjoint union of the double cosets BwB, as w ranges over

a set of representatives in NG(T) of the Weyl group W. i.e.

G =
⊔

w∈W

BwB.

Corollary 2.14. The product map π : U− × B −→ G defines an isomorphism of U− × B

onto an open subset Ω of G. The open subset Ω is called the big cell of G.

2.1.5 Root system of Parabolic Subgroups

Let P be a parabolic subgroup of G containing a Borel subgroup B of G. Let R(P) be the

radical of P, let Ru(P) be the unipotent radical of P. Let R+
P be the subset of R+ defined by

R+ \ R+
P = {α ∈ R+ : Uα ⊂ Ru(P)}. Let R−

P = −R+
P , RP = R+

P ∪ R−
P and SP = S ∩ RP. Then

RP is a subroot system of R called the root system associated to the parabolic subgroup P,

with SP as a set of simple roots and R+
P (respectively, R−

P ) as the set of positive (respectively,

negative) roots of RP relative to SP.

On the other hand, given a subset J of S, let R+
J := ({ ∑

β∈J
aββ : aβ ∈ Z≥0}) ∩ R+. Now

define the subgroup P of G generated by B and U−α, α ∈ R+
J . Note that P is a parabolic

subgroup of G containing B such that SP = J. Thus, we have the following theorem:

Theorem 2.15.

The set of parabolic subgroups of G containing B is in bijection with the power set of S.

Remarks:

1. If P = B, then SP = ∅.

2. If P = G, then SP = S.

Levi decomposition:

The subgroup of P generated by T and {Uα : ±α ∈ SP} is called the Levi subgroup corre-

sponding to SP, and is denoted by LP. Note that that P is the semidirect product of Ru(P)

and LP; called the Levi decomposition of P.
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The set of all maximal parabolic subgroups containing B is in one-to-one correspon-

dence with S. Namely, given α ∈ S, the parabolic subgroup P such that SP = S \ {α} is a

maximal parabolic subgroup, and conversely. We denote the maximal parabolic subgroup

P such that SP = S \ {αi} by Pî.

2.1.6 The Weyl Group of a Parabolic Subgroup

Given a parabolic subgroup P of G, let WP be the subgroup of W generated by {sα : α ∈ SP}.

WP is called the Weyl group of P. Note that WP ≃ NP(T)/T, where NP(T) is the normalizer

of T in P. In each coset wWP ∈ W/WP, there exists a unique element of minimal length.

Let Wmin
P be the set of all minimal length representatives of W/WP . We have

Wmin
P = {w ∈ W : l(ww′) = l(w) + l(w′), for all w′ ∈ WP}.

In other words, each element w ∈ W can be written uniquely as w = uv, where u ∈

Wmin
P , v ∈ WP such that l(w) = l(u) + l(v). The set Wmin

P can also be characterized as

Wmin
P = {w ∈ W : w(α) > 0, for all α ∈ SP}.

Wmin
P is also denoted by WP. Similarly, in each coset wWP ∈ W/WP , there exists a unique

element of maximal length and the set Wmax
P of all maximal length representatives of W/WP

is equal to {w ∈ W : w(α) < 0, for all α ∈ SP}. Further, if wP is the unique element of

maximal length in WP, then we have

Wmax
P = {wwP : w ∈ Wmin

P }.

If P is the parabolic subgroup corresponding to a subset I of S, then WP (respectively, WP)

is also denoted by WI (respectively, W I).

2.1.7 Representations of algebraic groups.

Let G be a semisimple algebraic group. Let B be a Borel subgroup of G.

Definition: Let V be a G-module, let λ be a character of B. A non zero vector v ∈ V is said

to be a maximal weight vector of weight λ if;

(i) b · v = λ(b)v for all b ∈ B and

(ii) v is fixed by Uβ for all β ∈ R+.

Remark: If V is non zero finite dimensional G-module, then maximal weight vector exists.
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Theorem 2.16. Let V be an irreducible G-module. Then, we have

1. There is a unique B-stable one-dimensional subspace of V, spanned by a maximal weight vector

for some λ ∈ X(T)+.

2. The dimension of the weight space Vλ is 1.

3.The weights µ of V satisfy µ ≤ λ.

4. The Weyl group W permutes the set of all weights of V, and dim(Vµ) = dim(Vw(µ)) for w ∈ W.

5. If V ′ is another irreducible G-module, of highest weight λ then V is isomorphic to V ′.

6. Let λ ∈ X(T) be dominant. Then there exists an irreducible G-module of highest weight λ, and

we denote it by V(λ).

Theorem 2.17. There is a one-one correspondence between X(T)+ and the isomorphism classes of

finite dimensional irreducible G-modules given by λ 7→ V(λ).

Weyl Dimension Formula: Let V(λ) be an irreducible representation of a semisimple al-

gebraic group G with highest weight λ. Let ρ = 1
2 ∑

α∈R+
α. Then, the dimension of V(λ) is

given by

dim(V(λ)) =

∏
α∈R+

〈λ + ρ, α〉

∏
α∈R+

〈ρ, α〉
.

Weyl Character Formula: We introduce symbols eλ for λ ∈ X(T) with the property eλ.eµ =

eλ+µ.

The character of an irreducible representation V(λ) is given by

ch(V(λ)) =

∑
w∈W

(−1)l(w)(ew(λ+ρ))

eρ ∏
α∈R+

(1 − e−α)
.

2.2 Flag varieties and Schubert Varieties

In this section, we recall some basics on Schubert varieties and its geometric properties.

2.2.1 Schubert Varieties

Fix an algebraically closed field k of arbitrary characteristic. Let V be a vector space of

dimension n over k.

Definition: The Grassmannian is the set of all r-dimensional subspaces of V, we denote it

by Gr(r, V). It is a smooth projective variety of dimension r(n − r). A flag in a vector space
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V is a chain {0} = V0 ⊂ V1 ⊂ . . . ⊂ Vm = V of subspaces of V for some 1 ≤ m ≤ n with

Vi 6= Vi+1 for every i = 0, 1, . . . , m − 1. A flag is called a full flag if m = n.

Let F(V) be the set of all full flags in V. It is easy to see that the set F(V) admits a

natural structure of a projective variety. The variety F(V) is called flag variety. Note that

the flag variety F(V) is isomorphic to the homogeneous space SL(n, k)/B, where B is the

set of all upper triangular matrices in SL(n, k).

More generally, let G be a connected semisimple algebraic group over k and B be a

Borel subgroup of G. Let B be the set of all Borel sub groups of G. The variety G/B can be

identified with B. In fact, we have the following:

Proposition 2.18. The set B endowed with a structure of variety such that it is isomorphic to the

homogeneous space G/B.

Let P be a parabolic subgroup of G. The projective variety G/P is called a generalized

flag variety.

Let G be a connected semisimple algebraic group over k of rank n. Let T be a maximal

torus of G and B be a Borel subgroup of G containing T, let P be a parabolic subgroup of

G. Let N(T) be the normalizer of T in G and let W = N(T)/T be the Weyl group of G.

Bruhat decomposition of G relative to P: For w ∈ W, let nw be a lift of w in N(T). Observe

that the double coset BnwP in G depends only on the set wWP in W but not on w or nw.

We write BwP for BnwP and we call it the open Bruhat cell in G associated to wWP. The

Zariski closure of BwP is called closed Bruhat cell in G associated to wWP. The Bruhat

decomposition of G relative to P is

G =
⊔

w∈WP

BwP.

Note that when P = B we get the Bruhat decomposition of G that we discusses before.

For w ∈ W/WP, the B-orbit CP(w) = BwP/P in G/P is a locally closed subset of

G/P, called the Schubert cell or Bruhat cell. The Zariski closure of CP(w) with the canonical

reduced structure is the called Schubert variety associated to w, and is denoted by XP(w).

Thus, the Schubert varieties in G/P are indexed by WP.

Note that if P = B, then WP = {id}, and the Schubert varieties in G/B are indexed by

the elements of W. We denote the Schubert variety corresponding to w ∈ W by X(w).

Dimension of XP(w): If P = B, then for w ∈ W, we have

CB(w) ≃ ∏
{α∈R+:w−1(α)<0}

Uα
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Since |{α ∈ R+ : w−1(α) < 0}| = l(w), CB(w) is isomorphic to the affine space kl(w). Hence

we have

dimX(w) = dimCB(w) = l(w).

For a general parabolic P, consider w ∈ W/WP and denote the unique representative for

w in Wmin
P (respectively, Wmax

P ) by wmin
P (resp. wmax

P ). Now under the canonical projection

πP : G/B → G/P, X(wmin
P ) maps birationally onto XP(w), and X(wmax

P ) = π−1
P (XP(w)).

Hence we obtain

dimXP(w) = dimX(wmin
P ) = l(wmin

P ).

Note that G/B = X(w0), w0 being the longest element in W. The cell CB(w0) is the

unique cell of maximal dimension (= l(w0) = |R+|); it is affine, open and dense in G/B,

called the big cell of G/B. It is denoted as O. Let B− = w0Bw−1
0 be the opposite Borel

subgroup of B in G determined by T. The B− orbit B−idB/B is affine, open and dense

subset of G/B, and is called the opposite big cell of G/B, and it is denoted as O−. For a

w ∈ W, Y(w) = X(w) ∩O− is called the opposite cell in X(w).

There is a partial order on WP, known as the Bruhat order, induced by the partial order

on the set of Schubert varieties given by inclusion, namely, for w1, w2 ∈ WP, w1 ≥ w2 ⇐⇒

XP(w1) ⊇ XP(w2).

The Bruhat decomposition of G/P and XP(w) are induced by the Bruhat decomposition

of G/B.

G/P =
⊔

w∈WP

BwP/P

and

XP(w) =
⊔

{w′∈WP, w′≤w}

Bw′P/P.

2.2.2 Picard group of G/B

Let G̃ be a simply connected covering of G and let B̃ and T̃ be the Borel subgroup and

maximal subgroups of G̃ corresponding to B and T in G.

Recall that the root system in G̃ with respect to T̃ is same as the root system in G with

respect to T, X(T̃) is subgroup of X(T̃)⊗Q = X(T)⊗Q generated by fundamental weights

ωi. Further, G̃/B̃ is isomorphic to G/B. In fact, G̃/P̃ is isomorphic to G/P for any parabolic

subgroup P in G, P̃ being corresponding parabolic subgroup in G̃.
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Note that the character group X(T̃) coincides with the weight lattice Λ. Since X(B̃u) is

trivial; every character λ of T extends to a character of B. Hence, we have X(T) = X(B).

The canonical map G −→ G/B is a principal B bundle.

Let λ ∈ X(B). Set G ×B k = G × k/ ∼, where ∼ is the equivalence relation defined by

(gb, λ(b)x) ∼ (g, x), g ∈ G, b ∈ B, x ∈ k. G ×B k is a total space of a line bundle over G/B

and we denote this line bundle by L(λ). Let Pic(G/B) be the Picard group of G/B which

is by definition, the group of isomorphism classes of line bundles on G/B. Thus we get a

map

L : X(T) → Pic(G/B), λ 7→ L(λ)

We have the following theorem due to Chevalley [Car05].

Theorem 2.19 (Chevalley). The map L is an isomorphism if G is simply connected.

On the other hand, consider the prime divisors X(w0si), 1 ≤ i ≤ n on G/B. Let

Li = OG/B(X(w0si)) be the line bundle defined by X(w0si), 1 ≤ i ≤ n. Recall that the Picard

group Pic(G/B) is a free abelian group generated by the Li’s, and under the isomorphism

L : X(T) ≃ Pic(G/B), we have L(ωi) = Li, 1 ≤ i ≤ l (see [Car05]). Thus for λ =
n
∑

i=1
〈λ, αi〉ωi, we have L(λ) = ⊗n

i=1L
⊗〈λ,αi〉
i .

For a general parabolic P, any λ ∈ X(T) can not be lifted to a character of P always. To

be a character of P the weight λ must be orthogonal to the positive roots of P. Therefore, λ

must be an integral linear combination of the fundamental weights, ω1, . . . , ωr dual to the

simple roots in S \ SP. We call ω1, · · · , ωr the fundamental weights of P and the sublattice

ΛP ⊂ Λ they generate the weights of P.

A line bundle L on an algebraic variety X is very ample if there exists an immersion

i : X →֒ Pn such that i∗(OPn(1)) = L. A line bundle L on X is ample if Lm is very ample

for some positive integer m ≥ 1. A line bundle L on X is said to be numerically effective, if

the degree of the restriction to any algebraic curve in X is non-negative.

In the following theorem we recall some well known facts about line bundles on homo-

geneous spaces G/P (for example see [Sno93, Proposition 1.1]).

Theorem 2.20. Let X = G/P, where G is a semisimple algebraic group and P is a parabolic

subgroup. Let ω1, . . . , ωr be the fundamental weights of P and let λ ∈ ΛP. Then

1. X = X1 × · · · × Xm, where Xi = Gi/Pi, Gi is a simple algebraic group and Pi is a parabolic

subgroup of Gi, i = 1, . . . , m.

2. L = pr∗1L1 ⊗ · · · ⊗ pr∗mLs, where Li is a line bundle on Xi, i = 1, . . . , s.

3. Pic(X) ≃ ΛP. In particular, Pic(X) ≃ Z if P is a maximal parabolic subgroup of G.
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4. L is numerically effective (nef) if and only if λ is dominant.

5. L is ample if and only if it is very ample if and only if 〈λ, α〉 > 0 for all α ∈ S \ SP.

As we have described above, let E denote the total space of the line bundle L(λ) over

G/B. Let σ : E → G/B be the canonical map σ([g, c]) = gB. Let

Mλ = { f ∈ k[G] : f (gb) = λ(b) f (g), g ∈ G, b ∈ G}.

Then Mλ can be identified with the space global of sections H0(G/B, L(λ)) := {s : G/B →

E : σ ◦ s = idG/B}. This identification preserves the respective G-module structures.

2.2.3 Cohomology of Line bundles on Schubert varieties

We recall some results on cohomology of line bundles. We start this section by stating the

Borel-Weil theorem which gives a geometric realization of irreducible representations of a

semisimple algebraic group G.

Theorem 2.21 (Borel-Weil). Assume that char k = 0, let λ ∈ X(B).

1. H0(G/B,L(λ)) 6= 0 if and only if λ is dominant.

2. If λ is dominant, H j(G/B,L(λ) = 0 for all j ≥ 1.

Theorem 2.22 (Borel-Weil-Bott). In characteristic 0, we have

1. If λ + ρ is singular (i.e there is a β ∈ R+ such that 〈λ + ρ, β〉 = 0). Then, we have

H j(G/B,L(λ) = 0 for all j.

2. If λ + ρ is non singular,

(i) Hl(w)(G/B,L(λ)) = H0(G/B,L(w · λ) for w · λ is dominant.

(ii) H j(G/B,L(λ)) = 0 for j 6= l(w).

Theorem 2.23. Let Chark = 0. If λ ∈ X(T) dominant, then H0(G/B,L(λ)) = V(λ)∗.

Corollary 2.24. In characteristic zero, the map λ 7−→ H0(G/B,L(λ)) gives a bijection between

X(T)+ and the set of all finite dimensional irreducible representaions of G.

Thus in characteristic zero, we have a geometric realization of all irreducible represen-

taions of G.

Assume that Char k= p. In general, the G-module H0(G/B,L(λ)) need not be irre-

ducible. For example, let G = SL(2, k), we have G/B = P1. Let L = OP1(1). Note



Chapter 2. Preliminaries 26

that L(λ) = Lr for some r and H0(G/B, Lr) = Symr(k2). Let r = np and V = { f p, f ∈

Symn(k2)}. Then, V is a G-stable proper subspace of H0(G/B, Lr) and hence H0(G/B, Lr)

is not irreducible.

In any characteristic, we have

Theorem 2.25. The followings are equivalent:

1. λ is dominant.

2. H0(G/B,L(λ)) is non zero.

For any G-module M, the sum of all its simple submodules is called the socle of M and

denoted by socG(M). Set E(λ) = socG(H0(G/B,L(λ))).

Theorem 2.26. E(λ) is irreducible G-module and conversely every irreducible G-module is isomor-

phic to E(λ) for some λ ∈ X(T)+.

The following theorem gives the vanishing of cohomology of line bundles on Schubert

varieties.

Theorem 2.27. Let λ ∈ X(T)+. Then we have:

1. Hi(X(w),L(λ)) = 0 for all i ≥ 1.

2. The restriction map H0(G/B,L(λ)) −→ H0(X(w),L(λ)) is surjective.

The above theorem first proved in Char k = 0 by Demazure in [Dem74]. In Char k =

p > 0, it was proved by various methods: 1. H.H Andersen proved by using “Characteristic

p methods”(for example, see [And85]). 2. Mehta, Ramanan and Ramanathan proved by

using Frobenius splitting methods (see [MR85] and [BK07]). 3. Lakshmibai, Musili and

Seshadri proved by using standard monomial theory (see [BLPM+12]).

For non-dominant weights, the vanishing results of line bundle on Schubert varieties

in characteristic zero has been studied in [BKS04]. In the case of Kac-Moody setting, the

cohomology of line bundles on Schubert has been studied in [Kan07].

We recall the following vanishing results from [Kan13] (see [Kan13, Corollary 3.6] and

[Kan13, Corollary 4.10]).

Assume that the base field is the field C of complex numbers.

Lemma 2.28. Let w ∈ W, and α ∈ R+. Then, we have

1. Hi(w,L(α)) = 0 for all i ≥ 2.

2. If G is simply laced, Hi(w,L(α)) = 0 for all i ≥ 1.

We recall the following result of Bott on cohomology of the tangent bundle TG/B of G/B

from [Bot57].
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Theorem 2.29 (Bott).

1. H j(G/B, TG/B) = 0 for all j ≤ 1.

2. H0(G/B, TG/B) is the adjoint representation g of G.

By abuse of notation, we denote the restriction TG/B to X(w) by TG/B. Now, we state

the following theorem from [Kan13] (see [Kan13, Theorem 3.7, Theorem 3.8 and Theorem

4.11]).

Theorem 2.30 (Senthamarai Kannan). Let w ∈ W. Then, we have

1. Hi(X(w), TG/B) = (0) for every i ≥ 1.

2. The adjoint representation g of G is a B-submodule of H0(X(w), TG/B) if and only if w−1(α0) <

0.

3. If G is simply laced, H0(X(w), TG/B) is the adjoint representation g of G if and only if w−1(α0) <

0.

4. Assume that G is simply laced and X(w) is a smooth Schubert variety. Let Aut0(X(w)) be the

connected component of the automorphism group of X(w) containing the identity automorphism.

Let Pw denote the stabilizer of X(w) in G. Let φw : Pw −→ Aut0(X(w)) be the homomorphism

induced by the action of Pw on X(w). Then, we have

(i) φw : Pw −→ Aut0(X(w)) is surjective.

(ii) φw : Pw −→ Aut0(X(w)) is an isomorphism if and only if w−1(α0) < 0.

2.2.4 Geometry of Schubert varieties

In this section, we briefly recall some geometric properties of Schubert varieties. A very

good reference for this is the book ”Singular loci of Schubert varieties” by Sara Billey and

V Lakshmibai [BL00].

Schubert varieties are non singular in co-dimension one (that is, the singular locus has

dimension at least 2), (arithmetically) normal, (arithmetically) Cohen-Macaulay and have

rational singularities (see [And85], [BK07], [BLPM+12] and [Ses85]). Note that in general,

Schubert varieties are need not be smooth.

The first result on singular locus of Schubert varieties is due to Lakshmibai and Seshadri

for classical groups by using the Standard monomial theory and the Jacobian criterion for

smoothness. Lakshmibai started determining explicit basis of the tangent cones to the Schu-

bert varieties which will be useful to determine singularities and multiplicities of singular

points.

Geometry of Schubert varieties closely related to combinatorics of the Weyl group and

representation theory. For example, smoothness, rational smoothness, Gorensteinness and
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local complete intersection properties are characterized using pattern avoidance (see [BL00],

[Car11], [WY06] and [ÚW11]).

Using Kazhdan-Luszting polynomials, Nil-Hecke ring and tangent cone it has been

studied the rational smoothness and multiplicity of a point in Schubert variety (for more

details see [BL00]). Gorensteinness (respectively, local complete intersection) property of

Schubert varieties are studied in [WY06](respectively, [ÚW11]) by using the combinatorics

of the Weyl group W.

Demazure and Hansen independently gave a nice desingularization of Schubert vari-

eties by iterated P1-fibrations that we will discuss in the next section.

2.2.5 Bott-Samelson-Demazure-Hansen Varieties

For w ∈ W, recall X(w) := BwB/B denote the Schubert variety in G/B corresponding

to w. Given a reduced expression w = si1 si2 · · · sir of w, with the corresponding tuple i :=

(i1, . . . , ir), we denote by Z(w, i) the desingularization of the Schubert variety X(w), which is

now known as Bott-Samelson-Demazure-Hansen variety. This was first introduced by Bott

and Samelson in a differential geometric and topological context (see [BS58]). Demazure

in [Dem74] and Hansen in [Han73] independently adapted the construction in algebro-

geometric situation, which explains the reason for the name. For the sake of simplicity, we

will denote a Bott-Samelson-Demazure-Hansen variety by BSDH-variety.

For a simple root α ∈ S, we denote by Pα the minimal parabolic subgroup of G generated

by B and nα, a lift of sα in NG(T).

We recall that the BSDH-variety corresponding to a reduced expression i of w =

si1 si2 · · · sir is defined by

Z(w, i) =
Pαi1

× Pαi2
× · · · × Pαir

B × · · · × B
,

where the action of B × · · · × B on Pαi1
× Pαi2

× · · · × Pαir
is given by

(p1, . . . , pr)(b1, . . . , br) = (p1 · b1, b−1
1 · p2 · b2, . . . , b−1

r−1 · pr · br), pj ∈ Pαij
, bj ∈ B and

i = (i1, i2, . . . , ir) (see [Dem74, p.73, Definition 1], [BK07, p.64, Definition 2.2.1]).

For each reduced expression i of w, Z(w, i) is a smooth projective variety and the orbit

map

Pαi1
× Pαi2

× · · · × Pαir
−→ Z(w, i)

is a locally trivial principal Bn bundle.

Define a morphism

φw : Z(w, i) −→ G/B
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by

[p1, p2, . . . , pr] 7−→ p1 p2 · · · pr B

This morphism can be seen as follows.

Let m : Pα1 × Pα2 × · · · × Pαr −→ G be the multiplication map given by

(p1, p2, . . . , pr) 7−→ p1 p2 · · · pr .

Now consider the following commutative diagram:

Pαi1
× Pαi2

× . . . × Pαir

��

m // G

��
Z(w, i) = Pαi1

× Pαi2
× . . . × Pαir

/B × · · · × B
φw // G/B

Since w = si1 si2 · · · sir is a reduced expression of w, we have

BwB = Bsi1 Bsi2 Bsi3 B · · · Bsir B.

Since Bsij
B is open in Pαij

, Z0(w, i) := (Bsi1 Bsi2 Bsi3 B · · · Bsir B)/Bn is open in Z(w, i).

Observe that the image φw(Z(w, i)) of Z(w, i) in G/B is X(w) and Z0(w, i) is isomorphic

to the Schubert cell BwB/B.

Hence, φw is a birational surjective morphism from Z(w, i) to X(w).

Thus, we have

Theorem 2.31. The morphism φw : Z(w, i) −→ X(w) is a desingularization of X(w).

Let fr : Z(w, i) −→ Z(wsir , i′) denote the map induced by the projection

Pαi1
× Pαi2

× · · · × Pαir
−→ Pαi1

× Pαi2
× · · · × Pαir−1

,

where i′ = (i1, i2, . . . , ir−1). We first note that fr is a Pαir
/B ≃ P1-fibration. In fact we have,

the following commutative diagram.

Z(wsαir
)×G/Pαir

G/B = Z(w)

fr

��

// G/B

��
Z(wsαir

) // G/Pαir
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Then we observe that fn is a Pαir
/B ≃ P1-fibration.

Let σr : Pαi1
× Pαi2

× · · · × Pαir−1
−→ Pαi1

× Pαi2
× · · · × Pαir

be the inclusion map. It

induces a closed immersion Z(wsir) −→ Z(w) and for convenience of notation we also

denote it by σr .

Let Lα denote the Levi subgroup of Pα containing T for α ∈ S. We denote by Bα the

intersection of Lα and B. Then Lα is the product of T and a homomorphic image Gα of

SL(2, C) via a homomorphism ψ : SL(2, C) −→ Lα (see [Jan07, II, 1.3]).

Homogeneous vector bundles and its cohomology groups:

Let B′
α := Bα ∩ Gα ⊂ Lα. We note that the morphism Gα/B′

α −→ Lα/Bα induced by

the inclusion is an isomorphism. Since Lα/Bα →֒ Pα/B is an isomorphism, to compute

the cohomology groups Hi(Pα/B,L(V)) for any B-module V; we treat V as a Bα-module

and we compute Hi(Lα/Bα,L(V)). Here, L(V) is the homogeneous vector bundle on Pα/B

associated to the B-module V.

For a B-module V, let L(w, V) denote the restriction of the associated homogeneous

vector bundle on G/B to X(w). By abuse of notation we denote the pull back of L(w, V)

via φw to Z(w, i) also by L(w, V), when there is no cause for confusion. Then, we have

Lemma 2.32. There is an isomorphism of B-linearized sheaves:

1. Rj fr∗L(w, V) = L(wsir , (H j(Pαir
/B,L(w, V) |(Pαir

/B))) for all j ≥ 0.

2. σ∗
r L(w, V) = L(wsir , V)

Let φw : Z(w, i) −→ X(w) be the desingularization map as defined above.

We have the following theorem:

Theorem 2.33.

1. Riφw∗OZ(w,i) = 0 for i > 0.

2. φw∗OZ(w,i) = OX(w).

3. For any locally free sheaf F on X(w), we have Hi(X(w),F) ≃ Hi(Z(w, i), φ∗
wF), i ≥ 0.

We use the following ascending 1-step construction as a basic tool in computing cohomol-

ogy modules.

For w ∈ W, let l(w) denote the length of w. Let γ be a simple root such that l(w) =

l(sγw) + 1. Let Z(w, i) be a BSDH-variety corresponding to a reduced expression w =

si1 si2 · · · sir , where αi1 = γ. Then we have an induced morphism

g : Z(w, i) −→ Pγ/B ≃ P1,
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with fibres Z(sγw, i′), where i′ = (i2, i3, . . . , ir).

By an application of the Leray spectral sequence together with the fact that the base is

P1, we obtain for every B-module V, the following short exact sequence of Pγ-modules:

0 → H1(Pγ/B, Rj−1g∗L(w, V)) → H j(Z(w, i),L(w, V)) → H0(Pγ/B, Rjg∗L(w, V)) → 0.

Since for any B-module V, the vector bundle L(w, V) on Z(w, i) is the pull back of the

homogeneous vector bundle from X(w), we conclude that

H j(Z(w, i), L(w, V)) ∼= H j(X(w), L(w, V))

(see [BK07, Theorem 3.3.4 (b)]), and are independent of the choice of the reduced expression

i. Hence we denote H j(Z(w, i), L(w, V)) by H j(w, V). For a character λ of B, we denote the

one dimensional B-module corresponding to λ by Cλ. Further, we denote the cohomology

modules H j(Z(w, i), L(w, Cλ)) by H j(w, λ).

Rewriting the above short exact sequence using these simple notation, we have the

following short exact sequence:

0 → H1(sγ, H j−1(sγw, V)) → H j(w, V) → H0(sγ, H j(sγw, V)) → 0.

The B-modules V we deal with, satisfy Rjg∗L(w, V) = 0 for all j ≥ 2. Moreover, we use

only the following two special cases of the above short exact sequence, which we denote by

SES.

1. For j = 0, we have H0(w, V) ≃ H0(sγ, H0(sγw, V)).

2. For j = 1, we have 0 → H1(sγ, H0(sγw, V)) → H1(w, V) → H0(sγ, H1(sγw, V)) → 0.

The construction of BSDH-variety is depends on the choice of a reduced expression

i of w. If we change the reduced expression, it is not clear that the BSDH-varieties are

isomorphic or not. So, it is natural to ask that for a given w ∈ W whether the BSDH-

varieties corresponding to two different reduced expressions of w are isomorphic ? In

order to address this question, in this thesis, we study the automorphism group of the

BSDH-varieties.

2.3 Invariant Theory

In this section, we discuss the invariant theory of finite groups as well as reductive algebraic

groups. We also recall some preliminaries and notation from Geometric invariant Theory.



Chapter 2. Preliminaries 32

2.3.1 Ring of Invariants

The standard setting of invariant theory is as follows: If G is a finite group acting linearly

on a vector space V over an algebraically closed field k, then it induces an action on k[V],

the algebra of polynomial functions on V, the action is given by (g f )(v) := f (g−1.v) for all

g ∈ G, v ∈ V, f ∈ K[V]. The ring of G-invariant polynomials is define by k[V]G := { f ∈

k[V] : g f = f ∀ g ∈ G}. If G is a linear algebraic group acting on an affine variety X,

then it defines an action on the coordinate ring k[X] of X and k[X]G := { f ∈ k[X] : g f =

f ∀ g ∈ G}. When X = V is a representation of G, the G action on k[V] preserves degree

and k[V]G ⊆ k[V] inherits the grading.

The basic question in invariant theory is the following:

What is the structure of the k[V]G ? For example, when k[V]G is finitely generated? If it is

finitely generated then find the generators, relations for k[V]G , and the degree bounds for

the generators. When is the k[V]G a polynomial ring ?

2.3.2 Finite Generation of Ring of Invariants

In general, it is a difficult problem to compute the ring of invariants. This was a major topic

of research in 19th century. In 1868, Paul Gordan proved (constructively) for the action of

G = SL2(C) on the finite dimensional complex vector space V, the ring of invariants C[V]G

is finitely generated over C. In 1890, David Hilbert proved that (in a non-constructive way)

whenever G linearly reductive acting on a finite dimensional complex vector space V, the

ring C[V]G of invariants is finitely generated C-algebra and he proposed a general question

of finite generation of invariant rings for arbitrary groups. This problem is now known as

Hilbert’s 14th problem.

For finite groups, Hilbert’s 14’th problem has been solved affirmatively: Emmy Noether

firstly considered the problem specifically for the case when k = C, where she was able to

find constructive procedures to compute generaters and relations explicitly. She also proved

that the invariant ring is finitely generated, if G is a finite group and k is an arbitrary field.

We recall the following.

Theorem 2.34. (Hilbert [Hil90], Noether [Noe15, Noe26]). Let G be a finite group. Then the

k[V]G-module k[V] is finitely generated and k[V]G is a finitely generated k-algebra.

In general, the answer to Hilbert’s 14’th problem is negative: In 1958, Masayoshi Nagata

gave a counter example to this.

For non reductive groups, the ring of invariant may be finitely generated. For example:
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Theorem 2.35 (Weitzenböck [Wei32]). If V is a representation of G = Ga, the one dimensional

connected additive group over a field k of characteristic 0. Then k[V]G is finitely generated.

Recall the following definitions:

Linear Reductivity : A linear algebraic group G is called linearly reductive if for any ratio-

nal representation V of G and any nonzero invariant vector v ∈ V there exists a G-invariant

linear function f on V such that f (v) 6= 0. Equivalently, every rational representation V of

G is completely reducible.

Geometric Reductivity: A linear algebraic group G is called geometrically reductive if

for any rational representation V and any nonzero invariant vector v ∈ V there exists a

G-invariant homogeneous polynomial f on V such that f (v) 6= 0.

For any algebraic closed field, we have

Theorem 2.36. The following are equivalent:

1. G is reductive

2. G is geometric reductive.

If char k = 0, then we have

Theorem 2.37. Let G an algebraic group. The followings are equivalent:

1. G is reductive.

2. G is linear reductive.

3. G is geometrically reductive.

Clearly, in any characteristic, if G is linear reductive then it is geometric reductive. But

the converse is not true, for example, a non-trivial finite p-group in characteristic p is

geometrically reductive but not linearly reductive.

We have the following characterization of linearly reductive groups in positive charac-

teristic.

Theorem 2.38 (Nagata [N+61]). Let G be an algebraic group, let char k = p. Then the following

are equivalent:

1. G is linearly reductive.

2. The connected component G0 of G is a torus and |G/G0| is not divisible by p = char k.

Thus, the linearly reductive groups are completely classified.

1. Finite groups whose order is not divisible by p,

2. Torus, and

3. Extensions of tori by finite groups whose order is not divisible by p.
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In 1964 Nagata proved the following finiteness theorem for geometrically reductive

groups.

Theorem 2.39. (Nagata [N+63]). If X is an affine G-variety and G is a geometrically reductive

group, then k[X]G is finitely generated. In particular if V is a representation of G, then k[V]G is a

finitely generated k-algebra.

The converse is also true. Popov proved the following.

Theorem 2.40. (Popov [Pop79]). If k[X]G is a finitely generated k-algebra for every affine G-variety

X, then G must be reductive.

Note that any finite group G is linearly reductive. Let V be a finite dimensional repre-

sentation of G. By theorem of Hilbert, we know that the ring k[V]G of invariants is finitely

generated. Now it is natural to ask that when is the ring k[V]G is polynomial ring ?

First we recall

Pseudo reflection: Let V be a vector space of dimension n over a field k. A pseudo

reflection g is a linear automorphism of V of finite order such that the set of fixed points

Vg is a hyperplane.

We have the following theorem.

Theorem 2.41. (Chevalley, Serre, Shephard-Todd, [Che55, Ser68, ST54]). Let V be a finite dimen-

sional representation of a finite group G over a field k. Assume that the characteristic of k does not

divides the order of G. Then G is generated by pseudo-reflections if and only if k[V]G is a polyno-

mial algebra. In such a case, |G| =
n
∏
i=1

deg( fi), where n = dim(V) and f1, f2, . . . , fn is a set of

algebraically independent generators of k[V]G .

Broer gave an extension of the above theorem to positive characteristic.

Theorem 2.42. (Broer [Bro10]). Suppose that V is an irreducible representation of a finite group G

over a field k, then k[V]G is a polynomial algebra if and only if G is generated by pseudo-reflections

and there is a surjective k[V]G-linear map π : k[V] → k[V]G .

The following criterion due to Kemper is valid over any field.

Theorem 2.43. (Kemper [Kem96]). Let V be a n-dimensional representation of a finite group G

over a field k. Then k[V]G is a polynomial ring if and only if there is a homogeneous system of

parameter h1, h2, . . . , hn of k[V]G with |G| =
n
∏
i=1

deg(hi). In particular k[V]G = k[h1, h2, . . . , hn]

implies |G| =
n
∏
i=1

deg(hi).
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If G is a subgroup of GL(V) generated by pseudo reflections, but the characteristic of k

divides the order of G, then the ring k[V]G of invariants need not be a polynomial algebra.

For example, let k be an algebraically closed field of characteristic 3 and let W be the Weyl

group of an algebraic group of type F4 over k. Note that the order |W| of the Weyl group

W is 1152 and 3 divides 1152. The ring of invariants is not a polynomial algebra (see [NS02,

Chapter 7, page 192]).

The above results gives a characterization for k[V]G to be a polynomial algebra if G is

finite, but there is no simple characterization for a semisimple algebraic group G.

Theorem 2.44 (Chevalley, [Hum72]). For any semisimple algebraic group G over C, the ring

C[g]G of G-invariants of the co-ordinate ring of the adjoint representation g of G is a polynomial

algebra (see [Hum72, page 127]).

Theorem 2.45 (Steinberg, [Ste65]). For any semisimple simply connected algebraic group G (over

any algebraically closed field k) acting on itself by inner conjugation, the ring k[G]G of G-invariants

is a polynomial algebra (see [Ste65, page 41]).

When G = T is a torus, D. Wehlau in[Weh94] proved a theorem giving a neccessary

and sufficient condition for a rational representation V of a torus S for which the ring

of G invariants of the co-ordinate ring K[V] is a polynomial algebra (see Theorem 5.8 of

[Weh94]).

2.4 Geometric Invariant Theory

In this subsection, we give some basic definitions and results on the Geometric Invariant

theory. We always assume that G is an affine algebraic group over an algebraically closed

field k. This material can found in [MFK94] and [New78].

2.4.1 Group Actions on Algebraic Varieties

Let G be an algebraic group acting on a variety X. The question whether the set X/G of

orbits under this action can be given a geometric structure. That is, X/G has a structure

of a variety such that the map π : X −→ X/G is a morphism. Then in particular each

orbit has to be closed, because π is continuous. But this need not always be the case as the

following example shows.

Example: The action of GLn(k) on kn has two orbits: {0} and kn \ {0}. The orbit kn \ {0} is

not closed.
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In most of the cases, we will see that there exists an open set U ⊂ X such that U/G has

the structure of algebraic variety and U → U/G is a morphism. In particular, U is a union

of closed orbits.

2.4.2 Quotients

Definition: A categorical quotient of X by G is a pair (Y, φ), where Y is a variety and

φ : X → Y is a morphism such that φ is constant on orbits, and if ψ : X → Z is any

morphism that is constant on orbits, then there exists a unique morphism η : Y → Z such

that ψ = η ◦ φ.

Note that if a categorical quotient exists, it is unique up to isomorphism and has good

functorial properties.

Definition: An orbit space is a categorical quotient (Y, φ) such that φ−1(y) consists of a

single orbit for all y ∈ Y.

Definition: A good quotient of X by G is a pair (Y, φ) such that Y is a variety and φ : X → Y

is a morphism such that:

1. φ is G−invariant,

2. φ is surjective,

3. φ is an affine morphism,

4. For any open subset U ⊂ Y, the homomorphism φ∗ : k[U] → k[φ−1(U)] induces an

isomorphism from k[U] onto k[Φ−1(U)]G,

5. if W is a closed G-invariant subset of X, then φ(W) is closed in Y,

6. if W1 and W2 are closed G-invariant subsets of X with W1 ∩ W2 = ∅, then φ(W1) ∩

φ(W2) = ∅.

Lemma 2.46. If (Y, φ) is a good quotient of X by G, then it is a categorical quotient.

Definition: A geometric quotient of X by G is a good quotient (Y, φ) which is also an orbit

space.

Notation: A good quotient is denoted by X//G and geometric quotient is denoted by X/G.

In order to construct categorical quotients in general we first assume that X is an affine

variety on which G acts morphically and, let k[X] denote the algebra of morphisms X → k.

Then we have an rational action of G on k[X], i.e k[X] is a locally finite G-module.

Now, we can ask what is the right object for a categorical quotient Y. Suppose it exists

and is affine, write Y = Spec(B). The definition of the categorical quotient tells us that such
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a morphism factors through Y if and only if it is constant on orbits; which is equivalent to

B = k[X]G .

So, if Y should be affine, then k[X]G has to be finitely generated. We already discussed

in previous section about the finite generation of the ring of invariants which has a positive

answer if G is reductive.

We have the following theorem.

Theorem 2.47. Let G be a reductive group acting on an affine variety X. Then Y = Spec(k[X]G),

together with the map φ : X → Y is a good quotient of X by G.

Let G be a reductive group acting on projective variety X. Existence of the quotients of

X by G is not as simple as in the affine case.

In general, to construct quotients we need the concept of linear actions, the actions

induced from a representation of the group G on some ambient space (either affine or

projective space) where the variety is embedded.

Definition: A linearization of an action of G on a variety X in Pn (resp. in An) is a linear

action (i.e a representation) of G on kn+1 (resp. kn) which induces the given action on X. A

linear action of G on X is an action of G together with a linearization of this action.

Note that a linear action on X ⊂ Pn of G determines an action on k[x0, x1, . . . xn] and

for any G-invariant homogeneous polynomial f of positive degree in k[x0, x1, . . . xn], X f :=

{x ∈ X : f (x) 6= 0} is a G-invariant affine open subset of X.

Definition: Let X be a closed subvariety in Pn. Let G be a reductive group acting linearly

on X. A point x ∈ X is a called

1. semi-stable if there exists a G−invariant homogeneous polynomial f in k[x1, x2, . . . , xn]

of positive degree such that f (x) 6= 0,

2. stable if there exists a G-invariant homogeneous polynomial f in k[x1, x2, . . . , xn] of

degree 1 such that f (x) 6= 0, dim(G.x)) = dim(G) and the action of G on X f is closed,

where X f = {x ∈ X : f (x) 6= 0} i.e for all y ∈ X f , G.y ⊂ X f closed,

3. unstable (or non semi-stable) if it not semi-stable.

Remark:

1. The set of semi-stale (respectively, stable) points of X depends on the embedding of X in

Pn and the linearization of the action of G.

2. A unstable point is precisely one for which all G-invariants homogeneous polynomial

vanish.

3. Let Xss (respectively, Xs) be the set of all semi-stable (respectively, stable) points of X.
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The subsets Xss and Xs are G−invariant open subsets of X.

4. If Y is a closed subset of X, G acts on X and Y with the same linearization, then

Yss = Xss ∩ Y and Ys = Xs ∩ Y.

5. The morphism σx : G −→ X given by σx(g) = g.x is proper if and only if the orbit G.x is

closed and the stabilizer Gx is finite.

The following theorem says that the good quotient exists on the open subset Xss of X.

Theorem 2.48. Let G be a reductive group acting linearly on a projective variety X in Pn. Then,

1. There exists a good quotient (Y, φ) of Xss by G, and Y is projective.

2. There exists an open subset Ys of Y such that φ−1(Ys) = Xs and (Ys, φ) is a geometric quotient

of Xs.

3. For x1, x2 ∈ Xss, φ(x1) = φ(x2) if and only if G.x1 ∩ G.x2 ∩ Xss 6= ∅.

4. For x ∈ Xss, x is stable if and only if dim(G.x) = dim(G) and G.x is closed in Xss.

2.4.3 Linearization

More generally, we can define stability and semi-stability on a quasi projective variety X

with respect to a line bundle L on X.

Let X be a variety with an action of a group G, let p : L −→ X be a line bundle on X.

Definition: A G-linearization of a line bundle L on X is an action of G on L compatible

with the action of G on X. That is, there is an action of G on L such that

1. for all y ∈ L, g ∈ G, p(gy) = gp(y) and

2. for all x ∈ X, g ∈ G, the map Lx −→ Lgx : y 7−→ gy (of fibers over x and gx ) is linear.

A line bundle L with a linearization is called a G-linearized line bundle.

Remarks:

1. For a given G-linearized line bundle L on X and a G-invariant open set U ⊂ X, we have

the induced action of G on H0(U,L).

2. If G is connected and group of characters X(G) is trivial (for example, semisimple group),

then every line bundle admits at most one linearization (see [MFK94, Proposition 1.4]).

3. Let X be a normal variety, G be a connected group acting on X and L is a line bundle on

X. Then there exists n ∈ Z>0 such that Ln admits a G-linearization (see [MFK94, Corollary

1.6]).

A morphism of G-linearized line bundles is a G-equivariant morphism of line bundles.

Thus we can speak of isomorphism classes of G-linearized line bundles on X and one

can show that the set of all isomorphism classes of G-linearized line bundles on X has an
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abelian group structure (see [Dol03, Ch. 7]). We denote this group by PicG(X), and we have

a natural homomorphism

θ : PicG(X) → Pic(X)

which is forgetting the linearization. This homomorphism is not necessarily surjective.

Definition: Let X be a quasi-projective variety with an action of a reductive algebraic group

G. Let L be a G-linearized line bundle on X. Let x ∈ X.

1. x is called semi-stable with respect to L if there exists m > 0 and s ∈ H0(X, L⊗m)G such

that Xs = {y ∈ X|s(y) > 0} is affine and contains x,

2. x is called stable if x is semi-stable, dim(G.x) = dim(G) and the set G.x is closed in Xss

for all semi-stable points.

3. x is called unstable with respect to L if x is not semi- stable.

Let Xss(L) be the set of all semi-stable points, and let Xs(L) be the set of all stable

points, let Xus(L) be the locus of unstable points.

Remark:

1. Xss(L) = Xss(Ln) and Xs(L) = Xs(Ln) for any n ∈ N.

2. If the line bundle L is ample, the set Xs is affine.

3. Let X be a projective variety in Pn and L = OX(1) restriction of the hyperplane bundle.

Note that any linear action G on X induces a G-linearization on L. In that case, Xss(L) =

Xss and Xs(L) = Xs.

4. The unstable points are precisely the points on which all G-invariant homogeneous forms

of positive degree vanish.

Now we have the following theorem.

Theorem 2.49. (Mumford) Let G be a reductive group acting on a quasi-projective variety X. Let

L be a G-linearized line bundle on X. Then there exists a good quotient

π : Xss(L) → Xss(L)//G.

There exists an open set U ⊂ Xss(L)//G such that Xs(L) = π−1(U) and the restriction of π to

Xs(L) is a geometric quotient of Xs(L) by G. Moreover Xss(L)//G is a quasi-projective variety.

There exists a converse of Theorem 2.49 is true under some conditions: saying that some

subsets U ⊂ X for which a categorical quotient U//G exist, are of the form U = Xss(L) for

some linearization with respect to an ample line bundle L (see [MFK94, page 41]).

Now we have the following corollary.
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Corollary 2.50. Further assume that X is projective, and L is very ample. Let R =
⊕

n∈Z≥0
H0(X,L⊗n). Then we have

Xss(L)//G ≃ Proj(RG).

In particular, Xss(L)//G is a projective variety.

Remark: Let

N = Xus(L) = {x ∈ X : s(x) = 0 for all s ∈ RG}.

Hilbert consided the set N . It is called the nullcone and its elements are called nullforms.

Nullforms can not be distinguished by invariant functions. In fact if we consider the special

case that RG is generated by generators s0, . . . , sk of the same degree, then the rational map

X 99K Pk given by

x 7→ (s0(x), . . . , sk(x))

is the quotient map (when restricted to the set of semi-stable points ). The nullcone is the

set of points where this map is not defined.

2.4.4 Hilbert-Mumford criterion

In general, finding invariants explicitly is difficult and hence so the semi-stablility. David

Hilbert and David Mumford gave a criterion that says given a point is semi-stable or

not, with out finding invariants explicitly. This is called numerical criterion for semi-

stability. This numerical criterion reduces to the study of actions of G to the actions of

one-dimensional torus via one-parameter subgroups of G.

Throughout this subsection, we assume that G is a reductive algebraic group acting

linearly on a projective variety X ⊂ Pn. We can consider the induced action of G on the

affine cone X̂ ⊂ kn+1. Let x̂ ∈ X̂ be a point whose class is x ∈ X.

We have the lemma.

Lemma 2.51.

1. x ∈ X is semi stable if and only if 0 /∈ G · x̂.

2. x ∈ X is stable if and only if the morphism σx̂ : G −→ kn+1, σx̂(g) 7−→ gx̂ is proper.

Recall that a one-parameter subgroup of G is a homomorphism λ : Gm → G of algebraic

groups. A one-parameter subgroup λ of G can be viewed as an action of Gm via λ on X,
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and hence we get the action of Gm on the cone X̂ ⊂ kn+1 over X. Since any action of Gm on

kn+1 can be diagonalized, we can choose coordinates such that the action on X̂ is given by

λ(t) · x̂ = (tr0 x0, . . . , trn xn)

for some integers ri.

Now consider the map

φ∗
x : Gm → kn+1, t 7→ λ(t) · x̂.

If this map can be extended to a map A1 → kn+1 by sending the origin to the origin then

it is clear that 0 is in the closure of the orbit of x̂ of the one-parameter subgroup λ of G, so

that x is unstable.

Definition:

µ(x, λ) := −min{ri : xi 6= 0}.

Note that the function µ doesn’t depend on the diagonalization of the one-parameter

action. This function µ is very helpful to check unstability. Given a point x ∈ X, if there is

a one-parameter subgroup λ of G satisfying µ(x, λ) < 0, then x is unstable. If we consider

the action of G on X via a line bundle L, we denote µ(x, λ) by µL(x, λ).

The following numerical criterion is a very useful for computing the semi-stable and

stable points.

Theorem 2.52. (Hilbert-Mumford) Let G be a reductive algebraic group acting linearly on a projec-

tive variety X ⊂ Pn. Let x ∈ X. Then,

x ∈ Xss if and only if µL(x, λ) ≥ 0 for all one-parameter subgroups λ.

x ∈ Xs if and only if µL(x, λ) > 0 for all non trivial one-parameter subgroups λ.

2.4.5 G.I.T on Homogeneous space G/P and Schubert varieties

We assume throughout this section the base field is the field C of complex numbers.

Let G be a semisimple algebraic group over C. Let T be a maximal torus of G. Let B be

a Borel subgroup of G containing T. Let P be a parabolic subgroup of G containing B. In

this section, we consider the action of T on G/P and Schubert varieties.
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In [Kan98, Kan99], Senthamarai Kannan described all the parabolic subgroups of G for

which there exist an ample line bundle L on G/P such that the set (G/P)ss
T (L) of semi-

stable points is same as the set (G/P)s
T(L) stable points. Strickland gave a shorter proof of

this result [Str00].

Recall that P is of the form P = ∩r∈I Pr for some subset I of S, where Pr is the maximal

parabolic subgroup of G corresponding to the simple root αr. Let (r, n) denote the greatest

common divisor of r and n.

Theorem 2.53.

1. Let G = SL(n, C). In this case S is indexed by the set {1, 2, . . . , n − 1}. Then, there is a line

bundle L on G/P such that (G/P)ss
T (L) = (G/P)s

T(L) if and only if the least common multiple

of {n/(r, n) : r ∈ I} is n.

2. Let G be a simple algebraic group different from type A. Then, there is a line bundle on G/P such

that (G/P)ss
T (L) = (G/P)s

T(L) if and only if P = B.

The special case of a maximal parabolic subgroup of SL(n.C) is studied in [Kan98].

We set the following notations:

Let C(B) be the Weyl chamber in Y(T)⊗ R determined by B. Let L be a line bundle

on G/B defined by a character χ ∈ X(T). If x ∈ G/B then x ∈ BwB/B for some w ∈ W.

Let λ be a one-parameter subgroup of T which is in the closure C(B) of C(B). Let 〈−,−〉 :

X(T)×Y(T) −→ R be the canonical pairing. We define the natural action of W on Y(T) by

w(λ) = nwλn−1
w , where nw be a representative of w in NG(T).

Then, we have

Lemma 2.54 (Seshadri). µL(x, λ) = −〈χ, w(λ)〉.

Let pw be the unique section of the line bundle L(χ) which does not vanish at the

point wP/P. Let s := ∏
w∈W

pw. Then s is a non zero T-invariant section of L(χ)⊗|W|, i.e

0 6= s ∈ H0(G/P,L(χ)⊗|W|)T. Thus, (G/P)ss
T (L(χ)) 6= ∅. However, s vanishes on X(w)P

for all w ∈ WP such that X(w)P ( G/P.

In general, it is not clear whether there exist a semi-stable points in Schubert varieties

with respect to a given line bundle for the action of maximal torus T. Therefore, it is

a interesting problem to study for which Schubert variety X(w)P; (X(w)P)
ss
T (L(χ)) 6= ∅.

By using above lemma we have the following proposition gives a criterion that Schubert

varieties admitting semi-stable points due to Senthamarai Kannan and Santosh Pattanayak

[KP09a].
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Proposition 2.55. Let χ = ∑
α∈S

aαωα be a dominant character of T which is in the root lattice. Let

I = Supp(χ) = {α ∈ S : aα 6= 0} and let w ∈ W Ic
, where Ic = S \ I . Then X(w)ss

T (Lχ) 6= ∅ if

and only if wχ ≤ 0.

Let P be a maximal parabolic subgroup containing B. Let L be a ample line bundle on

G/P. In [KP09b, KP09a] described all minimal dimensional Schubert varieties admitting

semi-stable points with respect to the line bundle L.

Now, we describe all the Coxeter elements w ∈ W for which X(w)ss
T (Lχ) 6= ∅ (due to

Senthamarai Kannan and Santosh Pattanayak [KP09a]).

Theorem 2.56.

Type A:

1. A3: For any Coxeter element w, X(w)ss
T (Lχ) 6= ∅ for some non-zero dominant weight χ.

2. An, n ≥ 4: If X(w)ss
T (Lχ) 6= ∅ for some non-zero dominant weight χ and w is a Coxeter element,

then w must be either snsn−1 . . . s1 or si . . . s1si+1 . . . sn for some 1 ≤ i ≤ n − 1.

Type B:

1. B2: For any Coxeter element w, X(w)ss
T (Lχ) 6= ∅ for some non-zero dominant weight χ.

2. Bn, n ≥ 3: If X(w)ss
T (Lχ) 6= ∅ for some non-zero dominant weight χ and w is a Coxeter element,

then w = snsn−1 . . . s1.

(C) Type Cn: If X(w)ss
T (Lχ) 6= ∅ for some non-zero dominant weight χ and w is a Coxeter element,

then w = snsn−1 . . . s1.

(D) Type D:

1. D4: If w is a Coxeter element, then X(w)ss
T (Lχ) 6= ∅ for some non-zero dominant weight χ if

and only if l(ws2) = l(w) + 1 and l(wsi) = l(w)− 1 for exactly one i 6= 2.

2. Dn, n ≥ 5: If X(w)ss
T (Lχ) 6= ∅ for some non-zero dominant weight χ and w is a Coxeter element,

then w = snsn−1 . . . s1.

(E) Type E6, E7 or E8: There is no Coxeter element w for which there exist a non-zero dominant

weight χ such that X(w)ss
T (Lχ) 6= ∅.

(F) Type F4: There is no Coxeter element w for which there exist a non-zero dominant weight χ such

that X(w)ss
T (Lχ) 6= ∅.

(G) Type G2: There is no Coxeter element w for which there exist a non-zero dominant weight χ

such that X(w)ss
T (Lχ) 6= ∅.
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In [Pat14], for any simple, simply connected algebraic group G of exceptional types

E6, E7, E8, F4, or G2 and for any maximal parabolic subgroup P of G, Santosh Pattanayak

described all minimal Schubert varieties in G/P admitting semi-stable points for the action

of a maximal torus T with respect to an ample line bundle on G/P.



Chapter 3

Torus quotients of flag varieties

In this chapter, we prove that for any indecomposable dominant character χ of a maximal

torus T of a simple adjoint group G over C such that there is a Coxeter element w in the

Weyl group W for which X(w)ss
T (Lχ) 6= ∅, the graded algebra

⊕
d∈Z≥0

H0(G/B,L⊗d
χ )T is a

polynomial ring if and only if dim(H0(G/B,Lχ)T) ≤ rank(G). Equivalently, if there exists a

Coxeter element c ∈ W such that X(c)ss
T (Lχ) 6= ∅. Then, the GIT quotient T\\(G/B)ss

T (Lχ)

is isomorphic to a weighted projective space if and only if dim(H0(G/B,Lχ)T) ≤ rank of

G.

We also prove that the coordinate ring C[h] of the cartan subalgebra h of the Lie algebra

g of G and
⊕

d∈Z≥0
H0(G/B,L⊗d

α0
)T are isomorphic if and only if X(w)ss

T (Lα0) is non empty

for some Coxeter element w in W, where α0 denotes the highest long root. Equivalently,

that the GIT quotient T\\(G/B)ss
T (Lα0) is isomorphic to the projective space P(h) if and

only if there exists a Coxeter element c ∈ W such that X(c)ss
T (Lα0) is nonempty.

3.1 Relationship between C[h] and the homogeneous coordinate

ring of G/B associated to the highest long root

Recall that g = Lie(G) is the adjoint representation of G, h = Lie(T) and α0 is the highest

long root. Since G is simple, the adjoint representation g of G is an irreducible representa-

tion with highest weight α0. Let φ1 : g → h be the T-invariant projection. Then, φ1 induces

a natural isomorphism Hom(h, C) → Hom(g, C)T. Since H0(G/B,Lα0) is an irreducible self

dual G-module with highest weight α0, the G-modules H0(G/B,Lα0) and Hom(g, C) are

isomorphic. So, we have an isomorphism Hom(h, C) → H0(G/B,Lα0)
T .

Thus, we have a homomorphism f : C[h] −→
⊕

d∈Z≥0
H0(G/B,L⊗d

α0
)T of C algebras. (1)

45
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In this section, we show that the homomorphism f : C[h] −→
⊕

d∈Z≥0
H0(G/B,L⊗d

α0
)T as

in (1) is injective. Further, we also prove that f : C[h] →
⊕

d∈Z≥0
H0(G/B,L⊗d

α0
)T is an

isomorphism if and only if X(w)ss
T (Lα0) is non empty for some Coxeter element w in W.

We first set up some notation.

Recall that R denote the roots of G with respect to T, R+ ⊂ R be the set of positive roots

with respect to B and S = {α1, α2, . . . , αn} ⊂ R+ denote the set of simple roots with respect

to B.

For each positive root α ∈ R+, we denote by U−α, the T-stable root subgroup of w0Bw−1
0

corresponding to −α. Let U− be the unipotet radical of the opposite Borel subgroup

w0Bw−1
0 . Then, we have U− = ∏α∈Φ+U−α.

We denote in this chapter {Eβ : β ∈ R}
⋃
{Hβ : β ∈ S} be the Chevalley basis for g (refer

to [Hum72, Chapter VII])). Note that Eα0 is a highest weight vector of g and we denote it

by v+. Recall that we denote 〈α, β〉 := 2(α,β)
(β,β) for all α, β ∈ R. Consider U−v+ ⊂ g be the

U−orbit of v+.

We have the following:

Lemma 3.1. The restriction map φ := φ1|U−
v+

: U−v+ → h is onto.

Proof. Since α0 is dominant, we can choose a simple root γ1 such that 〈α0, γ1〉 ≥ 1. Choose

distinct simple roots γ2, γ3, . . . , γn−1 such that for all r = 1, 2, . . . , n − 1, ∑
r
j=1 γj is a root.

Let θr = ∑
r
j=1 γj, r = 1, 2, . . . , n − 1. Again since 〈α0, θr〉 ≥ 1 for 1 ≤ r ≤ n − 1, each

βr := α0 − θr is a root. For every choices of c0, cr, c′r ∈ C, 1 ≤ r ≤ n − 1, we claim that

φ(exp(c0E−α0))(exp(c1E−β1))(exp(c′1E−θ1))(exp(c2E−β2))(exp(c′2E−θ2)) · · · (exp(cn−1E−βn−1))

(exp(c′n−1E−θn−1))(v
+) = −c0Hα0 − ∑

n−1
r=1 crc′r Hβr .

Take a typical monomial

M =
cm0

0

m0!
Em0
−α0

ca1
1

a1!
Ea1
−β1

· · ·
can−1

n−1

an−1!
Ean−1
−βn−1

(c′1)
b1

b1!
Eb1
−θ1

· · ·
(c′n−1)

bn−1

bn−1!
Ebn−1
−θn−1

occuring in the expansion of

(exp(c0E−α0))(exp(c1E−β1
))(exp(c′1E−θ1

))(exp(c2E−β2
))(exp(c′2E−θ2

)) · · · (exp(cn−1E−βn−1
)(exp(c′n−1E−θn−1

).

Then, Mv+ has weight zero if and only if (1 − m0)α0 = ∑
n−1
j=1 ajβ j + ∑

n−1
k=1 bkθk.

Claim: For all j = 1, 2, . . . , n − 1 and k = 1, 2, . . . , n − 1, there exist unique r in

{1, 2, . . . , n − 1} such that ar = br = 1 and aj = bj = 0 for all j 6= r.

Now, Mv+ has weight 0 implies (1 − m0)α0 − ∑
n−1
j=1 ajβ j − ∑

n−1
k=1 bkθk = 0.

⇒ (m0 − 1)α0 + ∑
n−1
j=1 ajβ j + ∑

n−1
k=1 bkθk = 0.
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⇒ (m0 − 1)α0 + ∑
n−1
j=1 ajβ j + ∑

n−1
k=1 bk(α0 − βk) = 0.

⇒ (m0 − 1)α0 + (∑n−1
k=1 bk)α0 + ∑

n−1
j=1 ajβ j − ∑

n−1
k=1 bkβk = 0.

⇒ ((m0 − 1) + ∑
n−1
k=1 bk)α0 + ∑

n−1
j=1 (aj − bj)β j = 0.

Since {α0, β j : j = 1, 2, . . . , n − 1} is a linearly independent subset of X(T) ⊗ R =

HomR(hR , R), the dual of the real form hR of h, we have (m0 − 1) + ∑
n−1
k=1 bk = 0 and

aj = bj for all j = 1, 2, . . . , n − 1. Since m0 and b′is are non-negative integers, we have either

m0 = 1 and aj = bj = 0 for all j or m0 = 0 and there exist unique k such that ak = bk = 1

and aj = bj = 0 for all j 6= k. Again Hα0 , Hβr are linearly independent since α0 and βr are

linearly independent.

So, we have a surjective map U−v+ ⊇ (U−α0 ∏
n−1
j=1 U−β j ∏

n−1
k=1 U−θk

)v+ → h given

by (u−α0(c0)∏
n−1
j=1 u−β j

(cj)∏
n−1
k=1 u−θk

(c′k))v
+ 7→ −c0Hα0 − ∑

n−1
r=1 crc′rHβr , where uα(c) =

exp(cEα), α ∈ R, c ∈ C. Hence φ : U−v+ → h is onto. This completes the proof of the

lemma.

We have

Corollary 3.2. The homomorphism f : C[h] →
⊕

d∈Z≥0
H0(G/B,L⊗d

α0
)T as in (1) is injective.

Proof. By Lemma 3.1, we have φ : U−v+ → h is onto. So, φ∗ : C[h] → C[U−v+] is injective.

Let [v+] denote the point in G/B corresponding to the identity coset idB/B. Since the affine

space U−[v+] is an open subset of G/B, we have the restriction map H0(G/B,L⊗d
α0

) −→

C[U−v+] for all d ∈ Z≥0. So, we get a map H0(G/B,L⊗d
χ )T −→ C[U−v+] for all d ∈ Z≥0.

Hence, we have a homomorphism g :
⊕

d∈Z≥0
H0(G/B,L⊗d

α0
)T −→ C[U−v+] of C-algebras.

Now, we have the following commutative diagram:

C[h]
f //

φ∗
$$■

■
■
■
■
■
■
■
■

⊕
d∈Z≥0

H0(G/B,L⊗d
α0

)T

guu❧❧❧
❧❧
❧❧
❧❧
❧❧
❧❧

C[U−v+]

So, we have g ◦ f = φ∗. Since φ is onto, φ∗ is injective. Hence, the homomorphism f :

C[h] →
⊕

d∈Z≥0
H0(G/B,L⊗d

α0
)T is injective.

We now prove the following theorem.

Theorem 3.3. The homomorphism f : C[h] →
⊕

d∈Z≥0
H0(G/B,L⊗d

α0
)T is an isomorphism if and

only if X(w)ss
T (Lα0) is non empty for some Coxeter element w in W.
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Proof. By Theorem 4.2 in [KP09a], X(w)ss
T (Lα0) is non empty for some Coxeter element w if

and only if G is of type An, B2 or Cn. Now, we prove that the homomorphism f : C[h] →
⊕

d∈Z≥0
H0(G/B,L⊗d

α0
)T is an isomorphism if G is of type An, B2 or Cn.

By Corollary 3.2, the graded homomorphism f : C[h] →
⊕

d∈Z≥0
H0(G/B,L⊗d

α0
)T is in-

jective. Hence we have symd(h) ⊂ H0(G/B,L⊗d
α0
)T. Let α0 = ∑ miωi. J := {i ∈ {1, 2, . . . , n} :

mi ≥ 1}.

Let P = PJ . Let U−
P be unipotent radical of the opposite parabolic subgroup of P deter-

mined by T and B. Take the line bundle L⊗d
α0

on G/P and restrict to U−
P . Since U−

P is an

affine space, L⊗d
α0

is trivial on U−
P . So, we have H0(U−

P ,L⊗d
α0

) = C[U−
P ] , regular functions on

U−
P . Hence, H0(G/P,L⊗d

α0
) is a T-submodule of C[U−

P ]⊗ C−d0α0 .

Now, by considering the weights; the weight zero in H0(G/P,L⊗d
α0
) corresponding to

weight dα0 in C[U−
P ]. Hence, Xa0

−α0
Xa1
−β1

Xa2
−β2

· · · Xan−1
−βn−1

Xb1
−θ1

· · · Xbn−1
−θn−1

has weight dα0 in

C[U−
P ] if and only if a0α0 + ∑

n−1
j=1 ajβ j + ∑

n−1
k=1 bkθk − dα0 = 0.

⇒ (a0 − d)α0 + ∑
n−1
j=1 ajβ j + ∑

n−1
k=1 bkθk = 0.

⇒ (a0 − d)α0 + ∑
n−1
j=1 ajβ j + ∑

n−1
k=1 bk(α0 − βk) = 0.

⇒ (a0 − d)α0 + (∑n−1
k=1 bk)α0 + ∑

n−1
j=1 ajβ j − ∑

n−1
k=1 bkβk = 0.

⇒ ((a0 − d) + ∑
n−1
k=1 bk)α0 + ∑

n−1
j=1 (aj − bj)β j = 0.

Since {α0, β j : j = 1, 2, . . . , n − 1} is a linearly independent subset of X(T)⊗ R, we have

aj = bj for all j = 1, 2, . . . , n − 1. Since a0 and b′is are non-negative integers, we have either

a0 = d , bk = 0 for all k = 1, 2, . . . , n − 1 or a0 = 0 and ∑
n−1
k=1 bk = d.

Let Vd := {Xa0
−α0

(X−β1 X−θ1)
a1(X−β2 Xθ2)

a2 · · · (X−βn−1X−θn−1)
an−1 : ∑

n−1
i=0 ai = d}. In type

An, B2 and Cn , dim(G/P) = 2n − 1. So, we can identify H0(G/P,L⊗d
α0
)T with Vd. Also, we

can idetify Vd as a subspace of Symd(h). Therefore, we have H0(G/P,L⊗d
α0

)T ⊂ Symd(h). So,

H0(G/P,L⊗d
α0

)T = Symd(h). Hence, the homomorphism f : C[h] →
⊕

d∈Z≥0
H0(G/P,L⊗d

α0
)T

is an isomorphism. Since H0(G/B,L⊗d
α0
) = H0(G/P,L⊗d

α0
) , the homomorphism f : C[h] →

⊕
d∈Z≥0

H0(G/B,L⊗d
α0

)T is an isomorphism.

If G is not of type An, B2 or Cn, we prove dim(G/P) ≥ 2n.

Type Bn, n 6= 2 : In this case, the highest long root α0 is ω2. So, we have P = P2. The

dimension of U−
P2
= #{α ∈ R+/α ≥ α2} = 4n− 5. Since U−

P2
is an affine open subset of G/P,

dim(G/P) = 4n − 5. Hence, we have dim(G/P) ≥ 2n for n 6= 2.

Type Dn: In this case, the highest long root α0 is ω2. So we have P = P2. The dimension of

U−
P2
= #{α ∈ R+/α ≥ α2} = 4n − 7. Since U−

P2
is an affine open subset of G/P, dim(G/P) =

4n − 7. Hence we have dim(G/P) ≥ 2n for n ≥ 4.

Type E6: The highest long root α0 = ω2. Hence we have P = P2. The dimension of U−
P2

=

#{α ∈ R+/α ≥ α2} = 21. Then dim(G/P) = 21. Hence we have dim(G/P) > 12.
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Type E7: The highest long root α0 = ω1. Hence we have P = P1. The dimension of U−
P1

=

#{α ∈ R+/α ≥ α1} = 33. Then dim(G/P) = 33. Hence we have dim(G/P) > 14.

Type E8: The highest long root α0 = ω8. Hence we have P = P8. The dimension of U−
P8

=

#{α ∈ R+/α ≥ α8} = 57. Then dim(G/P) = 57. Hence we have dim(G/P) > 16.

Type F4: The highest long root α0 = ω1. Hence we have P = P1. The dimension of U−
P1

=

#{α ∈ R+/α ≥ α1} ≥ 8. Hence we have dim(G/P) > 8.

Type G2: The highest long root α0 = ω2. Hence we have P = P2. The dimension of

U−
P2
= #{α ∈ R+/α ≥ α2} = 5. Hence we have dim(G/P) > 4.

Since dim(G/P) ≥ 2n, the Krull dimension of
⊕

d∈Z≥0
H0(G/P,L⊗d

α0
) > 2n. Hence

dim(
⊕

d∈Z≥0
H0(G/P,L⊗d

α0
)T) > n. Therefore, the homomorphism f : C[h] →

⊕
d∈Z≥0

H0(G/B,L⊗d
α0

)T is not an isomorphism if G is not of the type An, B2 or Cn. This

completes the proof of the theorem.

Equivalently, we have the following.

Corollary 3.4. The GIT quotient T\\(G/B)ss
T (Lα0) is isomorphic to the projective space P(h) if

and only if there exists a Coxeter element c ∈ W such that X(c)ss
T (Lα0) is nonempty.

As a consequence, we have

Corollary 3.5. The polarized variety (T\\(G/B)ss
T (Lα0), M) is projectively normal, where M is

the descent of Lα0 to the quotient T\\(G/B)ss
T (Lα0).

Let P(g) be the projective space corresponding to the affine space g.

Corollary 3.6. If G is of type An, B2 or Cn, G\\P(g) ≃ NG(T)\\(G/BT(Lα0))
ss.

Proof. By Chevalley restriction theorem, we have the restriction map C[g]G −→ C[h]W

is an isomorphism. So, we have G\\P(g) = W\\P(h). Since G is of type An, B2

or Cn, by Theorem 3.3, we have C[h] ≃
⊕

d∈Z≥0
H0(G/B,L⊗d

α0
)T. Then, C[h]W ≃

⊕
d∈Z≥0

H0(G/B,L⊗d
α0

)NG(T). Hence, we have W\\P(h) ≃ NG(T)\\(G/B(Lα0))
ss. There-

fore, G\\P(g) ≃ NG(T)\\(G/B(Lα0))
ss.

3.2 A description of line bundles Lχ on G/B for which
⊕

d∈Z≥0
H0(G/B,L⊗d

χ )T is a polynomial ring

In this section, we prove that for any indecomposable dominant character χ of a maximal

torus T of a simple adjoint group G such that there is a Coxeter element w ∈ W for which
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X(w)ss
T (Lχ) 6= ∅, the graded algebra

⊕
d∈Z≥0

H0(G/B,L⊗d
χ )T is a polynomial ring if and

only if dim(H0(G/B,Lχ)T) ≤ rank(G).

Notation: Recall we use additive notation for the group X(T) of characters of T. Let

X(T)+ denote the set of all dominant characters of T.

Definition 3.7. A non trivial dominant character χ of T is said to be decomposable if there

is a pair of non trivial dominant characters χ1, χ2 of T such that χ = χ1 + χ2. Otherwise

we will call it indecomposable.

Let X(T)+i denote the set of all indecomposable elements of X(T)+.

Lemma 3.8. Let G be a simple adjoint group of type An−1. Let χ = ∑
n−1
i=1 aiαi, where ai ∈ N

for each i = 1, 2, . . . , n − 1 be an element of X(T)+i such that 〈χ, αn−1〉 = 0. Suppose that

X(sn−1 · · · s1)
ss
T (Lχ) 6= ∅, then

(i) The coefficients ai ,i = 1, 2, . . . , n − 1 satisfy the following inequality :

a1 > a2 > a3 > . . . > an−2 = 2 and an−1 = 1.

(ii) χ must be of the form iω1 + ωn−i for some 2 ≤ i ≤ n − 1.

Proof. Since X(sn−1 · · · s1)
ss
T (Lχ) 6= ∅, we have sn−1 · · · s1(χ) ≤ 0. As χ dominant, we have

ai > ai+1 for each i = 1, 2, . . . , n − 2.

Now we prove that an−1 = 1.

If an−1 > 2, let i be the largest positive integer such that an−i = ian−1. Since 2an−1 −

an−2 = 〈χ, αn−1〉 = 0, we must have i > 2. So, an−(i+1) 6= (i + 1)an−1 =⇒ an−(i+1) =

ian−1 + c, where 0 ≤ c ≤ an−1 − 1.

Case 1: If c = 0. Since χ dominant and 〈χ, αn−1〉 = 0, we have an−j ≤ jan−1, j = 1, 2, . . . , n −

1 and also we have aj ≥ aj+1 for each j = 1, 2, . . . , n − 2.

Claim: χ must be of the form ian−1(∑
n−i
j=1 αj) + an−1(∑

n−1
j=n+1−i(n − j)αj).

Since c = 0 , an−(i+1) = ian−1. Now we prove an−(i+2) = ian−1. Since χ is dominant,

2an−(i+1) − an−(i+2) − an−i ≥ 0. =⇒ 2ian−1 − an−(i+2) − ian−i ≥ 0. =⇒ ian−i ≥ an−(i+2).

Also, we have an−(i+2) ≥ an−(i+1) = ian−i. So, an−(i+2) = ian−i.

Similarly, we can prove an−j = ian−1 for j = i + 3, . . . , n − 1.

Now we prove an−(i−1) = (i − 1)an−1. Since χ is dominant, an−(i−1) + an−3 ≥ an−2 +

an−i = 2an−1 + ian−1 = (i + 2)an−1. Since an−j ≤ jan−1 , an−(i−1) + an−3 ≤ (i + 2)an−1. So,

we conclude that an−(i−1) = (i − 1)an−1 and an−3 = 3an−1. Similarly, we can prove that
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an−j = jan−1 for j = i − 2, i − 3, . . . , 4. χ is of the form ian−1(∑
n−i
j=1 αj) + an−1(∑

n−1
j=n+1−i(n −

j)αj) = an−1(iω1 + ωn−i). This forces that χ is decomposable, since an−1 ≥ 2. This is a

contradiction to the indecomposability of χ. This proves that if c = 0, then an−1 = 1.

Case 2: If c > 0. 〈χ, α1〉 = 2a1 − a2 ≥ a1 ≥ an−(i+1) = ian−1 + c. Similarly, 〈χ, αn−i〉 ≥

2ian−1 − ian−1 − c − (i − 1)an−1 = an−1 − c ≥ 1. Thus, χ − (iω1 + ωn−i) is still a non zero

dominant weight which is in the root lattice. This contradicts the indecomposability of χ.

So, c = 0 and an−1 = 1 and this proves (i).

Proof of (ii). Using the above argument, we can see that χ is of the form iω1 + ωn−i,

where i is the largest positive integer such that an−i = ian−1.

Lemma 3.9. Let G be a simple adjoint group of type An−1. Let χ = ∑
n−1
i=1 aiαi , where

ai ∈ N and i = 1, . . . , n − 1 be an element of X(T)+i such that 〈χ, α1〉 = 0. Suppose that

X(s1 · · · sn−1)
ss
T (Lχ) 6= ∅, then

(i) The coefficient ai, i = 1, . . . , n − 1 satisfy the following inequality:

1 = a1 ≤ a2 ≤ · · · ≤ an−1.

(ii) χ must be of the form ωi + iωn−1 for some 2 ≤ i ≤ n − 1.

Proof. Similar to the proof of Lemma 3.8.

Lemma 3.10. Let G be a simple adjoint group of type An−1. Let χ = ∑
n−1
i=1 aiαi , where ai ∈

N, i = 1, . . . , n − 1 be an element of X(T)+i . If X(si+1 · · · sn−1si · · · s1)
ss
T (Lχ) 6= ∅ for some

2 ≤ i ≤ n − 3, then χ = α1 + · · ·+ αn−1.

Proof. Since X(si+1 · · · sn−1si · · · s1)
ss
T (Lχ) 6= ∅ for some 2 ≤ i ≤ n − 3,

si+1 · · · sn−1si · · · s1(χ) ≤ 0.

So, we have ∑
i
j=1(aj+1 − aj)αj + (ai+1 − a1 − an−i)αi+1 + ∑

n−1
k=i+2(ai+2 − an−1)αk ≤ 0.

Since χ is dominant, we have ai+1 ≤ ai ≤ · · · ≤ a2 ≤ a1, ai+1 ≤ ai+2 ≤ · · · ≤ an−1 and

2ai+1 − ai − ai+1 ≥ 0 then ai+1 = ai = ai+2. Similarly, we can prove that a1 = a2 = · · · = an−1.

Therefore χ = a1(α1 + α2 + · · · + αn−1). Since χ is indecomposable and ai ∈ N, we have

a1 = 1. Hence χ = α1 + α2 + · · ·+ αn−1.

Lemma 3.11. Let G be a simple adjoint group of type An−1. Let χ = iω1 + ωn−i ∈ X(T)+i for

some 2 ≤ i ≤ n − 3, then we have dim(H0(G/B,Lχ)T) > n − 1.

Proof. Since χ = iωi + ωn−i, each integer in {1, 2, . . . , n} occurs in the standard young

tableau corresponding to T-invariant standard monomial of shape χ (refer to [Ses85] for

standard monomial) exactly once. Hence, dim(H0(G/B,Lχ)T) = (n−1
i ). Since 2 ≤ i ≤ n − 3,
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i < n− 2 and so i − j < n− (j + 2) for j = 1, 2, . . . , i − 2 . So, we have (n− 2)(n − 3) · · · (n−

i) > i!. Hence, (n−1
i ) > n − 1. Therefore, dim(H0(G/B,Lχ)T) > n − 1.

Lemma 3.12. Let G be a simple adjoint group of type An−1. Let χ = ωi + iωn−1 ∈ X(T)+i for

some 2 ≤ i ≤ n − 3, then dim(H0(G/B,Lχ)T) > n − 1.

Proof. Let w0 be longest Weyl group element. Since χ = ωi + iωn−1 ∈ X(T)+i ,−w0χ =

iω1 + ωn−i ∈ X(T)+i . Since H0(G/B,Lχ)∗ = H0(G/B,L−w0χ) , dim(H0(G/B,Lχ)T) =

dim(H0(G/B,L−w0χ)T). By the previous Lemma, we have dim(H0(G/B,L−w0χ)T) > n − 1.

Hence, we have dim(H0(G/B,Lχ)T) > n − 1.

Lemma 3.13. Let G be a simple adjoint group of type An−1, n 6= 4. Let χ ∈ X(T)+. If w ∈ W

is Coxeter element such that X(w)ss
T (Lχ) 6= ∅, then {i ∈ {1, · · · , n} : l(wsi) = l(w) − 1} ⊆

{1, n − 1}.

Proof. Let χ = ∑
n−1
i=1 aiαi, where ai ∈ N. Suppose there is a 2 ≤ i ≤ n − 2 such that

l(wsi) = l(w) − 1. Since wχ ≤ 0 we have ai−1 + ai+1 ≤ ai. Since 〈χ, αi−1〉 ≥ 0 and

〈χ, αi+1〉 ≥ 0 we have 2ai−1 ≥ ai−2 + ai and 2ai+1 ≥ ai + ai+2. So, we have

2ai ≥ 2(ai−1 + ai+1) ≥ 2ai + ai−2 + ai+2.

Then, ai−2 + ai+2 = 0.

=⇒ ai−2 = ai+2 = 0.

=⇒ i − 2 ≤ 0 and i + 2 ≥ n.

=⇒ i = 2 and i = n − 2

=⇒ i = 2 and n = 4. This contradicts the assumption n 6= 4. This completes the proof of

the lemma.

We now prove the following theorem.

Theorem 3.14. Let G be a simple adjoint group over C. Let χ ∈ X(T)+i be such that

there is a Coxeter element w ∈ W for which X(w)ss
T (Lχ) 6= ∅. Then, the graded algebra

⊕
d∈Z≥0

H0(G/B,L⊗d
χ )T is a polynomial ring if and only if dim(H0(G/B,Lχ)T) ≤ rank(G).

Proof. We prove the theorem by using case by case analysis.

For a given simple adjoint group G and for any indecomposable dominant character χ

of T such that X(w)ss
T (Lχ) 6= ∅ for some Coxeter element w in W, we prove that either

the graded algebra
⊕

d∈Z≥0
H0(G/B,L⊗d

χ )T is a polynomial ring and dim(H0(G/B,Lχ)T) ≤

rank(G) or the graded algebra
⊕

d∈Z≥0
H0(G/B,L⊗d

χ )T is a not polynomial ring and dim(H0(G/B,Lχ)T) > rank(G).
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Type An−1, n 6= 4: By Lemma 3.9, if w ∈ W is a Coxeter elements w such that X(w)ss
T (Lχ) is

non empty then w = si+1. · · · sn−1si · · · s1 for some 1 ≤ i ≤ n − 2 or w = s1 · · · sn−1.

When w = sn−1 · · · s1 by using Lemma 3.8(ii), the indecomposable dominant character

χ of T for which X(w)ss
T (Lχ) is non empty are χ = iω1 + ωn−i for 1 ≤ i ≤ n − 1.

If i=n-1: χ = nω1, in this case there is only one T-invariant monomial. Hence
⊕

d∈Z≥0
H0(G/B,L⊗d

χ )T is a polynomial ring in one variable.

If i=n-2: We have χ = (n − 2)ω1 + ω2. dim(H0(G/B,Lχ)T) = n − 1. Consider the map φ :

C[X1, · · · , Xn−1] −→
⊕

d∈Z≥0
H0(G/B,L⊗d

χ )T is given by Xi 7−→ p1i p2 p3 · · · pi−1pi+1 · · · Pn,

where p1i, p2, p3, . . . pi−1, pi+1, . . . , Pn are Plüker coordinates. Using the standard monomial

of shape dχ we can see that φ is surjective. So, we have

(1) the surjective map φ : C[X1, · · · , Xn−1] −→
⊕

d∈Z≥0
H0(G/B,L⊗d

χ )T.

Let P = P1 ∩ P2. Since
⊕

d∈Z≥0
H0(G/B,L⊗d

χ )T =
⊕

d∈Z≥0
H0(G/P,L⊗d

χ )T, we have

(2) the Krull dimension of
⊕

d∈Z≥0
H0(G/B,L⊗d

χ )T = n − 1.

From (1) and (2), we conclude that the map C[X1, · · · , Xn−1] −→
⊕

d∈Z≥0
H0(G/B,L⊗d

χ )T is an isomorphism. Hence
⊕

d∈Z≥0
H0(G/B,L⊗d

χ )T is a poly-

nomial ring.

If 2 ≤ i ≤ n − 3: we have χ = iω1 + ωn−i, by Lemma 3.11 we have dim(H0(G/B,Lχ)T) >

n − 1.

Claim:
⊕

d∈Z≥0
H0(G/B,L⊗d

χ )T is not a polynomial ring.

Let P = P1 ∩ Pn−i. Since
⊕

d∈Z≥0
H0(G/B,L⊗d

χ )T =
⊕

d∈Z≥0
H0(G/P,L⊗d

χ )T, we have

the krull dimension of
⊕

d∈Z≥0
H0(G/B,L⊗d

χ )T = 1 + i(n − 1 − i). On the other hand we

have dim(H0(G/B,Lχ)T) = (n
i). With out loss of generality we assume i ≤ (n − 1)/2.

So, we have i(n − 1 − i) < (n − 1)(n − i)/2. Since i ≤ n − 3, i − j < n − (j + 2) for j =

1, . . . , i − 3. So, we have (n − 2)(n − 3) · · · (n − i + 1) > 34̇ · · · i. =⇒ (n
i) > 1 + i(n − 1 − i).

Then, we have dim(H0(G/B,Lχ)T) > Krull dimension of
⊕

d∈Z≥0
H0(G/B,L⊗d

χ )T. Hence
⊕

d∈Z≥0
H0(G/B,L⊗d

χ )T is not a polynomial ring.

If i = 1: we have χ = ω1 + ωn−1 = α1 + · · · + αn−1. By Theorem 3.3, we have the ring
⊕

d∈Z≥0
H0(G/B,L⊗d

α1+···+αn−1
)T is a polynomial ring.

When w = s1 · · · sn−1, By Lemma 3.9, the indecomposable dominant character χ of T

for which X(w)ss
T (Lχ) is non empty are χ = ωi + iωn−1 for 1 ≤ i ≤ n − 1.



Chapter 3. Torus quotients of flag varieties 54

If i = n − 1: we have χ = nωn−1. Since −w0χ = nω1,
⊕

d∈Z≥0
H0(G/B,L⊗d

χ )T and
⊕

d∈Z≥0
H0(G/B,L⊗d

nω1
)T are isomorphic. We proved that

⊕
d∈Z≥0

H0(G/B,L⊗d
nω1

)T is a poly-

nomial ring. Hence
⊕

d∈Z≥0
H0(G/B,L⊗d

χ )T is a polynomial ring.

If i=n-2: In this case χ = ωn−2 + (n − 2)ωn−1. Since −w0χ = ω2 + (n −

2)ω1,
⊕

d∈Z≥0
H0(G/B,L⊗d

χ )T and
⊕

d∈Z≥0
H0(G/B,L⊗d

ω2+(n−2)ω1
)T are isomorphic.

We proved that
⊕

d∈Z≥0
H0(G/B,L⊗d

ω2+(n−2)ω1
)T is a polynomial ring. Hence

⊕
d∈Z≥0

H0(G/B,L⊗d
χ )T is a polynomial ring.

If 2 ≤ i ≤ n − 3: χ = ωi + iωn−1, by Lemma 3.12, we have dim(H0(G/B,Lχ)T) > n − 1.

claim:
⊕

d∈Z≥0
H0(G/B,L⊗d

χ )T is not a polynomial ring.

Since −w0χ = ωn−i + iω1,
⊕

d∈Z≥0
H0(G/B,L⊗d

χ )T and
⊕

d∈Z≥0
H0(G/B,L⊗d

ωn−i+iω1
)T are

isomorphic. We proved that
⊕

d∈Z≥0
H0(G/B,L⊗d

ωn−i+iω1
)T is not a polynomial ring. Hence

⊕
d∈Z≥0

H0(G/B,L⊗d
χ )T is not a polynomial ring.

If i = 1: we have χ = ω1 + ωn−1 = α1 + · · · + αn−1. By Theorem 3.3, we have the ring
⊕

d∈Z≥0
H0(G/B,L⊗d

α1+···+αn−1
)T is a polynomial ring.

When w = si+1 · · · sn−1si · · · s1 , where 2 ≤ i ≤ n − 3 , by Lemma 3.10, the indecompos-

able dominant character χ such that X(w)ss
T (Lχ) is non empty is α1 + · · · + αn−1. By the

theorem 2.3, the ring
⊕

d∈Z≥0
H0(G/B,L⊗d

α1+···+αn−1
)T is a polynomial ring.

Type A3: The indecomposable dominant characters for which there is a Coxeter element

w such that X(w)ss
T (Lχ) is non empty are α1 + α2 + α3, 3α1 + 2α2 + α3, α1 + 2α2 + α3 and

α1 + 2α2 + 3α3.

When χ = α1 + α2 + α3 = α0, by Theorem 3.3, we have
⊕

d∈Z≥0
H0(G/B,L⊗d

χ )T is a

polynomial ring.

When χ = 3α1 + 2α2 + α3 = 4ω1, there is only one T-invariant monomial. Hence
⊕

d∈Z≥0
H0(G/B,L⊗d

χ )T is a polynomial ring in one variable.

When χ = α1 + 2α2 + 3α3 = 4ω3. Since −w0χ = 4ω1,
⊕

d∈Z≥0
H0(G/B,L⊗d

χ )T and
⊕

d∈Z≥0
H0(G/B,L⊗d

4ω1
)T are isomorphic. Hence

⊕
d∈Z≥0

H0(G/B,L⊗d
χ )T is a polynomial

ring.

Now, we deal the special case of χ = 2ω2 in A3. In this case the Coxeter element is

w = s1s3s2. Let a typical monomial ∏i<j p
mij

ij in the Plüker coordinates which is T-invariant.

Then it is easy to see that each of the indices 1, 2, 3, 4 occur same number of times. So, if p12

(resp. p13) is a factor of T-invariant monomial M, then p34 (resp. p24) is also a factor of M.

Also, if p14 is a factor of T-invariant monomial M, then p23 also a factor of M. But by the

Plüker relation we have

p14 p23 = p13 p24 − p12 p34.
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So, p13 p24 and p12 p34 generate the ring of T invariants of
⊕

d∈Z≥0
H0(G/P2,L⊗d

χ ). where P2

is the the maximal parabolic subgroup associated to α2.

(1) Hence we have a surjective map C[p13 p24, p12 p34] −→
⊕

d∈Z≥0
H0(G/P2,L⊗d

χ )T.

(2) The Krull dimension of
⊕

d∈Z≥0
H0(G/P2,L⊗d

χ )T is two.

From (1) and (2), we conclude that the map C[p13 p24, p12 p34] −→
⊕

d∈Z≥0
H0(G/P2,L⊗d

χ )T is an isomorphism. So,
⊕

d∈Z≥0
H0(G/P2,L⊗d

2ω2
)T is a polyno-

mial algebra. Hence
⊕

d∈Z≥0
H0(G/B,L⊗d

2ω2
)T is a polynomial algebra. This completes the

proof for the type An−1.

Type Bn, n 6= 2: By Theorem 4.2 in [KP09a], if G is of type Bn, the Coxeter elements w for

which there is dominant character such that X(w)ss
T (Lχ) is non empty is snsn−1 · · · s2s1. The

indecomposable dominant character with this property is χ = α1 + α2 + · · · + αn = ω1.

Now consider the standard representation C2n+1 of SO2n+1. Then

(1) dim(Sym2(C2n+1)∗)) = (n + 1)(2n + 1).

By Weyl dimension formula, the dimension of the irreducible representation V(2ω1) of

SO2n+1 is

∏
α∈Φ+

〈2ω1 + ρ, α〉

〈ρ, α〉
.

Again since 〈2ω1 + ρ, α〉 = 〈ρ, α〉 for α � α1, we have

dim(V(2ω1)) = ∏
α∈Φ+,α≥α1

〈2ω1 + ρ, α〉

〈ρ, α〉
.

The set of α ∈ Φ+ such that α ≥ α1 is {α1, α1 + α2, . . . , α1 + α2 + · · · + αn, α1 + α2 + · · · +

αn−1 + 2αn, . . . , α1 + 2(α2 + · · ·+ αn)}.

We now calculate 〈2ω1+ρ,α〉
〈ρ,α〉 for all α ≥ α1 .

〈2ω1 + ρ, α1 + · · ·+ αi〉

〈ρ, α1 + · · · αi〉
=

i + 2
i

, 1 ≤ i ≤ n − 1.

〈2ω1 + ρ, α1 + · · ·+ αn〉

〈ρ, α1 + · · · αn〉
=

2n + 3
2n − 1

.

〈2ω1 + ρ, α1 + · · ·+ αi−1 + 2(αi + · · · αn)〉

〈ρ, α1 + · · ·+ αj−1 + 2(αj + · · · αn)〉
=

2n − j + 2
2n − j

, 2 ≤ j ≤ n.
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Hence, we have

(2) dim(V(2ω1)) = ∏
α∈Φ+,α≥α1

〈2ω1 + ρ, α〉

〈ρ, α〉
= n(2n + 3).

From (1) and (2) we can conclude that (Sym2((C2n+1)∗)SO2n+1 is one dimensional, namely

generated by the quadratic form q which defines the orthogonal group SO2n+1. Hence we

have

Sym2(C2n+1)∗ = V(2ω1)
∗ + Cq,

where q = ∑
n
i=1 XiX2n+2−i. Since q-vanishes on SO2n+1(C)/P1, where P1 is the maxi-

mal parabolic associated to α1, there is a unique quadratic relation among the variables

XiX2n+2−i, i = 1, 2, . . . , n + 1 on SO2n+1(C)/P1 , namely aX2
n+1 = ∑

n
i XiX2n+2−i for some

non zero a ∈ C on SO2n+1(C)/P1 (refer to [LMS74]).

Now, we explain all the T-invariant polynomials restricted to SO2n+1(C)/P1. Take

a T-invariant polynomial Xm1
1 Xm2

2 · · · Xm2n+1
2n+1 with mi = m2n+2−i. The above re-

latilon implies that every T-invariant polynomial restricted to SO2n+1(C)/P1 (re-

striction as a section) is a linear combination of the monomials of the form

(X1X2n+1)
r1(X2X2n)r2 · · · (Xn−1Xn+3)rn−1(XnXn+2)rn for some r′is in Z≥0. Thus

(3) the map C[X1X2n+1, X2X2n, . . . Xn−1Xn+3, XnXn+2] →
⊕

d∈Z≥0
H0(G/P1,L⊗d

2ω1
)T is

onto.

On the other hand, we have dim(U−
P1
) = |{α ∈ R+ : α ≥ α1}| = 2n − 1, where U−

P1
be

unipotent radical of the opposite parabolic subgroup of P1 determined by T and B. Since

U−
P1

is open subset of G/P1, the dimension of the affine cone over G/P1 is of dimension 2n.

So we have

(4) the Krull dimension of
⊕

d∈Z≥0
H0(G/P1,L⊗d

2ω1
)T is 2n − n = n.

From (3) and (4), we conclude that

⊕

d∈Z≥0

H0(G/P1,L⊗d
ω1

)T = C[X1X2n+1, X2X2n, . . . , Xn−1Xn+3, XnXn+2].

Hence
⊕

d∈Z≥0
H0(G/B,L⊗d

ω1
)T is a polynomial ring.

Now we prove that dim(H0(G/B,L2ω1)
T) ≤ rank(G). The T-invariant monomials in

Sym2((C2n+1)∗) are of the form XiXj for some 1 ≤ i ≤ n + 1, j = 2n + 2 − i. Hence we have

dim(Sym2((C2n+1)∗))T) is n+ 1. Since Sym2((C2n+1)∗) = V(2ω1)
∗+Cq, dim(V(2ω1)

T) = n.

Hence dim(H0(G/B,L2ω1)
T) = rank(G). This completes the proof for type Bn, n 6= 2.
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Type B2: By Theorem 4.2 in [KP09a], when G is of type B2, the Coxeter elements w for

which there is dominant character such that X(w)ss
T (Lχ) is non empty are s2s1 and s1s2.

The indecomposable dominant character with this property for the Coxeter element s2s1

is χ = α1 + α2. In this case using similar arguments as in type Bn, n 6= 2, we can prove that

the ring
⊕

d∈Z≥0
H0(G/B,L⊗d

χ )T is a polynomial ring.

The indecomposable dominant character χ for the Coxeter element w = s1s2 for

which X(w)ss
T (Lχ) is non empty is χ = α1 + 2α2 = α0. By Theorem 3.3, the ring

⊕
d∈Z≥0

H0(G/B,L⊗d
α0

)T is a polynomial ring.

Type Cn: When G is of the type Cn, by Theorem 4.2 of [KP09a], the only Coxeter el-

ement w for which there is dominant character such that X(w)ss
T (Lχ) is non empty

is w = snsn−1 · · · s2s1. Further, the indecomposable dominant character χ with this

property is 2ω1 = 2(∑i 6=n αi) + αn = α0. By Theorem 3.3, the ring of T-invariants
⊕

d∈Z≥0
H0(G/B,L⊗d

ω1
)T is a polynomial ring.

We now prove that dim(H0(G/B,L2ω1)
T) = rank(G). Since χ = α0, H0(G/B,Lχ) = g.

So, we have H0(G/B,Lχ)T = h. Hence, dim(H0(G/B,L2ω1)
T) = rank(G).

Type D4: By Theorem 4.2 of [KP09a], the only Coxeter elements w ∈ W for which there exist

a dominant weight χ such that X(w)ss
T (Lχ) is non empty are s4s3s2s1, s4s1s2s3 and s3s1s2s4.

The indecomposable dominant characters with this property are 2(α1 + α2) + α3 + α4, 2(α3 +

α2) + α1 + α4 and 2(α4 + α2) + α1 + α3 to the Coxeter elements s4s3s2s1, s4s1s2s3 and s3s1s2s4

respectively.

Since there is an automorphism of the Dynkin diagram sending α1 to α3 and fixing α2

and α4 and there is also an automorphism that sends α1 to α4 and fixing α2 and α3. If σ′

is an automorphism of Dynkin diagram, we get a σ : G → G automorphism of algebraic

groups such that σ(B) = B, σ(T) = T and σ(αi) = σ′(αi) for all i = 1, · · · , 4. Further, we

have H0(G/B,Lχ) and H0(G/B,Lσ(χ)) are isomorphic as G-modules where the action of

G on H0(G/B,Lσ(χ)) via σ. Thus, H0(G/B,Lχ)T = H0(G/B,Lσ(χ))
T. So it is sufficient to

consider the case when χ = 2ω1 = 2α1 + 2α2 + α3 + α4.

Now consider the standard representation C8 of SO8. Then, we have

(1) dim(Sym2((C8)∗)) = 36.

By using Weyl dimension formula and by proceeding with similar calculation above we

can see that the dimension of the irreducible representation V(2ω1) is 35. (2)
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From (1) and (2), we have

Sym2((C8)∗) = V(2ω1)
∗ + Cq,

where q = ∑
8
i=1 XiX9−i. Since q-vanishes on SO8(C)/P1, where P1 is the maximal parabolic

associated to α1, there is a unique quadratic relation among the variables XiX9−i, i =

1, 2, 3, 4 on SO8(C)/P1, namely −X1X8 = ∑
4
i XiX9−i on SO8(C)/P1(refer to [LMS74]).

Now we explain all the T-invariant polynomials restricted to SO8(C)/P1. Take a T-

invariant polynomial Xm1
1 Xm2

2 · · · Xm8
8 with mi = m9−i. The above relatilon implies that every

T-invariant polynomial restricted to SO8(C)/P1 is a linear combination of the monomials

of the form (X2X7)m2(X3X6)m3 · · · (X4X5)m4 . Thus

(3) the map C[X2X7, X3X6, X4X5] →
⊕

d∈Z≥0
H0(G/P1,L⊗d

2ω1
)T is onto.

On the other hand we have dim(U−
P1
) = |{α ∈ R+ : α ≥ α1}| = 6, where U−

P1
be unipotent

radical of the opposite parabolic subgroup of P1 determined by T and B.

Hence the dimension of the affine cone G/P1 is of dimension 7.

So, we have

(4) the Krull dimension of
⊕

d∈Z≥0
H0(G/P1,L⊗d

2ω1
)T is 3.

From (3) and (4), we conclude that
⊕

d∈Z≥0
H0(G/P1,L⊗d

2ω1
)T is a polynomial ring. Hence

⊕
d∈Z≥0

H0(G/B,L⊗d
2ω1

)T is a polynomial ring.

Now, we prove that dim(H0(G/B,L2ω1)
T) ≤ rank(G).

The T-invariant monomials in Sym2((C8)∗) are of the form XiXj for 1 ≤ i ≤ 4, j = 9 − i.

Hence, we have dim(Sym2((C8)∗)T) is 4. Since Sym2((C8)∗) = V(2ω1)
∗ + Cq, we have

dim(V(2ω1)
T) = 3. Hence, dim(H0(G/B,L2ω1)

T) ≤ rank(G).

Type Dn, n 6= 4: By Theorem 4.2 of [KP09a], the Coxeter element w for which there is dom-

inant character such that X(w)ss
T (Lχ) is non empty is snsn−1 · · · s2s1. The indecomposable

dominant character with this property is χ = 2ω1 = 2(α1 + · · · + αn−2) + αn−1 + αn. Proof

in this case is similar to that of χ = 2ω1 in type Bn.

For other types : By Theorem 4.2 of [KP09a], there is no Coxeter element w and dominant

character χ such that X(w)ss
T (Lχ) is non empty.

Suppose that there exists a Coxeter element c ∈ W such that X(c)ss
T (Lχ) 6= ∅. Then, we

have
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Corollary 3.15. The GIT quotient T\\(G/B)ss
T (Lχ) is isomorphic to a weighted projective space if

and only if dim(H0(G/B,Lχ)T) ≤ rank of G.

In fact, when this holds, T\\(G/B)ss
T (Lχ) is isomorphic to a projective space in its anti-

tautological embedding (that is, the polynomial generators of its homogeneous coordinate

ring all lie in degree 1). In particular, we have

Corollary 3.16. The polarized variety (T\\(G/B)ss
T (Lχ), M) is projectively normal, where M is

the descent of Lχ to the quotient T\\(G/B)ss
T (Lχ).

We prove the following.

Corollary 3.17. Let G be a simple adjoint group over C. Let χ ∈ X(T)+i be such that there is a

Coxeter element w ∈ W such that X(w)ss
T (Lχ) 6= ∅ then

(i) In type An−1: If further, the dim(H0(G/B,Lχ)T) ≥ rank(G) then the NG(T) invariants of the

homogeneous coordinate ring
⊕

d∈Z≥0
H0(G/B,L⊗d

χ ) is a polynomial ring.

(ii) For other types the NG(T) invariants of the homogeneous coordinate ring
⊕

d∈Z≥0
H0(G/B,L⊗d

χ ) is a polynomial ring.

Proof. When G is of type An, B2 or Cn, and χ = α0, the highest long root, then, the ring of

T-invariants of the homogeneous coordinate ring
⊕

d∈Z≥0
H0(G/B,L⊗d

χ ) is isomorphic to

C[h], and so the W-invariants of C[h] is a polynomial ring by [Chevalley, Shephard-Todd,

Serre]. In the case of χ = 2ω1 of type Bn, by Theorem 2.11, we have

⊕

d∈Z≥0

H0(G/B,L⊗d
χ )T = C[X1X2n+1, X2X2n, . . . XnXn+2].

The action of the Weyl group Sn ⋉ (Z/2Z)n on the space ∑
n
i=1 CXiX2n+2−i factor through

the natural map Sn ⋉ (Z/2Z)n −→ Sn. Further the resulting action of Sn on ∑
n
i=1 CXiX2n+i

is given by the natural action of Sn on Cn. So , the ring of W- invariants of
⊕

d∈Z≥0
H0(G/B,L⊗d

χ )T is a polynomial ring generated by the elementary symmetric poly-

nomials in the variables {XiX2n+2−i : i = 1, . . . , n}.

When G is of type A3, the Weyl group is S4, and let V be the two dimen-

sional vector space generated by p12 p34 and p13 p24. Then, the ring of T-invariants of
⊕

d∈Z≥0
H0(G/B,L⊗d

α1+2α2+α3
) is Sym(V). So, we have the two dimensional representation

of S4. Actually, this representation is the standard two dimensional represenation of S3,

and it factors through the surjective homomorphism φ : S4 −→ S3 given by the natural

homomorphism from S4 −→ S4/{id, (12)(34), (14)(23), (13)(24)}.

For the case of Dn, the proof is similar to that of Bn.





Chapter 4

Cohomology of the Tangent bundle of

BSDH-variety

-

Let G be a simple algebraic group of adjoint type over the field of complex numbers, B

be a Borel subgroup of G containing a maximal torus T of G, w be an element of the Weyl

group W and X(w) be the Schubert variety in G/B corresponding to w. Let Z(w, i) be the

Bott-Samelson-Demazure-Hansen variety (the desingularization of X(w)) corresponding to

a reduced expression i of w.

In this chapter, we prove the vanishing results of cohomology of the tangent bunlde of

the BSDH-variety Z(w, i).

4.1 Cohomology of line bundles

Now, we recall the following result due to Demazure ([Dem76], Page 1) on a short exact

sequence of B-modules:

Lemma 4.1. Let α be a simple root and λ ∈ X(T) be such that 〈λ, α〉 ≥ 0. Let ev denote the

evaluation map H0(sα, λ) −→ Cλ. Then we have

1. If 〈λ, α〉 = 0, then H0(sα, λ) ≃ Cλ.

2. If 〈λ, α〉 ≥ 1, then Csα(λ) →֒ H0(sα, λ) and there is a short exact sequence of B-modules:

0 −→ H0(sα, λ − α) −→ H0(sα, λ)/Csα(λ)
ev
−→ Cλ −→ 0.

Further more, H0(sα, λ − α) = 0 if 〈λ, α〉 = 1.
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3. Let n = 〈λ, α〉. As a B-module, H0(sα, λ) has a composition series

0 ( Vn ( Vn−1 ( . . . ( V0 = H0(sα, λ)

such that Vi/Vi+1 ≃ Cλ−iα for i = 0, 1, . . . , n − 1 and Vn = Csα(λ).

Recall ρ as a half sum of positive roots. We define the dot action by w · λ = w(λ + ρ)− ρ

for any w ∈ W and λ ∈ X(T)⊗ R. Note that sα · 0 = −α for α ∈ S. As a consequence of the

exact sequences of Lemma 4.1, we can prove the following.

Let w ∈ W, α be a simple root, and set v = wsα.

Lemma 4.2. If l(w) = l(v) + 1, then we have

1. If 〈λ, α〉 ≥ 0, then H j(w, λ) = H j(v, H0(sα, λ)) for all j ≥ 0.

2. If 〈λ, α〉 ≥ 0, then H j(w, λ) = H j+1(w, sα · λ) for all j ≥ 0.

3. If 〈λ, α〉 ≤ −2, then H j+1(w, λ) = H j(w, sα · λ) for all j ≥ 0.

4. If 〈λ, α〉 = −1, then H j(w, λ) vanishes for every j ≥ 0.

Proof. Choose a reduced expression of w = si1 si2 · · · sir with αir = α. Hence v = si1 si2 · · · sir−1

is a reduced expression for v. Let i = (i1, i2, . . . , ir) and i′ = (i1, i2, . . . , ir−1). Now consider

the morphism fr : Z(w, i) −→ Z(v, i′) defined as above.

Proof of (1): Since 〈λ, α〉 ≥ 0, we have H j(sα, λ) = 0 for every j > 0. Hence using the

isomorphism (Iso), we have Rj fr∗L(w, λ) = 0 for every j > 0. Therefore, by [Har77, p.252,

III, Ex 8.1] we have Hi(w, λ) = Hi(v, H0(sα, λ)) for every i ≥ 0.

Proof of (3): Since 〈λ, α〉 ≤ −2, by using (Borel-Weil-Bott theorem) [Dem76, Theorem 2

(c)] for Lα/Bα(≃ Pα/B); we have Hi(sα, λ) = 0 for i 6= 1 and H1(sα, λ) = H0(sα, sα · λ). By

(Iso), we have Rj fr∗L(w, λ) = 0 for every j 6= 1. Hence by using Leray spectral sequence,

we see that H j+1(w, λ) = H j(v, R1 fr∗L(w, λ)) = H j(v, H1(sα, λ)) (see [Wei95, p.152, Section

5.8.6]). Hence H j+1(w, λ) = H j(v, H0(sα, sα · λ)) for every j ≥ 0. Since 〈sα · λ, α〉 ≥ 0, by (1)

we have H j(v, H0(sα, sα · λ)) = H j(w, sα · λ) for every j ≥ 0. Hence we have H j+1(w, λ) =

H j(w, sα · λ) for every j ≥ 0.

Proof of (2): It follows from (3) by interchanging the role of λ and sα · λ, because 〈sα ·

λ, α〉 = −〈λ, α〉 − 2.

Proof of (4): If 〈λ, α〉 = −1, then Hi(sα, λ) = 0 for every i ≥ 0 (see [Jan07, p.218,

Proposition 5.2(b)]). Now the proof of (4) follows by using similar arguments as in (1) and

(3).
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The following consequence of Lemma 4.2 will be used to compute cohomology modules.

Let π : G̃ −→ G be the simply connected covering of G. Let L̃α (respectively, B̃α be the

inverse image of Lα (respectively, Bα ) in G̃ under π.

Lemma 4.3. Let V be an irreducible L̃α-module. Let λ be a character of B̃α. Then, we have

1. As L̃α-modules, H j(L̃α/B̃α, V ⊗ Cλ) ≃ V ⊗ H j(L̃α/B̃α, Cλ) for every j ≥ 0.

2. If 〈λ, α〉 ≥ 0, H j(L̃α/B̃α, V ⊗ Cλ) = 0 for every j ≥ 1.

3. If 〈λ, α〉 ≤ −2, H0(L̃α/B̃α, V ⊗ Cλ) = 0, and

H1(L̃α/B̃α, V ⊗ Cλ) ≃ V ⊗ H0(L̃α/B̃α, Csα·λ).

4. If 〈λ, α〉 = −1, then H j(L̃α/B̃α, V ⊗ Cλ) = 0 for every j ≥ 0.

Proof. Proof (1). By [Jan07, p.53, I, Proposition 4.8] and [Jan07, p.77, I, Proposition 5.12], for

all j ≥ 0, we have the following isomorphism of L̃α-modules:

H j(L̃α/B̃α, V ⊗ Cλ) ≃ V ⊗ H j(L̃α/B̃α, Cλ).

Proof of (2), (3) and (4) follows from Lemma 4.2 by taking w = sα and the fact that

L̃α/B̃α ≃ Pα/B.

Recall the structure of indecomposable Bα-modules and B̃α-modules (see [BKS04, p.130,

Corollary 9.1]).

Lemma 4.4.

1. Any finite dimensional indecomposable B̃α-module V is isomorphic to V ′ ⊗ Cλ for some irre-

ducible representation V ′ of L̃α and for some character λ of B̃α.

2. Any finite dimensional indecomposable Bα-module V is isomorphic to V ′ ⊗ Cλ for some irre-

ducible representation V ′ of L̃α and for some character λ of B̃α.

Proof. Proof of (1) follows from [BKS04, p.130, Corollary 9.1].

Proof of (2) follows from the fact that every Bα-module can be viewed as a B̃α-module

via the natural homomorphism.

Now, we prove the following:
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Corollary 4.5. Let w = si1 si2 · · · sir be a reduced expression for w such that 〈αij
, αir〉 = 0 for every

j = 1, 2, . . . , r − 1. Then, H0(w, αir) is isomorphic to H0(sir , αir)(≃ sl2,αir
).

Proof. Since Lαir
/Bαir

→֒ Pαir
/B is an isomorphism, we have

sl2,αir
≃ H0(Lαir

/Bαir
, αir) ≃ H0(sir , αir).

We note that sl2,αir
gets a natural B-module structure via the above isomorphism sl2,αir

≃

H0(sir , αir).

Let v = si1 si2 · · · sir−1 . If l(v) = 0, then w = sir and we are done. Otherwise, let

v
′
= si2 · · · sir−1 . By induction on l(v), we have

H0(si2 · · · sir , αir) = H0(sir , αir).

By SES, we have

H0(w, αir) = H0(si1 , H0(si2 . . . sir , αir)) = H0(si1 , H0(sir , αir)).

Since 〈αir , αi1〉 = 0 and 〈−αir , αi1〉 = 0, by Lemma 4.4, H0(sir , αir) is the trivial Bαi1
-

module of dimension 3. Hence, the vector bundle L(si1 , H0(sir , αir)) on X(si1) ≃ P1 is the

trivial bundle of rank 3. Thus, we have

H0(si1 , H0(sir , αir)) = H0(sir , αir).

We recall the following vanishing results from [Kan13] (see [Kan13, Corollary 3.6] and

[Kan13, Corollary 4.10]).

Lemma 4.6. Let w ∈ W, and α ∈ R+. Then, we have

1. H j(w, α) = 0 for all j ≥ 2.

2. If G is simply laced, H j(w, α) = 0 for all j ≥ 1.

4.2 Vanishing of the Higher Cohomology of the Tangent Bundle

of Z(w, i)

In this section, we prove that a BSDH variety has unobstructed deformations and it has no

deformations whenever the group G is simply laced.
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We recall that the BSDH-variety corresponding to a reduced expression w = si1 si2 · · · sir

is denoted by Z(w, i) and we denote the tangent bundle of Z(w, i) by T(w,i), where i =

(i1, i2, . . . , ir).

Let w = si1 si2 · · · sir , v = si1 si2 · · · sir−1 and i′ = (i1, i2, . . . , ir−1). Note that l(v) = l(w)− 1.

Consider the fibration fr : Z(w, i) −→ Z(v, i′) as in Section 2. One can easily see that this

fibration is the fibre product of πr : G/B → G/Pαir
and πr ◦ φv : Z(v, i′) → G/Pαir

; namely,

we have the following commutative diagram :

Z(v, i′)×G/Pαir
G/B = Z(w, i)

fr

��

φw // G/B

πr

��
Z(v, i′)

πr◦φv // G/Pαir

The relative tangent bundle of πr is the line bundle L(w0, αir). Hence the relative tangent

bundle of fr is φ∗
wL(w0, αir). By taking the differentials of this smooth fibration fr we obtain

the following exact sequence:

0 → φ∗
wL(w0, αir) → T(w,i) → f ∗r T(v,i′) → 0. (rel)

We use the above short exact sequence (rel) and Lemma 4.6 to prove the following:

Theorem 4.7. Let w ∈ W, w = si1 si2 · · · sir be a reduced expression for w and let i = (i1, i2, . . . , ir).

Then, we have

1. H j(Z(w, i), T(w,i)) = 0 for all j ≥ 2.

2. If G is simply laced, H j(Z(w, i), T(w,i)) = 0 for all j ≥ 1.

Proof. We start by proving (2). We first recall the following isomorphism (see [BK07, Theo-

rem 3.3.4(b) ]):

H j(Z(w, i), φ∗
wL(w0, αir)) ≃ H j(X(w),L(w, αir)) = H j(w, αir) f or all j ≥ 0.

Let v = si1 si2 · · · sir−1 and i′ = (i1, i2, . . . , ir−1). Since fr : Z(w, i) −→ Z(v, i′) is a smooth

fibration with fibre P1, by using [Har77, p.288, Corollary 12.9] and [Jan07, p.369, Section

14.6(3) ] we have H j(Z(w, i), f ∗r T(v,i′)) = H j(Z(v, i′), T(v,i′)) for every j ≥ 0.

By considering the long exact sequence associated to the short exact sequence (rel) and

using above arguments, we have the following long exact sequence of B-modules:

0 −→ H0(w, αir) −→ H0(Z(w, i), T(w,i)) −→ H0(Z(v, i′), T(v,i′)) −→ H1(w, αir) −→
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H1(Z(w, i), T(w,i)) −→ H1(Z(v, i), T(v,i′)) −→ H2(w, αir) −→ H2(Z(w, i), T(w,i)) −→

H2(Z(v, i′), T(v,i′)) −→ H3(w, αir) −→ · · · .

Since G is simply laced, by Lemma 4.6 (2), we have H j(w, αir) = 0 for every j ≥ 1. Thus

we have H j(Z(w, i), T(w,i)) = H j(Z(v, i′), T(v,i′)) for every j ≥ 1. Now the proof follows by

induction on l(w).

Proof of (1) is similar by using Lemma 4.6 (1).

Note: The long exact sequence associated to the short exact sequence (rel) which is

considered in the proof of the Proposition 4.7 will be used frequently in the future. We call

this LES.

Theorem 4.7(1) yields H2(Z(w, i), T(w,i)) = 0. Hence, we see that Z(w, i) has unob-

structed deformations. That is, Z(w, i) admits a smooth versal deformation (see [Huy06,

p.273, lines 19-21]).

If in addition G is simply laced, Theorem 4.7(2) yields H1(Z(w, i), T(w,i)) = 0. Using

[Huy06, p. 272, Proposition 6.2.10], we see that Z(w, i) has no deformations. That is, a

BSDH variety for a simply laced group G is rigid.



Chapter 5

Automorphism group of a

BSDH-variety

In this chapter, we compute the connected component Aut0(Z(w, i)) of the automorphism

group of Z(w, i) containing the identity automorphism. We show that Aut0(Z(w, i)) con-

tains a closed subgroup isomorphic to B if and only if w−1(α0) < 0, where α0 is the high-

est root. If w0 denotes the longest element of W, then we prove that Aut0(Z(w0, i)) is a

parabolic subgroup of G. It is also shown that this parabolic subgroup depends very much

on the chosen reduced expression i of w0 and we describe all parabolic subgroups of G that

occur as Aut0(Z(w0, i)). If G is simply laced, then we show that for every w ∈ W, and

for every reduced expression i of w, Aut0(Z(w, i)) is a quotient of the parabolic subgroup

Aut0(Z(w0, j)) of G for a suitable choice of a reduced expression j of w0 (see Theorem 5.19).

5.1 Cohomology of the relative tangent bundle on Z(w, i)

In this section, we compute the cohomology groups of the relative tangent bundle on

Z(w, i).

We use the notation as in the previous chapter. For a B-module V and a character

µ ∈ X(T), we denote by Vµ, the weight space for the action of T. By the definition, it is the

space of all vectors v in V such that t · v = µ(t)v for all t ∈ T. We denote by dim(Vµ) the

dimension of the space Vµ.

Given a character λ ∈ X(T) and a simple root γ ∈ S such that 〈λ, γ〉 ≥ 0, we recall that

the γ-string of λ is the set {λ, λ − γ, . . . , λ − 〈λ, γ〉γ} of weights, which by Lemma 4.1, is

the set of weights occuring in H0(sγ, λ).
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Recall the partial order ≤ on X(T) given by µ ≤ λ if λ − µ is a non-negative integral

linear combination of simple roots. We say that µ < λ if in addition λ − µ is non zero.

We begin by proving the following lemma:

Let Rs (respectively, R−
s ) be the set of short roots (respectively, negative short roots).

Lemma 5.1. Let V be a B-module and let w ∈ W. Then we have

1. If there is a character λ0 ∈ X(T) such that Vµ = 0 unless µ ≤ λ0 (respectively, µ < λ0),

then H0(w, V)µ = 0 unless µ ≤ λ0 (respectively, µ < λ0).

2. If Vµ = 0 for every µ ∈ X(T) \ (R ∪ {0}), then H0(w, V)µ = 0 for every µ ∈ X(T) \ (R ∪

{0}).

3. If Vµ = 0 for every µ ∈ X(T) \ (Rs ∪ {0}), then H0(w, V)µ = 0 for every µ ∈ X(T) \ (Rs ∪

{0}).

4. If Vµ = 0 for every µ ∈ X(T) \ (R−
s ∪ {0}), then H0(w, V)µ = 0 for every µ ∈ X(T) \

(R−
s ∪ {0}).

Proof. Proof of (1): Let V be a B-module and λ0 ∈ X(T) such that Vµ = 0 if µ � λ0. Proof

is by induction on l(w). If l(w) = 0 there is nothing to prove. Otherwise, we can choose a

γ ∈ S such that l(sγw) = l(w)− 1. Let u = sγw. By SES, the B-modules H0(sγ, H0(u, V))

and H0(w, V) are isomorphic.

Let µ ∈ X(T) be a weight of H0(w, V) (i.e, H0(w, V)µ 6= 0). Then there is an indecom-

posable Bγ-summand V ′ of H0(u, V) such that H0(sγ, V ′)µ 6= 0. By Lemma 4.4, we have

V ′ = V ′′ ⊗ Cµ′ for some irreducible L̃γ-module V ′′ and for some character µ′ of B̃γ. By

Lemma 4.3, we have H0(sγ, V ′) = V ′′ ⊗ H0(sγ, µ′) and 〈µ′, γ〉 ≥ 0. Now, let µ′′ be the

highest weight of V ′′. Then, H0(sγ, V ′) = H0(sγ, µ′′)⊗ H0(sγ, µ′). By the description of the

weights of H0(sγ, µ′′)⊗ H0(sγ, µ′), any weight λ of H0(sγ, V ′) is of the form λ = µ1 + µ2

where µ1 = µ′′ − a1γ and µ2 = µ′ − a2γ for some integers 0 ≤ a1 ≤ 〈µ′′, γ〉, 0 ≤ a2 ≤ 〈µ′, γ〉.

Thus, we have λ = µ′′ + µ′ − (a1 + a2)γ.

Hence, any weight λ of H0(sγ, V ′) satisfies λ ≤ µ′ + µ′′. In particular, µ ≤ µ′ + µ′′. Note

that since µ′ + µ′′ is the highest weight of H0(sγ, V ′), H0(u, V)µ′+µ′′ 6= 0. By induction on

l(w), µ′ + µ′′ ≤ λ0. Hence, we have µ ≤ λ0.

Proof of Vµ = 0 unless µ < λ0 =⇒ H0(w, V)µ = 0 unless µ < λ0 is similar.

Proof of (2): Assume that H0(w, V)µ 6= 0. We use the same notation as in the proof

of (1). We have H0(sγ, V ′) = H0(sγ, µ′) ⊗ H0(sγ, µ′′). Since V ′
µ′+µ′′ 6= 0, by induction on

l(w), µ′ + µ′′ ∈ R ∪ {0}. By the proof of (1), the weights of H0(sγ, V ′) are of the form
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µ = µ′ + µ′′ − jγ for some integer 0 ≤ j ≤ 〈µ′ + µ′′, γ〉. If µ′ + µ′′ = 0, then j = 0 and so

µ = µ′ + µ′′ = 0. Otherwise, µ′ + µ′′ is a root, it follows that µ is a root (see [Hum72, p.45,

Section 9.4]).

Proof of (3) follows from the proof of (2) because any root in the γ-string of a short root

is short.

Proof of (4) follows from (1) (by taking λ0 = 0) and (3).

Lemma 5.2. Let w ∈ W. Then we have, H1(w, b)µ = 0 unless µ is a negative short root.

Proof. If l(w) = 0, we are done. Otherwise, choose γ ∈ S such that l(sγw) = l(w)− 1. Let

u = sγw. Then by SES, we have

0 −→ H1(sγ, H0(u, b)) −→ H1(w, b) −→ H0(sγ, H1(u, b)) −→ 0

By induction on l(w), H1(u, b)µ = 0 unless µ is a negative short root. By Lemma 5.1 (4),

H0(sγ, H1(u, b))µ = 0 unless µ is a negative short root.

Now, we prove that H1(sγ, H0(u, b))µ = 0 unless µ is a negative short root. Assume

that H1(sγ, H0(u, b))µ 6= 0. Then there exists an indecomposable Bγ-direct summand V1

of H0(u, b) such that H1(sγ, V1)µ 6= 0. By Lemma 4.4, V1 = V ′ ⊗ Cµ′ for some irreducible

L̃γ-module V ′ and for some character µ′ of B̃γ. Since H1(sγ, V1) 6= 0, by Lemma 4.3 we have

〈µ′, γ〉 ≤ −2 and H1(sγ, V1) = V ′ ⊗ H0(sγ, sγ · µ′). Then any weight µ′′ of H1(sγ, V1) is in

the γ-string from µ1 + γ = µ1 + ρ − sγ(ρ) = sγ(sγ · µ1) to sγ · µ1, where µ1 is the lowest

weight of V1.

Note that by [Kan13, Lemma 2.6], the evaluation map ev : H0(u, b) −→ b is injective.

Hence, if H0(u, b)−γ 6= 0 then C.hγ ⊕ C−γ is an indecomposable Bγ-direct summand of

H0(u, b) (here hγ is a basis vector of the zero weight space of sl2,γ). By Lemma 4.4, we have

C.hγ ⊕ C−γ = V ⊗ C−ωγ ,

where V is the standard 2- dimensional representation of L̃γ. By Lemma 4.3, we have

H0(sγ, V ⊗ C−ωγ) = V ⊗ H0(sγ,−ωγ).

Since 〈−ωγ, γ〉 = −1, by Lemma 4.2, H1(sγ, C.hγ ⊕ C−γ) = 0.

Since V1 is a B-submodule of b and H1(sγ, V ′) 6= 0, by the above arguments, we see that

V1 is not isomorphic to C.hγ ⊕ C−γ. In particular, we have µ1 ∈ R− \ {−γ}. Let λ be the

lowest weight of V ′. Then, we have µ1 = λ + µ′. Since 〈λ, γ〉 ≤ 0 and 〈µ′, γ〉 ≤ −2, we

have 〈µ1, γ〉 ≤ −2. Further by [Hum72, p.45, Section 9.4], we have −3 ≤ 〈µ1, γ〉. Then,
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the γ-string of µ is either µ + γ (if 〈µ1, γ〉 = −2) or µ + γ, µ + 2γ (if 〈µ1, γ〉 = −3). In

particular, any weight µ′′ of H1(sγ, V1) satisfies |〈µ′′, γ〉| ≤ 1 and µ′′ is a negative short root.

In particular, µ is a negative short root.

Hence by the above short exact sequence, we conclude that H1(w, b)µ = 0 unless µ is a

negative short root.

Recall from Section 2 that hαir
is a basis vector of the zero weight space of sl2,αir

.

Lemma 5.3. Let w ∈ W and fix a reduced expression w = si1 si2 · · · sir . Then,

1. If there is a 1 ≤ j < r − 1 such that αij
= αir , then we have H0(w, αir)0 = 0.

2. If αij
6= αir for all 1 ≤ j < r − 1, then C.hαir

⊕ C−αir
is a Bαir

-submodule of H0(w, αir), and

H0(w, αir)0 = C.hαir
. In particular, dim(H0(w, αir)0) = 1.

Proof. Proof of (1): If there is a 1 ≤ j < r− 1 such that αij
= αir , without loss of generality we

may assume that there is no k such that j < k < r − 1 and αik
= αir . Since w = si1 si2 · · · sir is

a reduced expression, there exists a j < j′ ≤ r − 1 such that 〈αir , αij′
〉 ≤ −1 and 〈αir , αik

〉 = 0

for every k such that j′ < k < r. By Corollary 4.5, we have the following isomorphism of

B-modules:

H0(sij′+1
· · · sir , αir) ≃ H0(sir , αir) ≃ sl2,αir

.

By SES, we have H0(sij′
· · · sir , αir) ≃ H0(sij′

, H0(sij′+1
· · · sir , αir)) as B-modules.

Then,

H0(sij′
· · · sir , αir) ≃ H0(sij′

, H0(sir , αir)) ≃ C.hαir
⊕ C−αir

⊕ (

−〈αir ,αij′
〉

⊕

m=1

C−αir−mαij′
).

Since 〈αir , αik
〉 ≤ 0 for every j + 1 ≤ k ≤ j′ − 1, we conclude that the indecomposable

Bαir
-summand C.hαir

⊕ C−αir
is in the image of the evaluation map

ev : H0(sij+1 · · · sij′−1
, H0(sij′

· · · sir , αir)) −→ H0(sij′
· · · sir , αir).

Since H0(sij+1 · · · sir , αir) ≃ H0(sij+1 · · · sij′−1
, H0(sij′

· · · sir , αir)), the indecomposable Bαir
-

module C.hαir
⊕ C−αir

is a direct summand of H0(sij+1 · · · sir , αir). By similar arguments

as in the proof of Lemma 5.2 and using Lemma 4.4, we have H0(sij
, C.hαir

⊕ C−αir
) = 0.

Now, let u1 = si1 · · · sij−1 and u2 = sij
· · · sir . From the above arguments, we see that

H0(u2, αir)µ = 0 unless µ < −αir and µ ∈ R. By Lemma 5.1, if H0(u1, H0(u2, αir))µ 6= 0 then

µ < −αir and µ ∈ R. Hence, the zero weight space of H0(w, αir) is zero.
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Proof of (2): Proof is similar to the proof of (1), for the completeness we will give the

proof.

If 〈αij
, αir〉 = 0 for every 1 ≤ j ≤ r − 1, then by Corollary 4.5, we have H0(w, αir) = sl2,αir

.

Hence, (2) holds in this case.

Otherwise, there exists 1 ≤ j ≤ r − 1 such that 〈αij
, αir〉 6= 0. Let 1 ≤ k ≤ r − 1 be the

largest integer such that 〈αik
, αir〉 6= 0. Then by SES and Corollary 4.5, we have

H0(w, αir) ≃ H0(si1 si2 · · · sik
, H0(sik+1 · · · sir , αir)) ≃ H0(si1 si2 · · · sik

, sl2,αir
).

Since 〈αir , αik
〉 ≤ −1, we have

H0(w, αir) ≃ H0(si1 si2 · · · sik−1 , C.hαir
⊕

−〈αik
,αir〉⊕

m=0

C−αir−mαik
).

Since αij
6= αir for all 1 ≤ j < r − 1, we see that C.hαir

⊕ C−αir
is an indecomposable Bαir

-

submodule of H0(w, αir). Further, H0(w, αir)0 = C.hαir
and so dim(H0(w, αir)0) = 1. This

completes the proof of the lemma.

Now onwards we denote by M≥0 the semi subgroup of HomR(hR, R) generated by the

set S of all simple roots .

Lemma 5.4. Let w ∈ W. Let µ ∈ M≥0 \ {0} and let α ∈ S. Then, we have

1. If H0(w, α)α 6= 0, then dim(H0(w, α)α) = 1.

2. H0(w, α)µ 6= 0 if and only if µ = α and the evaluation map ev : H0(w, α) −→ Cα is

surjective.

Proof. Proof of (1): Let w1 ∈ W be an element of minimal length such that w1(α) is a

dominant weight. Note that if l(w1) = 0, then α is dominant. In particular, G is of rank

1 and w ∈ {id, sα}. Hence dim(H0(w, α)α) = 1. Otherwise, there exists a γ ∈ S such

that l(w1sγ) = l(w1) − 1 and 〈α, γ〉 < 0. Hence by Lemma 4.1, Cα is a B-submodule of

H0(sγ, sγ(α)). Then H0(w, α) is a B-submodule of H0(w, H0(sγ, sγ(α))). Since H0(w, α)α 6=

0, by [BKS04, p.110, Theorem 3.3] (see also [Dab93] and [Pol89]) we have l(wsγ) = l(w) + 1

(Note that since 〈α, γ〉 < 0, the regularity of λ as in [BKS04, p.110, Theorem 3.3] does not

play a role). By Lemma 4.2, we have

H0(wsγ, sγ(α)) = H0(w, H0(sγ, sγ(α))).

Hence H0(w, α) is a B-submodule of H0(wsγ, sγ(α)). By induction on l(w1), H0(w, α) is a B-

submodule of H0(ww−1
1 , w1(α)). Since w1(α) is dominant, H0(ww−1

1 , w1(α)) is a quotient of
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the B-module H0(w0, w1(α)). Further, since the multiplicity of the weight α in H0(w0, w1(α))

is 1, the multiplicity of the weight α in H0(ww−1
1 , w1(α)) is at most 1. Hence, we conclude

that dim(H0(w, α)α) = 1.

Proof of (2):

Assume that H0(w, α)µ 6= 0. If l(w) = 0, there is nothing to prove. Assume l(w) > 0.

Therefore, we can choose a γ ∈ S such that l(sγw) = l(w) − 1. Let u = sγw. By SES, we

have H0(w, α) = H0(sγ, H0(u, α)).

Since H0(w, α)µ 6= 0, there exists an indecomposable Bγ-summand V of H0(u, α) such

that H0(sγ, V)µ 6= 0. Let µ′ be the highest weight of V. By Lemma 4.4, we have V = V ′ ⊗Cλ

for some character λ of B̃γ and for some irreducible L̃γ-module V ′. Let λ1 be a highest

weight of V ′. By similar arguments as in the proof of Lemma 5.1, we have λ1 + λ = µ′,

and µ = µ′ − aγ where 0 ≤ a ≤ 〈µ′, γ〉. Therefore, µ′ = µ + aγ for some a ∈ Z≥0 and

H0(u, α)µ′ 6= 0. By induction on l(w), µ′ = α and the evaluation map ev : H0(u, α) −→ Cα is

surjective. By (1), we see that ev : H0(u, α)α −→ Cα is an isomorphism. Since µ ∈ M≥0 \ {0}

and µ′ = α, we have a = 0 and hence µ = α. By the above arguments, the restriction of

the evaluation map ev : H0(w, α)α −→ H0(u, α)α is surjective. Hence, the evaluation map

ev : H0(w, α) −→ Cα is surjective.

The other implication is straight forward.

Corollary 5.5. Let w ∈ W and fix a reduced expression w = si1 si2 · · · sir . Let µ ∈ M≥0 \ {0}.

Then, we have

1. H0(w, αir)µ 6= 0 if and only if µ = αir and 〈αir , αik
〉 = 0 for k = 1, 2, . . . , r − 1.

2. In such a case, the evaluation map ev : H0(w, αir) −→ sl2,αir
is an isomorphism.

Proof. Proof of (1): Assume that H0(w, αir)µ 6= 0. By Lemma 5.4, we have µ = αir and

the evaluation map ev : H0(w, αir) −→ Cαir
is surjective. We now prove that 〈αir , αik

〉 = 0

for k = 1, 2, . . . , r − 1. Let u = si2 si3 · · · sir . Then, we have l(u) = l(w) − 1. Since the

evaluation map ev : H0(w, αir) = H0(si1 , H0(u, αir)) −→ Cαir
is non zero, the evaluation map

ev : H0(u, αir) −→ Cαir
is non zero, because this evaluation map is the composition of the

evaluation maps H0(si1 , H0(u, α)) −→ H0(u, α) and H0(u, α) −→ Cα. By induction on l(w),

〈αir , αik
〉 = 0 for k = 2, . . . , r − 1. Hence, w = si1 sir si2 · · · sir−1 is also a reduced expression for

w. In particular, αi1 6= αir and hence 〈αi1 , αir〉 ≤ 0. By Corollary 4.5, we have H0(w, αir) =

H0(si1 sir , αir). Note that if 〈αi1 , αir〉 ≤ −1, by Lemma 4.3 we have H0(w, αir)αir
= 0, which is

a contradiction. Thus, we have 〈αi1 , αir〉 = 0. Hence 〈αir , αik
〉 = 0 for k = 1, 2, . . . , r − 1.

The other implication follows from Corollary 4.5.
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Assertion (2) follows from the fact that H0(sir , αir) is the 3-dimensional cyclic B-

submodule generated by a weight vector of weight αir .

Let p be a B-submodule of g containing b.

Lemma 5.6. Let w ∈ W and let µ ∈ M≥0 \ {0}. If H0(w, g/p)µ 6= 0, then µ ∈ R+.

Proof. If l(w) = 0, there is nothing to prove. Assume that l(w) > 0. Then, we can

choose γ ∈ S such that l(sγw) = l(w)− 1. Let u = sγw. By SES, we have H0(w, g/p) =

H0(sγ, H0(u, g/p)).

Since H0(w, g/p)µ 6= 0, there exists an indecomposable Bγ-summand V of H0(u, g/p)

such that H0(sγ, V)µ 6= 0. Let µ′ be the highest weight of V. By the same arguments as in

the proof of Lemma 5.4, we have µ = µ′ − aγ where 0 ≤ a ≤ 〈µ′, γ〉.

Since l(u) = l(w) − 1 and Vµ′ 6= 0, by induction on l(w), µ′ ∈ R+. Hence µ′ − jγ ∈

R ∪ {0} for every 0 ≤ j ≤ 〈µ′, γ〉 (see [Hum72, p.45, Section 9.4]). Since µ ∈ M≥0 \ {0}, we

have µ ∈ R+.

Proposition 5.7. Let w ∈ W and fix a reduced expression w = si1 si2 · · · sir . Fix 1 ≤ j ≤ r − 1.

If 〈αij
, αik

〉 = 0 for every 1 ≤ k < j, then the natural map H0(w, g/b)αij
−→ H0(w, g/p)αij

is

surjective.

Proof. If l(w) = 0, there is nothing to prove. Assume l(w) > 0 and let u = si1 w. Then, we

have l(u) = l(w)− 1. By SES, we have the evaluation map

ev : H0(w, g/p) = H0(si1 , H0(u, g/p)) −→ H0(u, g/p).

We denote the restriction of the evaluation map ev to H0(w, g/p)αij
by ev1.

First we will prove that ev1 is an isomorphism.

Let v be a non zero vector in H0(w, g/p) of weight αij
. Let H0(u, g/p)) ≃

⊕m
i=1 Vi be a

decomposition as a sum of indecomposable Bαi1
-submodules. Since v ∈ H0(si1 ,

⊕m
i=1 Vi) =

⊕m
i=1 H0(si1 , Vi), v = ∑

m
i=1 vi where vi ∈ H0(si1 , Vi) (1 ≤ i ≤ m), it follows that the weight of

vi is same as the weight of v. Hence, without loss of generality, we may assume that there

exists an indecomposable Bαi1
-summand V of H0(u, g/p) such that v ∈ H0(si1 , V)αij

. Let µ

be the highest weight of V. By the arguments as in the proof of Lemma 5.4, µ = αij
+ aαi1

for some a ∈ Z≥0. Since H0(u, g/p)µ 6= 0, by Lemma 5.6 we see that µ is a positive

root. Since either j = 1, or 〈αij
, αi1〉 = 0, we have a = 0. Hence V = C.v. Thus, the

map ev1 : H0(w, g/p)αij
−→ H0(u, g/p)αij

is injective. To prove ev1 is surjective, let v′ be

a non zero vector in H0(u, g/p) of weight αij
. By similar arguments, we may assume that
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there exists an indecomposable Bαi1
-summand V ′ of H0(u, g/p) containing v′. Let µ′ be the

highest weight of V ′. Then, by the arguments as in the proof of Lemma 5.4, µ′ = αij
+ aαi1

for some a ∈ Z≥0. By the similar arguments as above, we see that V
′
= C.v

′
. Hence, we

conclude that v
′

is in the image of ev1.

In particular, the restriction ev2 : H0(w, g/b)αij
−→ H0(u, g/b)αij

of the evaluation map

H0(w, g/b) −→ H0(u, g/b) is an isomorphism.

Now, consider the following commutative diagram of T-modules:

H0(w, g/b)αij

∼ev2

��

f // H0(w, g/p)αij

∼ev1

��
H0(u, g/b)αij

g // H0(u, g/p)αij

By the induction on l(w), g : H0(u, g/b)αij
−→ H0(u, g/p)αij

is surjective. By the com-

mutativity of the above diagram, it follows that the natural map

f : H0(w, g/b)αij
−→ H0(w, g/p)αij

is surjective. This completes the proof.

Corollary 5.8. Let w ∈ W and fix a reduced expression w = si1 si2 · · · sir . Fix an integer j ∈

{1, . . . , r − 1} such that for all 1 ≤ k < j, 〈αij
, αik

〉 = 0. Then, H1(w, αir)αij
= 0.

Proof. Let α = αir . Now look at following short exact sequence of B-modules:

0 −→ gα −→ g/b −→ g/pα −→ 0

Note that by Theorem 5.16, H1(w, g/b) = 0. Applying H0(w,−) to the above short exact

sequence of B-modules and taking the αij
weight spaces, we have the exact sequence of

T-modules:

0 −→ H0(w, α)αij
−→ H0(w, g/b)αij

−→ H0(w, g/pα)αij
−→ H1(w, α)αij

−→ 0.

By Proposition 5.7, we conclude that H1(w, α)αij
= 0. This completes the proof.

5.2 Action of the minimal Parabolic subgroup Pαi1
on Z(w, i)

Recall that φw denotes the birational morphism Z(w, i) −→ X(w). As in Section 2, the

composition of inclusion X(w) in G/B with φw will also be denoted by φw. Further, we
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denote the tangent bundle of Z(w, i) by T(w,i), where i = (i1, i2, . . . , ir). By using the dif-

ferential map, we see that T(w,i) is a subsheaf of φ∗
w(TG/B). Hence H0(Z(w, i), T(w,i)) is a

B-submodule of H0(Z(w, i), φ∗
w(TG/B)).

Since the tangent bundle of G/B is the homogeneous vector bundle associated to the

representation g/b of B, we have

H0(Z(w, i), φ∗
w(TG/B)) = H0(w, g/b).

Therefore, H0(Z(w, i), T(w,i)) is a B-submodule of H0(w, g/b).

Denote by pαi1
, the Lie algebra of the minimal parabolic subgroup Pαi1

of G containing

B. Note that b is contained in pαi1
.

Lemma 5.9. Let w = si1 · · · sir be a reduced expression i for w. Then,

1. There is a non zero homomorphism fw : pαi1
−→ H0(Z(w, i), T(w,i)) of B-modules (which is

also a homomorphism of Lie algebras).

2. If w = w0, the homomorphism fw0 : pαi1
−→ H0(Z(w0, i), T(w0,i)) in (1) is injective.

Proof. Proof of (1): Consider the action of Pαi1
on Z(w, i) induced by the following left action

of Pαi1
on Pαi1

× Pαi2
× · · · × Pαir

:

Let p ∈ Pαi1
and x = (p1, p2, . . . , pr) ∈ Pαi1

× Pαi2
× · · · × Pαir

then p.x := (pp1, p2, . . . , pr).

Clearly, this action is non trivial. Hence, there is a non trivial homomorphism

ψw : Pαi1
−→ Aut0(Z(w, i))

of algebraic groups. Consider the action of B on Pαi1
by conjugation and the action of B on

Aut0(Z(w, i)) via ψw. Note that ψw is B-equivariant.

By [MO67, p. 17, Theorem 3.7], Aut0(Z(w, i)) is an algebraic group and by [MO67, p.13,

Lemma 3.4], we have

Lie(Aut0(Z(w, i))) = H0(Z(w, i), T(w,i)).

Then, the induced homomorphism

fw : pαi1
−→ H0(Z(w, i), T(w,i))

of B-modules (homomorphism of Lie algebras) is non zero.

Proof of (2): Since fw : pαi1
−→ H0(Z(w, i), T(w,i)) is a non zero homomorphism of B-

modules (homomorphism of Lie algebras), fw(pαi1
) contains a B-stable line L. Let µ be the
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character of B such that b.v = µ(b).v for all b ∈ B and for all v ∈ L. That is, L is the

one-dimensional space generated by a lowest weight vector of weight µ.

Since w = w0, H0(Z(w0, i), T(w0,i)) is a B-submodule of H0(G/B, TG/B). By Bott’s the-

orem [Bot57, Theorem VII] we have H0(G/B, TG/B) = g. Hence H0(Z(w0, i), T(w0,i)) is a

B-submodule of g. Since there is a unique B-stable one-dimensional subspace L of g and

the character of B is −α0, we conclude that µ = −α0 and L = g−α0 ⊂ fw0(pαi1
). By the

similar arguments, the unique B-stable one-dimensional subspace in pαi1
is g−α0 . Hence fw0

is injective (otherwise Ker( fw0) 6= 0 and hence the unique B-stable line g−α0 is a subspace

of Ker( fw0), which is a contradiction).

Corollary 5.10.

1. H0(Z(w0, i), T(w0,i)) is a Lie subalgebra of g.

2. Any Borel subalgebra of H0(Z(w0, i), T(w0,i)) is isomorphic to b.

3. Any maximal toral subalgebra of H0(Z(w0, i), T(w0,i)) is isomorphic to h.

Proof. Proof of (1): By Lemma 5.9(2), b is a Lie subalgebra of H0(Z(w0, i), T(w0,i)). Since

H0(Z(w0, i), T(w0,i)) is a B-submodule of g, for any Y ∈ H0(Z(w0, i), T(w0,i)) and for any

X ∈ b the Lie bracket [X, Y] in g is same as the Lie bracket in H0(Z(w0, i), T(w0,i)). It

remains to prove that for every α, β ∈ R+ such that α, β are weights of H0(Z(w0, i), T(w0,i)),

the Lie bracket [xβ, xα] in g is same as the Lie bracket in H0(Z(w0, i), T(w0,i)).

Note that the Lie subalgebra of H0(Z(w0, i), T(w0,i)) generated by gβ ∩ H0(Z(w0, i), T(w0,i))

for β ∈ R+ is same as the Lie subalgebra generated by gα ∩ H0(Z(w0, i), T(w0,i)) for

α ∈ S. Hence it is enough to prove that for every β ∈ R+ and α ∈ S such that α, β are

weights of H0(Z(w0, i), T(w0,i)), the Lie bracket [xβ, xα] in g is same as the Lie bracket in

H0(Z(w0, i), T(w0,i)).

Let [−,−]′ be the Lie bracket in H0(Z(w0, i), T(w0,i)). For β ∈ R+, α ∈ S, by Jacobi

identity we have

[x−β, [xβ, xα]
′]′ = [[x−β, xβ]

′, xα]
′ + [xβ, [x−β, xα]

′]′.

Since x−β ∈ b and b is a Lie subalgebra of H0(Z(w0, i), T(w0,i)) and H0(Z(w0, i), T(w0,i)) is a

B-submodule of g, we have

[x−β, xβ]
′ = [x−β, xβ] and [x−β, xα]

′ = [x−β, xα].

Hence, we have

[x−β, [xβ, xα]
′]′ = [[x−β, xβ], xα]

′ + [xβ, [x−β, xα]]
′. (5.1)
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Note that [x−β, xβ], [x−β, xα] ∈ b. Therefore, by (5.1) and Jacobi identity we have

[x−β, [xβ, xα]
′]′ = [[x−β, xβ], xα] + [xβ, [x−β, xα]] = [x−β, [xβ, xα]].

Since x−β ∈ b, we have [x−β, [xβ, xα]′]′ = [x−β, [xβ, xα]′]. Hence, we have

[x−β, [xβ, xα]
′] = [x−β, [xβ, xα]]. (5.2)

If [xβ, xα] = 0, then α + β /∈ R. In particular, H0(Z(w0, i), T(w0,i))α+β = 0. Then, we have

[xβ, xα]′ = 0.

If [xβ, xα] 6= 0, then α + β ∈ R. Further, we have

[x−β, [xβ, xα]] = [xβ, [x−β, xα]]− hβ · xα.

If [x−β, xα] = 0 and hβ · xα = 0, then α, β are orthogonal and β − α /∈ R. Hence, we

have α + β /∈ R. This contradicts the assumption. Hence, we have [xβ, xα]′ = c1xα+β and

[xβ, xα] = c2xα+β, with c2 6= 0. Therefore, by (5.2) it follows that c1 = c2 and [xβ, xα]′ =

[xβ, xα]. Hence H0(Z(w0, i), T(w0,i)) is a Lie subalgebra of g.

Proof of (2): By (1), H0(Z(w0, i), T(w0,i)) is a Lie subalgebra of g. Now we claim that b

is a Borel subalgebra of H0(Z(w0, i), T(w0,i)). Otherwise, there exists a Borel subalgebra b′

of H0(Z(w0, i), T(w0,i)) properly containing b. Since H0(Z(w0, i), T(w0,i)) is a Lie subalgebra

of g, we see that gα ⊂ b′ for some simple root α. Since b is a Borel subalgebra of g and b

is a Lie subalgebra of H0(Z(w0, i), T(w0,i)), the simple Lie algebra sl2,α is a Lie subalgebra

of b′, which is a contradiction to the solvability of b′. Hence b is a Borel subalgebra of

H0(Z(w0, i), T(w0,i)). Since any two Borel subalgebras of H0(Z(w0, i), T(w0,i)) are conjugate

(see [Hum72, p.84, Theorem 16.4]), we conclude (2).

Proof of (3): Since any two maximal toral subalgebras of H0(Z(w0, i), T(w0,i)) are conju-

gate (see [Hum72, p.84, Corollary 16.4]), the proof follows from (2).

Let w ∈ W, let w = si1 si2 · · · sir be a reduced expression i of w. Fix a reduced expression

w0 = sj1 sj2 · · · sjr sjr+1 · · · sjN
of w0 such that j = (j1, j2, . . . jN) and i = (j1, j2, . . . jr). Let

v = sjr+1 sjr+2 · · · sjN
and j′ = (jr+1, . . . , jN).

Since the Z(v, j′)-fibration Z(w0, j) −→ Z(w, i) is Pαi1
equivariant, it follows that

H0(Z(w0, j), T(w0,j)) −→ H0(Z(w, i), T(w,i))



Chapter 5. Automorphism group of BSDH-variety 78

is a homomorphism of Pαi1
-modules. Hence, it is a homomorphism of pαi1

-modules. Thus,

the restriction of this map to pαi1
is the same as the map induced by the action of Pαi1

on

Z(w, i).

Note that since fw0 : pαi1
−→ H0(Z(w0, i), T(w0,i)) is injective (see Lemma 5.9(2)), we

identify pαi1
as a Lie subalgebra of H0(Z(w0, i), T(w0,i)).

Hence, we have the following commutative diagram of Pαi1
-modules:

pαi1

fw ''◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆

� � // H0(Z(w0, j), T(w0,j))

��
H0(Z(w, i), T(w,i))

Further, the maps in the above diagram are homomorphisms of Lie algebras.

For simplicity of notation, we denote both the natural map

H0(Z(w0, j), T(w0,j)) −→ H0(Z(w, i), T(w,i))

and its restriction to pαi1
by fw.

Let d(w) be the number of distinct ij’s in i = (i1, i2, . . . , ir) (i.e, the number of distinct

simple reflections sij
’s appearing in the reduced expression i of w). Let ≤ be the Bruhat-

Chevalley ordering on W. Note that d(w) is equal to the number of distinct Schubert curves

in X(w). That is, d(w) is equal to the number of distinct j ∈ {1, 2, . . . , n} such that sj ≤ w.

In particular, it is independent of the choice of the reduced expression i of w. Further, we

also note that d(w0) = n.

Now, we prove the following lemma:

Lemma 5.11.

1. The dimension of the zero weight space H0(Z(w, i), T(w,i))0 is at most d(w).

2. In particular, dim(H0(Z(w, i), T(w,i))0) ≤ rank(G).

Proof. Consider the following short exact sequence of B-modules:

0 −→ b −→ g −→ g/b −→ 0

By applying H0(w,−) to the above short exact sequence, we have the following exact se-

quence of B-modules:

0 −→ H0(w, b) −→ H0(w, g) −→ H0(w, g/b) −→ H1(w, b) −→ 0
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(Note that H1(w, g) = 0 (see [Kan13, Lemma 2.5(2)]))

By Lemma 5.2, we have H1(w, b)0 = 0. Since H0(w, g) = g, by taking the zero weight

space to the above exact sequence we have the following short exact sequence of T-modules;

0 −→ H0(w, b)0 −→ h
φ

−→ H0(w, g/b)0 −→ 0.

Claim: dim(H0(w, b)0) = rank(G)− d(w).

We use the similar arguments as in the proof of Lemma 5.2 and Lemma 5.3 to prove the

claim.

Let w = si1 si2 · · · sir be a reduced expression i of w. Since S is a basis for the complex

vector space h, for every 1 ≤ j ≤ n there exists a h(αj) ∈ h such that αi(h(αj)) = δi,j for

1 ≤ i ≤ n. First note that for every i 6= j, the one-dimensional subspace C.h(αj) of h is

an indecomposable Bαi-direct summand of b. Therefore, the image of the evaluation map

ev : H0(w, b) −→ b contains h(αj) for every 1 ≤ j ≤ n such that sj � w. Let 1 ≤ k ≤ n

such that sk ≤ w. Let 1 ≤ j0 ≤ r be the largest integer such that ij0 = k, let u = sij0+1 · · · sir .

Note that since αij
(h(αk)) = 0 for j0 + 1 ≤ j ≤ r, C.h(αk) is contained in the image of

the evaluation map ev : H0(u, b) −→ b. Therefore, C.h(αk) ⊕ C−αk is an indecomposable

Bαk-direct summand of H0(u, b) (see [Kan13, Lemma 3.3]).

Further, by Lemma 4.4

C.h(αk)⊕ C−αk = V ⊗ C−ωk ,

where V is the standard 2- dimensional representation of L̃αk . Therefore, by Lemma 4.3 and

Lemma 4.2, H0(sij0
, C.h(αk)⊕ C−αk) = 0.

Let v = sij0
u. By SES, we conclude that H0(v, b)0 =

⊕
{i:si�v} C.h(αi). In view of [Kan13,

Lemma 2.6], H0(w, b)0 =
⊕

{i:si�w} C.h(αi).

Then by the above claim and the short exact sequence, we have

dim(H0(w, g/b)0) = d(w).

Since H0(Z(w, i), T(w,i)) is a B-submodule of H0(w, g/b), we have

dim(H0(Z(w, i), T(w,i))0) ≤ d(w).
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5.3 The B-module of the global sections of the tangent bundle on
Z(w, i)

In this section, we study the B-module of the global sections of the tangent bundle

on Z(w, i). In particular, we prove that the dimension of the zero weight space of

H0(Z(w, i), T(w,i)) is equal to d(w), the number of Schubert curves in X(w). We also

prove that H0(Z(w, i), T(w,i)) contains a Lie subalgebra b′ isomorphic to b if and only if

w−1(α0) < 0.

We use the notation as in the previous Section.

Let w ∈ W and fix a reduced expression w = si1 si2 · · · sir . Let supp(w) := {j ∈

{1, 2, . . . , n} : sj ≤ w}, the support of w. Note that d(w) = |supp(w)|.

We have the following proposition:

Proposition 5.12.

1. { fw(hαij
) : j ∈ supp(w)} forms a basis of H0(Z(w, i), T(w,i))0.

2. In particular, dim(H0(Z(w, i), T(w,i))0) = d(w).

3. The image fw(h) is a maximal toral subalgebra of H0(Z(w, i), T(w,i)).

Proof. If w = w0, then by Lemma 5.9(2), fw0 is injective and by Corollary 5.10,

dim(H0(Z(w0, i), T(w0,i)))0) = rank(G) = d(w0).

Hence, { fw0(hαij
) : j ∈ supp(w0)} forms a basis of H0(Z(w0, i), T(w0,i))0.

Otherwise, choose a reduced expression w0 = sj1 sj2 . . . sjN
of w0 such that

(j1, j2, · · · , jr) = i. Let v = sj1 sj2 · · · sjr+1 and i′ = (j1, . . . jr, jr+1). Note that l(v) = l(w)+ 1. By

descending induction on l(w), { fv(hαij
) : j ∈ supp(v)} forms a basis of H0(Z(v, i′), T(v,i′))0

and

dim(H0(Z(v, i′), T(v,i′)))0) = d(v).

Note that by Lemma 5.11, dim(H0(Z(w, i), T(w,i))0) ≤ d(w). By using LES and Lemma

4.6, we have the following exact sequence of B-modules:

0 −→ H0(v, αir+1) −→ H0(Z(v, i′), T(v,i′)) −→ H0(Z(w, i), T(w,i)) −→ H1(v, αir+1) −→

H1(Z(v, i′), T(v,i′)) −→ H1(Z(w, i), T(w,i)) −→ 0.
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By taking the zero weight spaces, we have the following exact sequence of T-modules:

0 −→ H0(v, αir+1)0 −→ H0(Z(v, i′), T(v,i′))0 −→ H0(Z(w, i), T(w,i))0 −→ H1(v, αir+1)0 · · · .

First assume that there exists 1 ≤ j ≤ r such that αij
= αir+1 , so that d(v) = d(w). By Lemma

5.3, we have H0(v, αir+1)0 = 0. Hence

d(v) = dim(H0(Z(v, i′), T(v,i′)))0) ≤ dim(H0(Z(w, i), T(w,i))0) ≤ d(w).

Since d(w) = d(v), we have

dim(H0(Z(v, i′), T(v,i′))0) = d(v) = d(w) = dim(H0(Z(w, i), T(w,i))0).

Hence, by the above exact sequence, we conclude that { fw(hαij
) : j ∈ supp(w)} forms a

basis of H0(Z(w, i), T(w,i))0.

Otherwise d(w) = d(v)− 1 and by Lemma 5.3(2), we see that H0(v, αir+1)0 = C.hαir+1
. By

using the above exact sequence, we see that

dim(H0(Z(w, i), T(w,i))0) ≥ d(v)− 1.

Since dim(H0(Z(w, i), T(w,i))0) ≤ d(w), we conclude that

dim(H0(Z(w, i), T(w,i))0) = d(w)

and hence { fw(hαij
) : j ∈ supp(w)} forms a basis of H0(Z(w, i), T(w,i))0. This completes the

proof of (1) and (2).

Proof of (3):

By Lemma 5.9(2), fw0 : pαi1
−→ H0(Z(w0, j), T(w0,j)) is an injective homomorphism of Lie

algebras. By Corollary 5.10(1), H0(Z(w0, j), T(w0,j)) is a Lie subalgebra of g. Hence, we have

H0(Z(w0, j), T(w0,j))0 = h.

Let u = si1 si2 · · · sir−1 and i′ = (i1, i2, . . . , ir−1). Note that l(u) = l(w)− 1.

Consider the homomorphism f : H0(Z(w, i), T(w,i)) −→ H0(Z(u, i′), T(u,i′)) of Lie alge-

bras induced by the P1-fibration fr : Z(w, i) −→ Z(u, i′) as in Chapter 2, Section 2.2.5. By

LES, Ker( f ) = H0(w, αir).
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Note that by Lemma 5.1(1),

H0(w, αir)µ = 0 unless µ ≤ αir . (5.3)

Case 1: If sir ≤ u, then by Lemma 5.3(1), H0(w, αir)0 = 0. Hence by Corollary 5.5

and Lemma 5.1(2), we conclude that H0(w, αir)µ = 0 unless µ ∈ R−. Since for every

β ∈ R+, ad(x−β)
r = 0 in H0(Z(w, i), T(w,i)) for some r ∈ N (since for every positive root

α, there is a r ∈ N such that α + kβ /∈ R for all k ≥ r), we conclude that every element of

H0(w, αir) ⊆ H0(Z(w, i), T(w,i)) is nilpotent.

Case 2: Assume that sir � u.

Sub case (a): If 〈αij
, αir〉 6= 0 for some 1 ≤ j ≤ r − 1, then by Corollary 5.5(1), we

have H0(w, αir)αir
= 0. Hence by (6.1), we have H0(w, αir)µ = 0 unless µ ≤ 0. Therefore,

again by Lemma 5.1(2) H0(w, αir)µ = 0 unless µ ∈ R− ∪ {0}. Further, by Lemma 5.3,

H0(w, αir)0 = C.hαir
. Hence, a maximal toral subalgebra of H0(w, αir) ⊆ H0(Z(w, i), T(w,i))

lies in C.hαir
⊕ C−αir

and so it is one-dimensional.

Sub case (b): If 〈αij
, αir〉 = 0 for all 1 ≤ j ≤ r − 1, then by Corollary 4.5, we have

H0(w, αir) ≃ sl2,αir
.

Hence, any maximal toral subalgebra of the ideal H0(w, αir) ⊆ H0(Z(w, i), T(w,i)) lies in

sl2,αir
and so it is one-dimensional.

Hence, it follows that

fw(h) ∩ Ker( f ) = Ker( f )0 = H0(w, αir)0

is a maximal toral subalgebra of Ker( f ) and its dimension is at most one.

By induction on l(w) and by (1), fu(h) = H0(Z(u, i′), T(u,i′))0 is a maximal toral subalge-

bra of H0(Z(u, i′), T(u,i′)).

Now, consider the following commutative diagram of Lie algebras:

H0(Z(w0, j), T(w0,j))

fw

��

fu

))❙❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙

H0(Z(w, i), T(w,i))
f // H0(Z(u, i′), T(u,i′))

Note that by commutativity of the above diagram and by (1), it follows that fw(h) is an

extension of fu(h) and fw(h) ∩ Ker( f ). Thus, we conclude that fw(h) = H0(Z(w, i), T(w,i))0
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is a maximal toral subalgebra of H0(Z(w, i), T(w,i)). This completes the proof of the propo-

sition.

Consider the restriction of the homomorphism fw : pαi1
−→ H0(Z(w, i), T(w,i))(as in

Lemma 5.9) to b and denote it also by fw.

Lemma 5.13. The homomorphism fw : b −→ H0(Z(w, i), T(w,i)) is injective if and only if

w−1(α0) < 0.

Proof. Assume that fw is injective. Since H0(Z(w, i), T(w,i)) is a B-submodule of H0(w, g/b),

we have H0(w, g/b)−α0 6= 0.

Recall from the proof the Lemma 5.11, the following exact sequence of B-modules:

0 −→ H0(w, b) −→ g −→ H0(w, g/b) −→ H1(w, b) −→ 0.

Note that if G is simply laced, by [Kan13, Lemma 3.4] H1(w, b) = 0. If G is non simply

laced, since −α0 is a long root by [Kan13, Lemma 4.8(2)], we have H1(w, b)−α0 = 0. Hence,

we have the following short exact sequence of T-modules:

0 −→ H0(w, b)−α0 −→ g−α0 −→ H0(w, g/b)−α0 −→ 0.

Since dim(g−α0) = 1, H0(w, b)−α0 = 0. Hence, we have w−1(α0) < 0.

Now we prove the converse.

Let ψw : B −→ Aut0(Z(w, i)) be the homomorphism of algebraic groups induced by the

action of B on Z(w, i)(as in the proof of Lemma 5.9). Let K be the kernel of ψw. Since

BwB/B = ∏
β∈R+(w)

U−βwB/B

(see [Jan07, Section 13.1]) and w−1(α0) < 0, we have

U−α0 wB/B 6= wB/B.

Since the desingularization map φw : Z(w, i) −→ X(w) is B-equivariant and the restric-

tion of φw to an open subset is an isomorphism onto BwB/B, we have U−α0 ∩ K = {e},

where e is identity element in B.
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Recall that fw : b −→ H0(Z(w, i), T(w,i)) is the homomorphism of Lie algebras induced

by ψw. Since U−α0 ∩ K = {e}, we have

(Ker( fw))−α0 = 0.

Since Ker( fw) is a B-submodule of b and b has a unique B-stable line g−α0 , we have

Ker( fw) = 0. Hence fw is injective.

The following proposition describes the set of all positive roots occurring as a weight in

H0(Z(w, i), T(w,i)).

Proposition 5.14. Let w ∈ W and fix a reduced expression w = si1 si2 · · · sir . Let µ ∈ M≥0 \ {0}.

Then, we have

1. H0(Z(w, i), T(w,i))µ 6= 0 if and only if there exists an integer 1 ≤ j ≤ r such that 〈αij
, αik

〉 =

0 for all 1 ≤ k ≤ j − 1, and µ = αij
.

2. Fix 1 ≤ j ≤ r such that 〈αij
, αik

〉 = 0 for all 1 ≤ k ≤ j − 1. Then, we have

dim(H0(Z(w, i), T(w,i))αij
) = 1 and sl2,αij

is a Bαij
-submodule of H0(Z(w, i), T(w,i)).

Proof. Proof of (1): Assume that H0(Z(w, i), T(w,i))µ 6= 0. Let v = si1 si2 · · · sir−1 and let

i′ = (i1, i2, . . . , ir−1). By using LES and Lemma 4.6, we have the following exact sequence of

B-modules:

0 −→ H0(w, αir) −→ H0(Z(w, i), T(w,i)) −→ H0(Z(v, i′), T(v,i′)) −→ H1(w, αir) −→

H1(Z(w, i), T(w,i)) −→ H1(Z(v, i′), T(v,i′)) −→ 0.

Since H0(Z(w, i), T(w,i))µ 6= 0, either H0(w, αir)µ 6= 0 or H0(Z(v, i′), T(v,i′))µ 6= 0.

Now, if H0(w, αir)µ 6= 0, then by Corollary 5.5, we are done.

Otherwise, we have H0(Z(v, i′), T(v,i′))µ 6= 0. Then by the induction on l(w), there exists

1 ≤ j ≤ r − 1 such that 〈αij
, αik

〉 = 0 for all 1 ≤ k ≤ j − 1 and µ = αij
.

We now prove the other implication:

Let 1 ≤ j ≤ r be such that 〈αij
, αik

〉 = 0 for all 1 ≤ k ≤ j − 1.

If j = r, then 〈αik
, αir〉 = 0 for all 1 ≤ k ≤ r − 1. By Corollary 5.5, we have

H0(w, αir)αir
6= 0.

Hence, we conclude that

H0(Z(w, i), T(w,i))αir
6= 0.
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Otherwise, by Corollary 5.5, we have H0(w, αir)αij
= 0 and by Corollary 5.8, we have

H1(w, αir)αij
= 0. By the above exact sequence, we get

H0(Z(w, i), T(w,i))αij
≃ H0(Z(v, i′), T(v,i′))αij

.

Now the proof follows by induction on l(w).

Proof of (2): Fix 1 ≤ j ≤ r. Assume that 〈αij
, αik

〉 = 0 for all 1 ≤ k ≤ j − 1. Then, by (1),

we have H0(Z(w, i), T(w,i))αij
6= 0.

Let v = si1 si2 · · · sir−1 and i′ = (i1, i2, . . . , ir−1).

If j = r, then by Corollary 5.5 we have H0(w, αir) ≃ sl2,αir
. Also, by using (1), we

see that H0(Z(v, i′), T(v,i′))αir
= 0. Hence, by the above exact sequence, we conclude that

dim(H0(Z(w, i), T(w,i))αir
) = 1 and sl2,αir

is a Bαir
-submodule of H0(Z(w, i), T(w,i)).

On the other hand, if j 6= r then by induction on l(w),

dim(H0(Z(v, i′), T(v,i′))αij
) = 1

and sl2,αij
is a Bαij

-submodule of H0(Z(v, i′), T(v,i′)). Note that by Corollary 5.5, we have

H0(w, αir)αij
= 0. Also, by Corollary 5.8, we have H1(w, αir)αij

= 0. Hence, by the above

exact sequence, we see that

H0(Z(w, i), T(w,i))αij
≃ H0(Z(v, i′), T(v,i′))αij

and dim(H0(Z(w, i), T(w,i))αij
) = 1.

Further, since sl2,αij
is a cyclic Bαij

-module generated by xαij
, it follows that xαij

is in the

image of the map H0(Z(w, i), T(w,i)) −→ H0(Z(v, i′), T(v,i′)). Thus, we conclude that sl2,αij
is

a Bαij
-submodule of H0(Z(w, i), T(w,i)).

Proposition 5.15. Let w ∈ W and w = si1 si2 · · · sir be a reduced expression i of w. Then,

H0(Z(w, i), T(w,i)) contains a Lie subalgebra b′ isomorphic to b if and only if w−1(α0) < 0.

Proof. Recall from the proof of Lemma 5.13, ψw : B −→ Aut0(Z(w, i)) is the homomorphism

of algebraic groups induced by the action of B on Z(w, i) and fw : b −→ H0(Z(w, i), T(w,i))

is the induced homomorphism of Lie algebras.

Assume that b′ is a Lie subalgebra of H0(Z(w, i), T(w,i)) which is isomorphic to b, then

there exists a closed subgroup B′ of Aut0(Z(w, i)) such that B′ is isomorphic to B and

Lie(B′) = b′.
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Fix an isomorphism g : B −→ B′. Then, g(T)(≃ T) is a maximal torus in B′. Hence, we

have

rank(Aut0(Z(w, i))) ≥ dim(T).

By Proposition 5.12(3), fw(h) is a maximal toral subalgebra of H0(Z(w, i), T(w,i)). Hence,

ψw(T) is a maximal torus in Aut0(Z(w, i)). Thus, the restriction ψw|T : T −→ Aut0(Z(w, i))

is injective.

Let T′ be a maximal torus of B′. Since any two maximal tori in Aut0(Z(w, i)) are con-

jugate, there exists a σ ∈ Aut0(Z(w, i)) such that T = σT′σ−1. Now, let B′′ := σB′σ−1.

Then, we have T ⊂ B′′. Since Lie(B′′) is a T-stable Lie subalgebra of H0(Z(w, i), T(w,i)) , by

Proposition 5.14 we have

Lie(B′′) = h⊕
⊕

β∈R′

gβ ⊕
⊕

α∈S′

gα

for some subset R′ of R− and for some subset S′ of S.

Fix α ∈ S′, Then, we have H0(Z(w, i), T(w,i))α 6= 0. Hence by Proposition 5.14, we have

dim(H0(Z(w, i), T(w,i))α) = 1. Thus, the homomorphism fw : b −→ H0(Z(w, i), T(w,i)) ex-

tends to f̃w : pα −→ H0(Z(w, i), T(w,i)) as T-modules such that f̃w(gα) 6= 0. Let lα ⊆ pα

be the Lie algebra of Lα. Consider the restriction ( fw)α of f̃w to lα. Clearly, ( fw)α is in-

jective homomorphism of Lie algebras. Let nα be a representative of the simple reflection

sα in NG(T), let (ψw)α : L̃α −→ Aut0(Z(w, i)) be the homomorphism of algebraic groups

induced by fwα, where L̃α is a simply connected covering of Lα. Since ( fw)α is injective,

ñα /∈ Ker((ψw)α), where ñα is a lift of nα in L̃α. Note that (ψw)α(nα) normalizes T and hence

Ad((ψw)α(nα))(h) = h.

Since Lie(B′′) is solvable Lie subalgebra and gα ⊆ Lie(B′′), g−α * Lie(B′′) (otherwise,

sl2,α would be Lie subalgebra of Lie(B′′)). Hence, we have R′ ∩ (−S′) = ∅.

Note that by Proposition 5.14, if α ∈ S′, then α = αij
for some integer 1 ≤ j ≤ r such

that 〈αij
, αik

〉 = 0 for all 1 ≤ k ≤ j − 1. Hence, the elements in {sα : α ∈ S′} commute with

each other. Thus, (∏α∈S′ sα)(β) = −β for every β ∈ S′. Further, since R′ ∩ (−S′) = ∅, we

have (∏α∈S′ sα)(R′) ⊆ R−. Let n = ∏α∈S′(ψw)α(ñα), where the product is taken in some

ordering. Hence

Lie(nB′′n−1) = h⊕
⊕

β∈R′′

gβ ⊕
⊕

γ∈S′

gγ,

where R′′ = (∏α∈S′ sα)(R′). Note that for each α ∈ S′, sα(R′) ∩ (−S′) = ∅. Hence

R′′ ∩ (−S′) = ∅. Then, Lie(nB′′n−1) ⊆ b. Since dim(b) = dim(Lie(nB′′n−1)), we have

Lie(nB′′n−1) = b.

In particular, we have H0(Z(w, i), T(w,i))−α0 6= 0. Since H0(Z(w, i), T(w,i)) is a B-

submodule of H0(w, g/b), we have H0(w, g/b)−α0 6= 0. Hence, we have w−1(α0) < 0.
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Proof of the converse follows from Lemma 5.13.

5.4 Automorphism group of Z(w, i):

In this section, we study the automorphism group of a BSDH variety.

We first recall the following theorem from [Kan13] (see [Kan13, Theorem 3.7, Theorem

3.8 and Theorem 4.11]). Let TG/B denote the tangent bundle of the flag variety G/B. By

abuse of notation, we denote the restriction TG/B to X(w) by TG/B.

Theorem 5.16. Let w ∈ W. Then

1. Hi(X(w), TG/B) = 0 for every i ≥ 1.

2. The adjoint representation g of G is a B-submodule of H0(X(w), TG/B) if and only if

w−1(α0) < 0.

3. If G is simply laced, H0(X(w), TG/B) is the adjoint representation g of G if and only if

w−1(α0) < 0.

4. Assume that G is simply laced and X(w) is a smooth Schubert variety. Let Aut0(X(w)) be

the connected component of the automorphism group of X(w) containing the identity auto-

morphism. Let Pw denote the stabilizer of X(w) in G. Let φw : Pw −→ Aut0(X(w)) be the

homomorphism induced by the action of Pw on X(w). Then, we have

(i) φw : Pw −→ Aut0(X(w)) is surjective.

(ii) φw : Pw −→ Aut0(X(w)) is an isomorphism if and only if w−1(α0) < 0.

Let w ∈ W and fix a reduced expression w = si1 si2 · · · sir , let i = (i1, i2, . . . , ir).

Recall that for any reduced expression w0 = sj1 sj2 · · · sjN
of w0 such that j = (j1, j2, . . . , jN)

and (j1, j2, . . . , jr) = i, there exits a natural homomorphism

fw : H0(Z(w0, j), T(w0,j)) −→ H0(Z(w, i), T(w,i))

of Lie algebras from Section 5.

Recall the following notation:

J
′
(w, i) := {l ∈ {1, 2, . . . , r} : 〈αil

, αik
〉 = 0 for all k < l},

J(w, i) := {αil
: l ∈ J

′
(w, i)} ⊂ S.
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Note that the simple reflections {sij
: j ∈ J′(w, i)} commute with each other. For each α in

J(w, i), fix a representative nα of sα in NG(T) and let PJ(w,i) be the subgroup of G generated

by B and {nα : α ∈ J(w, i)}. Let pJ(w,i) be the Lie algebra of PJ(w,i).

Then, we have

Theorem 5.17.

1. pJ(w0,i) ≃ H0(Z(w0, i), T(w0,i)).

2. pJ(w,i) is isomorphic to a Lie subalgebra of H0(Z(w, i), T(w,i)) if and only if w−1(α0) < 0. In

such a case, we have pJ(w,i) = pJ(w0,j) for any reduced expression w0 = sj1 sj2 · · · sjN
of w0

such that j = (j1, j2, . . . , jN) and (j1, j2, . . . , jr) = i.

3. If G is simply laced, pJ(w,i) ≃ H0(Z(w, i), T(w,i)) if and only if w−1(α0) < 0. In such a case,

we have pJ(w0,j) ≃ H0(Z(w, i), T(w,i)), where j is as in (2).

4. If G is simply laced, fw : H0(Z(w0, j), T(w0,j)) −→ H0(Z(w, i), T(w,i)) is surjective, where j

is as in (2).

Proof. Proof of (1): By Lemma 5.9(2), fw0 : b −→ H0(Z(w0, i), T(w0,i)) is injective. Also, by

Corollary 5.10(1), H0(Z(w0, i), T(w0,i)) is Lie subalgebra of g.

By Proposition 5.14, any µ ∈ M≥0 \ {0} such that H0(Z(w0, i), T(w0,i))µ 6= 0 is of the form

µ = αij
for some 1 ≤ j ≤ r such that 〈αij

, αik
〉 = 0 for all 1 ≤ k ≤ j − 1. Hence, we conclude

that H0(Z(w0, i), T(w0,i)) is isomorphic to pJ(w0,i).

Proof of (2): If pJ(w,i) is isomorphic to a Lie subalgebra of H0(Z(w, i), T(w,i)), then by

Proposition 5.15, we have w−1(α0) < 0.

Conversely, assume that w−1(α0) < 0. Let w0 = sj1 sj2 · · · sjN
be a reduced expression of

w0 such that i = (j1, j2, . . . , jr). Set j = (j1, j2, . . . , jN). Clearly, J(w, i) ⊂ J(w0, j). Hence, we

have pJ(w,i) ⊂ pJ(w0,j).

Therefore, by using (1), pJ(w,i) is a Lie subalgebra of H0(Z(w0, j), T(w0,j)).

Now, recall the following commutative diagram of Lie algebras:

pJ(w,i)OO

?�

� � // H0(Z(w0, j), T(w0,j))

fw

��

� � // g

b
fw|b // H0(Z(w, i), T(w,i))
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(see Section 5.3).

Since the unique B-stable line g−α0 in H0(Z(w0, j), T(w0,j)) lies in b, by commutativity

of the above diagram, we conclude that fw : H0(Z(w0, j), T(w0,j)) −→ H0(Z(w, i), T(w,i)) is

injective if and only if its restriction fw|b to b is injective.

Since w−1(α0) < 0, by Lemma 5.13, fw|b to b is injective. Hence, by the above arguments,

fw : H0(Z(w0, j), T(w0,j)) −→ H0(Z(w, i), T(w,i))

is injective. Therefore, H0(Z(w, i), T(w,i))α 6= 0 for every α ∈ J(w0, j). Thus, we conclude

that J(w0, j) = J(w, i).

Proof of (3): If G is simply laced, by Theorem 5.16 (3), we have H0(w, g/b) = g if and

only if w−1(α0) < 0. Recall from Section 5 that H0(Z(w, i), T(w,i)) is a B-submodule of

H0(w, g/b). Hence, from the proof of (2), we conclude that pJ(w,i) ≃ H0(Z(w, i), T(w,i)) if

and only if w−1(α0) < 0.

Proof of (4): Proof is by descending induction on l(w). If w = w0, we are done. Other-

wise, let w0 = sj1 sj2 · · · sjN
be a reduced expression for w0 such that (j1, j2, . . . , jr) = i and

r ≤ N − 1. Let v = sj1 sj2 · · · sjr+1 and let i′ = (j1, j2, . . . , jr+1). Note that l(w) = l(v)− 1.

Since G is simply laced, by using LES and Lemma 4.6 (2) we have the following short

exact sequence of B-modules:

0 −→ H0(v, αir+1) −→ H0(Z(v, i′), T(v,i′)) −→ H0(Z(w, i), T(w,i)) −→ H1(v, αir+1) = 0.

Consider the following commutative diagram of Lie algebras:

H0(Z(w0, j), T(w0,j))

fw

))❙❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙

fv

��
H0(Z(v, i′), T(v,i′))

// H0(Z(w, i), T(w,i))

By descending induction on l(w), fv : H0(Z(w0, j), T(w0,j)) −→ H0(Z(v, i′), T(v,i′)) is sur-

jective. By commutativity of the above diagram and by the above short exact sequence, we

conclude that fw : H0(Z(w0, j), T(w0,j)) −→ H0(Z(w, i), T(w,i)) is surjective. This completes

the proof of (4).

Recall that ≤ is the Bruhat-Chevalley ordering on W and supp(w) := {j ∈ {1, 2, . . . , n} :

sj ≤ w}, the support of w. For simplicity of notation we denote supp(w) by Aw. For j ∈ Aw,
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let nj be a representative of sj in NG(T). Let PAw be the standard parabolic subgroup of G

containing B and {nj : j ∈ Aw}. Let pAw be the Lie algebra of PAw .

Let w = si1 si2 · · · sir be a reduced expression of w and let i = (i1, i2, . . . , ir). Let w0 =

sj1 sj2 · · · sjN
be a reduced expression for w0 such that (j1, j2, . . . , jr) = i.

Set J1 := ({1, 2, . . . , n} \ Aw) ∩ J′(w0, j). Let Rw = R+ \ (
⋃

v≤w R+(v−1)).

Let fw : H0(Z(w0, j), T(w0,j)) −→ H0(Z(w, i), T(w,i)) be the homomorphism as above.

Now, we will describe the kernel of the map fw when G is simply laced. Let Ker( fw) be

the kernel of fw.

Corollary 5.18. Let G be simply laced. Then, we have

Ker( fw) = (
⋂

k∈Aw

Ker(αk))⊕ (
⊕

β∈Rw

g−β)⊕ (
⊕

j∈J1

gαj).

Proof. Step 1: We will prove that for every j ∈ Aw, the restriction of fw to the subspace

C.hαj ⊕ g−αj is injective.

Fix j ∈ Aw. Let k be the least positive integer in {1, 2, . . . , r} such that j = ik. Let

v = si1 si2 · · · sik
and set i′ = (i1, . . . , ik). Then, by Lemma 5.3(2), we see that C.hαj ⊕ g−αj is

a Bαj-submodule of H0(v, αj). By LES, H0(v, αj) is a B-submodule of H0(Z(v, i′), T(v,i′)). Let

g : H0(Z(w, i), T(w,i)) −→ H0(Z(v, i′), T(v,i′)) be the homomorphism of B-modules induced

by the fibration Z(w, i) −→ Z(v, i′).

Now, consider the following commutative diagram of B-modules:

H0(Z(w0, j), T(w0,j))

fv

))❙❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙

fw

��
H0(Z(w, i), T(w,i))

g // H0(Z(v, i′), T(v,i′))

Note that C.hαj ⊕ g−αj is a subspace of H0(Z(w0, j), T(w0,j)). Therefore, by the above argu-

ments, the restriction of fv to the subspace C.hαj ⊕ g−αj is injective. Hence, by commutativity

of the above diagram, we conclude that the restriction of fw to the subspace C.hαj ⊕ g−αj is

injective.

Step 2: Let lAw be the Levi subalgebra of pAw , let z(lAw) be the center of lAw . We will

prove that

h∩ Ker( fw) = z(lAw) =
⋂

k∈Aw

Ker(αk).
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First note that
⋂

k∈Aw
Ker(αk) = z(lAw) and the dimension of z(lAw) is n − d(w) (since

|Aw| = d(w)).

Now, we prove that h∩ Ker( fw) is contained in
⋂

k∈Aw
Ker(αk).

Assume the contrary. Then, there exists a k ∈ Aw and h ∈ h ∩ Ker( fw) such that

αk(h) 6= 0. Then,

x−αk · h = −[h, x−αk ] = αk(h)x−αk

is a non zero multiple of x−αk . Hence g−αk is contained in Ker( fw), which contradicts step

1. Therefore, h∩ Ker( fw) is contained in
⋂

k∈Aw
Ker(αk).

By Proposition 5.12, we have H0(Z(w0, j), T(w0,j))0 = h and dim(h∩ Ker( fw)) = n− d(w).

Hence, we see that

fw(H0(Z(w0, j), T(w0,j))0) = H0(Z(w, i), T(w,i))0.

By the above arguments, h ∩ Ker( fw) is a subspace of
⋂

k∈Aw
Ker(αk) having the same

dimension as that of
⋂

k∈Aw
Ker(αk). Hence, we conclude that

h∩ Ker( fw) =
⋂

k∈Aw

Ker(αk) = z(lAw).

Step 3: We will prove that for j ∈ J1, sl2,αj is contained in Ker( fw).

Fix j ∈ J1. By Theorem 5.17(2), it follows that sl2,αj is a Bαj-submodule of

H0(Z(w0, j), T(w0,j)). By Proposition 5.14(1), we see that H0(Z(w, i), T(w,i))αj = 0. Hence,

gαj ⊂ Ker( fw). Since sl2,αj is a cyclic Bαj-module generated by gαj , it follows that sl2,αj is

contained in Ker( fw).

Step 4: The intersection of the nilradical of b and Ker( fw) is equal to the direct sum
⊕

β∈Rw
g−β of T-modules.

Consider the birational morphism φw : Z(w, i) −→ X(w). Note that φw is a B-

equivariant morphism for the natural left action of B on Z(w, i) (respectively, on X(w)).

Let φ : B −→ Aut0(X(w)) (respectively, φ′ : B −→ Aut0(Z(w, i))) be the homomorphism

induced by the action of B on X(w) (respectively, on Z(w, i)). Since φw is birational, we

have Ker(φ) ∩ Bu = Ker(φ′) ∩ Bu, where Bu is the unipotent radical of B.

Since G is simply laced, by [Kan13, Corollary 3.9], we conclude that bu ∩ Ker( fw) =
⊕

β∈Rw
g−β, where bu is the nilradical of b.
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From the steps 1 to 4, we conclude that

Ker( fw) = (
⋂

k∈Aw

Ker(αk))⊕ (
⊕

β∈Rw

g−β)⊕ (
⊕

j∈J1

gαj).

Recall that if X is a smooth projective variety over C, the connected component of the

group of all automorphisms of X containing identity automorphism is an algebraic group

(see [MO67, p.17, Theorem 3.7], [Gro61, p.268], which also deals the case when X may be

singular or it may be defined over any field). Futher, the Lie algebrs of this automorphism

group is isomorphic to the space of all vector fields on X, that is the space H0(X, TX) of all

global sections of the tangent bundle TX of X (see [MO67, p.13, Lemma 3.4]).

We now prove the main results using Theorem 5.17.

Recall that Aut0(Z(w, i)) is the connected component of the identity element of the

automorphism group of Z(w, i).

Theorem 5.19.

1. PJ(w0,i) ≃ Aut0(Z(w0, i)).

2. Aut0(Z(w, i)) contains a closed subgroup isomorphic to PJ(w,i) if and only if w−1(α0) < 0.

In such a case, we have PJ(w,i) = PJ(w0,j) for any reduced expression w0 = sj1 sj2 · · · sjN
of w0

such that j = (j1, j2, · · · , jN) and (j1, j2, · · · , jr) = i.

3. If G is simply laced, PJ(w,i) ≃ Aut0(Z(w, i)) if and only if w−1(α0) < 0. In such a case, we

have Aut0(Z(w, i)) ≃ Aut0(Z(w0, j)), where j is as in (2).

4. The homomorphism fw : H0(Z(w0, j), T(w0,j)) −→ H0(Z(w, i), T(w,i)) is induced by a ho-

momorphism gw : Aut0(Z(w0, j)) −→ Aut0(Z(w, i)) of algebraic groups, where j is as in

(2).

5. If G is simply laced, the homomorphism gw : Aut0(Z(w0, j)) −→ Aut0(Z(w, i)) of algebraic

groups is surjective, where j is as in (2).

6. The rank of Aut0(Z(w, i)) is at most the rank of G.

Proof. Recall that by [MO67, Theorem 3.7], Aut0(Z(w, i)) is an algebraic group and

Lie(Aut0(Z(w, i))) = H0(Z(w, i), T(w,i)).

Let π : G̃ −→ G be the simply connected covering of G. Let P̃J(w,i) (respectively, B̃) be

the inverse image of PJ(w,i) (respectively, of B) in G̃.
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Proof of (2): If w−1(α0) < 0, then by Theorem 5.17(2), pJ(w,i) is isomorphic to a Lie subal-

gebra of H0(Z(w, i), T(w,i)). Hence, there is a homomorphism ψ̃w : P̃J(w,i) −→ Aut0(Z(w, i))

of algebraic groups. Since the center Z(P̃J(w,i)) of P̃J(w,i) is same as Z(B̃) and B acts on

Z(w, i), Z(P̃J(w,i)) acts trivially on Z(w, i). Hence, the action of P̃J(w,i) induces a homomor-

phism ψw : PJ(w,i) −→ Aut0(Z(w, i)) of algebraic groups. Since pJ(w,i) is isomorphic to a Lie

subalgebra of H0(Z(w, i), T(w,i)), ψw is an isomorphism onto its image.

On the other hand, if Aut0(Z(w, i)) contains a closed subgroup isomorphic to PJ(w,i),

then there is an injective homomorphism ψw : PJ(w,i) −→ Aut0(Z(w, i)) of algebraic groups.

Further, ψw induces an injective homomorphism f̃w : pJ(w,i) −→ H0(Z(w, i), T(w,i)) of Lie

algebras. Hence, by Theorem 5.17(2), we have w−1(α0) < 0. This completes the proof of (2).

Proofs of (1), (3) and (4) are similar to the proof of (2). For the sake of completeness we

give proof here.

Proof of (1). By Theorem 5.17(1), pJ(w0,i) is isomorphic to the Lie algebra

H0(Z(w0, i), T(w0,i)). Hence, there is a homomorphism ψ̃w0 : P̃J(w0,i) −→ Aut0(Z(w0, i))

of algebraic groups. Since the center Z(P̃J(w0,i)) of P̃J(w0,i) is same as Z(B̃) and B acts on

Z(w0, i), Z(P̃J(w0,i)) acts trivially on Z(w0, i). Hence, the action of P̃J(w0,i) induces a homo-

morphism ψw0 : PJ(w0,i) −→ Aut0(Z(w0, i)) of algebraic groups. Note that ψw0 induces an

isomorphism f̃w0 : pJ(w0,i) −→ H0(Z(w0, i), T(w0,i)) of Lie algebras. Hence, we conclude that

ψw0 : PJ(w0,i) −→ Aut0(Z(w0, i)) is an isomorphism of algebraic groups.

Proof of (3). By (2), we have the homomorphism ψw : PJ(w,i) −→ Aut0(Z(w, i)) of

algebraic groups is injective if and only if w−1(α0) < 0. Since G is simply laced, by Theorem

5.17(3), we conclude the proof of (3).

Proof of (4). By (1), we have PJ(w0,j) ≃ Aut0(Z(w0, j)).

Let

PJ(w0,j) = LPu = LssZ(L)Pu

be the Levi decomposition of PJ(w0,j) such that T ⊂ L, where L is the Levi factor of PJ(w0,j)

containing T, Lss is semi simple part of L and Pu is unipotent radical of PJ(w0,j).

Since Pu ⊂ B, we have the homomorphism f1 : Pu −→ Aut0(Z(w, i)) of algebraic groups.

Since Z(L) ⊂ T ⊂ B, we have the homomorphism f2 : Z(L) −→ Aut0(Z(w, i)).

For j ∈ J(w, i), by Lemma 5.14, sl2,αj is contained in H0(Z(w, i), T(w,i)). Hence for each

j ∈ J(w, i), we have φj : SL2,αj −→ Aut0(Z(w, i)).
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For j ∈ J(w0, j) \ J(w, i), by the proof of Corollary 5.18 (even though G is not neces-

sarily simply laced), we have gαj ⊂ Ker( fw). Hence, the homomorphism φj : SL2,αj −→

Aut0(Z(w, i)) is trivial. That is SL2,αj acts trivially on Z(w, i)) for each j ∈ J(w0, j) \ J(w, i).

Therefore, we have the homomorphism L̃ −→ Aut0(Z(w, i)) of algebraic groups, where

L̃ is inverse image of L in G̃ by the universal cover π : G̃ −→ G.

Claim: For j ∈ J(w0, j), we have the following commutative diagram of algebraic groups:

SL2,αj

��

φj // Aut0(Z(w, i))

PGL2,αj

88♣♣♣♣♣♣♣♣♣♣♣♣

Let Gαj be the image of SL2,αj in Aut0(Z(w, i)), let Bαj = B ∩ Gαj . Let B̃αj = π−1(Bαj),

which is a Borel subgroup of SL2,αj .

Now consider the following commutative diagram:

SL2,αj

φj// Aut0(Z(w, i))

B̃αj

?�

OO

π // Bαj

?�

OO

Since the kernel of π is contained in the kernel of φj, the action of Z(B̃αj) on Z(w, i) is

trivial. Since Z(B̃αj) = Z(SL2,αj), we have the homomorphism PSL2,αj −→ Aut0(Z(w, i)).

This proves the claim.

From the above discussion, we conclude that the center Z(P̃J(w0,j)) acts trivially on

Z(w, i). Hence, there is a homomorphism gw : PJ(w0,j) −→ Aut0(Z(w, i)) of algebraic groups

which induces fw. This completes the proof of (4).

Proof of (5) follows from Theorem 5.17(4).

Proof of (6) follows from Proposition 5.12.

We use the same notation as before. Assume that G is simply laced.

Let gw : Aut0(Z(w0, j)) −→ Aut0(Z(w, i)) be the natural map as in Theorem 5.19 (4).

Let U+ be the unipotent radical of B+. For j ∈ J1, let U+
αj

denote the one-dimensional T-

stable closed subgroup of U+ (for the conjugation action of T on G) corresponding to αj.

Let T(w) :=
⋂

k∈Aw
Ker(αk). Since {αk : k ∈ Aw} is a subset of the Z-basis S of X(T), T(w)

is connected.
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Corollary 5.20. The connected component of the kernel of the map gw is the closed subgroup of

Aut0(Z(w0, j)) generated by the torus T(w), U−β : β ∈ Rw} and {U+
αj

: j ∈ J1}.

Proof. Let K be the kernel of the homomorphism gw. Then, we have the following exact

sequence of algebraic groups:

1 −→ K −→ Aut0(Z(w0, j)) −→ Aut0(Z(w, i)) −→ 1.

By using the differentials, we have following exact sequence of Lie algebras:

0 −→ Lie(K) −→ H0(Z(w0, j), T(w0,j)) −→ H0(Z(w, i), T(w,i)) −→ 0.

By [Hum75, p.85, Theorem 12.5], the Lie algebra of K is Ker( fw). By Corollary 5.18, we

have

Ker( fw) = (
⋂

k∈Aw

Ker(αk))⊕ (
⊕

β∈Rw

g−β)⊕ (
⊕

j∈J1

gαj).

Let H be the closed subgroup of Aut0(Z(w0, j)) generated by T(w), {U−β : β ∈ Rw}

and {U+
αj

: j ∈ J1}. Note that H is connected (see [Hum75, p.56, Corollary 7.5]) and

Lie(H) ⊂ Ker( fw). Since dim(Lie(H)) = dim(Ker( fw)), we have

Lie(H) = Ker( fw).

Hence, we conclude that K0 = H. This completes the proof of the corollary.

In the following corollary, for the simplicity of notation we denote the homogeneous

vector bundle L(w, Cα0) on X(w) corresponding to the character α0 of B by Lα0 .

Consider the left action of T on G/B. Let w ∈ W. Note that the Schubert variety X(w−1)

is T-stable. We use the notion of semi-stable points introduced by Mumford [MFK94]. Let

α0 be the highest root of G with respect to T and B+. We denote by X(w−1)ss
T (Lα0) the

set of all semi-stable points of X(w−1) with respect to the T-linearized line bundle Lα0

corresponding to the character α0 of B (see [MFK94]).

The following result is a formulation of the Theorem 5.19 using semi-stable points.

Corollary 5.21. 1. Aut0(Z(w, i)) contains a closed subgroup isomorphic to PJ(w,i) if and only

if X(w−1)ss
T (Lα0) 6= ∅.

2. If G is simply laced, Aut0(Z(w, i)) ≃ PJ(w,i) if and only if X(w−1)ss
T (Lα0) 6= ∅.



Chapter 5. Automorphism group of BSDH-variety 96

Proof. By [KP09a, Lemma 2.1], we have X(w−1)ss
T (Lα0) 6= ∅ if and only if w−1(α0) < 0.

Proof of the corollary follows from Theorem 5.19 (2) and Theorem 5.19 (3).

Remark: By Theorem 5.19, the automorphism group of the BSDH-variety Z(w, i) de-

pends on the choice of the reduced expression i of w.

Example: Let G = PSL(4, C). Consider the following different reduced expressions for

w0:

1. (w0, i1) = s1s2s1s3s2s1, J(w0, i1) = {α1}.

2. (w0, i2) = s2s1s2s3s2s1, J(w0, i2) = {α2}.

3. (w0, i3) = s3s2s3s1s2s3, J(w0, i3) = {α3}.

4. (w0, i4) = s1s3s2s3s1s2, J(w0, i4) = {α1, α3}.

By Theorem 5.19, we see that Aut0(Z(w0, i1)), Aut0(Z(w0, i2)), Aut0(Z(w0, i3)) and

Aut0(Z(w0, i4)) are isomorphic to P{α1}, P{α2}, P{α3}, P{α1,α3} respectively.



“Problems cannot be solved at the same

level of awareness that created them.”

Albert Einstein
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