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Abstract

In this thesis, we study the minimal graded free resolution of Hibi rings and the

h-polynomial of polyomino algebras.

Green and Lazarsfeld defined property Np for p ∈ N to study the graded minimal

free resolution of S/I, where S is a polynomial ring over a field and I is an ideal

generated by quadratics. The ring S/I satisfies property Np if S/I is normal and the

graded minimal free resolution of S/I over S is linear up to p-th position. We prove

necessary conditions for Hibi rings to satisfy Green-Lazarsfeld property Np for p = 2

and 3. We also show that a Hibi ring satisfies property N4 if and only if either it is a

polynomial ring or it has a linear resolution. In particular, it satisfies property Np for

all p.

Let P be a polyomino. Qureshi associated a finitely generated graded algebra K[P ]

over a field K to P . Rinaldo and Romeo showed that if P is a simple thin polyomino,

then the h-polynomial of K[P ] is the rook polynomial of the polyomino P and they

conjectured that this property characterises thin polyominoes.

In this thesis, we verify the conjecture of Rinaldo and Romeo when P is a non-thin

convex polyomino such that its vertex set is a sublattice of N2. We also show that the

Gorenstein rings associated with simple thin polyominoes satisfy the Charney-Davis

conjecture.
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Chapter 1

Introduction

A classical problem in commutative algebra is to study graded minimal free resolu-

tions of graded modules over polynomial rings. One of the fundamental results in this

direction is Hilbert’s syzygy theorem. Let S = K[x1, . . . , xn] be a standard graded

polynomial ring over a field K and let M be a finitely generated graded S-module.

Then M has a graded minimal free resolution, which is unique up to isomorphism.

Hilbert’s syzygy theorem states that the graded minimal free resolution ofM has finite

length, which is at most n. The length of the graded minimal free resolution of M is

called the projective dimension of M . The Auslander-Buchsbaum formula expresses

the projective dimension of M in terms of its depth and n.

Let I be a graded S-ideal generated by quadratics. To study the graded minimal

free resolution of S/I, Green and Lazarsfeld [GL86] defined property Np for p ∈ N. The
ring S/I satisfies property Np if S/I is normal and the graded minimal free resolution

of S/I over S is linear upto p-th position. In particular, if S/I satisfies property Np for

all p ∈ N, then S/I has a linear resolution.

1.1 Aim of the thesis

In this thesis, we study the Green-Lazarsfeld property Np of Hibi rings and the h-

polynomial of polyomino algebras. Both Hibi rings and polyomino algebras are associ-

ated to some combinatorial objects, namely finite distributive lattices and polyominoes

respectively. We utilize the tools of combinatorics to study the graded minimal free

resolution and the Hilbert series of these algebraic objects.
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1.2 Green-Lazarsfeld property Np of Hibi rings

Let P be a finite poset and I(P ) be its ideal lattice. Then I(P ), ordered by inclusion,

is a distributive lattice. By Birkhoff’s fundamental structure theorem [Bir67, Chapter

9, Theorem 10], every finite distributive lattice occurs in this way.

Let P be a finite poset and K[I(P )] = K[{xα : α ∈ I(P )}] be the polynomial ring

over a field K. The Hibi ideal associated with I(P ), denoted by II(P ), is the K[I(P )]-
ideal generated by the binomials xαxβ −xα∧βxα∨β where α, β ∈ I(P ) are incomparable

in I(P ). The ring K[I(P )]/II(P ) is called the Hibi ring associated to I(P ) and denoted

by R[I(P )]. These rings were defined by Takayuki Hibi in [Hib87]. He showed that

R[I(P )] is a normal Cohen–Macaulay domain of dimension #P + 1, where #P is the

cardinality of P . He also characterized all posets for which the associated Hibi ring is

Gorenstein. In Theorem 6.15, we have characterized all posets for which the associated

Hibi ring is a complete intersection.

Hibi rings are normal and Hibi ideals are generated by quadratics. Hence, Hibi rings

satisfy property N1. So it is natural to ask the following question:

Question 1.1. For p ∈ N, classify all posets for which the associated Hibi ring satisfies

property Np.

In [Vee21a, Vee21b], we try to answer the above question for various values of p. In

Theorem 3.33, we proved that a Hibi ring satisfies property N4 if and only if either it is

a polynomial ring or it has a linear resolution. In particular, it satisfies property Np for

all p. We also characterize all such Hibi rings combinatorially which gives a different

proof of [EQR13, Corollary 10]. In particular, for p = 3, we have proved the following:

Theorem 1.2. (Theorem 3.30) Let P be a connected poset. Assume that P has at least

two minimal and maximal elements. Then R[I(P )] does not satisfy property N3.

Answering the above question for p = 2 is an extremely difficult task. In this

direction, we have proved some necessary conditions for Hibi rings to satisfy property

N2. More precisely,

Theorem 1.3. (Theorem 3.20) Let P be a poset. Let S = ∪2
i=1{pi,1, . . . , pi,ni

} be a

subset of the underlying set of P such that

(i) for all 1 ≤ i ≤ 2, {pi,1, . . . , pi,ni
} is a chain in P with pi,1 ⋖ · · ·⋖ pi,ni

.
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(ii) p1,1 ̸= p2,1, p1,n1 ̸= p2,n2.

(iii) {p1,1, p2,1} and {p1,n1 , p2,n2} are antichains in P .

Let P ′ be the induced subposet of P on the set S. If R[I(P ′)] does not satisfy property

N2, then R[I(P )] does not satisfy property N2.

Under the notations of the above theorem, I(P ′) is a planar distributive lattice.

Ene [Ene15] characterized all planar distributive lattices for which the associated Hibi

ring satisfies property N2.

Suppose that a poset can be decomposed into a union of three chains and it has

three maximal and minimal elements. We prove some necessary conditions regarding

when Hibi rings associated to such posets satisfy property N2.

Theorem 1.4. (Theorem 3.25) Let P be a poset on the set ∪3
i=1{pi,1, ..., pi,ni

} such that

(i) p1,1, p2,1, p3,1 are distinct and p1,n1 , p2,n2 , p3,n3 are distinct,

(ii) {p1,1, p2,1, p3,1} and {p1,n1 , p2,n2 , p3,n3} are the sets of minimal and maximal ele-

ments of P respectively and

(iii) for all 1 ≤ i ≤ 3, ni ≥ 3; {pi,1, . . . , pi,ni
} is a chain in P with pi,1 ⋖ · · ·⋖ pi,ni

.

If P is connected and none of the minimal elements of P is covered by a maximal

element, then R[I(P )] does not satisfy property N2.

The Segre product of two Hibi rings is a Hibi ring. More precisely, let P1 and P2 be

two posets. Then, R[I(P1)] ∗ R[I(P2)] ∼= R[I(P )] where ∗ denotes the Segre product

and P is the disjoint union of P1 and P2. For the Segre product of Hibi rings, we have

proved the following result:

Theorem 1.5. (Corollary 4.3) Let P be a poset such that it is a disjoint union of two

posets P1 and P2. If R[I(P )] satisfies property Np for some p, then so do R[I(P1)] and

R[I(P2)].

Since polynomial rings are Hibi rings, the Segre product of polynomial rings may be

viewed as a Hibi ring. The property Np of the Segre product of polynomial rings have

been studied by various authors. Let A = K[x1,0, . . . , x1,n1 ]∗· · ·∗K[xr,0, . . . , xr,nr ] be the

Segre product of r polynomial rings, where ni ≥ 1 and ni ∈ N for all i. Sharpe [Sha64]

proved that if r = 2, then A satisfies property N2. For r = 2, Lascoux [Las78] and

Pragacz-Weyman [PW85] proved that A satisfies property N3 if K contains the rational
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field Q. Hashimoto [Has90] showed that if r = 2, n1, n2 ≥ 4 and characteristic of the

field K is 3, then A does not satisfy property N3. Rubei [Rub02, Rub07] proved that

if r ≥ 3 and char(K) = 0, then A satisfies property N3 but it does not satisfy property

N4. Based on these results and various examples, we have conjectured the following:

Conjecture 1.6. Let P1 and P2 be two posets and P be their disjoint union.

1. If the Hibi ring R[I(Pi)] satisfies property N2 for all i = 1, 2, then so does R[I(P )].

2. If char(K) ̸= 3 and the Hibi ring R[I(Pi)] satisfies property N3 for all i = 1, 2,

then so does R[I(P )].

If (2) of Conjecture 1.6 is true, then one can completely resolve Question 1.1 for

p = 3 with the help of Theorem 1.2. If (1) of the Conjecture 1.6 is true, then in order

to answer Question 1.1 for p = 2, one has to take care of the connected posets only.

Generalizing the results of Rubei and giving more evidence in support of Conjecture 1.6,

we have proved the following results:

Theorem 1.7. (Theorem 4.14) Let P be a poset. If R[I(P )] satisfies property N2, then

so does R[I(P )] ∗K[t1, . . . , tn], where K[t1, . . . , tn] is a polynomial ring.

Theorem 1.8. (Theorem 4.5) Let P be a poset. If the Hibi ring R[I(P )] satisfies
property N3, then so does R[I(P )] ∗K[t1, t2], where K[t1, t2] is a polynomial ring.

Now, suppose that for a poset P , the associated Hibi ring does not satisfy property

N2. Then, the second syzygy module of R[I(P )], denoted by Syz2(R[I(P )]), is not

generated by linear relations. So one could ask the following question, “Which Koszul

relations will be in the minimal generating set of Syz2(R[I(P )])?”. We have partially

answered the above question in Theorem 6.13.

Let P be a poset. The comparability graph GP of P is a graph on the underlying

set of P such that {x, y} is an edge of GP if and only if x and y are comparable in P .

Hibi and Ohsugi [HO17] characterized chordal comparability graph of posets using toric

ideals associated with multichains of poset. Using one of our results [Vee21a, Theorem

5.6] and [Frö90, Theorem 1], we have characterized chordal comparability graph of

distributive lattices in terms of the subposet of join-irreducibles of the distributive

lattice in Corollary 3.34.
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1.3 h-polynomial of Polyomino algebras

In recent joint work with Manoj Kummini [KV23a, KV23b], we have partially resolved

the following two conjectures:

1. Charney-Davis conjecture for the Gorenstein toricK-algebras associated to simple

thin polyominoes.

2. Rinaldo-Romeo’s conjecture concerning characterization of thin polyominoes.

The Charney-Davis conjecture [CD95, Conjecture D] asserts that if h(t) is the h-

polynomial of a flag simplicial homology (d− 1)-sphere, then (−1)⌊
d
2
⌋h(−1) ≥ 0. Stan-

ley [Sta00, Problem 4] extended this conjecture to Gorenstein∗ flag simplicial complexes.

Generalizing it further, Reiner and Welker [RW05, Question 4.4] posed the following:

Question 1.9. Let K be a field and R a standard graded Gorenstein Koszul K-algebra.

Write the Hilbert series of R as hR(t)/(1− t)dim(R). Is

(−1)

⌊
deg hR(t)

2

⌋
hR(−1) ≥ 0?

We say that a standard graded Gorenstein Koszul K-algebra R is Charney-Davis

(CD) if it gives an affirmative answer to the above question.

Suppose that, in the notation of Question 1.9, deg hR(t) is odd. Then hR(−1) = 0;

see, e.g., [BH93, Corollary 4.4.6]. Therefore Question 1.9 is open only when deg hR(t)

is even. See the bibliography of [RW05] and of [Sta00] for various classes of rings that

are CD. A class of CD rings related to the ones we have studied are Gorenstein Hibi

rings [Brä06, Corollary 4.3]. Recently, D’Al̀ı and Venturello [DV22] proved that the

answer to Question 1.9 is negative in general.

Let K be a field and R be a standard graded finite type K-algebra. The Hilbert

series HR(t) of R is the formal power series
∑

i∈N dimK Rit
i where for each i, Ri is the

finite-dimensional K-vector-space of the homogeneous elements of R of degree i. There

exists a unique polynomial hR(t) such that

HR(t) =
hR(t)

(1− t)dimR
.

The polynomial hR(t) is called the h-polynomial of R.

5



A polyomino is a finite union of unit squares with vertices at lattice points in the

plane that is connected and has no finite cut-set [Sta12, 4.7.18]. Qureshi [Qur12]

associated a finitely generated graded algebra K[P ] (over a field K) to a polyomino P .

Qureshi-Shibuta-Shikama [QSS17, Corollary 2.3] proved that if P is a simple polyomino,

then K[P ] is a Koszul Cohen-Macaulay integral domain.

The S-property of simple thin polyominoes was introduced in [RR21] to characterize

such polyominoes P for whichK[P ] is Gorenstein. Therefore it is natural to ask whether

K[P ] is CD if P is a simple thin polyomino with the S-property. In this regard, we

showed the following:

Theorem 1.10. (Theorem 5.17) Let P be a simple thin polyominoes with the S-

property. Then K[P ] is CD.

In our preprint [KV23b], Manoj Kummini and I have partially proved Rinaldo-

Romeo’s conjectured characterization of thin polyominoes. For k ∈ N, a k-rook config-

uration in P is an arrangement of k rooks in pairwise non-attacking positions. The rook

polynomial rP(t) of P is
∑

k∈N rkt
k where rk is the number of k-rook configurations in

P .

Rinaldo-Romeo [RR21, Theorem 1.1] showed that if P is a simple thin polyomino,

then hK[P](t) = rP(t) and conjectured [RR21, Conjecture 4.5] that this property char-

acterizes thin polyominoes. We have proved this conjecture in the following case:

Theorem 1.11. (Theorem 5.19) Let P be a convex polyomino such that its vertex set

V (P) is a sublattice of N2. Let hK[P](t) = 1 + h1t+ h2t
2 + · · · be the h-polynomial of

K[P ] and rP(t) = 1 + r1t + r2t
2 + · · · be the rook polynomial of P. If P is not thin,

then h2 < r2. In particular hK[P](t) ̸= rP(t).

Using results of [EHQR21], we have extended our result to L-convex polyominoes.

More precisely,

Theorem 1.12. (Corollary 5.25) Let P be an L-convex polyomino that is not thin. Let

hK[P](t) = 1+h1t+h2t
2+· · · be the h-polynomial of K[P ] and rP(t) = 1+r1t+r2t

2+· · ·
be the rook polynomial of P. Then h2 < r2.

Though the statements of both of the conjectures are algebraic, our proofs are purely

combinatorial. Later on, Qureshi-Rinaldo-Romeo [QRR22] also proved Theorem 1.11

and 1.12.
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1.4 Organization of the thesis

In Chapter 2, we discuss the preliminaries and background of commutative algebra and

combinatorics required for the thesis. Chapter 3 is about the property Np of Hibi rings

for p ≥ 2. We prove some sufficient conditions for Hibi rings to not satisfy property N2

in Sections 3.2 and 3.3. In Section 3.4, we study property Np of Hibi rings for p ≥ 3.

First, we prove that if a poset is connected and it has at least two minimal and at

least two maximal elements, then the associated Hibi ring does not satisfy property

N3. The second main result of this section is about property Np of Hibi rings for p ≥ 4.

Using this result and [Frö90, Theorem 1], we characterize chordal comparability graph

of distributive lattices in terms of the subposet of join-irreducibles of the distributive

lattice.

In Chapter 4, we study the property Np for Segre product of Hibi rings for p ≥ 2. We

prove that if a Hibi ring satisfies property N2, then its Segre product with a polynomial

ring in finitely many variables also satisfies property N2. When the polynomial ring is

in two variables, we prove the above statement for N3.

In Chapter 5, we study the h-polynomial of Hibi rings and polyomino rings. In

particular, we prove the Charney-Davis conjecture for the Gorenstein toric K-algebras

associated to simple thin polyominoes and for Gorenstein Hibi rings of regularity 4.

Also, we partially prove Rinaldo and Romeo’s conjectured characterization of thin

polyominoes.

In the last chapter, we study the minimal Koszul syzygies of Hibi ideals and of initial

Hibi ideals. We also give a combinatorial characterization of complete intersection Hibi

rings.
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Chapter 2

Preliminaries

2.1 Basics from commutative algebra

Let K be a field. Let S = K[x1, . . . , xn] be a polynomial ring in n variables over K. Set

deg(xi) = 1 for all i. Then a monomial xa11 · · ·xann has degree
∑n

i=1 ai. For i ∈ N, we
denote by Si the K-vector space generated by all monomials of degree i. As a K-vector

space S has a direct sum decomposition
⊕

i∈N Si such that SiSj ⊆ Si+j for all i, j ∈ N.
We refer to this as the standard grading of S.

Let M be an S-module. We say that M is graded if it has a K-vector space decom-

position
⊕

i∈NMi such that SiMj ⊆ Mi+j for all i, j ∈ N. For i ∈ N, Mi is called the

ith homogeneous component of M . An element of Mi is homogeneous of degree i. For

graded S-modules M and N , a homomorphism ϕ : M → N is called graded of degree

r if ϕ(Mi) ⊆ Nr+i for all i ∈ N. We write S(−j) for a graded free S-module with

a homogeneous generator of degree j. We say that S(−j) is the module S shifted j

degrees. For each i ∈ N, S(−j)i = Si−j as a K-vector space. A ideal I of S is called

graded if it is generated by homogeneous elements. The ideal m = (x1, . . . , xn) is called

the graded maximal ideal of S.

Now we define another grading for S which will be used in this thesis. Let H ⊆
Nm be an affine semigroup with the unique minimal generating set h1, . . . , hn ∈ Nm.

Consider a degree map deg : Nn → Nm defined by deg(ei) = hi. It is easy to see that the

degree map is a semigroup homomorphism. A monomial xa11 · · ·xann in S is identified

with a vector (a1, . . . , an) ∈ Nn. Grading S by H is assigning each monomial xa11 · · · xann
in S to its degree deg((a1, . . . , an)) =

∑n
i=1 aihi ∈ H where ai ∈ N for all i. We refer

to this as H-grading of S. For any h ∈ H, the set of homogeneous polynomials f ∈ S

9



with deg(f) = h is a K-vector space spanned by the polynomials having degree h in H-

grading. As a K-vector space S has the direct sum decomposition
⊕

h∈H Sh such that

ShSh′ ⊆ Sh+h′ for all h, h′ ∈ H. For an S-module M , we say it is H-graded if we can

write M =
⊕

h∈H Mh as a K-vector space, such that for all h, h′ ∈ H, Sh′Mh ⊆Mh′+h.

For h ∈ H, The module S(−h) is a free S-module of rank one with generator h.

Assume that S is standard graded. Let I ⊂ S be a graded S-ideal. So R = S/I

is a standard graded K-algebra, i.e., R is generated as a K-algebra by homogeneous

elements of degree 1. Let M be a finitely generated graded R-module. We say that

a homogeneous element s ∈ R is an M-regular element if (0 :M s) = 0. In other

words, s is a non-zero divisor on M . A sequence s1, . . . , sr of homogeneous elements

of R is called an M-regular sequence if the following conditions are satisfied: (i) si is

M/(s1, . . . , si−1)M -regular element for all i = 1, . . . , r, and (ii) M/(s1, . . . , sr)M ̸= 0.

Any two maximal M -regular sequences of M have the same length. The length of

a maximal regular sequence is called the depth of M and is denoted by depthR(M). It

is known that depthR(M) ≤ dim(M). M is said to be a Cohen-Macaulay R-module

if depthR(M) = dim(M). If R itself is a Cohen-Macaulay module, then it is called a

Cohen-Macaulay ring. We say that R is a complete intersection if I is generated by a

regular sequence.

2.1.1 Graded free resolution

Let R = ⊕i≥0Ri be a finitely generated graded K-algebra with R0 = K and let

n = ⊕i≥1Ri be the graded maximal ideal of R. A complex F of R-modules is a sequence

of R-modules Fi and maps ∂i : Fi → Fi−1 such that ∂i∂i+1 = 0 for i ∈ Z. The ith

homology of the complex F, denoted by HR
i (F), is the module ker(∂i)/ im(∂i+1). The

complex F is exact if HR
i (F) = 0 for all i. Let M be an R-module. A free resolution of

M over R is a complex

F : · · · → Fi
∂i→ Fi−1 → · · · → F1

∂1→ F0

of free R-modules such that F is exact and coker(∂1) ∼= M . The image of the map ∂i is

called the ith syzygy module of M , denoted by SyzRi (M).

When M is finitely generated, we may take Fi to be of finite rank. We say that F is

minimal if im(∂i) ⊆ nFi−1 for all i. Assume that M is graded. Then a free resolution F

10



of M is said to be graded free resolution if the module Fi are graded free modules, and

the maps ∂i are homogeneous maps of degree 0. If for some m ∈ N, we have Fn+1 = 0

but Fi ̸= 0 for all 0 ≤ i ≤ n, then we say that F is finite free resolution of length n.

Let M and N be graded R-modules. Let F (resp. G) be the minimal graded free

resolution of M (resp. N) over R. Define

TorRi (M,N) := Hi(F⊗R N) ∼= Hi(M ⊗R G).

The TorRi (M,N) is a graded R-module and it is independent of choice of the resolutions

of M and N .

Let M be a finitely generated graded S-module, where S is the polynomial ring

K[x1, . . . , xn]. Then M has a graded minimal free resolution, which is unique up to

isomorphism. By the Hilbert’s syzygy theorem, the graded minimal free resolution

of M is finite and has length ≤ n. We define the graded Betti numbers of M in

standard grading and in H-grading, where H is a affine semigroup. First assume

that M is a graded in standard grading. Then, the standard graded Betti numbers

βi,j(M) = dimK Tor
S
i (M,K)j for all i, j ∈ N. Similarly, assume that S is H-graded

and M is an H-graded S-module. Then for any h ∈ H, the H-graded Betti number

βi,h(M) = dimK Tor
S
i (M,K)h for all i ∈ N.

In conclusion, the graded minimal free resolution F of a standard graded S-module

M has the following form:

F : 0 →
⊕
j

S(−j)βr,j → · · · →
⊕
j

S(−j)β1,j →
⊕
j

S(−j)β0,j where r ≤ n.

The Betti table of M is numerical data consisting of the minimal number of gener-

ators in each degree in the minimal generating set of each syzygy module of M. More

precisely, the Betti table ofM is an array with columns indexed by homological degrees

i having the entry βi,i+j in the row indexed j. Table 2.1 displays the Betti table of M .

Hilbert’s syzygy theorem implies that there are only finitely many pairs (i, j) for

which βi,j ̸= 0. The size of a Betti table is given by the projective dimension and the

regularity. One defines the projective dimension of M as

proj dimS(M) = max{i : βi,j(M) ̸= 0 for some j}

11



- 0 1 2 3 · · · i i+ 1 · · ·
0 β0,0 β1,0 β2,0 β3,0 · · · βi,0 βi+1,0 · · ·
1 β0,1 β1,2 β2,3 β3,4 · · · βi,i+1 βi+1,i+1+1 · · ·
2 β0,2 β1,3 β2,4 β3,5 · · · βi,i+2 βi+1,i+1+2 · · ·
3 β0,3 β1,4 β2,5 β3,6 · · · βi,i+3 βi+1,i+1+3 · · ·
...

...
...

...
...

...
...

...
...

j β0,j β1,1+j β2,2+j β3,3+j · · · βi,i+j βi+1,i+1+j · · ·
...

...
...

...
...

...
...

...
...

Table 2.1: Betti table of M

and the (Castelnuovo-Mumford) regularity of M as

regS(M) = max{j − i : βi,j(M) ̸= 0 for some j}.

The next proposition relates the projective dimension of a graded module over a

polynomial ring with its depth.

Proposition 2.1. (Auslander-Buchsbaum formula)[HHO18, Theorem 2.15] Let M be

a finitely generated graded S-module. Then

proj dimS(M) + depthS(M) = dim(S) = n.

A immediate consequence of the proposition is that M is Cohen-Macaulay if and

and only if proj dimS(M) = dim(S)− dimS(M).

Let I = (f1, . . . , fm) be a graded S-ideal. Let {e1, . . . , em} be a basis of the free

S-module Sm. Define a map φ : Sm → S by φ(ei) = fi. Then, kerφ is the second

syzygy module of S/I, denoted by Syz2(S/I). Let fi and fj be two distinct generators

of I. Then the Koszul relation fiej − fjei belongs to Syz2(S/I). We say fi, fj a Koszul

relation pair if fiej − fjei is a minimal generator of Syz2(S/I).

Let I be a graded S-ideal generated by elements of degree d. Then I said to have

a linear resolution if βi,j(I) = 0 for j ̸= i + d. We say that the ring S/I has a linear

resolution over S if I has a linear resolution.

Let I be a graded S-ideal with I ⊆ m2 and let R = S/I. Let n be the graded

maximal ideal of R. The graded minimal free resolution of R/n over R is infinite if

and only if I ̸= 0. One could still ask about the linearity of the graded minimal free

resolution of R/n.

12



Definition 2.2. A standard graded K-algebra R is said to be Koszul if R/n has a linear

resolution, i.e., TorRi (R/n, R/n)j = 0 for all i and all j ̸= i.

A consequence of the Koszul algebras is the following:

Proposition 2.3. [Kem90, Lemma 4] Let R = S/I be a Koszul algebra. Then βi,j(R) =

0 for all j > 2i.

2.1.2 Initial Ideals

A monomial order < on S is a total order on the set of monomials of S such that

1. 1 < g for all monomial g with g ̸= 1;

2. if g, g′ are two monomials with g < g′, then fg < fg′ for all monomials f .

Let f ∈ S be a polynomial. The initial term of f with respect to <, denoted by

in<(f), is the largest monomial that appears with a non-zero coefficient in f . Let I

be an ideal of S. The ideal generated by the monomials {in<(f) : f ∈ I} is called the

initial ideal of I with respect to <, and is denoted by in<(I).

The following result provides a comparison between S/I and S/ in<(I).

Theorem 2.4. [HHO18, Theorem 2.19] Let I be a graded S-ideal, and let < be a

monomial order on S. Then the following holds:

(a) βij(S/I) ≤ βij(S/ in<(I)) for all i and j;

(b) dimS/I = dimS/ in<(I), depthS/ in<(I) ≤ depthS/I and regS/I ≤
regS/ in<(I);

(c) if S/ in<(I) is Cohen-Macaulay, then S/I is Cohen-Macaulay;

(d) if S/ in<(I) is Gorenstein, then S/I is Gorenstein.

Recently, Conca and Varbaro [CV20, Corollary 2.7] proved that if in<(I) is square-

free, then depthS/ in<(I) = depthS/I and regS/I = regS/ in<(I). Consequently, if

S/I is Cohen-Macaulay, then so is S/ in<(I).

13



A Gröbner basis for I is a set of polynomials {g1, . . . , gr} ⊂ I such that in<(I) =

(in<(g1), . . . , in<(gr)). There exists a finite subset G of I such that G is a Gröbner

basis of I with respect to < (see [HHO18, Theorem 1.25]). If {g1, . . . , gr} is a Gröbner

basis of I, then I = (g1, . . . , gr) [HHO18, Theorem 1.16]. Assume that I is graded and

it has a quadratic Gröbner basis under some monomial order <. Then S/I is Koszul

[HHO18, Section 2.4].

2.1.3 Hilbert Series

Let R = S/I be a finitely generated K-algebra. Assume that R is standard graded,

i.e., R is generated as a K-algebra by homogeneous elements of degree 1. So one can

write R as
⊕

n∈NRn where R0 = K and for each n ≥ 1, Rn is the finite-dimensional

K-vector space of the homogeneous elements of R of degree n.

The Hilbert series HR(t) of R is the formal power series
∑

n∈N dimK(Rn)t
n. There

exists a unique polynomial hR(t) [BH93, Corollary 4.1.8] such that

HR(t) =
hR(t)

(1− t)dimR
.

The polynomial hR(t) is called the h-polynomial of R. Write hR(t) = h0+h1t+ · · ·+
hrt

r with hr ̸= 0. If R is Cohen-Macaulay, then deg hR(t) is the regularity of R [HHO18,

Corollary 2.18] and hi ≥ 0 for all i [BH93, Corollary 4.1.10]. If R is Gorenstein, then

hi = hr−i for all 0 ≤ i ≤ r. When R is a domain, then the converse of the previous

statement also holds, i.e, if hi = hr−i for all 0 ≤ i ≤ r, then R is Gorenstein [BH93,

Corollary 4.4.6].

For a graded S-ideal I, the Hilbert series of S/I can be reduced to the case when I

is a monomial ideal. More precisely,

Proposition 2.5. [HHO18, Proposition 2.6] Let < be a monomial order on S, and let

I be a graded S-ideal. Then

HS/I(t) = HS/ in<(I)(t).
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2.2 Basics from poset theory

We start by defining some basic notions of posets and distributive lattices. For more

details and examples, we refer the reader to [Sta12, Chapter 3] and [Bir67]. Throughout

this thesis, all posets and distributive lattices will be finite.

A partially ordered set P (or poset in brief) is a set, together with a binary relation

≤, satisfying the following axioms:

1. reflexive : x ≤ x for all x ∈ P ;

2. antisymmetric: for any x, y ∈ P , if x ≤ y and y ≤ x, then x = y;

3. transitive: for any x, y, z ∈ P , if x ≤ y and y ≤ z, then x ≤ z.

We use the notation x ≥ y to mean y ≤ x, x < y to mean x ≤ y and x ̸= y. We

say that two elements x and y of P are comparable if x ≤ y or y ≤ x; otherwise x and

y are incomparable.

Let P be a poset. For x, y ∈ P , we say that y covers x if x < y and there is no z ∈ P

with x < z < y. We denote it by x⋖ y. A poset is completely determined by its cover

relations. The Hasse diagram of poset P is the graph whose vertices are elements of P ,

whose edges are cover relations, and such that if x < y then y is “above” x (i.e. with

a higher vertical coordinate). In this thesis, we use the Hasse diagrams to represent

posets. A subposet of P is a subset Q with a partial order such that for x, y ∈ Q we

have x ≤ y in Q if and only if x ≤ y in P .

A chain C of P is a totally ordered subset of P , that is, any two elements of C are

comparable in P . The length of a chain C of P is #C − 1. The rank of P , denoted by

rank(P ), is the maximum of the lengths of chains in P . A poset is called pure if its all

maximal chains have the same length. For x ∈ P , height(x) denotes the rank of the

subposet of P which consists of all y ∈ P with y ≤ x.

Definition 2.6. Let P and Q be two posets.

1. A nonempty subset S of P is an antichain in P if any two distinct elements of S

are incomparable. An antichain with n elements is said to have width n. Define

width(P ) := max{#S : S ⊆ P, S is an antichain in P}.
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2. A poset P is called simple if there is no p ∈ P with the property that all elements

of P are comparable to p.

3. The ordinal sum P ⊕ Q of the disjoint posets P and Q is the poset on the set

P ∪Q with the following order: if x, y ∈ P ⊕Q, then x ≤ y if either x, y ∈ P and

x ≤ y in P or x, y ∈ Q and x ≤ y in Q or x ∈ P and y ∈ Q.

4. Let P,Q be two posets on disjoint sets. The disjoint union of posets P and Q is

the poset P +Q on the set P ∪Q with the following order: if x, y ∈ P +Q, then

x ≤ y if either x, y ∈ P and x ≤ y in P or x, y ∈ Q and x ≤ y in Q. A poset

P which can be written as disjoint union of two posets is called disconnected.

Otherwise, P is connected.

5. P and Q are said to be isomorphic, denoted by P ∼= Q, if there exists an order-

preserving bijection φ : P → Q whose inverse is order preserving.

6. A subposet P ′ of P is said to be a cover-preserving subposet of P if for every

x, y ∈ P ′ with x⋖ y in P ′, we have x⋖ y in P .

Example 2.7. Let P be the poset as shown in Figure 2.1a. Let P ′ and P ′′ be the

subposets of P as shown in Figure 2.1b and Figure 2.1c respectively. It is easy to see

that P ′ is a cover-preserving subposet of P but P ′′ is not a cover-preserving subposet

of P since p3 ⋖ p7 in P ′′ but not in P .

p1 p2

p3 p4

p5 p6

p7 p8

p9

p10

p11

p12

p13

(a)

p1 p2

p3 p4

p5 p6

p7 p8

(b)

p10 p1

p9 p3

p7 p8

(c)

Figure 2.1

Let P be a poset and x, y ∈ P . An upper bound of x and y is an element z ∈ P

satisfying x ≤ z and y ≤ z. A least upper bound (or join) of x and y is a least element

of the set {z ∈ P : z is an upper bound of x and y}. If a least upper bound of x and

y exists, then it is unique and denoted by x ∨ y. Dually one can define greatest upper

bound (or meet) of x and y, when it exists. It is denoted by x ∧ y.
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A lattice L is a poset for which every pair of elements has a least upper bound

and greatest lower bound. A lattice L is said to be a distributive if it satisfies one the

following equivalent conditions:

1. x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for any x, y, z ∈ L;

2. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for any x, y, z ∈ L.

Let L be a lattice. An element x ∈ L is called join-irreducible if x is not the minimal

element of L and whenever x = y ∨ z for some y, z ∈ L, we have either x = y or x = z.

Let P be a poset. A subset α of P is called an order ideal of P if it satisfies

the following condition: for any x ∈ α and y ∈ P , if y ≤ x, then y ∈ α. Define

I(P ) := {α ⊆ P : α is an order ideal of P}. It is easy to see that I(P ), ordered by

inclusion, is a distributive lattice under union and intersection. I(P ) is called the ideal

lattice of the poset P .

Theorem 2.8. (Birkhoff)[Bir67, Chapter 9, Theorem 10][Sta12, Theorem 3.4.1] Let L

be a distributive lattice. Then there is a unique poset P , up to isomorphism, for which

L ∼= I(P ).

Example 2.9. In this example, we illustrate Birkhoff’s theorem. Let P be a poset given

by Figure 2.2a. Then I(P ) is as shown in Figure 2.2b. The join-irreducible elements of

I(P ) are highlighted in blue. One can check that the poset of join-irreducible elements

of I(P ) is isomorphic to P .

p1

p3

p2

p4

(a) P

ϕ

{p1}

{p1, p2}

{p2}

{p1, p2, p3}

P

{p1, p2, p4}

{p2, p4}

(b) I(P )

Figure 2.2
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2.3 Simplicial complexes

Let V be a non-empty finite set. A simplicial complex ∆ on V is a collection of subsets

of V such that {v} ∈ ∆ for all v ∈ V and F ∈ ∆ whenever F ⊆ G for some G ∈ ∆.

The elements of ∆ are called faces, and the dimension of a face F , denoted by

dimF , is the number #F − 1. The dimension of the simplicial complex ∆ is dim∆ =

max{dimF : F ∈ ∆}. A 0-dimensional face of ∆ is called a vertex of ∆. We denote

the vertex set of ∆ by V (∆). A facets of ∆ is a face that is maximal under inclusion.

Note that the empty set ∅ is a face of dimension −1 of ∆.

A subcomplex of the simplicial complex ∆ is a simplicial complex whose faces are

contained in ∆. For n ≥ 0, the n-skeleton of the simplicial complex ∆ is the collection

of all those faces of ∆ whose dimension is at most n. We denote the n-skeleton of ∆

by skn(∆).

Let K be a field and V = {v1, . . . , vr}. For −1 ≤ n ≤ dim∆, let ∆̃n be the K-vector

space of the n-dimensional faces of ∆. A boundary map ∂̃n : ∆̃n → ∆̃n−1 is given by

∂̃n({v0, . . . , vn}) =
n∑

i=0

(−1)i{v0, . . . , v̂i, . . . , vn}.

Then,

0 → ∆̃dim∆
∂dim∆→ ∆̃dim∆−1 → · · · → ∆̃1

∂1→ ∆̃0
∂0→ ∆̃−1 → 0

is a complex of finite dimensional K-vector spaces. The nth reduced homology of the

simplicial complex ∆ with scalars in K, denoted by H̃n(∆, K), is the K-vector space

ker(∂n)/ im(∂n+1). Elements of ker(∂n) are called cycles and elements of im(∂n+1) are

called boundaries. Two cycles representing the same homology class are said to be

homologous. This means that their difference is a boundary.

Let ∆ be a simplicial complex on a vertex set V . The support of a simplex σ in ∆

is the set of all vertices v ∈ V such that v ∈ σ. Let α =
∑

i aiσi where ci ∈ Z, be a

chain in ∆. The support of α, denoted by supp(α), is the union of the support of the

simplexes σi.
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2.4 Graph theory

Let G be a simple graph on the vertex set [n]. The clique complex (or flag complex)

∆(G) associated to G is a simplicial complex defined in the following way: ∆(G) has

same vertices as G and the simplices of ∆(G) are exactly the subsets F of [n] for which

every pair in F is an edge of G. A graph G is called chordal if every induced cycle in

G of length ≥ 4 has a chord, i.e., there is an edge in G connecting two nonconsecutive

vertices of the cycle. Let ∆ be a simplicial complex. The Stanley-Reisner ideal I∆

generated by quadratics has linear resolution if and only if ∆ = ∆(G) for some chordal

graph G [Frö90, Theorem 1].

Let P be a poset. The comparability graph GP of P is a graph on the underlying set

of P such that {x, y} is an edge of GP if and only if x and y are comparable in P . The

order complex ∆(P ) of a poset P is the simplicial complex whose i-faces are exactly the

chains u0 < u1 < · · · < ui in P . It is known and easy to verify that ∆(P ) = ∆(GP ).

2.5 Polyominoes and polyomino ideals

A cell in R2 is a set of the form {(x, y) ∈ R2 | a ≤ x ≤ a + 1, b ≤ y ≤ b + 1} where

(a, b) ∈ Z2. Let P be a finite collection of cells. Then P determines a unique topological

subspace sp(P) := ∪C∈PC of R2. By abuse of terminology, we assign the topological

attributes to P that sp(P) has. We identify the cells of P by their top-right corners:

For v ∈ Z2, C(v) is the cell whose top-right corner is v. We say that P is a polyomino

if P is connected and does not have a finite cut-set [Sta12, 4.7.18] (i.e., sp(P) has these

properties).

Figure 2.3

We say that a polyomino P is simple if sp(P) is simply connected; it is thin if it

does not have a 2 × 2 square such as the one shown in Figure 2.3. We say that a

polyomino P is horizontally convex if for every line segment ℓ parallel to the x-axis

with end-points in P , ℓ ⊆ P . Similarly we define vertically convex polyominoes. We
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say that a polyomino P is convex if it is horizontally convex and vertically convex.

Figure 2.4 shows three examples of polyominoes that are convex, non-convex simple

and non-simple thin respectively. The set of cells of P is denoted by C(P). The vertex

set V (P) of P is P ∩ Z2. By the left-boundary vertices of P , we mean the elements of

Z2 ∩ ∂P that are top-left vertices of the cells of P ; the bottom-boundary vertices of P
are the elements of Z2 ∩ ∂P that are bottom-right vertices of the cells of P .

Figure 2.4: From left to right: a convex polyomino, a non-convex simple polyomino
and a non-simple thin polyomino

Let P be a finite collection of cells. As mentioned earlier, we treat P interchangeably

with the topological space sp(P). Qureshi [Qur12] associated a finitely generated graded

algebra K[P ] (over a field K) to P . Let S = K[{xij : (i, j) ∈ P ∩Z2}] be the standard
graded polynomial ring in the variables xij. Let IP be the binomial ideal generated by

the binomials xijxkl − xilxkj for all (i, j), (k, l) ∈ P ∩ Z2 such that the rectangle with

vertices (i, j), (k, l), (k, j) and (i, l) is a subset of sp(P). Define K[P ] = S/IP . When

P is a polyomino, IP is called a polyomino ideal.

Example 2.10. Let P be the polyomino as shown in Figure 2.5. Then,

IP = (x01x12 − x02x11, x01x22 − x02x21, x01x32 − x02x31, x10x21 − x11x20, x10x22 −
x12x20, x11x22−x12x21, x11x32−x12x31, x10x23−x13x20, x11x23−x13x21, x12x23−x13x22,
x21x32 − x22x31).

(1, 0) (2, 0)

(0, 1)

(0, 2)

(3, 1)

(3, 2)

(1, 3) (2, 3)

A

B C D

E

Figure 2.5
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Theorem 2.11. [HM14, Corollary 2.2] [QSS17, Corollary 2.3] Let P be a simple poly-

omino. Then K[P ] is a Koszul Cohen-Macaulay integral domain.

The height of unmixed polyomino ideals have a very nice combinatorial interpre-

tation. Qureshi [Qur12] proved that for a convex polyomino P , height of the poly-

omino ideal IP is the number of cells of P . Extending this further, Herzog, Hibi and

Moradi [HHM22] recently proved that for a finite collection of cells P , if IP is an

unmixed ideal, then the height of the ideal IP is the number of cells of P .

Let P be a finite collection of cells. Let C,D ∈ P . We say that C is a neighbour

of D if C ∩ D is a line segment. A path from C to D is a sequence of cells C =

C0, C1, . . . , Cm = D such that for all i ̸= j, Ci ̸= Cj and for all 1 ≤ i ≤ m, Ci is a

neighbour of Ci−1. If P is a simple thin polyomino, then for all cells C,D of P , there

is a unique path from C to D.

A inner interval of P is a subcollection I of P such that sp(I) (which is a subspace of

sp(P)) is a rectangle with vertices (i1, j1), (i1+1, j1), (i1, j2) and (i1+1, j2) or a rectangle

with vertices (i1, j1), (i1, j1 + 1), (i2, j1) and (i2, j1 + 1) for some i1, i2, j1, j2 ∈ Z with

i1 < i2 and j1 < j2. An inner interval of P is maximal if it is maximal under inclusion.

For k ∈ N, a k-rook configuration in P is an arrangement of k rooks in pairwise

non-attacking positions. The rook polynomial rP(t) of P is
∑

k∈N rkt
k where rk is the

number of k-rook configurations in P . The rook number r(P) of P is the degree of

rP(t), i.e., the largest k such that there is a k-rook configuration in P .

Theorem 2.12. [RR21, Theorem 1.1] Let P be a simple thin polyomino. Then

hK[P](t) = rP(t).

Example 2.13. Let P be as shown in Figure 2.5. Note that P is simple thin. We write

the Hilbert series of the ring K[P ]. The height of the polyomino ideal IP is the number

of cells of P , i.e., 5. The dimension of the ring K[P ] is #V (P )− number of cells of

P ,i.e., 12− 5 = 7. By Theorem 2.12, the h-polynomial of K[P ] is the rook polynomial

of the polyomino P . We compute rk, namely the number of k-rook configurations in P
for k ≥ 0 as follows:

(k = 0) ∅;
(k = 1) {A}, {B}, {C}, {D}, {E};
(k = 2) {A,B}, {A,D}, {B,E}, {D,E};
(k ≥ 3) there is no k-rook configurations in P .
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Therefore

r0 = 1, r1 = 5, r2 = 4, rk = 0 for all k ≥ 3.

Hence,

HK[P](t) =
1 + 5t+ 4t2

(1− t)7
.

Let P be a simple thin polyomino. Observe that any cell of P belongs to at most

two maximal inner intervals. A cell C is said to be an end-cell of a maximal inner

interval I if C ∈ I and C has exactly one neighbour cell in I. A cell of P is called

single if it belongs to exactly one maximal inner interval of P . We say that P has the

S-property if every maximal inner interval of P has exactly one single cell.

Theorem 2.14. [RR21, Theorem 4.2] Let P be a simple thin polyomino. Then K[P ]

is Gorenstein if and only if P has the S-property.

2.6 Hibi rings

Let L = I(P ) be a distributive lattice with P = {p1, . . . , pn}. Let R = K[t, z1, . . . , zn]

be a polynomial ring in n + 1 variables over a field K. The Hibi ring associated with

L, denoted by R[L], is the subring of R generated by the monomials uα = t
∏

pi∈α zi

where α ∈ L. If we set deg(t) = 1 and deg(zi) = 0 for all 1 ≤ i ≤ n, then R[L] may be

viewed as a standard graded algebra over K. Hibi rings were defined by Takayuki Hibi

in [Hib87]. He showed that R[I(P )] is a normal Cohen–Macaulay domain of dimension

#P +1, where #P is the cardinality of P . In that article, he also proved that the Hibi

ring R[I(P )] is Gorenstein if and only if P is pure.

Let K[L] = K[{xα : α ∈ L}] be the polynomial ring over K and π : K[L] → R[L]

be the K-algebra homomorphism with xα 7→ uα. Let IL = (xαxβ − xα∧βxα∨β : α, β ∈
L and α, β incomparable) be an K[L]-ideal. Let < be a total order on the variables

of K[L] with the property that one has xα < xβ if α < β in L. Consider the graded

reverse lexicographic order < on K[L] induced by this order of the variables.

Theorem 2.15. [HHO18, Theorem 6.19] The generators of IL described above forms

a Gröbner basis of ker(π) with respect to <. In particular, ker(π) = IL.

The ideal IL is called the Hibi ideal of L. By Theorem 2.15, it follows that

in<(IL) = (xαxβ : α, β ∈ L and α, β incomparable).
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Example 2.16. Let P = {p1, . . . , p4} be a poset as shown in Figure 2.2a. So the

polynomial ring R = K[t, z1, . . . , z4]. Note that u∅ = t, u{p1,p2} = tz1z2 and uP =

tz1z2z3z4. The Hibi ring associated to P is

R[I(P )] = K[t, tz1, tz2, tz1z2, tz1z2z3, tz2z4, tz1z2z4, tz1z2z3z4].

Let P be a poset. Then, P is a chain if and only if R[I(P )] is a polynomial ring. The

proof of this statement is elementary. First observe that P is a chain if and only if I(P )
is a chain. Now, suppose that P is a chain. Write P = {p1, . . . , pn} with p1 ⋖ · · ·⋖ pn.

Then I(P ) = {∅, {p1}, {p1, p2}, . . . , P}. So, R[I(P )] = K[t, tz1, tz1z2, . . . , tz1 · · · zn]
which is a polynomial ring. On the other hand, if R[I(P )] is a polynomial ring, then

the Hibi ideal II(P ) = 0. Therefore, there are no incomparable pairs in I(P ). Hence,

I(P ) is a chain.

Let L = I(P ) be a distributive lattice. The Krull-dimension of the Hibi ring R[L]

is #P + 1 [HHO18, Theorem 6.38]. R[L] is an affine semigroup rings (see Section 2.8).

Since in<(IL) is a square-free monomial ideal, R[L] is normal [EH12, Theorem 5.16].

Normal affine semigroup ring generated by monomials over a field are Cohen-Macaulay

[Hoc72, Theorem 1]. Hence R[L] is Cohen-Macaulay. The initial ideal in<(IL) is the

Stanley-Reisner ideal of the order complex of L (see Lemma 6.2). By [BH93, Theorem

5.1.12], this complex is shellable; thus K[L]/ in<(IL) is Cohen-Macaulay [BH93, Theo-

rem 5.1.13]. Now, we give a maximal regular sequence for K[L]/IL and K[L]/ in<(IL)

generated by linear forms.

Lemma 2.17. Let L = I(P ) be a distributive lattice with #P = n and R[L] = K[L]/IL

be the Hibi ring associated with L. For all 0 ≤ j ≤ n, define yj =
∑

α∈L
height(α)=j

xα. Let

Ij = IL + (y0, . . . , yj) for all 0 ≤ j ≤ n. Then the following hold:

(a) xα ∈
√
Ij for all α ∈ L with height(α) ≤ j.

(b) xαxβ ∈
√
Ij for all α, β ∈ L such that α, β are incomparable and height(α) =

height(β) = j + 1.

Proof. We proceed by induction on j. Consider the case j = 0. I0 = IL + (y0) =

IL + (x∅). Clearly (a) holds. Let α, β ∈ L be such that α, β are incomparable and

height(α) = height(β) = 1. Since α, β are incomparable, height(α ∧ β) < height(α).

Therefore, α ∧ β = ∅. Thus, xα∧βxα∨β ∈ I0. Hence xαxβ ∈ I0 ⊂
√
I0.

Now, assume that j > 0. To prove (a), let β ∈ L with height(β) = j. Consider

xβyj = xβ
2+

∑
α ̸=β xβxα. From the observation Ij−1 ⊂ Ij and by induction hypothesis,
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∑
α ̸=β xβxα ∈

√
Ij. Hence xβ

2 ∈
√
Ij which implies xβ ∈

√
Ij. Let α, β ∈ L be

such that α, β are incomparable and height(α) = height(β) = j + 1. Since α, β are

incomparable, height(α ∧ β) < height(α). Thus, xα∧βxα∨β ∈
√
Ij from (a). Hence

xαxβ ∈
√
Ij.

Proposition 2.18. Under the hypothesis of Lemma 2.17,

(1) y0, . . . , yn is a regular sequence of R[L].

(2) y0, . . . , yn is a regular sequence of K[L]/ in<(IL).

Proof. For a Cohen-Macaulay ring, every system of parameter is a regular sequence.

So it suffice to show that {y0, . . . , yn} forms a system of parameters of R[L] and

K[L]/ in<(IL). Proof of (1) follows from Lemma 2.17. For (2), define Jj = in<(IL) +

(y0, . . . , yj) for all 0 ≤ j ≤ n. Note that (b) of Lemma 2.17 holds for Jj by the definition

of in<(IL). Also, (a) of Lemma 2.17 holds for Jj by the similar argument. Hence (2)

holds.

We now discuss how Hibi rings behave under the ordinal sum of two posets. Let P1

and P2 be two posets and P be the ordinal sum of P1 and P2. Let R[I(P1)] = K[{xα :

α ∈ I(P1)}]/II(P1), R[I(P2)] = K[{yβ : β ∈ I(P2)}]/II(P2) and R[I(P )] = K[{zγ :

γ ∈ I(P )}]/II(P ).

Lemma 2.19. Let P1, P2 and P be as above. Then

R[I(P )] ∼= (R[I(P1)]⊗K R[I(P2)])/(xP1 − y∅).

Proof. Let T = K[{xα : α ∈ I(P1)} ∪ {yβ : β ∈ I(P2)}]/(xP1 − y∅) and T ′ =

T/(II(P1)T + II(P2)T ). Define a map

φ : K[I(P )] → T

by

φ(zγ) =

xγ if γ ⊆ P1,

yγ′ if γ = P1 ∪ γ′, where γ′ ⊆ P2.

It is easy to see that φ is an isomorphism. If α, β ∈ I(P ) are incomparable then

either α, β ∈ I(P1) or α = P1 ∪ α′ and β = P1 ∪ β′ where α′, β′ ∈ I(P2) and α′, β′

incomparable. Let π : T → T ′ be the natural projection. Thus, π ◦ φ : K[I(P )] → T ′

and ker(π ◦ φ) = φ−1(II(P1)T + II(P2)T ).
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Thus, it is sufficient to show that φ(II(P )) = II(P1)T + II(P2)T . Let α, β be two

incomparable elements of I(P ). If α, β ∈ I(P1) then φ(zαzβ − zα∩βzα∪β) = xαxβ −
xα∩βxα∪β ∈ II(P1)T . If α = P1 ∪ α′ and β = P1 ∪ β′ where α′, β′ ∈ I(P2), then

φ(zαzβ − zα∩βzα∪β) = yα′yβ′ − yα′∩β′yα′∪β′ ∈ II(P2)T . Hence, φ(II(P )) ⊆ II(P1)T +

II(P2)T . On the other hand, if α, β are two incomparable elements of I(P1) then

φ(zαzβ − zα∩βzα∪β) = xαxβ − xα∩βxα∪β while if α′, β′ are two incomparable elements of

I(P2) then φ(zP1∪α′zP1∪β′ − z(P1∪α′)∩(P1∪β′)z(P1∪α′)∪(P1∪β′)) = yα′yβ′ − yα′∩β′yα′∪β′ . Hence

the equality.

Lemma 2.20. Let P1, {p} and P2 be posets. Let P be the ordinal sum P1 ⊕ {p} ⊕ P2.

Then

R[I(P )] ∼= R[I(P1 ⊕ P2)]⊗K K[y] ∼= R[I(P1)]⊗K R[I(P2)],

where K[y] is a polynomial ring.

Proof. First, we prove that

R[I(P )] ∼= R[I(P1 ⊕ P2)]⊗K K[y].

Let R[I(P1 ⊕ P2)] = K[{uβ : β ∈ I(P1 ⊕ P2)}]/II(P1⊕P2) and R[I(P )] = K[{vα : α ∈
I(P )}]/II(P ). Define a map

φ : K[{vα : α ∈ I(P )}] → T := K[y, {uβ : β ∈ I(P1 ⊕ P2)}]

by

φ(vγ) =


uγ if γ ⊆ P1,

y if γ = P1 ∪ {p},

uγ′ if γ = P1 ∪ {p} ∪ γ′, where γ′ ⊆ P2.

It is easy to see that φ is an isomorphism. If α, β ∈ I(P ) are incomparable, then either

α, β ∈ I(P1) or α = P1 ∪ {p} ∪ α′ and β = P1 ∪ {p} ∪ β′ where α′, β′ ∈ I(P2) and

α′, β′ incomparable. Let T ′ = T/(II(P1⊕P2)T ) and π : T → T ′ be the natural surjection.

Thus, π ◦ φ : K[I(P )] → T ′ and ker(π ◦ φ) = φ−1II(P1⊕P2)T .

It is sufficient to show that φ(II(P )) = II(P1⊕P2)T . The proof of this is similar to

the proof of Lemma 2.19.

Now, the minimal generating set of the Hibi ideal II(P ) can be partitioned between

two disjoint set of variables {vα : α ∈ I(P ) and α ⊆ P1} and {vα : α ∈ I(P ) and P1∪
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{p} ⊆ α}. So the Hibi ring R[I(P )] admits a tensor product decomposition, where one

of the rings is isomorphic to R[I(P1)] and the other ring is isomorphic to R[I(P2)].

In [Hib87], Hibi proved that R[I(P1) ⊕ I(P2)] ∼= R[I(P1)] ⊗K R[I(P2)]. One can

immediately check that the poset of join-irreducibles of I(P1)⊕I(P2) is isomorphic to

P1 ⊕ {p} ⊕ P2.

Corollary 2.21. Let P be a poset and P ′ = {pi1 , ..., pir} be the subset of all elements

of P which are comparable to every element of P . Let P ′′ be the induced subposet of P

on the set P \ P ′. Then,

R[I(P )] ∼= R[I(P ′′)]⊗K K[y1, . . . , yr],

where K[y1, . . . , yr] is a polynomial ring.

Proof. Without loss of generality, we may assume that pi1 < · · · < pir in P . Let

P0 = {p ∈ P : p < pi1}, Pj = {p ∈ P : pij < p < pij+1
} for 1 < j < r − 1 and

Pr = {p ∈ P : p > pir}. Then P is the ordinal sum P0 ⊕ {pi1} ⊕ P1 ⊕ · · · ⊕ {pir} ⊕ Pr.

Now, the result follows from Lemma 2.20.

2.7 Algebras with straightening laws (ASL)

In this section, we define algebra with straightening laws (in short ASL) and we prove

that Hibi rings are ASL.

Let A = ⊕i∈N Ai be a finite type graded K-algebra and let H be a finite poset.

Assume that an injective map i : H → A is given. We identify the elements of

H with their images. A monomial α1 · · ·αn in A is called a standard monomial if

α1 ≤ α2 ≤ · · · ≤ αn in H.

Definition 2.22. We say that A is an ASL on H over K if the following conditions

are satisfied:

ASL-1 The set of standard monomials is a K-basis of the algebra A.

ASL-2 If α, β are incomparable elements of H and if αβ =
∑
ciγi1 · · · γiki, where ci ∈

K\{0} and γi1 ≤ · · · ≤ γiki , is the unique expression of αβ as a linear combination

of standard monomials, then γi1 ≤ α, β for all i.
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The relations in axiom ASL-2 are called the straightening relations of A. It follows

from the two axioms that the straightening relations are indeed the defining equations

of A as a quotient of the polynomial ring K[H] = K[xα : α ∈ H] [DCEP82, Proposition

1.1]. That is, the kernel I of the canonical surjective map K[H] → A of K-algebras

induced by the map i : H → A is generated by the straightening relations regarded as

elements of K[H].

Let L = I(P ) be a distributive lattice with P = {p1, . . . , pn}. Let i : L → R =

K[t, z1, . . . , zn] be given by i(α) = t
∏

pi∈α zi, where α ∈ L. Note that L is embedded

into the polynomial ring R by the injective map i. Also, note that for all α, β ∈ L,

i(α)i(β) = i(α ∨ β)i(α ∧ β) (2.1)

Now, we shall show that R[L] is an ASL on L over K. The proof follows the

argument of [Ene15, Page 14]. It follows from Equation 2.1 that the Hibi ring R[L]

satisfies axiom ASL-2. For ASL-1, it suffices to show that the standard monomials are

distinct because they are monomials of the polynomial ring S = K[t, z1, . . . , zn]. To

prove that, it is enough to show that for any two chains α1 ≤ α2 ≤ · · · ≤ αr and

β1 ≤ β2 ≤ · · · ≤ βs in L, we have i(α1) · · · i(αr) = i(β1) · · · i(βs) if and only if r = s

and αl = βl for all l.

The proof of ‘if’ direction is immediate. To prove the ‘only if’ direction, let

i(α1) · · · i(αr) = i(β1) · · · i(βs). Equivalently, we have

tr
r∏

l=1

( ∏
pj∈βl

zj
)
= ts

s∏
l=1

( ∏
pj∈βl

zj
)
.

Clearly, r = s. Also, we have
∏r

l=1(
∏

pj∈βl
zj) =

∏r
l=1(

∏
pj∈βl

zj). Therefore,

(
∏

pj∈α1

zj)
r(

∏
pj∈α2\α1

zj)
r−1 · · · (

∏
pj∈αr\αr−1

zj) = (
∏
pj∈β1

zj)
r(

∏
pj∈β2\β1

zj)
r−1 · · · (

∏
pj∈βr\βr−1

zj).

Thus, we have αl = βl for all l. Hence the proof.

Since the straightening relations generate the defining ideal of R[L], We get that

R[L] ∼= K[L]/IL, where K[L] = K[xα : α ∈ L] and IL = (xαxβ − xα∧βxα∨β : α, β ∈
L and α, β incomparable). This is what we have proved in Section 2.6.
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Let A = ⊕i≥0Ai and B = ⊕i≥0Bi be two graded K-algebras. Then the Segre

product of A and B is the graded K-algebra

A ∗B = ⊕
i≥0

(Ai ⊗K Bi).

Let P1 and P2 be two posets and P be their disjoint union. It was observed in [HHR00]

that R[I(P )] ∼= R[I(P1)] ∗R[I(P2)], where ∗ denotes the Segre product. Observe that

I(P ) = {(α, β) : α ∈ I(P1) and β ∈ I(P2)}.

2.8 Semigroup rings

Let H ⊂ Nn be an affine semigroup. Suppose that h1, . . . , hm ∈ Nn is the unique

minimal set of generators of H. We consider the polynomial ring T = K[t1, . . . , tn] in

n variables. Then, the semigroup ring attached to H, denoted by K[H], is the subring

of T generated by the monomials ui =
∏n

j=1 t
hi(j)
j for 1 ≤ i ≤ m, where hi(j) denotes

the jth component of the integer vector hi. In the following example, we discuss a

semigroup ring structure of Hibi rings.

Example 2.23. Let L = I(P ) be a distributive lattice with P = {p1, . . . , pn}. For

α ∈ L, define a (n+ 1)-tuple hα such that for 1 ≤ i ≤ n,
1 at the 1st position,

1 at (i+ 1)th position if pi ∈ α,

0 at (i+ 1)th position if pi /∈ α.

Let H be the affine semigroup generated by {hα : α ∈ L}. Then, we have K[H] = R[L].

Let S = K[x1, . . . , xm] be a polynomial ring over K. Consider a K-algebra map

S → K[H] defined by xi 7→ ui for all i = 1, . . . ,m. Let IH be the kernel of this

K-algebra map. Set deg xi = hi to assign a Zn-graded ring structure to S. Let m be

the graded maximal S-ideal. Then K[H] become Zn-graded S-module. Thus, K[H]

admits a minimal Zn-graded S-resolution F.

Given h ∈ H, we define the squarefree divisor complex ∆h as follows:

∆h := {F ⊆ [m] :
∏
i∈F

ui divides t
h(1)
1 · · · th(n)n in K[H]}.
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Equivalently,

∆h := {F ⊆ [m] : h−
∑
i∈F

hi ∈ H}.

Clearly, ∆h is a simplicial complex. We denote the ith reduced simplicial homology

of a simplicial complex ∆ with coefficients in K by H̃i(∆, K).

Proposition 2.24. [BH97, Proposition 1.1], [Stu96, Theorem 12.12] With the notation

and assumptions introduced one has Tori(K[H], K)h ∼= H̃i−1(∆h, K). In particular,

βih(K[H]) = dimK H̃i−1(∆h, K).

Let H ′ be a subsemigroup of H generated by a subset X of {h1, . . . , hm}, and let

S ′ = K[{xi : hi ∈ X}] ⊆ S. Furthermore, let F′ be the Zn-graded free S ′-resolution

of K[H ′]. Then, since S is a flat S ′-module, F′ ⊗S′ S is a Zn-graded free S-resolution

of S/IH′S. The inclusion (S ′/IH′S) ⊗S′ S → S/IHS induces a Zn-graded S-module

complex homomorphism F′⊗S′S → F. Applying ⊗SK on this complex homomorphism

with K = S/m, we obtain the following sequence of isomorphisms and natural maps of

Zn-graded K-modules

TorS
′

i (K[H ′], K) ∼= Hi(F′ ⊗S′ K) ∼= Hi(F′ ⊗S′ S)⊗S K) →

Hi(F⊗S K) ∼= TorSi (K[H], K).

Corollary 2.25. [EHH15, Corollary 3.3] With the notation and assumptions intro-

duced, let h be an element of H ′ with the property that hi ∈ A whenever h − hi ∈ H.

Then the natural K-vector space homomorphism TorS
′

i (K[H ′], K)h → TorSi (K[H], K)h

is an isomorphism for all i.

Proof. Let ∆′
h be the squarefree divisor complex of h where h is viewed as an element

of H ′. Then we obtain the following commutative diagram

Tori(K[H ′], K)h −−−→ Tori(K[H], K)hy y
H̃i−1(∆

′
h, K) −−−→ H̃i−1(∆h, K).

The vertical maps and the lower horizontal map are isomorphisms, simply because

∆′
h = ∆h, due to assumptions on h. This yields the desired conclusion.
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Definition 2.26. Let H ⊂ Nn be an affine semigroup generated by h1, . . . , hm. An

affine subsemigroup H ′ ⊆ H generated by a subset of {h1, . . . , hm} will be called a

homologically pure subsemigroup of H if for all h ∈ H ′ and all hi with h − hi ∈ H, it

follows that hi ∈ H ′.

We need the following proposition several times in this thesis.

Proposition 2.27. [EHH15, Corollary 3.4] Let H ′ be a homologically pure subsemi-

group of H. If F′ is the minimal Zn-graded free S ′-resolution of K[H ′] and F is the min-

imal Zn-graded free S-resolution of K[H], then the complex homomorphism F′⊗S → F
induces an injective map F′ ⊗K → F⊗K. Hence,

TorS
′

i (K[H ′], K) → TorSi (K[H], K)

is injective for all i. In particular, any minimal set of generators of Syzi(K[H ′]) is part

of a minimal set of generators of Syzi(K[H]). Moreover, βij(K[H ′]) ≤ βij(K[H]) for

all i and j.

We want to use the above result for Hibi rings. To do that, we give a differ-

ent semigroup ring structure to Hibi rings which was defined by Herzog and Hibi

in [HH05]. Let L = I(P ) be a distributive lattice with P = {p1, . . . , pn} and let

S = K[y1, . . . , yn, z1, . . . , zn] be a polynomial ring in 2n variables over a field K. Let

S[L] be the subring of S generated by the monomials vα = (
∏

pi∈α yi)(
∏

pi /∈α zi), where

α ∈ L.

Now, we show that S[L] is isomorphic to R[L] as a K-algebra. In order to show

that, we prove that S[L] is a ASL on L over K with same straightening relations as

R[L]. Let φ : L→ S[L] be defined by α 7→ vα. Note that for all α, β ∈ L,

φ(α)φ(β) = φ(α ∨ β)φ(α ∧ β)

ASL-2 follows from the above equation. For ASL-1, it suffices to show that the

standard monomials are distinct because they are monomials of the polynomial ring

S = K[y1, . . . , yn, z1, . . . , zn]. So it is enough to show that for any two chains α1 ≤ α2 ≤
· · · ≤ αr and β1 ≤ β2 ≤ · · · ≤ βs in L, we have φ(α1) · · ·φ(αr) = φ(β1) · · ·φ(βs) if and
only if r = s and αi = βi for all i. The proof of ‘if’ direction is immediate. To prove
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the ‘only if’ direction, let φ(α1) · · ·φ(αr) = φ(β1) · · ·φ(βs). Equivalently, we have

r∏
i=1

(
∏
pj∈βi

yj)(
∏
pj /∈βi

zj) =
s∏

i=1

(
∏
pj∈βi

yj)(
∏
pj /∈βi

zj).

In the above monomial, let the exponents of y1 and z1 be a1 and b1 respectively. Then,

a1 + b1 = r and a1 + b1 = s. Hence, r = s. Also,
∏r

i=1(
∏

pj∈βi
yj) =

∏r
i=1(

∏
pj∈βi

yj).

Therefore,

(
∏

pj∈α1

yj)
r(

∏
pj∈α2\α1

yj)
r−1 · · · (

∏
pj∈αr\αr−1

yj) = (
∏
pj∈β1

yj)
r(

∏
pj∈β2\β1

yj)
r−1 · · · (

∏
pj∈βr\βr−1

yj).

Thus, we have αi = βi for all i. Hence the proof.

For α ∈ L, define a 2n-tuple hα such that for 1 ≤ i ≤ n,

1 at ith position if pi ∈ α,

0 at ith position if pi /∈ α,

0 at (n+ i)th position if pi ∈ α,

1 at (n+ i)th position if pi /∈ α.

Let H be the affine semigroup generated by {hα : α ∈ L}. Then, we have K[H] =

S[L]. We will use this semigroup ring structure to conclude the results about the Hibi

ring R[L].

Let us now explain how we will use Proposition 2.24 for standard grading. We

have S[L] ∼= K[L]/IL. In order to use Proposition 2.24, we need to set deg(xα) = hα

for all α ∈ L. Note that
∑2n

i=1 hα(i) = n for all α ∈ L. For a h ∈ H, we set

deg(xh) = (
∑2n

i=1 h(i))/n. In particular, deg(xα) = 1 for all α ∈ L.
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Chapter 3

Property Np of Hibi rings

In this chapter, we study Green-Lazarsfeld property Np for Hibi rings. First, we identify

two kinds of homologically pure subsemigroups of an affine semigroup associated to a

Hibi ring; see Section 2.8 for the definition of homologically pure subsemigroups. Using

these, we prove necessary conditions for Hibi rings to satisfy property Np for p = 2 and

3. We also show that if a Hibi ring satisfies property N4, then it is a polynomial ring

or it has a linear resolution. Therefore, it satisfies property Np for all p ≥ 4 as well.

Let S = K[x1, . . . , xn] be a standard graded polynomial ring over K and I be a

graded S-ideal. Let F be the graded minimal free resolution of S/I over S:

F : 0 →
⊕
j

S(−j)βrj → · · · →
⊕
j

S(−j)β1j →
⊕
j

S(−j)β0j .

Let p ∈ N. Under the notations as above, we say that S/I satisfies Green-Lazarsfeld

property Np if S/I is normal and βij(S/I) = 0 for all i ̸= j+1 and 1 ≤ i ≤ p. Therefore,

S/I satisfies property N0 if and only if it is normal; it satisfies property N1 if and only

if it is normal and I is generated by quadratics; it satisfies property N2 if and only if

it satisfies property N1 and I is linearly presented and so on. We know that the Hibi

rings are normal and the Hibi ideals are generated by quadratics. Hence, the Hibi rings

satisfy property N1.

First, we state a result of Ene which characterizes all simple planar distributive

lattices for which the associated Hibi ring satisfies property N2. We start by defining

the notion of planar distributive lattice.
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Definition 3.1. [HHO18, Section 6.4] A finite distributive lattice L = I(P ) is called

planar if P can be decomposed into a disjoint union P = {p1, . . . , pm} ∪ {q1, . . . , qn},
where m,n ≥ 0 such that {p1, . . . , pm} and {q1, . . . , qn} are chains in P .

Remark 3.2. Let us consider the infinite distributive lattice N2 with the partial order

defined as (i, j) ≤ (k, l) if i ≤ k and j ≤ l. Let L = I(P ) be a finite planar dis-

tributive lattice, where P = {p1, . . . , pm} ∪ {q1, . . . , qn}. Assume that {p1, . . . , pm} and

{q1, . . . , qn} are chains in P with p1 ≤ · · · ≤ pm and p1 ≤ · · · ≤ pm. Define a map

φ : I(P ) → N2

by

φ(α) =



(0, 0) if α = ∅,

(i, 0) if α = {p ∈ P : p ≤ pi},

(0, j) if α = {p ∈ P : p ≤ qj} ,

(i, j) if α = {p ∈ P : either p ≤ pi or p ≤ qj}.

It is easy to see that φ is an order-preserving injective map. Hence, any finite planar

distributive lattice can be embedded into N2. Also, observe that [(0, 0), (m,n)] is the

smallest interval of N2 which contains L.

Let L be a distributive lattice. If the poset of join-irreducibles of L is a simple poset,

then sometimes we abuse the notation and say that L is a simple distributive lattice.

Now we state Ene’s theorem.

Theorem 3.3. [Ene15, Theorem 3.12] Let L = I(P ) be a simple planar distributive

lattice with #P = n + m, L ⊂ [(0, 0), (m,n)] with m,n ≥ 2. Then R[I(P )] satisfies
property N2 if and only if the following conditions hold:

(i) At least one of the vertices (m, 0) and (0, n) belongs to L.

(ii) The vertices (1, n− 1) and (m− 1, 1) belong to L.

Corollary 3.4. Let L = I(P ) be a simple planar distributive lattice with P =

{a1, . . . , am, b1, . . . , bn}. Let {a1, . . . , am} and {b1, . . . , bn} be chains in P with a1 ⋖
a2 ⋖ · · ·⋖ am and b1 ⋖ b2 ⋖ · · ·⋖ bn. Assume that {a1, . . . , am} is an order ideal of P .

If R[I(P )] satisfies property N2, then P is one of the posets as shown in Figure 3.1.
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a1 b1
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a1 b1
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(b)
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a1 b1

am bn

(d)

Figure 3.1

3.1 Homologically pure subsemigroups

In this section, we identify two kinds of homologically pure subsemigroups of a semi-

group associated to a Hibi ring and we use them to conclude results about property Np

of Hibi rings. The first one is the following and the second one is in Notation 3.8.

Let L = I(P ) be a distributive lattice. Let β, γ ∈ L such that β ≤ γ. Define

L1 = {α ∈ L : β ≤ α ≤ γ}. Clearly, L1 is a sublattice of L. Let H be the affine

semigroup associated to H and let H1 be the affine subsemigroup of H generated by

{hα : α ∈ L1}.

Proposition 3.5. Let H and H1 be as defined above. Then H1 is a homologically pure

subsemigroup of H.

Proof. We show that if α /∈ L1 then h − hα /∈ H for all h ∈ H1. Suppose that α /∈ L1

then either α ≰ γ or α ≱ β.

If α ≰ γ, then there exists a pi ∈ α such that pi /∈ γ. So ith entry of hα is 1 but for

any α′ ∈ L1, i
th entry of hα′ is 0. Hence, h− hα /∈ H for all h ∈ H1.

If α ≱ β, then there exists a pj ∈ β such that pj /∈ α. So (n + j)th entry of hα is 1

but for any α′ ∈ L1, (n+ j)th entry of hα′ is 0. Hence, h− hα /∈ H for all h ∈ H1.

Proposition 3.6. Let L and L1 be as above. Let β = {pa1 , . . . , par} and γ =

{pa1 , . . . , par , pb1 , . . . , pbs}. Then, the induced subposet P1 of P on the set {pb1 , . . . , pbs}
is isomorphic to the poset of join-irreducible elements of L1.

Proof. The idea of the proof is based on the proof of [HHO18, Theorem 6.4]. For

finite posets Q and Q′, if I(Q) ∼= I(Q′) then Q ∼= Q′. So it is enough to prove that
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I(P1) ∼= L1. Define a map

φ : I(P1) → L1

by

φ(α) = (
r
∨
i=1

pai) ∨ ( ∨
p∈α

p).

In particular, φ(∅) = ∨r
i=1 pai . Clearly, φ is order-preserving.

Let α and δ be two order ideals of P1 with α ̸= δ, say δ ≰ α. Let p0 be a maximal

element of δ with p0 /∈ α. We show that φ(α) ̸= φ(δ). Suppose, on the contrary, that

φ(α) = φ(δ), then

(
r
∨
i=1

pai) ∨ ( ∨
p∈α

p) = (
r
∨
i=1

pai) ∨ ( ∨
q∈β

q).

Since L1 is distributive, it follows that

((
r
∨
i=1

pai) ∨ ( ∨
p∈α

p)) ∧ p0 = (
r
∨
i=1

(pai ∧ p0)) ∨ ( ∨
p∈α

(p ∧ p0)).

Since p0 is join-irreducible and for any p ∈ P , p ∧ p0 ≤ p0. It follows that (∨r
i=1 pai ∨

(∨p∈α p)) ∧ p0 < p0. However, since p0 ∈ δ, (∨r
i=1 pai ∨ (∨q∈β q)) ∧ p0 = p0. This is a

contradiction. Hence, φ is injective.

Since each a ∈ L1 can be the join of the join-irreducible elements p with p ≤ a in

L1, it follows that φ(α) = a, where α is an order ideal of P1 consisting of those p ∈ P1

with p ≤ a. Thus, φ is surjective.

Now, φ−1 : L1 → I(P1) is defined as follows: for x ∈ L1,

φ−1(x) = {p ∈ L1 : p ≤ x, p is a join-irreducible} \
r
∪
i=1

pai .

Clearly, φ−1 is order-preserving. Hence the proof.

We now try to understand how we are going to use the above propositions. For a

distributive lattice L, suppose that we want to prove βij(R[L]) ̸= 0 for some i, j. The

idea of the proof is to reduce the lattice L to a suitably chosen sublattice L1. Therefore,

by Propositions 3.5 and 2.27, if βij(R[L1]) ̸= 0, then βij(R[L]) ̸= 0. Proposition 3.6

describes the subposet of join-irreducibles of L1. More precisely,

Discussion 3.7. Let P be a poset. Let B and B′ be two antichains of P such that for

each p ∈ B there is a q ∈ B′ such that p < q and for each q′ ∈ B′ there is a p′ ∈ B

such that p′ < q′. Furthermore, let γ = {p ∈ P : p ≤ q for some q ∈ B′} and β′ = {p ∈
P : p′ ≤ p ≤ q for some p′ ∈ B, q ∈ B′}. Let β = γ \ β′. Note that β, γ are the order
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ideals of I(P ) and β < γ. Let L1 = {α ∈ I(P ) : β ≤ α ≤ γ}. Furthermore, let H1 be

the affine subsemigroup of H generated by {hα : α ∈ L1}. Then, by Proposition 3.5,

H1 is a homologically pure subsemigroup of H. Also, by Proposition 3.6, the induced

subposet P1 of P on the set γ \β is isomorphic to the poset of join-irreducible elements

of L1. Furthermore, by Proposition 2.27, βij(R[L1]) ≤ βij(R[L]).

Notation 3.8. For a poset P , let XP and YP be the sets of minimal and maximal

elements of P respectively. Define X ′
P = {q ∈ P : p ⋖ q for some p ∈ XP} and

Y ′
P = {p ∈ P : p ⋖ q for some q ∈ YP}. When the context is clear, we will omit the

subscripts and denote XP , X
′
P , YP and Y ′

P by X,X ′, Y and Y ′ respectively.

Let P be a poset. For x, y ∈ P with x < y, define L′ := {α ∈ I(P ) : if x ∈
α then y ∈ α}. It is easy to see that L′ is a sublattice of I(P ). Define a poset P ′ on

the set P \ {p ∈ P : x ≤ p < y} with the following minimal order relations: if p, q ∈ P ′,

then p ≤ q in P ′ if either

(1) p ∈ P ′ \ {y}, q ∈ P ′ and p ≤ q in P or

(2) p = y and there is a p′ ∈ {a ∈ P : x ≤ a ≤ y} such that p′ ≤ q in P .

Let H be the semigroup corresponding to I(P ) and H ′ be the subsemigroup of H

corresponding to L′.

Lemma 3.9. Let P, P ′, L′, H,H ′ be as in Notation 3.8. Then L′ ∼= I(P ′) and H ′ is a

homologically pure subsemigroup of H.

Proof. Define a map

φ : I(P ′) → L′

by

φ(α) =

α if y /∈ α,

α ∪ {p ∈ P : x ≤ p < y} if y ∈ α.

Clearly, φ is order-preserving. If γ ∈ L′, then φ(γ′) = γ, where γ′ = γ \ {p ∈ P : x ≤
p < y}. Hence, φ is surjective. Now, we claim that, for any α ∈ I(P ′), φ(α) ∩ P ′ = α.

If y ∈ α, then φ(α) ∩ P ′ = (α ∪ {p ∈ P : x ≤ p < y}) ∩ P ′ = α and if y /∈ α, then

φ(α) = α. Therefore, if φ(α) = φ(β) for any α, β ∈ I(P ′) then α = β. This proves

that φ is injective.

Now, φ−1 : L′ → I(P ′) is defined as follows: for a ∈ L′,

φ−1(a) = {p ∈ L′ : p ≤ a, p is a join-irreducible} \ {p ∈ P : x ≤ p < y}.
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Clearly, φ−1 is order-preserving. Hence, φ is an isomorphism.

To prove that H ′ is a homologically pure subsemigroup of H, we show that if α /∈ L′

then h − hα /∈ H for all h ∈ H ′. Suppose that α /∈ L′ then x ∈ α but y /∈ α. Let

h =
∑s

i=1 hβi
∈ H ′ and let the position corresponding to x of h be r. Then the positions

corresponding to x and y of h−hα are r−1 and r respectively. Hence, h−hα /∈ H.

Discussion 3.10. For a poset P0, let XP0 , YP0 , X
′
P0

and Y ′
P0

be as defined in Nota-

tion 3.8. If there is an x ∈ X ′
P0

and a y ∈ Y ′
P0

with x < y, reduce P0 to P1, using

the methods in Notation 3.8. Observe that y ∈ X ′
P1

∩ Y ′
P1
, XP0 = XP1 , YP0 = YP1 and

#P1 = #(P0 \ {p ∈ P0 : x ≤ p < y}) ≤ #P0 − 1. Repeating it, we get a sequence of

posets P0, . . . , Pn, where n ≤ #P0 −#X0 −#Y0 − 1 such that for each 0 ≤ i ≤ n− 1,

there is an x ∈ X ′
Pi

and y ∈ Y ′
Pi

with x < y and Pi is reduced to Pi+1 as in Notation 3.8.

Moreover, there is no x ∈ X ′
Pn

and y ∈ Y ′
Pn

with the property x < y. Here, Pn is a poset

defined on the set XP0 ∪ YP0 ∪ Y ′
Pn

and rank(Pn) ≤ 2. An example of this reduction is

given in Figure 3.2. By Lemma 3.9 and Proposition 2.27, if β24(R[I(Pi)]) ̸= 0 for some

1 ≤ i ≤ n, then β24(R[I(P0)]) ̸= 0.

p1 p3p2

p4 p5 p6 p7

p8 p9 p10

p11p12 p13

(a)

p1 p3p2

p8 p5 p6 p7

p9
p10

p13

p11 p12

(b) If p5 ∈ α, then p9 ∈ α

p1 p3p2

p8 p5 p10

p9 p13p11 p12

p3

p7

(c) If p6 ∈ α, then p10 ∈ α

p1 p3p2

p8 p5 p10

p9 p13p11 p12

(d) If p7 ∈ α, then p10 ∈ α

Figure 3.2

Example 3.11. In this example, we show that the converse of the conclusion in Discus-

sion 3.10 may not be true. Let P be a poset as shown in Figure 3.3a. By Lemma 3.16,

β24(R[I(P )]) ̸= 0. Now, let x = p4 and y = p7. Reduce P to P ′, using the methods of

Notation 3.8. It is easy to see that P ′ is as shown in Figure 3.3b. By Theorem 3.3,

β24(R[I(P ′)]) = 0.
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Figure 3.3

We now discuss when the converse of Discussion 3.10 holds. Let P be a poset and

let p, q ∈ P with p < q. Let L′ be as defined in Notation 3.8. Let K[I(P )] = K[{xα :

α ∈ I(P )}] and K[L′] = K[{xα : α ∈ L′}] ⊂ K[I(P )]. Let S = {α1, β1, α2, β2} ⊂ L′

with αi, βi are incomparable in I(P ) and L′ for all i = 1, 2. Then we have

Proposition 3.12. Under the notations and assumptions as above, if xα1xβ1 −
xα1∧β1xα1∨β1 , xα2xβ2 − xα2∧β2xα2∨β2 is a Koszul relation pair of R[I(P )], then xα1xβ1 −
xα1∧β1xα1∨β1 , xα2xβ2 − xα2∧β2xα2∨β2 is a Koszul relation pair of R[L′].

Proof. Let H be the semigroup associated to I(P ) and H ′ be the subsemigroup of H

corresponding to the sublattice L′. Let h = hα1+hα2+hβ1+hβ2 . Since S ⊂ L′, we have

h ∈ H ′. By Corollary 2.25, we get that Tor
K[L′]
i (R[L′], K)h → Tor

K[I(P )]
i (R[I(P )], K)h

is an isomorphism for all i. This completes the proof.

3.2 Property N2 of Hibi rings

In this section, we prove some sufficient conditions regarding when Hibi rings do not

satisfy property N2. The main result of this section is Theorem 3.20. It shows how to

reduce checking property N2 to a planar distributive sublattice. We begin by proving

some relevant lemmas.

Lemma 3.13. [HHO18, Problem 2.16] Let K be a field, S = K[x1, . . . , xn] and T =

K[y1, . . . , ym] be two polynomial rings. Let M be a finitely generated graded S-module

and N be a finitely generated graded T -module. Then M ⊗K N is a finitely generated
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graded S ⊗K T -module and

βpq(M ⊗K N) =
∑

βp1q1(M)βp2q2(N),

where the sum is taken over all p1 and p2 with p1 + p2 = p, and over all q1 and q2 with

q1 + q2 = q.

Proof. Let {a1, . . . , ar} (respectively {b1, . . . , bs}) be a minimal generating set of M

(respectively N) over S (respectively T ). Then {ai ⊗ bj : 1 ≤ i ≤ r, 1 ≤ j ≤ s} is a

minimal generating set of M ⊗K N over S ⊗K T .

Let F (respectively G) be the minimal graded free resolution of M (respectively N)

over S (respectively T ). Then the total complex of F⊗K G is the graded minimal free

resolution of M ⊗K N over S ⊗K T . Recall that the total complex of F ⊗K G is the

complex whose degree r part is
⊕

p+q=r Fp ⊗K Gq and whose differential is given by

∂(a⊗ b) = (∂a)⊗ b+ (−1)pa⊗ (∂b) for a ∈ Fp, b ∈ Gq. Its exactness follows from the

Künneth formula of complexes (see [Wei94, Theorem 3.6.3]). This implies the relation

between the Betti numbers.

Lemma 3.14. Let P be a poset and p be an element of P which is comparable to every

element of P . Let P1 = {q ∈ P : q < p} and P2 = {q ∈ P : q > p} be induced subposets

of P . If P1 and P2 are not chains, then R[I(P )] does not satisfy property N2.

Proof. Since P1 and P2 are not chains, R[I(P1)] and R[I(P2)] are not polynomial

rings. Therefore, β12(R[I(Pi)]) ̸= 0 for i = 1, 2. Note that P is the ordinal sum

P1⊕{p}⊕P2. By Lemma 2.20, R[I(P )] = R[I(P1)]⊗R[I(P2)]. Hence, β24(R[I(P )]) ̸= 0

by Lemma 3.13.

In [Ene15], Ene proved the above lemma for the case when I(P ) is a planar dis-

tributive lattice.

Lemma 3.15. Let P be a simple poset such that #P = m + n. Let I(P ) be a planar

distributive such that I(P ) ⊆ [(0, 0), (m,n)] with m,n ≥ 2. On the underlying set of

P , let P ′ be a poset such that every order relation in P is also an order relation in P ′.

Assume that the set of minimal (respectively maximal) elements of P ′ coincide with

the set of minimal (respectively maximal) elements of P . If β24(R[I(P )]) ̸= 0, then

β24(R[I(P ′)]) ̸= 0.
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Proof. If P ′ is not simple, then there exists an element p ∈ P ′ which is comparable

to every element of P ′. Observe that p is neither a minimal element nor a maximal

element. Let P1 = {q ∈ P : q < p} and P2 = {q ∈ P : q > p}. Since P1 and P2 are not

chains, β24(R[I(P ′)]) ̸= 0 by Lemma 3.14. So we may assume that P ′ is simple. On the

contrary, suppose that β24(R[I(P ′)]) ̸= 0. So the conditions (i) and (ii) of Theorem 3.3

hold for I(P ′). Since I(P ′) ⊆ I(P ), the conditions (i) and (ii) of Theorem 3.3 also

hold for I(P ) which is a contradiction. Hence the proof.

p1

p3

p2

p4

(a)

p1

p3

p2

p4

q1

qn

(b) n ≥ 1

Figure 3.4

Lemma 3.16. Let P be a poset such that the poset P ′ = {p1, ..., p4} of Figure 3.4a is

a cover-preserving subposet of P . Then R[I(P )] does not satisfy property N2.

Proof. Observe that by Theorem 3.3, β24(R[I(P ′)]) ̸= 0. Let B = {p1, p2}, B′ =

{p3, p4}. By Discussion 3.7, we may replace P by P1, where P1 is as defined in Discus-

sion 3.7, and assume that the sets of minimal and maximal elements of P coincide with

the sets of minimal and maximal elements of P ′ respectively.

Now, suppose that there exists an element p ∈ P such that p /∈ P ′. Then, we have

pi < p < pj for some i ∈ {1, 2} and j ∈ {3, 4}. This contradicts that pi⋖pj. Therefore,

P = P ′. This completes the proof.

Discussion 3.17. Let P be a poset. For k ≥ 1, let S = ∪k
i=1{pi,1, . . . , pi,ni

} be a

subset of the underlying set of P . Assume that {p1,1, . . . , pk,1} and {p1,n1 , . . . , pk,nk
} are

antichains in P . Also, assume that for all 1 ≤ i ≤ k, {pi,1, . . . , pi,ni
} is a chain in P with

pi,1⋖· · ·⋖pi,ni
. For q ∈ P \S, define SP

q := {p ∈ S : q⋖p}. Let B = {p1,1, . . . , pk,1} and

B′ = {p1,n1 , . . . , pk,nk
}. Using Discussion 3.7, reduce P to P1, where P1 is as defined

in Discussion 3.7. Let x, y ∈ P1 \ S with x ⋖ y. Reduce P1 to P2, using the methods

of Notation 3.8. Observe that #P2 = #P1 − 1, S ⊂ P2 and B and B′ are the sets

of minimal and maximal elements of P2 respectively. Repeating it, we get a sequence

P0, P1, . . . , Pm, where m ≤ #P −#S of posets such that for each 0 ≤ i ≤ m− 1, there
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exist x, y ∈ Pi \ S with x ⋖ y and Pi is reduced to Pi+1 as in Notation 3.8. Moreover,

there are no x, y ∈ Pm \ S with the property x⋖ y.

Now, we will do more reductions on Pm. Let q ∈ Pm \ S be such that #SPm
q = 1,

say SPm
q = {p}. We have q⋖ p in Pm. Reduce Pm to Pm+1, using the methods of Nota-

tion 3.8. Under this reduction, S ⊂ P2 and B and B′ are the sets of minimal and max-

imal elements of Pm+1 respectively. Repeating it, we get a sequence Pm, Pm+1, . . . , Ps

of posets such that for each m ≤ i ≤ s− 1, there exists a q ∈ Pi \S with #SPi
q = 1 and

Pi is reduced to Pi+1 as in Notation 3.8 and there is no q ∈ Ps \ S with #SPs
q = 1. If

βij(R[I(Pl)]) ̸= 0 for some i, j and l ∈ {1, . . . , s}, then by Discussion 3.7, Lemma 3.9

and Proposition 2.27, βij(R[I(P )]) ̸= 0.

Lemma 3.18. Let P be a poset and let the poset P ′ = {p1, ..., p4, q1, ..., qn} for some

n ≥ 1, as shown in Figure 3.4b is a cover-preserving subposet of P . Then R[I(P )] does
not satisfy property N2.

Proof. Note that by Lemma 3.14, β24(R[I(P ′)]) ̸= 0. Let

S = {p1, q1, . . . , qn, p3} ∪ {p2, q1, . . . , qn, p4}.

By Discussion 3.17, it suffices to show that R[I(Pm)] does not satisfy property N2,

where Pm is as defined in Discussion 3.17. Note that {p1, p2} and {p3, p4} are the sets

of minimal and maximal elements of Pm respectively. If there exists a cover-preserving

subposet of Pm as shown in Figure 3.4a then β24(R[I(Pm)]) ̸= 0. So we may assume

that Pm does not contain any cover-preserving subposet as shown in Figure 3.4a. Let

Sq be as defined in Discussion 3.17. There is no q ∈ Pm\S with Sq = {p3, p4} otherwise

Pm will contain a cover-preserving subposet as shown in Figure 3.4a. So we deduce that

#Sq = 1 for all q ∈ Pm \S. Now, reduce Pm to Ps as in Discussion 3.17. Then Ps = P ′.

This completes the proof.

Lemma 3.19. Let (P,≤) be a poset. Then I(P ) ∼= I(P ∂), where P ∂ is the dual poset

of P , that is, (P ∂,⪯) is the poset with the same underlying set but its order relation is

the opposite of P i.e. p ≤ q if and only if q ⪯ p. Hence, R[I(P )] ∼= R[I(P ∂)].

Theorem 3.20. Let P be a poset. Let S = ∪2
i=1{pi,1, . . . , pi,ni

} be a subset of the

underlying set of P such that

1. for all 1 ≤ i ≤ 2, {pi,1, . . . , pi,ni
} is a chain in P with pi,1 ⋖ · · ·⋖ pi,ni

;
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2. p1,1 and p2,1 are incomparable in P ;

3. p1,n1 and p2,n2 are incomparable in P .

Let P ′ be the induced subposet of P on the set S. If R[I(P ′)] does not satisfy property

N2 then so does R[I(P )].

Proof. For P , let P1, . . . , Pm, Pm+1, . . . , Ps be as defined in Discussion 3.17. For 1 ≤
i ≤ s, let P ′

i be the induced subposet of Pi on the set S. For 1 ≤ i ≤ s− 1, every order

relation between the elements of S in Pi is also an order relation in Pi+1. Also, {p1,1, p2,1}
and {p1,n1 , p2,n2} are the sets of minimal and maximal elements of Pi respectively, for

all i = 1, . . . , s. Therefore, by Lemma 3.15, β24(R[I(P ′
i )]) ̸= 0 for all 1 ≤ i ≤ s. By

Discussion 3.17, it is enough to show that R[I(Ps)] does not satisfy property N2. We

may replace P by Ps and P
′ by P ′

s.

Let P ∂ be the dual poset of P . If q ∈ P \ S, then #SP
q ≥ 2. So if there exists a

q ∈ P ∂ \ S with #SP∂

q ≥ 2, then P contains a cover-preserving subposet as shown in

Figure 3.4b. Thus, by Lemma 3.18, R[I(P )] does not satisfy property N2. So we may

assume that for all p ∈ P ∂ \ S, #SP∂

p = 1. Repeating the argument of Discussion 3.17,

we obtain a poset Q such that there is no q ∈ Q \ S with #SQ
q = 1. Observe that

Q is a poset on the set S. By Discussion 3.17, it suffices to prove that R[I(Q)] does
not satisfy property N2. Note that Q∂ is a poset on the set S and all order relations

of P ′ are also the order relations of Q∂. So by Lemma 3.15, R[I(Q∂)] does not satisfy

property N2. Thus, by Lemma 3.19, R[I(Q)] does not satisfy property N2. Hence the

proof.

Remark 3.21. Note that, in the proof of Theorem 3.20, the reduction from the poset

P to the poset Q∂ is independent of the hypothesis that I(P ′) is a planar distributive

lattice. In fact, we will also use the reduction from P to Q∂ in Discussion 3.27 where

the distributive lattice is not restricted to be planar. We have only used the fact

that I(P ′) is a planar distributive lattice to conclude that β24(R[I(Q∂)]) ̸= 0 and

β24(R[I(P ′
i )]) ̸= 0 for i = 1, . . . , s.

3.3 Property N2 continued

In this section, we prove a result analogous to Ene’s result. Suppose that a poset can

be decomposed into a union of three chains and it has three maximal and minimal
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elements. We prove some necessary conditions regarding when Hibi rings associated to

such posets satisfy property N2.

Lemma 3.22. Let P be a poset on the disjoint union ∪3
i=1{pi,1, pi,2, pi,3} such that

1. for all 1 ≤ i ≤ 3, {pi,1, pi,2, pi,3} is a chain in P with pi,1 ⋖ pi,2 ⋖ pi,3 ;

2. {p1,1, p2,1, p3,1} and {p1,3, p2,3, p3,3} are the sets of minimal and maximal elements

of P respectively.

If there exists an element in P such that either it cover three elements or it is covered

by three elements and P is not as shown in figure 3.5a, then β24(R[I(P )]) ̸= 0.

Proof. By Theorem 3.20, we may assume that there is no subposet P ′ of P , as defined

in Theorem 3.20, with β24(R[I(P ′)]) ̸= 0. Let p ∈ P be the element such that either

it cover three elements or it is covered by three elements. Then, p is either a maximal

element or a minimal element or p ∈ {p1,2, p2,2, p3,2}. If p is a maximal element of P ,

then in P ∂, p is a minimal element and it is covered by three elements. In this case

by Lemma 3.19, replace P by P ∂ and we may assume that p is a minimal element

of P . So we only have to consider the cases when either p is a minimal element or

p ∈ {p1,2, p2,2, p3,2}. In most of the subcases of these two cases, we will take δ, γ ∈ I(P )
and we will show that for the sublattice L′ := {α ∈ I(P ) : δ ≤ α ≤ γ}, β24(R[L′]) ̸= 0.

Hence, by Proposition 3.5 and Proposition 2.27, we conclude that β24(R[I(P )]) ̸= 0.

Case 1 Assume that p is a minimal element of P . Possibly by relabelling the elements of

P , we may assume that p = p1,1. We will prove this case in two subcases.

Subcase (a) Consider the subcase when p1,1 is covered by {p1,2, p2,2, p3,2}. Observe that p3,3

can not cover p2,2 otherwise P will contain a cover-preserving subposet as shown

in Figure 3.4b; thus, β24(R[I(P )]) ̸= 0 by Lemma 3.18. We prove this subcase in

two following subsubcases:

(i) Assume that p3,3 is covering p1,2 and p3,2 only. Observe that δ = ∅ and

γ = P \ {p2,3} are the order ideals of P . By Proposition 3.6, L′ ∼= I(P ′), where

P ′ is the poset as shown in Figure 3.5d. One can use a computer to check that

β24(R[I(P ′)]) ̸= 0.

(ii) Now, assume that either p3,3 is covering p3,2 only or p3,3 is covering at least

p2,1 and p3,2. Let δ = ∅ and γ = P \ {p1,3, p2,3}. By Proposition 3.6, L′ ∼= I(P ′),

where P ′ is one of the posets as shown in Figure 3.5e-3.5g. Again, it can be

checked by a computer that β24(R[I(P ′)]) ̸= 0.

44



Subcase (b) Consider the subcase when p1,1 is not covered by {p1,2, p2,2, p3,2}. So p1,1 is either
covered by {p1,2, p2,3, p3,2} or {p1,2, p2,2, p3,3} or {p1,2, p2,3, p3,3}. By symmetry, it

is enough to consider one of the cases from {p1,2, p2,3, p3,2} and {p1,2, p2,2, p3,3}.

First, consider the subsubcase when p1,1 is covered by {p1,2, p2,3, p3,2}. We have

p2,1 ⋖ p2,2, reduce P to P1 using the methods of Discussion 3.8. If p2,1 is covered

by p1,2 or p3,2 in P , then P1 will contain a cover-preserving subposet as shown in

Figure 3.4a. So we may assume that p2,1 is not covered by p1,2 and p3,2. Observe

that P1 is a poset on the underlying set P \ {p2,1}. Also, {p1,1, p2,2, p3,1} and

{p1,3, p2,3, p3,3} are the sets of minimal and maximal elements of P1 respectively.

Also, p1,1 is covered by {p1,2, p2,3, p3,2} in P1. Repeating the argument of the

subcase (a), we deduce that the result holds in this subsubcase.

Now, we consider the subsubcase when p1,1 is covered by {p1,2, p2,3, p3,3}. We

have p2,1 ⋖ p2,2, reduce P to P1 using the methods of Discussion 3.8. If p2,1 is

covered by p1,2 in P , then P1 will contain a cover-preserving subposet as shown

in Figure 3.4a. So we may assume that p2,1 is not covered by p1,2 in P . Similarly,

we may assume that p3,1 is not covered by p1,2. If either p2,2 or p3,2 is covered

by p1,3, then P will contain a subposet P ′, as defined in Theorem 3.20, with

β24(R[I(P ′)]) ̸= 0. If either p2,2 is covered by p3,3 or p3,2 is covered by p2,3, then

we are done by the previous subsubcase. Since P is not as shown in figure 3.5a,

the only possibility for P is that P is isomorphic to one of the posets as shown

in Figure 3.5h-3.5i. One can use a computer to check that β24(R[I(P )]) ̸= 0.

Case 2 Assume that p ∈ {p1,2, p2,2, p3,2}. Possibly by replacing P with P ∂, we may assume

that p is covering all the minimal elements. Possibly by relabelling the elements

of P , we may assume that p = p1,2. If p1,2, p2,2 and p3,2 are covered by p1,3, then

we are done by Case 1. So we may assume that not all elements of {p1,2, p2,2, p3,2}
are covered by p1,3. Let δ = ∅ and γ = P \ {p2,3, p3,3}. By Proposition 3.6,

L′ ∼= I(P ′), where P ′ is one of the posets as shown in Figure 3.5b-3.5c. Again,

one can use a computer to check that β24(R[I(P ′)]) ̸= 0.

We now give a SageMath [sage] code to compute the β24 of a Hibi ring. The code

uses the SageMath interface to the Macaulay2 [M2]. One requires to give the cover

relation of the poset as an input in the code, then the code returns the Betti table of

the Hibi ring up to column 3 as an output.
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1 def mnml(j):

2 return ’*’.join([’y0’] + [’y’ + str(i) for i in j])

3

4 CR = { 1: [4] ,2:[] ,3:[]} #Cover relations of the poset

5 P= Poset(CR)

6

7 J = P.order_ideals_lattice ();

8 l=[mnml(j) for j in J]

9

10 N = P.cardinality ()+1

11

12 X = "["+",".join([ "x"+str(i) for i in range(0,len(J))])+"]"

13 Y = "["+",".join([ "y"+str(i) for i in range(0,N)])+"]"

14 R = macaulay2.ring(’QQ’, X, ’GRevLex ’);

15 S = macaulay2.ring(’QQ’,Y, ’GRevLex ’);

16

17 f = macaulay2.map(S,R,l);

18 I = macaulay2.ker(f) #The Hibi ideal associated to the poset P.

19 h = macaulay2.res(I,"LengthLimit =>2")

20 n = macaulay2.betti(h)

Listing 3.1: Sagemath code to compute the Betti number of a Hibi ring

Lemma 3.23. Let P be as defined in Lemma 3.22. If the induced subposet of P ,

defined on the underlying set P \ {p1,1, p2,1, p3,1} or P \ {p1,3, p2,3, p3,3}, is connected.

Then β24(R[I(P )]) ̸= 0.

Proof. By Theorem 3.20, we may assume that there is no subposet P ′ of P , as defined

in Theorem 3.20, with β24(R[I(P ′)]) ̸= 0. Possibly by replacing P with P ∂, we may

assume that the subposet P ′ of P defined on the underlying set P \ {p1,3, p2,3, p3,3} is

connected. Observe that P ′ is isomorphic to one of the posets as shown in Figure 3.6a-

3.6b. If P ′ is as shown in Figure 3.6b, then we are done by Lemma 3.22.

Now, consider the case when P ′ is as shown in Figure 3.6a. Possibly by relabelling

the elements of P , we may assume that p1,2 is covering exactly one minimal element

of P . If either p1,1 ⋖ p3,3 or p3,1 ⋖ p2,3 or p2,2 ⋖ p3,3 or p3,2 ⋖ p2,3, then there exists

a subposet P ′ of P , as defined in Theorem 3.20, with β24(R[I(P ′)]) ̸= 0. Let δ = ∅
and γ = P \ {p1,2, p1,3}. Let also L′ = {α ∈ I(P ) : δ ≤ α ≤ γ}. By Proposition 3.6,

L′ ∼= I(P1), where P1 is as shown in Figure 3.6c. One can use a computer to check that

β24(R[I(P1)]) ̸= 0. Hence, by Proposition 3.5 and Proposition 2.27, β24(R[I(P )]) ̸=
0.
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Figure 3.6

Lemma 3.24. Let P be as defined in Lemma 3.22. If P is pure and connected, then

β24(R[I(P )]) ̸= 0.

Proof. By Theorem 3.20, we may assume that there is no subposet P ′ of P , as defined

in Theorem 3.20, with β24(R[I(P ′)]) ̸= 0. By Lemma 3.22, we may assume that there

is no element in P such that either it cover three elements or it is covered by three

elements. By Lemma 3.23, we may assume that the subposets of P defined on the
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Figure 3.7

underlying sets P \ {p1,1, p2,1, p3,1} and P \ {p1,3, p2,3, p3,3} are not connected. Then P

is isomorphic to one of the posets as shown in Figure 3.7. One can use a computer to

check that β24(R[I(P )]) ̸= 0. This concludes the proof.

Now we prove the main theorem of this section.

Theorem 3.25. Let P be a poset on the set ∪3
i=1{pi,1, ..., pi,ni

} such that

1. p1,1, p2,1, p3,1 are distinct and p1,n1 , p2,n2 , p3,n3 are distinct;

2. {p1,1, p2,1, p3,1} and {p1,n1 , p2,n2 , p3,n3} are the sets of minimal and maximal ele-

ments of P respectively;

3. for all 1 ≤ i ≤ 3, ni ≥ 3; {pi,1, . . . , pi,ni
} is a chain in P with pi,1 ⋖ · · ·⋖ pi,ni

.

If P is connected and none of the minimal elements of P is covered by a maximal

element then β24(R[I(P )]) ̸= 0.

Proof. Reduce P to Pn, where Pn is as defined in Discussion 3.10. Since P is connected

then so is Pn. Since none of the minimal elements of P is covered by a maximal element,

we obtain that Pn is pure. So by Discussion 3.10, we may replace P by Pn and assume

that P is pure and ni = 3 for all 1 ≤ i ≤ 3. Let X ′ be as defined in Notation 3.8. We

will prove the result in the following cases:

(1) If #X ′ = 1, then the result follows from Lemma 3.14.

(2) If #X ′ = 2, then P will contain a cover-preserving subposet as shown in Fig-

ure 3.4b. Hence, the result follows from Lemma 3.18.

(3) If #X ′ = 3, then the result follows from Lemma 3.24.
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Figure 3.8
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Discussion 3.26. Here we answer the following question: what happens if we weaken

the hypothesis of Theorem 3.25? Let P be a poset as defined in Theorem 3.25. The

case when P is disconnected will be discussed in Corollary 4.15. On the other hand,

suppose that P is connected and there exists a minimal element of P which is covered

by a maximal element. Using the proof of Theorem 3.25, we may replace the poset P

by Pn and assume that ni = 3 for all 1 ≤ i ≤ 3. Let X ′ be as defined in Notation 3.8.

Observe that #X ′ ∈ {2, 3}. If #X ′ = 2, then we are done by the argument used in the

proof of Theorem 3.25.

Now, consider the case when #X ′ = 3. We know that if P is as shown in figure 3.5a,

then β24(R[I(P )]) = 0. So we may assume that P is not as shown in figure 3.5a.

By Theorem 3.20, we may assume that there is no subposet P ′ of P , as defined in

Theorem 3.20, with β24(R[I(P ′)]) ̸= 0. By Lemma 3.22, we may assume that there

is no element in P such that either it cover three elements or it is covered by three

elements. By Lemma 3.23, we may assume that the subposets of P defined on the

underlying sets P \ {p1,1, p2,1, p3,1} and P \ {p1,3, p2,3, p3,3} are not connected. Then P

is isomorphic to one of the posets as shown in Figure 3.8. One can use a computer to

check that if P is isomorphic to one of the posets as shown in Figure 3.8a-3.8e, then

β24(R[I(P )]) = 0 otherwise β24(R[I(P )]) ̸= 0.

Remark 3.27. Let P be a poset. Let S = ∪3
i=1{pi,1, . . . , pi,ni

} be a subset of the

underlying set of P such that

1. p1,1, p2,1, p3,1 are distinct and p1,n1 , p2,n2 , p3,n3 are distinct;

2. B := {p1,1, p2,1, p3,1} and B′ := {p1,n1 , p2,n2 , p3,n3} are antichains in P ;

3. for all 1 ≤ i ≤ 3, ni ≥ 3; {pi,1, . . . , pi,ni
} is a chain in P with pi,1 ⋖ · · ·⋖ pi,ni

.

Using Discussion 3.17 and the arguments of the proof of Theorem 3.20, we can

reduce P to the poset Q∂, where Q∂ is a poset on the underlying set S. B and B′ are

the sets of minimal and maximal elements of Q∂ respectively. To prove that R[I(P )]
does not satisfy property N2, it is enough to show that R[I(Q∂)] does not satisfy

property N2 which can be easily checked using Theorem 3.25 and Discussion 3.26.
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3.4 Property Np of Hibi rings for p ≥ 3

In this section, we study the property Np of Hibi rings for p ≥ 3.

Lemma 3.28. Let Pn,m, where n,m ≥ 2, be the poset as shown in Figure 3.9. Then

R[I(Pn,m)] does not satisfy N3.

Proof. Observe that R[I(Pn,m)] satisfies property N2, by Theorem 3.3. Let x = p2 and

y = pn. Reduce Pn,m to P2,m using the methods of Notation 3.8. Now in P2,m, let

x = q2 and y = qm. Reduce P2,m to P2,2 using the method discussed in Notation 3.8.

For n,m = 2, one can use a computer to check that β35(R[I(Pn,m)]) ̸= 0. By Lemma 3.9

and Proposition 2.27, we have β35(R[I(Pn,m)]) ̸= 0. This completes the proof.

p1 q1

pn qm

Figure 3.9: Pn,m; n,m ≥ 2

Lemma 3.29. Let P be a poset such that I(P ) is a planar distributive lattice. Assume

that P has two minimal and two maximal elements. If R([I(P )]) satisfies property N3,

then P is a disjoint union of two chains.

Proof. Suppose that R([I(P )]) satisfies property N3. Then, it also satisfies property

N2. So P is simple otherwise there exists an element p ∈ P which is comparable to

every element of P . By hypothesis, p is neither a minimal element nor a maximal

element. Let P1 = {q ∈ P : q < p} and P2 = {q ∈ P : q > p}. Since P1 and

P2 are not chains, R([I(P )]) does not satisfy property N2 by Lemma 3.14, which is

a contradiction. By Corollary 3.4, P is isomorphic to one of the posets as shown in

Figure 3.1. If P is not isomorphic to the poset shown in Figure 3.1a, then it will contain

a cover-preserving subposet as shown in Figure 3.9, call it P ′. Let B and B′ be the

sets of minimal and maximal elements of P ′ respectively. Hence, by Discussion 3.7 and

Lemma 3.28, β35(R[I(P )]) ̸= 0. This concludes the proof.
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Now we prove our main theorem about property N3 of Hibi rings associated to

connected posets.

Theorem 3.30. Let P be a connected poset. Assume that P has at least two minimal

and maximal elements. Then R[I(P )] does not satisfy property N3.

Proof. Claim : There exist two maximal chains C1 = {p1, . . . , pr} and C2 = {q1, . . . , qs}
of P such that p1 ⋖ · · ·⋖ pr, q1 ⋖ · · ·⋖ qs, p1 ̸= q1 , pr ̸= qs and r, s ≥ 2.

Assume the claim. Let S = C1 ∪ C2. Using Discussion 3.17 and the proof of

Theorem 3.20, we can reduce P to the poset Q∂, where Q∂ is a poset on the underlying

set S and it is enough to show that R[I(Q∂)] does not satisfy property N3. Observe that

Q∂ is connected, {p1, q1} and {pr, qs} are the sets of minimal and maximal elements

of Q∂ respectively. By Lemma 3.29, R[I(Q∂)] does not satisfy property N3. This

completes the proof.

Now we prove the claim. Let C be a maximal chain in P with the minimal element

p and maximal element q. Fix a maximal element q′ ∈ P where q′ ̸= q. If there exists

a maximal chain C ′ with the maximal element q′ and the minimal element not equal

to p, then we are done. So we may assume that all maximal chains with the maximal

element q′ have minimal element p. Fix a minimal element p′ ∈ P where p′ ̸= p. If

there exists a maximal chain C ′′ with the minimal element p′ and maximal element

not equal to q, then we are done. So we may assume that all maximal chains with the

minimal element p′ have maximal element q. Then, we can take C1 to be a maximal

chain from p to q′ and C2 to be a maximal chain from p′ to q. Hence the proof.

Recall the notion of graphs from Section 2.4. The following lemma will be needed

in the proof of our main theorem about property Np for p ≥ 4.

a1 a2

b1 b2

a3 an−1

b3 bn−1

an

bn

Figure 3.10: L

Lemma 3.31. Let L be a distributive lattice as shown in Figure 3.10. Then the com-

parability graph GL of L is chordal.
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Proof. First break the underlying set of L in two disjoint subsets A1 = {a1, . . . , an} and

A2 = {b1, . . . , bn} (see Figure 3.10 for notational conventions). Let C = (c1, . . . , cr) be

a induced cycle of GL of length ≥ 4. If {c1, . . . , cr} ∩Ai ≥ 3 for any i ∈ {1, 2}, then C
has a chord because every pair in Ai is an edge of GL. So we may assume that r = 4

and #({c1, . . . , cr} ∩ Ai) = 2 for all i. Let {ci1 , ci2} ⊆ A1 and {ci3 , ci4} ⊆ A2. Without

loss of generality, we may assume that c1 = ci1 and c1 < ci2 in L. Let c ∈ {ci3 , ci4} be

such that {c1, c} is an edge in C. Therefore, c1 and c are comparable in L; therefore

c < c1 because c1 ∈ A1 and c ∈ A2. Therefore c < ci2 . Hence (c1, c, ci2) is a induced

chain in GL. Thus C has a chord. This completes the proof.

Example 3.32. Let P1 be an antichain of cardinality three and P2 be a poset such

that it is a disjoint union of two chains of length 1. By [Hib87, § 3, Corollary],

R[I(Pi)] is a Gorenstein ring for all i = 1, 2. For all i = 1, 2, the Hibi ring R[I(Pi)]

is Cohen-Macaulay, it is a quotient of a polynomial ring in #I(Pi) variables and the

Krull-dimension of R[I(Pi)] is #Pi + 1. So the Auslander-Buchsbaum formula im-

plies that proj dim(R[I(Pi)]) = #I(Pi) − #Pi − 1 for i = 1, 2. It is easy to see that

proj dim(R[I(Pi)]) = 4 for all i = 1, 2. By self-duality of minimal free resolution of

Gorenstein rings, we obtain that β4j(R[I(Pi)]) ̸= 0 for some j ≥ 6 and for all i = 1, 2

irrespective of the characteristic of the field K.

We are now ready to prove our main theorem about property Np for p ≥ 4.

Theorem 3.33. Let P be a poset and p ≥ 4. Let P ′ = {pi1 , ..., pir} be the subset of

all elements of P which are comparable to every element of P . Let P ′′ be the induced

subposet of P on the set P \ P ′. Then the following are equivalent:

1. R[I(P )] satisfies property Np;

2. R[I(P )] satisfies property N4;

3. Either P is a chain or P ′′ is a disjoint union of a chain and an isolated element;

4. Either R[I(P )] is a polynomial ring or K[I(P ′′)]/ in<(II(P ′′)) has a linear resolu-

tion;

5. Either R[I(P )] is a polynomial ring or it has a linear resolution

Before going to the proof of the theorem, we remark that not all of the equivalent

statements are new. For example, (3) ⇐⇒ (5) was proved in [EQR13, Corollary 10]

and (5) ⇒ (4) follows from [CV20, Corollary 2.7].
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Proof. (1) ⇒ (2) is trivial.

(2) ⇒ (3) If width(P ) ≥ 3, then there exists an antichain P1 in P of cardinal-

ity three. By Discussion 3.7, βij(R[I(P1)]) ≤ βij(R[I(P )]) for all i and j. Since

β4j(R[I(P1)]) ̸= 0 for some j ≥ 6 by Example 3.32, β4j(R[I(P )]) ̸= 0. Thus, R[I(P )]
does not satisfy property N4. So we may assume that width(P ) ≤ 2. If width(P ) = 1,

then P is a chain. We now consider width(P ) = 2. Observe that P ′′ is simple. Since

R[I(P ′′)] satisfies property N4, it also satisfies property N3. By Lemma 3.29, P ′′ is a

disjoint union of two chains. Suppose that P ′′ is a poset on the set ∪2
i=1{pi,1, . . . , pi,ni

}
such that {pi,1, . . . , pi,ni

} is a chain in P ′′ with pi,1 ⋖ · · ·⋖ pi,ni
for all i = 1, 2. We have

to show that either n1 = 1 or n2 = 1. On the contrary, suppose that ni ≥ 2 for all

i = 1, 2. Let P2 be the induced subposet of P ′′ on the set ∪2
i=1{pi,1, pi,2}. Let B and B′

be the sets of minimal and maximal elements of P2 respectively. By Example 3.32 and

Discussion 3.7, β4j(R[I(P )]) ̸= 0 for some j ≥ 6 which is a contradiction. Hence the

proof.

(3) ⇒ (4) If P is a chain, then R[I(P )] is a polynomial ring. Observe that the

distributive lattice I(P ′′) is as shown in Figure 3.10. The ideal in<(II(P ′′)) is the

Stanley-Reisner ideal of the order complex ∆(I(P ′′)) of II(P ′′) (see Section 6.1). It was

observed in Subsection 2.4 that ∆(I(P ′′)) = ∆(GI(P ′′)) where GI(P ′′) is the compara-

bility graph of I(P ′′). Now the result follows from Lemma 3.31 and [Frö90, Theorem

1].

(4) ⇒ (5) Since the Betti numbers of K[I(P ′′)]/ in<(II(P ′′)) over the ring K[I(P ′′)]

are greater than equal to those of R[I(P ′′)] [Pee11, Theorem 22.9], we get that R[I(P ′′)]

has a linear resolution. Thus, R[I(P )] has a linear resolution by Corollary 2.21.

(5) ⇒ (1) is immediate.

Hibi and Ohsugi [HO17] characterized chordal comparability graph of posets us-

ing toric ideals associated with multichains of poset. We now use Theorem 3.33 and

[Frö90, Theorem 1] to characterize comparability graph of distributive lattices which

are chordal. It is immediate that for a chain P of length n, GP is the complete graph

on the set [n+ 1] which is chordal.

Corollary 3.34. Let L = I(P ) be a distributive lattice and GL be the comparability

graph of L. For P , let P ′′ be as defined in Theorem 3.33. Then GL is chordal if and

only if P is a chain or P ′′ is a disjoint union of a chain and an isolated element.
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Chapter 4

Property Np for Segre product of

Hibi rings

In this chapter, we discuss the property Np of Segre product of Hibi rings for p ∈ {2, 3}.

The Segre product of two Hibi rings is a Hibi ring and it was observed in [HHR00].

We sketch a proof here.

Proposition 4.1. Let P1 and P2 be two posets and P be their disjoint union. Then

R[I(P )] ∼= R[I(P1)] ∗R[I(P2)], where ∗ denotes the Segre product.

Proof. The idea of the proof is same as a proof in Section 2.8. We show that R[I(P1)]∗
R[I(P2)] is a ASL on I(P ) over K with same straightening relations as R[I(P )]. Let

R[I(P1)] = K[{uα = t1
∏
pi∈α

yi : α ∈ I(P1)}] ⊆ K[t1, {yi : pi ∈ P1}]

and

R[I(P2)] = K[{vβ = t2
∏
qi∈β

zi : β ∈ I(P2)}] ⊆ K[t2, {zi : qi ∈ P2}].

Then,

R[I(P1)] ∗R[I(P2)] = K[{uαvβ : α ∈ I(P1), β ∈ I(P2)}].

Let φ : I(P ) → R[I(P1)] ∗R[I(P2)] be defined by (α, β) 7→ uαvβ. Note that for all

(α1, β1), (α2, β2) ∈ I(P ),

φ((α1, β1))φ((α2, β2)) = φ((α1, β1) ∨ (α2, β2))φ((α1, β1) ∧ (α2, β2)).
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ASL-2 follows from the above equation. For ASL-1, it suffices to show that the

standard monomials are distinct because they are monomials of the polynomial ring

T = K[t1, t2, {yi : pi ∈ P1}, {zi : qi ∈ P2}]. The proof of this is similar to the proof in

Section 2.8.

From Section 2.8, recall the definition of the semigroup associated to a Hibi ring.

For i ∈ {1, 2}, let Hi be the affine semigroup generated by {hα : α ∈ I(Pi)} and let

H be the affine semigroup associated to the Hibi ring R[I(P )]. Since I(P ) = {(α, β) :
α ∈ I(P1) and β ∈ I(P2)}, it is easy to see that, up to isomorphism, H is generated

by {(hα, hβ) : α ∈ I(P1) and β ∈ I(P2)}.

Theorem 4.2. Let P1, P2, P,H1, H2 and H be as above. Then, for each l ∈ {1, 2}, Hl is

isomorphic to a homologically pure subsemigroup of H. In particular, if βij(R[I(Pl)]) ̸=
0 for some l ∈ {1, 2}, then βij(R[I(P )]) ̸= 0.

Proof. By symmetry, it suffices to prove the theorem for l = 1. Consider the subsemi-

group G1 of H generated by {(hα, h∅) : α ∈ I(P1)}, where ∅ is the minimal element of

I(P2). It is easy to see that G1 is isomorphic to the semigroup H1. Also, observe that

δ = (∅, ∅) and γ = (P1, ∅) are the order ideals of H. The subsemigroup G1 is generated

by {hη : δ ≤ η ≤ γ}. So by Proposition 3.5, G1 is a homologically pure subsemigroup of

H. The second part of the theorem follows from Proposition 2.27. Hence the proof.

Corollary 4.3. Let P be a poset such that it is a disjoint union of two posets P1 and

P2. If R[I(P )] satisfies property Np for some p ≥ 2, then so do R[I(P1)] and R[I(P2)].

Proof. The proof follows from Theorem 4.2.

Lemma 4.4. Let R[I(P )] be a Hibi ring associated to a poset P . Then the following

statements hold:

(a) If β24(R[I(P )]) = 0, then R[I(P )] satisfies property N2.

(b) If R[I(P )] satisfies property N2 and β35(R[I(P )]) = 0, then it satisfies property N3.

Proof. (a) Since Hibi rings have a quadratic Gröbner basis (see Theorem 2.15), Hibi

rings are Koszul. So by Proposition 2.3, β2j(R[I(P )]) = 0 for all j ≥ 5. This concludes

the proof.

(b) The proof follows from [ACI15, Theorem 6.1].
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4.1 Segre product with a polynomial ring in two

variables

We now wish to study the property Np of Segre product of Hibi ring and a polynomial

ring. The main result of this section, whose proof is postponed to the end of the section,

is the following:

Theorem 4.5. Let P1 be a poset, P2 = {b} and p ∈ {2, 3}. Let P be the disjoint union

of P1 and P2. If R[I(P1)] satisfies property Np , then so does R[I(P )].

The proof of the above theorem follows the argument of Rubei [Rub02]. Let P1 and

P2 be as in theorem. So I(P ) = {(α, β) : α ∈ I(P1), β ∈ I(P2)}. Let H be the affine

semigroup generated by {(hα, hβ) : α ∈ I(P1), β ∈ I(P2)}. In order to prove the above

theorem, by Proposition 2.24 and Lemma 4.4, it is enough to show that for p ∈ {2, 3},
if h = (h1, h2) ∈ H with deg(h) = p+2, then H̃p−1(∆h) = 0. For i = 1, 2, let Hi be the

affine semigroup generated by {hα : α ∈ I(Pi)}. Observe that H2 is generated by two

elements h∅ and h{b}. For simplicity, we denote h{b} by hb.

Before going to the technical details, we refer the reader to Section 2.3 for definitions

and notations.

Notation 4.6. Let g ∈ H1 with deg(g) = d.

(a) Denote gε = (g, g′), where g′ = (d− ε)h∅ + εhb ∈ H2 and ε ∈ {0, . . . , d}.
(b) For 0 ≤ l ≤ d− 1, let

F l(∆g) = ∪
g1,...,gd s.t.
g1+...+gd=g

∪
i0,...,il∈{1,...,d}

〈
(gi0 , h∅), . . . , (gil , h∅)

〉
.

Lemma 4.7. Under the notations of Notation 4.6.

(a) For all i ≤ l − 1, H̃i(F
l(∆g)) ∼= H̃i(∆g).

(b) For ε ∈ {1, 2}, F l(∆g) ⊆ ∆gε if and only if l ≤ d− ε− 1.

Proof. (a) The proof follows from F l(∆g) ∼= skl(∆g).

(b) Let g1, . . . , gd ∈ H1 be such that
∑d

i=1 gi = g. Observe that for any {i0, ..., il} ⊆ [d],

{(gi0 , h∅), . . . , (gil , h∅)} is a simplex in ∆gε if and only if l ≤ d− ε− 1.

Let g ∈ H1 with deg(g) = d and let ε ∈ {0, . . . , d}. Note that ∆gε
∼= ∆g for all

ε ∈ {0, d}. Also, we have ∆gε
∼= ∆gd−ε

. Thus, to prove the theorem, it suffices to

consider the cases h2 = (p+ 2− ε)h∅ + εhb, where ε ∈ {1, 2} and p ∈ {2, 3}.
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Remark 4.8. Let g ∈ H1 with deg(g) = d and ε ∈ {0, . . . , d}. Let g1, ..., gd ∈ H1 be

such that g =
∑d

i=1 gi. Observe that σ =
{
(gi1 , h∅), . . . , (gid−ε+1

, h∅)
}
/∈ ∆gε for any

i1, . . . , id−ε+1 ∈ {1, . . . , d}. For l ∈ {1, . . . , d} with l ̸= ij, j ∈ {1, . . . , d− ε+ 1}, let

σ′ =
d−ε+1∑
j=1

(−1)j−1
{
(gil , hb), (gi1 , h∅), . . . ,

̂(gij , h∅), . . . , (gid−ε+1
, h∅)

}
be a (d− ε)-chain in ∆gε . Then ∂σ = ∂σ′.

Definition 4.9. For any g ∈ H1 with deg(g) = d and ε ∈ {1, . . . , d}, we define Rg,ε to

be the following simplicial complex:

∪
g1,...,gd∈H1

s.t. g1+...+gd=g

∪
i1,...,id−1∈{1,...,d}

il ̸=im

〈
(gi1 , hb), . . . , (giε−1 , hb), (giε , h∅), . . . , (gid−1

, h∅)
〉
.

Lemma 4.10. Let g ∈ H1 with deg(g) = d and ε ∈ {1, 2}. Assume that

1. (i, d) ∈ {(0, 3), (1, 4)};

2. H̃i(∆gε−1) = 0.

Then H̃i(Rg,ε) = 0.

Proof. Observe that Rg,ε ⊆ ∆gε−1 . If ε = 1, then sk2(∆gε−1) ⊆ sk2(Rg,ε). Thus,

H̃i(∆gε−1) = H̃i(Rg,ε) for i = 0, 1. So we only have to consider the case ε = 2. Let β

be an i-cycle in Rg,ε. Since H̃i(∆gε−1) = 0, there exists an (i+1)-chain η in ∆gε−1 such

that ∂η = β. Suppose that η =
∑

j cjσj, where σj is an (i+ 1)-simplex in ∆gε−1 . Now

consider an (i + 1)-chain ψ in Rg,ε such that ψ =
∑

j cjσ
′
j, where σ

′
j = σj if σj ∈ Rg,ε

else σ′
j is as defined in Remark 4.8 corresponding to σj. Then ∂ψ = β.

Lemma 4.11. Let g ∈ H1 with deg(g) = 4 and ε ∈ {1, 2}. Every 1-cycle γ in ∆gε is

homologous to an 1-cycle in F 1(∆g) (⊆ ∆gε).

Proof. We prove the lemma by induction on the cardinality of (supp(γ) ∩ sk0(∆gε)) \
F 1(∆g).

Let (f, hb) ∈ supp(γ). Let S(f,hb) be the set of 1-simplexes of γ with vertex (f, hb).

For σ = {v, (f, hb)} ∈ S(f,hb), let σ
′ = {v, (f, h∅)}. Clearly, σ′ is an 1-simplex of ∆gε .

Let α =
∑

σ∈S(f,hb)
(−σ + σ′) be the 1-cycle in ∆gε .
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Now, we show that for a vertex v in ∆gε , if ⟨v, (f, hb)⟩ ⊆ ∆gε , then v ∈ Rg−f,ε.

Observe that

Rg−f,1 = ∪
g1,g2,g3∈H1

s.t. g1+g2+g3=g−f

∪
i1,i2∈{1,2,3}

i1 ̸=i2

〈
(gi1 , h∅), (gi2 , h∅)

〉
and

Rg−f,2 = ∪
g1,g2,g3∈H1s.t.
g1+g2+g3=g−f

∪
i1,i2∈{1,2,3}

i1 ̸=i2

〈
(gi1 , hb), (gi2 , h∅)

〉
.

If ε = 1, then v = (f ′, h∅) for some f ′ ∈ H1 such that g − (f + f ′) ∈ H1. If ε = 2,

then either v = (f ′, h∅) or v = (f ′, hb) for some f ′ ∈ H1 such that g − (f + f ′) ∈ H1.

In both cases, v ∈ Rg−f,ε.

So we obtain that supp(α) ⊆ C, where C is the union of the cones ⟨(f, hb), Rg−f,ε⟩
and ⟨(f, h∅), Rg−f,ε⟩. Notice that C ⊆ ∆gε . Since Hibi rings satisfy propertyN1, we have

H̃0(∆(g−f)ε−1
) = 0. Thus, H̃0(Rg−f,ε) = 0 by Lemma 4.10. Since H̃i(C) = H̃i−1(Rg−f,ε),

we have H̃1(C) = 0. Thus, α is homologous to 0 which implies that σ is homologous

to σ + α.

Observe that #((supp(γ + α) ∩ sk0(∆gε)) \ F 1(∆g)) < #((supp(γ) ∩ sk0(∆gε)) \
F 1(∆g)). Hence, we conclude the proof by induction.

Proof of Theorem 4.5 for N2. We have to show that if h = (h1, h2) ∈ H with deg(h) =

4, then H̃1(∆h) = 0. We consider the following cases:

(1). Assume that h2 = 3h∅ + hb. Let γ be an 1-cycle in ∆h. By Lemma 4.11, γ is

homologous to an 1-cycle γ′ of F 1(∆h1) ⊂ ∆h. In other words, there exists a

2-chain µ in ∆h such that ∂µ = γ−γ′. Also, H̃1(F
2(∆h1))

∼= H̃1(∆h1) = 0, where

the isomorphism is due to Lemma 4.7(a) and the equality is by hypothesis. As

F 1(∆h1) ⊂ F 2(∆h1), there exists a 2-chain µ′ in F 2(∆h1) such that ∂µ′ = γ′.

Since F 2(∆h1) ⊆ ∆h, µ
′ is a 2-chain in ∆h. Therefore, [γ′] = 0 in H̃1(∆h). So

[γ] = 0 in H̃1(∆h).

(2). Consider h2 = 2h∅ +2hb. Every 1-cycle γ in ∆h is homologous to an 1-cycle γ′ in

F 1(∆h1) by Lemma 4.11. But in this case, F 2(∆h1) is not contained in ∆h. Since

H̃1(F
2(∆h1)) = 0, there exists a 2-chain µ in F 2(∆h1) such that ∂µ = γ′. Let

µ =
∑

i ciσi, where σi is a 2-simplex in F 2(∆h1). Consider a 2-chain ψ in ∆h such

that ψ =
∑

i ciσ
′
i, where σ

′
i = σi if σi ∈ ∆h else σ′

i is as defined in Remark 4.8
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corresponding to σi. Then ∂ψ = γ′. Therefore, [γ′] = 0 in H̃1(∆h). So [γ] = 0 in

H̃1(∆h). Hence the proof.

Lemma 4.12. Let g ∈ H1 with deg(g) = 5 and ε ∈ {1, 2}. Every 2-cycle γ in ∆gε is

homologous to a 2-cycle in F 2(∆g) (⊂ ∆gε).

Proof. We prove the result by induction on the cardinality of (supp(γ) ∩ sk0(∆gε)) \
F 2(∆g).

Let (f, hb) ∈ supp(γ). Let S(f,hb) be the set of 2-simplexes of γ with vertex (f, hb).

For σ = {v, u, (f, hb)} ∈ S(f,hb), let σ
′ = {v, u, (f, h∅)}. Clearly, σ′ is a 2-simplex of ∆gε .

Let α =
∑

σ∈S(f,hb)
(−σ + σ′) be the 2-cycle in ∆gε .

Now, we show that for vertexes v, u in ∆gε , if ⟨v, u, (f, hb)⟩ ⊆ ∆gε , then ⟨v, u⟩ ⊆
Rg−f,ε. Observe that

Rg−f,1 = ∪
g1,...,g4∈H1

s.t. g1+...+g4=g−f

∪
i1,i2,i3∈{1,...,4}

il ̸=ik

〈
(gi1 , h∅), (gi2 , h∅)(gi3 , h∅)

〉
and

Rg−f,2 = ∪
g1,...,g4∈H1

s.t. g1+...+g4=g−f

∪
i1,i2,i3∈{1,...,4}

il ̸=ik

〈
(gi1 , hb), (gi2 , h∅)(gi3 , h∅)

〉
.

If ε = 1, then ⟨v, u⟩ = ⟨(f1, h∅), (f2, h∅)⟩ for some f1, f2 ∈ H1 such that g− (f +f1+

f2) ∈ H1. If ε = 2, then either ⟨v, u⟩ = ⟨(f1, h∅), (f2, h∅)⟩ or ⟨v, u⟩ = ⟨(f1, hb), (f2, h∅)⟩
for some f1, f2 ∈ H1 such that g − (f + f1 + f2) ∈ H1. In both cases, ⟨v, u⟩ =

⟨(f1, h∅), (f2, h∅)⟩ ⊆ Rg−f,ε.

So we obtain that supp(α) ⊆ C, where C is the union of the cones ⟨(f, hb), Rg−f,ε⟩
and ⟨(f, h∅), Rg−f,ε⟩. Notice that C ⊆ ∆gε . Since R[I(P )] satisfies property N2, we have

H̃1(∆(g−f)ε−1
) = 0. Thus by Lemma 4.10, H̃1(Rg−f,ε) = 0. Since H̃i(C) = H̃i−1(Rg−f,ε),

we have H̃2(C) = 0. Thus, α is homologous to 0. So σ is homologous to σ + α.

Observe that #((supp(γ + α) ∩ sk0(∆gε)) \ F 2(∆g)) < #((supp(γ) ∩ sk0(∆gε)) \
F 2(∆g)). Hence, we conclude the proof by induction.

Proof of Theorem 4.5 for N3. We have to show that if h = (h1, h2) ∈ H with deg(h) =

5, then H̃2(∆h) = 0. We consider the following cases:
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(1). Consider h2 = 4h∅+hb. Let γ be a 2-cycle in ∆h. By Lemma 4.12, γ is homologous

to a 2-cycle γ′ of F 3(∆h1) ⊂ ∆h. In other words, there exists a 3-chain µ in ∆h

such that ∂µ = γ−γ′. Also, H̃2(F
3(∆h1))

∼= H̃2(∆h1) = 0, where the isomorphism

is due to Lemma 4.7 and the equality holds because R[I(P1)] satisfies propertyN3.

As F 2(∆h1) ⊂ F 3(∆h1), there exists a 3-chain µ′ in F 3(∆h1) such that ∂µ′ = γ′.

Since F 3(∆h1) ⊆ ∆h, µ
′ is a 3-chain in ∆h. Therefore, [γ′] = 0 in H̃1(∆h). So

[γ] = 0 in H̃1(∆h).

(2). Assume h2 = 3h∅ + 2hb. By Lemma 4.12, every 2-cycle γ in ∆h is homologous to

a 2-cycle γ′ in F 2(∆h1). But in this case, F 3(∆h1) ⊈ ∆h. Since H̃2(F
3(∆h1)) = 0,

there exists a 3-chain µ in F 3(∆h1) such that ∂µ = γ′. Let µ =
∑

i ciσi, where

σi is a 3-simplex in F 3(∆h1). Consider a 3-chain ψ in ∆h such that ψ =
∑

i ciσ
′
i,

where σ′
i = σi if σi ∈ ∆h else σ′

i is as defined in Remark 4.8 corresponding to σi.

Then ∂ψ = γ′. Therefore, [γ′] = 0 in H̃2(∆h). So [γ] = 0 in H̃2(∆h). Hence the

proof.

4.2 Segre product with a polynomial ring

In this section, we show that if a Hibi ring satisfies property N2, then its Segre product

with a polynomial ring in finitely many variables also satisfies property N2.

Proposition 4.13. Let P be a poset such that it is a disjoint union of a poset P1 and

a chain P2 = {a1, . . . , an} with a1 ⋖ · · ·⋖ an. Let {x} be a poset and P ′
2 be the ordinal

sum P2⊕{x}. Let Q be the disjoint union of the posets P1 and P ′
2. If R[I(P )] satisfies

property N2, then so does R[I(Q)].

We now state our main theorem of this section.

Theorem 4.14. Let P be a poset such that it is a disjoint union of a poset P1 and a

chain P2. If R[I(P1)] satisfies property N2, then so does R[I(P )].

Proof. The proof follows from Theorem 4.5 and Proposition 4.13.

Corollary 4.15. Let P be as defined in Theorem 3.25. Assume that P is disconnected.

Then β24(R[I(P )]) = 0 if and only if P is a disjoint union of two posets P1 and P2 such

that I(P1) is a planar distributive lattice with β24(R[I(P1)]) = 0 and P2 is a chain.
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Proof. The proof follows from Theorem 4.14 and Corollary 4.3.

The rest of section is dedicated to the proof of the Proposition 4.13. The proof of

Proposition 4.13 is motivated from Rubei [Rub07].

Let P be a poset such that it is a disjoint union of two posets P1 and P2. Let {x}
be a poset and P ′

2 be the ordinal sum P2 ⊕ {x}. Let Q be the disjoint union of posets

P1 and P ′
2. Let H and H ′ be the affine semigroups generated by {hα : α ∈ I(Q)} and

{hβ : β ∈ I(P )} respectively. For i ∈ {1, 2}, let Hi be the affine semigroup generated

by {hα : α ∈ I(Pi)}. For α ∈ Q, the first entry of hα is 1 if x ∈ α and the second entry

of hα is 1 if x /∈ α.

Note : Let h ∈ H with deg(h) = d. In this subsection, we either denote h by

(ε, d − ε, h′), where h′ ∈ H ′ or we denote it by (ε, d − ε, h2, h1), where hi ∈ Hi for all

i = 1, 2.

Let h ∈ H with deg(h) = d. Then h = (ε, d − ε, h′), where h′ ∈ H ′, ε ≤ d, ε ∈ N.
Let Xh be the following simplicial complex:

Xh := ∆h ∪∆(ε−1,d−ε+1,h′) ∪ . . . ∪∆(0,d,h′).

Observe that ∆(0,d,h′)
∼= ∆h′ ∼= ∆(d,0,h′). Let γ be an 1-cycle in Xh. For every vertex

v ∈ γ, let Sv,γ be the set of simplexes of γ with vertex v and µv,γ be the 0-cycle such

that v ∗ µv,γ =
∑

τ∈Sv,γ
τ , where ∗ denotes the joining.

Proposition 4.16. Let h ∈ H with deg(h) = 4. Let γ be an 1-cycle in ∆h. Then there

exists an 1-cycle γ′ in ∆(0,4,h′) such that γ is homologous to γ′ in Xh.

Proof. Let hα1 , . . . , hαm be the vertices of γ with non-zero first entry. In other words,

these are all the vertices hα of γ such that x ∈ α. For 1 ≤ i ≤ m, let βi = αi \ {x}.
Observe that µhα1 ,γ

is in ∆h−hα1
and

H̃1(hα1 ∗∆h−hα1
∪ hβ1 ∗∆h−hα1

) = H̃0(∆h−hα1
) = 0,

where the last equality holds because R[I(Q)] satisfies property N1. So hα1 ∗ µhα1 ,γ
−

hβ1 ∗ µhα1 ,γ
is homologous to 0 in Xh. Hence, γ1 := γ − (hα1 ∗ µhα1 ,γ

− hβ1 ∗ µhα1 ,γ
) is

homologous to γ in Xh. Informally speaking, we have got γ1 from γ by replacing the

vertex hα1 with hβ1 . Inductively, define

γi := γi−1 − (hαi
∗ µhαi ,γi−1

− hβi
∗ µhαi ,γi−1

)
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for 2 ≤ i ≤ m. Since all the vertexes of γm have first entry zero, we have γm ∈ ∆(0,d,h′).

We set γ′ = γm and prove that γm is homologous to γ in Xh. To prove this, it suffices

to show that hαi
∗ µhαi ,γi−1

− hβi
∗ µhαi ,γi−1

is homologous to 0 for 2 ≤ i ≤ m.

Let θ0 be the sum of simplexes τ of µhαi ,γi−1
such that τ is a vertex of ∆h−hαi

and let

θ1 be the sum of simplexes τ of µhαi ,γi−1
such that τ is not a vertex of ∆h−hαi

. Observe

that µhαi ,γi−1
= θ0 + θ1 and θ1 is a 0-cell in ∆(ε−1,5−ε,h′)−hαi

. Since µhαi ,γ
is a 0-cycle,

θ0 is a 0-cycle of ∆h−hαi
and θ1 is a 0-cycle of ∆(ε−1,5−ε,h′)−hαi

. Furthermore, since

R[I(Q)] satisfies property N1, θ0 is homologous to 0 in ∆h−hαi
and θ1 is homologous to

0 in ∆(ε−1,5−ε,h′)−hαi
. Thus, they are homologous to 0 in Xh. Therefore, hαi

∗µhαi ,γi−1
−

hβi
∗ µhαi ,γi−1

is homologous to 0 in Xh. This concludes the proof.

Lemma 4.17. Let P = {q1, . . . , qr} be a chain such that q1 ⋖ · · ·⋖ qr and let H be the

semigroup corresponding to R[I(P)]. Let h =
∑d

i=1 hαi
∈ H. Then

∆h = ⟨hα1 , . . . , hαd
⟩.

Proof. It is enough to show that for some α ∈ I(P), if hα /∈ {hα1 , . . . , hαd
}, then hα is

not a vertex of ∆h. If α = ∅, then the entry corresponding to “q1 /∈ α” in h − hα will

be -1. So hα is not a vertex of ∆h. If αi ≤ α for all i ∈ {1, . . . , d}, then h − hα /∈ H.

Hence, hα is not a vertex of ∆h. Now suppose that for all i ∈ {1, . . . , d}, αi ≰ α. Let

{hαi1
, . . . , hαim

} be the subset of {hα1 , . . . , hαd
} such that hα < hαij

for all j = 1, . . . ,m.

Let α = {q1, . . . , qs}, where 1 ≤ s ≤ r − 1. Observe that the entries corresponding to

qs and qs+1 in h are m. But the entries corresponding qs and qs+1 in h− hα are m− 1

and m respectively. Hence, h− hα /∈ H. This completes the proof.

From now onwards, let P be a poset such that it is a disjoint union of a poset P1

and a chain P2 = {a1, . . . , an} with a1 ⋖ · · ·⋖ an. Let P
′
2 be the ordinal sum P2 ⊕ {x}.

Furthermore, let Q be the disjoint union of posets P1 and P
′
2. Let HP ′

2
be the semigroup

associated to R[I(P ′
2)].

Lemma 4.18. Let h =
∑d

i=1 hαi
∈ H with h = (ε, d − ε, h′), ε ≥ 1. For r < d,

assume that there are exactly r number of i’s with αi = α1
i ∪P2, where α

1
i ∈ I(P1). Let

τ = {hβ1 , . . . , hβm+1} be an m-simplex of Xh. Then τ ∈ ∆h if and only if there are at

most r number of βi’s with βi = β1
i ∪ P2, where β

1
i ∈ I(P1).

Proof. If we write h = (ε, d− ε, h2, h1), where hi ∈ Hi for all i = 1, 2, then (ε− 1, d−
ε+ 1, h′) = (ε− 1, d− ε+ 1, h2, h1). For 1 ≤ i ≤ d, let αi = (α2

i , α
1
i ), where α

2
i ∈ I(P ′

2)
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and α1
i ∈ I(P1), So we can write hαi

= (1, 0, hP2 , hα1
i
) if x ∈ αi and hαi

= (0, 1, hα2
i
, hα1

i
)

if x /∈ α2
i , where hα2

i
∈ H2 and hα1

i
∈ H1. We have

h1 =
d∑

i=1

hα1
i
, (ε, d− ε, h2) =

d∑
i=1

hα2
i
.

Let τ1 = {hβ1
1
, . . . , hβ1

m+1
} and τ2 = {hβ2

1
, . . . , hβ2

m+1
}. Note that τ1, τ2 could be multi-

sets.

Now we show that τ ∈ ∆h if and only if τ2 ⊆ {hα2
1
, . . . , hα2

d
}. Observe that if τ ∈ ∆h,

then (ε, d − ε, h2) −
∑m+1

j=1 hβ2
j
∈ HP ′

2
. Hence, τ2 ⊆ {hα2

1
, . . . , hα2

d
}, by Lemma 4.17.

On the other hand, if τ2 ⊆ {hα2
1
, . . . , hα2

d
}, then (ε, d − ε, h2) −

∑m+1
j=1 hβ2

j
∈ HP ′

2
.

Since τ ∈ Xh, there exists an i0 ∈ {0, . . . , ε} such that τ ∈ ∆(ε−i0,d−ε+i0,h2,h1). So

(ε− i0, d− ε+ i0, h2, h1)−
∑m+1

j=1 hβj
∈ H. Therefore, h1 −

∑m+1
j=1 hβ1

j
∈ H1. We obtain

τ ∈ ∆h.

The proof of ‘only if’ part follows from the above claim. To prove ‘if’, it suffices to

show that τ2 ⊆ {hα2
1
, . . . , hα2

d
}. For 1 ≤ i ≤ ε, we have

(ε− i, d− ε+ i, h2) =
ε−i∑
j=1

hP ′
2
+

ε∑
j=ε−i+1

hP2 +
ε+r∑

j=ε+1

hP2 +
d∑

j=ε−r+1

hα2
j
∈ HP ′

2
.

Let i0 ∈ {0, . . . , ε} be such that τ ∈ ∆(ε−i0,d−ε+i0,h2,h1). Since there are at most r number

of βi’s in τ with βi = β1
i ∪P2, where β

1
i ∈ I(P1), the multiplicity of hP2 in τ2 is at most

r. So by Lemma 4.17,

τ2 ⊆ {hP ′
2
, . . . , hP ′

2
, hP2 , . . . , hP2 , hα2

ε−r+1
, . . . , hα2

d
} ⊆ {hα2

1
, . . . , hα2

d
},

where the multidegrees of hP ′
2
and hP2 in the middle set are ε − i0 and r respectively.

Hence, τ2 ⊆ {hα2
1
, . . . , hα2

d
}.

Remark 4.19. (1) Let p ∈ {2, 3} and h =
∑p+2

i=1 hαi
∈ H. Assume that there is an

α2
0 ∈ I(P ′

2) \ {α2
1, . . . , α

2
p+2}. Let h̃ =

∑p+2
i=1 hβi

be an element of H such that

βi =

αi if x /∈ αi,

α1
i ∪ α2

0 if x ∈ αi.
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For τ = {hγ1 , . . . , hγm}, define τ ′ := {hν1 , . . . , hνm}, where

νj =

γj if x /∈ γj,

γ1j ∪ α2
0 if x ∈ γi.

Then τ is a simplex of ∆h if and only if τ ′ is a simplex of ∆h̃. Therefore, ∆h
∼= ∆h̃.

(2) Let p ∈ {2, 3} and h =
∑p+2

i=1 hαi
∈ H. Let α2, α̃2 ∈ {α2

1, . . . , α
2
p+2} with α2 ̸= α̃2.

Let h̃ =
∑p+2

i=1 hβi
be an element of H such that

βi =


αi if α2

i ̸= α2, α̃2,

α1
i ∪ α̃2 if αi = α1

i ∪ α2 ,

α1
i ∪ α2 if αi = α1

i ∪ α̃2.

For τ = {hγ1 , . . . , hγm}, define τ ′ := {hν1 , . . . , hνm}, where

νj =


γj if γ2j ̸= α2, α̃2,

γ1j ∪ α̃2 if γj = γ1j ∪ α2 ,

γ1j ∪ α2 if γj = γ1j ∪ α̃2.

Observe that τ is a simplex of ∆h if and only if τ ′ is a simplex of ∆h̃. Therefore,

∆h
∼= ∆h̃.

Proposition 4.20. Let h = (1, 3, h2, h1) =
∑4

i=1 hαi
∈ H. Assume that I(P ′

2) ⊆
{α2

1, . . . , α
2
4} and there are exactly two i’s with α2

i = P2. Let γ be an 1-cycle in ∆h. If

γ is homologous to 0 in Xh, then it is also homologous to 0 in ∆h.

Proof. Let η =
∑
cσσ, where cσ ∈ Z, be a 2-chain in Xh such that ∂η = γ. We

construct an η′ in ∆h such that ∂η′ = γ. Let {hν1 , hν2 , hν3} be a simplex in η. By

Lemma 4.18, it is not a simplex of ∆h if and only if ν2j = P2 for j = 1, 2, 3. Let

σ = {hν1 , hν2 , hν3} be a simplex in η such that it is not a simplex of ∆h. Note that

(0, 4, h2, h1) −
∑3

i=1 hνi ∈ H, call it hν4 . Observe that {hν1 , . . . , hν4} is a face of Xh.

Define

σ′ :=
3∑

j=1

(−1)j−1
{
hν4 , hν1 , . . . , ĥνj , . . . , hν3

}
.

By Lemma 4.18, ν24 ̸= P2. Therefore, σ′ is a 2-chain in ∆h. Observe that ∂σ = ∂σ′.

Take η′ =
∑

σ∈η cσσ
′, where σ′ = σ if σ ∈ ∆h otherwise σ′ is as defined above for σ.

Then η′ is a 2-chain in ∆h and ∂η′ = γ. This completes the proof.
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Remark 4.21. Let Q be a poset such that it is a disjoint union of a poset P1 and a

chain P ′
2 = {a1, a2, x}, with a1⋖a2⋖x. Assume that R[I(P1)] satisfies property N2. Let

H be the semigroup associated to R[I(Q)]. Let A = {β1
1 , . . . , β

1
4}, B = {β1

1 , β
1
2 , δ

1
1, δ

1
2}

where β1
j , δ

1
i ∈ I(P1), be two multisets with {δ11, δ12} ∩ {β1

3 , β
1
4} = ∅, β1

1 ̸= β1
2 and∑

β∈A hβ =
∑

β∈B hβ ∈ H1. Let

S =
{
{ν1, . . . , ν4} ⊆ I(Q) : {ν21 , . . . , ν24} = I(P ′

2) and {ν11 , . . . , ν14} ∈ {A,B}
}
.

Let ∆′ be the simplicial complex whose facets are {hν1 , . . . , hν4}, where {ν1, . . . , ν4} ∈ S.
We use SageMath [sage] to check that H̃1(∆

′) = 0 for all choices of A and B.

The choices of A and B, up to isomorphism, are the following:

(a) {β1
1 , β

1
2} = {β1

3 , β
1
4}, δ13 ̸= δ14,

1 import itertools;

2 A= [5,6,5,6];

3 B= [5,6,7,8];

4 C = list(itertools.permutations(A));

5 D = list(itertools.permutations(B));

6 L1 = [[(0,b1) ,(1,b2) ,(2,b3) ,(3,b4)] for [b1 ,b2 ,b3 ,b4] in C];

7 L2 = [[(0,b1) ,(1,b2) ,(2,b3) ,(3,b4)] for [b1 ,b2 ,b3 ,b4] in D];

8 S = L1+L2;

9 K = SimplicialComplex(S);

10 print(K.homology ())

11

12 {0: 0, 1: 0, 2: Z^21, 3: 0}

Listing 4.1: Sagemath code

(b) {β1
1 , β

1
2} = {β1

3 , β
1
4}, δ13 = δ14,

1 A=[5,6,5,6]

2 B=[5,6,7,7];

3

4 {0: 0, 1: 0, 2: Z^11, 3: 0}

Listing 4.2: Sagemath code

(c) β1
1 = β1

3 , β
1
2 ̸= β1

4 , δ
1
3 ̸= δ14 and β1

2 /∈ {δ13, δ14},

1 A=[5,6,5,7]

2 B=[5,6,8,9];

3
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4 {0: 0, 1: 0, 2: Z^25, 3: 0}

Listing 4.3: Sagemath code

(d) β1
1 = β1

3 , β
1
1 ̸= β1

4 , β
1
2 ̸= β1

4 ,δ
1
3 and δ13 = δ14,

1 A=[5,6,5,7]

2 B=[5,6,8,8];

3

4 {0: 0, 1: 0, 2: Z^15, 3: 0}

Listing 4.4: Sagemath code

(e) β1
1 = β1

3 , β
1
1 ̸= β1

4 , β
1
2 ̸= β1

4 , δ
1
3 ̸= δ14 and β1

2 = δ13,

1 A=[5,6,5,7]

2 B=[5,6,6,8];

3

4 {0: 0, 1: 0, 2: Z^15, 3: 0}

Listing 4.5: Sagemath code

(f) β1
1 = β1

3 , β
1
1 ̸= β1

4 , β
1
2 ̸= β1

4 and β1
2 = δ13 = δ14,

1 A=[5,6,5,7]

2 B=[5,6,6,6];

3

4 {0: 0, 1: 0, 2: Z^11, 3: 0}

Listing 4.6: Sagemath code

(g) β1
1 = β1

3 = β1
4 , δ

1
3 ̸= δ14 and β1

2 /∈ {δ13, δ14},
1 A=[5,6,5,5]

2 B=[5,6,7,8];

3

4 {0: 0, 1: 0, 2: Z^21, 3: 0}

Listing 4.7: Sagemath code

(h) β1
1 = β1

3 = β1
4 , β

1
2 ̸= δ13 and δ13 = δ14,

1 A=[5,6,5,5]

2 B=[5,6,7,7];

3

4 {0: 0, 1: 0, 2: Z^11, 3: 0}

Listing 4.8: Sagemath code
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(i) β1
1 = β1

3 = β1
4 , δ

1
3 ̸= δ14 and β1

2 = δ13,

1 A=[5,6,5,5]

2 B=[5,6,6,7];

3

4 {0: 0, 1: 0, 2: Z^11, 3: 0}

Listing 4.9: Sagemath code

(j) β1
1 = β1

3 = β1
4 , β

1
2 = δ13 = δ14,

1 A=[5,6,5,5]

2 B=[5,6,6,6];

3

4 {0: 0, 1: 0, 2: Z^7, 3: 0}

Listing 4.10: Sagemath code

(k) {β1
1 , β

1
2} ∩ {β1

3 , β
1
4} = ∅, β1

3 = β1
4 , δ

1
3 = δ14,

1 A=[5,6,7,7]

2 B=[5,6,8,8];

3

4 {0: 0, 1: 0, 2: Z^15, 3: 0}

Listing 4.11: Sagemath code

(l) each element of A and B appears with multiplicity 1 and A ∩B = {β1
1 , β

1
2}.

1 A=[5,6,7,8]

2 B=[5,6 ,9 ,10];

3

4 {0: 0, 1: 0, 2: Z^35, 3: 0}

Listing 4.12: Sagemath code

Proposition 4.22. Let h = (1, 3, h2, h1) =
∑4

i=1 hαi
∈ H. Assume that {α2

1, . . . , α
2
4} =

I(P ′
2) (as a multiset). Let γ be an 1-cycle in ∆h. If γ is homologous to 0 in Xh, then

it is also homologous to 0 in ∆h.

Proof. Let η =
∑
cσσ, where cσ ∈ Z be a 2-chain in Xh such that ∂η = γ. Let

{hν1 , hν2 , hν3} be a simplex in η. By Lemma 4.18, it is not a simplex of ∆h if and only
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if there exist exactly two j′s with ν2j = P2. We prove the proposition by induction on

kη :=
∑

|cσ|, where σ is a simplex of η but it is not a simplex of ∆h.

Let σ1 = {hν1 , hν2 , hν3} be a simplex in η such that it is not a simplex of ∆h and

νj1 , νj2 = P2. Let a be the sign of the coefficient of σ1 in η. Observe that {hνj1 , hνj2} is

a simplex in ∂σ1 and it is not in ∆h. Since ∂η is in ∆h, there is another {hνj1 , hνj2} in

∂η with the opposite sign. So there is a simplex σ2 of η but not a simplex of ∆h such

that σ1 ̸= σ2 and ∂(aσ1 + bσ2) is an 1-cycle in ∆h, where b is the sign of the coefficient

of σ2 in η.

Let σ1, σ2 be as above. We will define an η1 such that kη1 < kη. Suppose that

σ1 and σ2 are the faces of the same facet, say F . Let σ3 and σ4 be other two faces

of F . Then σ3, σ4 ∈ ∆h, by Lemma 4.18 and there exist c, d ∈ {1,−1} such that

∂(cσ3 + dσ4) = ∂(aσ1 + bσ2). Define

η1 := η − (aσ1 + bσ2)− (cσ3 + dσ4).

Observe that ∂η1 = ∂η.

On the other hand, suppose that σ1 and σ2 are not the faces of the same facet. For

i = 1, 2, let Fi be the facet of Xh such that σi is a face of Fi. Write F1 = {hβ1 , . . . , hβ4}
and F2 = {hβ1 , hβ2 , hδ1 , hδ2}. Let A = {β1

1 , . . . , β
1
4}, B = {β1

1 , β
1
2 , δ

1
1, δ

1
2}. For A and B,

let ∆′ be as defined in Remark 4.21. Observe that ∆′ is a subsimplicial complex of ∆h

and ∂(aσ1 + bσ2) is an 1-cycle in ∆′. Since H̃1(∆
′) = 0, there exists a 2-chain µσ1,σ2 in

∆′ such that ∂µσ1,σ2 = ∂(aσ1 + bσ2). Define

η1 := η − (aσ1 + bσ2)− µσ1,σ2 .

Observe that ∂η1 = ∂η. Also, notice that in both cases, kη1 < kη. Hence the proof.

Proof of Proposition 4.13. Let H and H ′ be the semigroup associated to R[I(Q)] and
R[I(P )] respectively. To prove the theorem, by Proposition 2.24 and Lemma 4.4, it

suffices to show that for all ε ∈ {0, . . . , 4}, if h = (ε, 4− ε, h2, h1) =
∑4

i=1 hαi
∈ H then

H̃1(∆h) = 0. We prove the theorem in the following two cases: I(P ′
2) ⊈ {α2

1, . . . , α
2
4}

and I(P ′
2) ⊆ {α2

1, . . . , α
2
4}. In particular, if n ≥ 3, then we always have I(P ′

2) ⊈
{α2

1, . . . , α
2
4}.

(a) Assume that I(P ′
2) ⊈ {α2

1, . . . , α
2
4}. If P ′

2 ∈ {α2
1, . . . , α

2
4}, then by Remark 4.19(1),

∆h
∼= ∆h̃, where h̃ is as defined in Remark 4.19(1). Observe that h̃ = (0, 4, h̃′),
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where h̃′ ∈ H ′. We know that ∆h̃
∼= ∆h̃′ . By hypothesis, H̃1(∆h̃′) = 0. Therefore,

H̃1(∆h̃) = 0. If P ′
2 /∈ {α2

1, . . . , α
2
4}, then h = (0, 4, h′), where h′ ∈ H ′. Thus,

H̃1(∆h) = 0.

(b) Now we assume that I(P ′
2) ⊆ {α2

1, . . . , α
2
4}. We prove this case in two subcases

n = 1 and n = 2. If n = 1, then by Remark 4.19(2), it is enough to consider

the subcase h = (1, 3, h2, h1) and there are exactly two α2
i ’s with α

2
i = P2. Let γ

be an 1-cycle in ∆h. By Proposition 4.16, there exists an 1-cycle γ′ of ∆(0,4,h2,h1)

such that γ is homologous to γ′ in Xh. By hypothesis, γ′ is homologous to 0 in

∆h. Thus, by Proposition 4.20, γ is homologous to 0 in ∆h. This concludes the

proof for n = 1. For n = 2, if I(P ′
2) ⊆ {α2

1, . . . , α
2
4}, then I(P ′

2) = {α2
1, . . . , α

2
4}.

By the similar argument of the subcase n = 1 and Proposition 4.22, we are done

in this subcase also. Hence the proof.
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Chapter 5

h-polynomial of Hibi rings and

polyominoes

In this chapter, we partially resolve two conjectures about h-polynomials. More pre-

cisely, we prove

1. The Charney-Davis conjecture for the Gorenstein toric K-algebras associated to

simple thin polyominoes and for Gorenstein Hibi rings of regularity 4;

2. Rinaldo-Romeo’s conjecture concerning characterization of thin polyominoes.

Recall the definitions of Hilbert Series and h-polynomial from Subsection 2.1.3. We

start by giving a combinatorial description of h-polynomial of Hibi rings.

Let P be a naturally ordered poset, i.e., P is a poset on a underlying set {q1, . . . , qn}
and qi < qj in P implies i < j in N. Let L = I(P ) be a distributive lattice and let R[L]

be the Hibi ring associated to L. Assume that P is a poset on the set [n]. Let ∆(L) be

the order complex of L and let K[∆(L)] be the Stanley-Reisner ring of ∆(L). It follows

from Lemma 6.2 (which is independent of this discussion) and Proposition 2.5 that the

h-polynomials of R[L] and of K[∆(L)] are the same. We use the results of [BGS82] to

relate the h-polynomial of R[L] to the descents in the maximal chains of L.

Discussion 5.1. We follow the discussion of [BGS82, Section 1]. Let ω : P →
{1, . . . , n} be a (fixed) order-preserving map. Let M(L) be the set of maximal chains

of L. Let µ ∈ M(L). We write µ as a chain of order ideals of P : 0̂ = I0 ⊊ I1 ⊊ · · · ⊊
In = 1̂. Then |Ii \ Ii−1| = {pi} for some pi ∈ P . Define ω(µ) = (ω(p1), . . . , ω(pn)).

For 1 ≤ i ≤ n − 1, we say that i is a descent of µ if ω(pi) > ω(pi+1). The descent
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set Des(µ) of µ is {i | 1 ≤ i ≤ m + n − 1, i is a descent of µ}. For k ∈ N, define
Mk(L) = {µ ∈ M(L) : |Des(µ)| = k}.

Proposition 5.1. Let R[L] be the Hibi ring associated to L = I(P ). Write h(t) =

1 + h1t+ h2t
2 + · · · for the h-polynomial of R[L]. Then hi = |Mi(L)|.

Proof. Use [BGS82, Theorems 4.1 and 1.1] with standard grading (i.e. setting ti = t

for all i) to see that the h-polynomial of the Stanley Reisner ring of ∆(L) is

∑
i∈N

|Mi(L)|ti.

The proposition now follows from Lemma 6.2 and Proposition 2.5.

5.1 Charney-Davis conjecture for Hibi rings

In this section, we state the Charney-Davis conjecture and we prove it for Gorenstein

Hibi rings of regularity 4.

The Charney-Davis conjecture [CD95, Conjecture D] asserts that if h(t) is the h-

polynomial of a flag simplicial homology (d− 1)-sphere, then (−1)⌊
d
2
⌋h(−1) ≥ 0. Stan-

ley [Sta00, Problem 4] extended this conjecture to Gorenstein∗ flag simplicial complexes.

Generalizing it further, Reiner and Welker [RW05, Question 4.4] posed the following:

Question 5.2. Let K be a field and R a standard graded Gorenstein Koszul K-algebra.

Write the Hilbert series of R as hR(t)/(1− t)dim(R). Is

(−1)

⌊
deg hR(t)

2

⌋
hR(−1) ≥ 0?

We say that a standard graded Gorenstein Koszul K-algebra R is Charney-Davis

(CD) if it gives an affirmative answer to the above question.

Suppose that, in the notation of Question 5.2, deg hR(t) is odd. Then hR(−1) = 0;

see, e.g., [BH93, Corollary 4.4.6]. Therefore Question 5.2 is open only when deg hR(t)

is even. See the bibliography of [RW05] and of [Sta00] for various classes of rings that

are CD. Recently, D’Al̀ı and Venturello [DV22] gave an example showing that answer

to Question 5.2 is negative, in general.
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Let L = I(P ) be a distributive lattice and let R[L] be the Hibi ring associated

to L. When P is a antichain it follows from [Pet15, Theorem 4.1] that R[L] is CD.

Brändén [Brä06, Corollary 4.3] proved that all Gorenstein Hibi rings are CD. Here, we

prove a special case that all Gorenstein Hibi rings of regularity 4 are CD. This work

here is done independently of and without the knowledge of Brändén’s work.

Recall that the Hibi ring R[L] is Gorenstein if and only if P is pure. It was proved

in [EHM15] that the regularity of Hibi rings have very nice combinatorial description,

i.e., reg(R[L]) = #P − rank(P ) − 1. Since Hibi rings are Cohen-Macaulay, we have

reg(R[L]) = deg h(t).

From now onwards, we only consider pure poset P with reg(R[I(P )]) = 4. By

Corollary 2.21, it suffice to prove the conjecture for simple posets.

Lemma 5.3. Let P be a simple poset. Then rank(P ) ≤ 3.

Proof. By the formula of regularity, we have #P − rank(P ) = 5. If P is simple and

rank(P ) > 3, then #P − rank(P ) > 5 because P is pure. Which is a contradiction.

Lemma 5.4. Let L = I(P ) be a distributive lattice and R[L] = K[L]/IL be the Hibi

ring associated to L. Then the h-polynomial of R[L] has the form 1+ct+h2t
2+ct3+t4,

where c is codimension of IL and h2 =
c+1
2

− µ(IL).

Proof. After applying the additivity property of the Hilbert series to the minimal res-

olution of R[L], we get

HR[L](t) =

∑c
i=0(−1)i

∑
j βijt

j

(1− t)#L
.

So,
h0 + h1t+ h2t

2 + h1t
3 + h0t

4

(1− t)#P+1
=

∑c
i=0(−1)i

∑
j βijt

j

(1− t)#L
.

This implies,

(1− t)c(h0 + h1t+ h2t
2 + h1t

3 + h0t
4) =

c∑
i=0

(−1)i
∑
j

βijt
j.

After comparing the coefficients of constant terms, t and t2 on both sides and using

the fact that on RHS, the coefficients of constant term, t and t2 are 1, 0 and µ(IL)

respectively, we get the desired result.
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(a) h(t) = 1 +
4t+ t2

(b) h(t) = 1 +
2t+ t2

(c) h(t) = 1 +
3t+ t2

(d) h(t) = 1 + 3t+ t2 (e) h(t) = 1 + 4t+ t2

Figure 5.1

Lemma 5.5. Let P be the ordinal sum of two pure posets P1 and P2. Assume that P

is simple. If R[I(P1)] and R[I(P2)] are CD, then so is R[I(P )].

Proof. Let h(t) be the h-polynomial of R[I(P )] and hi(t) be the h-polynomial of

R[I(Pi)] for i = 1, 2. By Lemma 2.19, we have h(t) = h1(t)h2(t). We consider the

following cases:

Case 1 Either deg(h1(t)) = 3 or deg(h1(t)) = 1. Then h1(−1) = 0 since deg(h1(t)) is

odd. Therefore h(−1) = 0.

Case 2 deg(hi(t)) = 2 for all i = 1, 2. All simple pure poset P ′ with reg(R[I(P ′)]) = 2

are listed in the Figure 5.1. For all such P ′, R[I(P ′)] is CD. Therefore, h(−1) =

h1(−1)h2(−1) ≥ 0.

Let P be a pure poset of rank k. Let Qi be the set of all height i elements of P for

0 ≤ i ≤ k. Clearly, Qi is an antichain of P for all i. Let ai denotes the width of the

antichain Qi for all 0 ≤ i ≤ k. If P is simple, then ai ≥ 2 for all i. Label the elements

of Q0 as 1, 2, . . . , a0 and the elements Q1 as a0 + 1, . . . , a0 + a1. Inductively, label the

elements of Qi as (
∑i−1

j=0 aj) + 1, . . . ,
∑i

j=0 aj for 2 ≤ i ≤ k.

Lemma 5.6. Let P be a simple poset. Let P ′ be a pure poset obtained from P by

omitting an edge between Q0 and Q1. If R[I(P )] is CD then so is R[I(P ′)].

Proof. Let c and c′ denote the codimensions of R[I(P )] and R[I(P ′)]) respectively.

Let h2 and h′2 be the coefficients of t2 in the h-polynomials of R[I(P )] and R[I(P ′)]

respectively. Note that the number of order ideals of P ′ will be greater than or equal to
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that of P , i.e., #I(P ′) ≥ #I(P ). Therefore, c′ ≥ c. Let ∆c = c′−c and ∆h2 = h′2−h2.
Label the vertices of the omitted edge as a0 and a0+1, where a0 ∈ Q0 and a0+1 ∈ Q1.

To prove that R[I(P ′)] is CD, by Lemma 5.4 it suffice to show that ∆h2 ≥ 2∆c.

Equivalently, by Proposition 5.1, it is enough to show that if there are ∆c new distinct

1-descents of P ′, then there will be at least 2∆c new distinct 2-descents of P ′. Observe

that rank(P ) ≤ 3 by Lemma 5.3 and rank(P ′) ∈ {1, . . . , rank(P )}. We prove the lemma

individually for each possible rank of P ′.

Case 1 If rank P ′ = 1, then possibly by replacing P with P ∂, it is enough to consider the

two subcases (a0, a1) = (4, 2) and (a0, a1) = (3, 3).

When (a0, a1) = (4, 2), the possible new 1-descents will be 123546, π1π25π346

where π1, π2 and π3 are permutations of {1, 2, 3} with π1 < π2 and ρ15ρ2ρ346

where ρ1, ρ2 and ρ3 are permutations of {1, 2, 3} with ρ2 < ρ3. Then 132546,

312546, 231546, π2π15π346, π1π254π36, ρ15ρ3ρ246 and ρ1ρ35ρ246 are some distinct

new 2-descents of P ′, which is more than twice the number of new 1-descents of

P ′.

When (a0, a1) = (3, 3), the possible new 1-descents will be 124356, 124536,

π14π2356 where π1 and π2 are permutations of {1, 2} and ρ145ρ236 where ρ1 and

ρ2 are permutations of {1, 2}. Then 214356, 124365, 214536,125436, π143π256,

π14π2365, ρ154ρ236 and ρ1453ρ26 are some distinct new 2-descents of P ′, which

is more than twice the number of new 1-descents of P ′.

Case 2 If rank P ′ = 2, then possibly by replacing P with P ∂, it is enough to consider the

two subcases (a0, a1, a2) = (3, 2, 2) and (a0, a1, a2) = (2, 3, 2).

When (a0, a1, a2) = (3, 2, 2), the possible new 1-descents will be 1243567 and

π14π23567 where π1 and π2 are permutations of {1, 2}. Then 2143567, 1243576

π14π23576 and π143π2567 are some distinct new 2-descents of P ′, which is more

than twice the number of new 1-descents of P ′.

When (a0, a1, a2) = (2, 3, 2), the possible new 1-descents will be 1324567,

13π12π267 where π1 and π2 are permutations of {4, 5}. Then 1325467, 1324576,

13π12π276 and 1π132π267 are some distinct new 2-descents of P ′, which is more

than twice the number of new 1-descents of P ′.

Case 3 If rank P ′ = 3, then (a0, a1, a2, a3) = (2, 2, 2, 2) is the only subcase. The possible

new 1-descent will be 13245678. Then 13245687 and 13246578 are some distinct

new 2-descents of P ′.
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Theorem 5.7. Let L = I(P ) be a simple distributive lattice and R[L] be the Hibi ring

associated to L. Then R[L] is CD.

Proof. If rank(P ) = 0, then the result follows from [Pet15, Theorem 4.1]. If rank(P ) ≥
1, then the proof follows from Lemma 5.5 and Lemma 5.6.

5.2 Charney-Davis conjecture for simple thin poly-

ominoes

From Section 2.5, recall the definition of polyomino algebra and how its algebraic fea-

tures are largely dictated by the combinatorics and topology of the polyomino. For

example, if P is simple then K[P ] is a Koszul and the S-property of simple thin poly-

ominoes characterises such polyominoes P for which K[P ] is Gorenstein algebra. More-

over, if P is a simple thin polyomino, then hK[P](t) = rP(t), where rP(t) is the rook

polynomial of the polyomino P .

We begin with an observation about how Hilbert series and rook polynomials behave

in disjoint unions of polyominoes.

Note that if P1, . . . ,Pm are the connected components of P , then K[P ] ≃ K[P1]⊗K

· · · ⊗K K[Pm]. Therefore K[P ] Gorenstein (respectively, Koszul) if and only if K[Pi] is

Gorenstein (respectively, Koszul) for each i.

Proposition 5.8. Let P be a finite collection of cells. Write P1, . . . ,Pm for the con-

nected components. Then:

hK[P](t) =
m∏
i=1

hK[Pi](t) and rP(t) =
m∏
i=1

rPi
(t).

In particular, if Pi is a simple thin polyomino for each i, then hK[P](t) = rP(t).

Proof. Vertices of the Pi are disjoint, so K[P ] ≃ K[P1] ⊗K · · · ⊗K K[Pm]. Hence

HK[P](t) =
∏m

i=1HK[Pi](t), from which it follows that hK[P](t) =
∏m

i=1 hK[Pi](t). Let

k ∈ N. Then k-rook configurations in P corresponds to independent choices of ki-rook

configurations in Pi for each 1 ≤ i ≤ m and for each tuple (k1, . . . , km) ∈ Nm with
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...

...

. . .D

I

J

PI

Figure 5.2: Collapse datum (cf. Definition 5.9)

∑
i ki = k. Hence rP(t) =

∏m
i=1 rPi

(t). The final assertion now follows from noting that

for each i, hK[Pi](t) = rPi
(t) since Pi is a simple thin polyomino [see Theorem 2.12].

Let P be a simple thin polyomino. In [RR21, Definition 3.4], Rinaldo and Romeo

introduced a notion of collapsing P in a maximal inner interval, and showed that if P has

at least two maximal inner intervals, then there exists a maximal inner interval in which

P is collapsible [RR21, Proposition 3.7]. We need a refinement of this result for simple

thin polyominoes with the S-property, for which we rephrase [RR21, Definition 3.4] in

a slightly different way.

Definition 5.9. Let P be a simple thin polyomino. A collapse datum on P is a tuple

(I, J,PI), where I and J are maximal inner intervals and PI is a sub-polyomino of P
satisfying the following conditions:

1. J is the only maximal inner interval of P such that I ∩ J is a cell;

2. PI ⊆ J and I ∩ J ̸⊂ PI .

3. P \ (I ∪ PI) is a non-empty sub-polyomino of P.

Figure 5.2 gives an example of a collapse datum. Note that since PI is a sub-

polyomino of P and PI ⊆ J , it is an inner interval if it is non-empty. When P has at

least two maximal inner intervals, the maximal inner intervals I and J defined in the

Definition 5.9 exist by [RR21, Lemma 3.6].

Discussion 5.10. Let P be a simple thin polyomino with S-property. Assume that P
is not a cell. Then it has a collapse datum (I, J,PI). Since, additionally, P has the
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S-property, I has exactly two cells and PI is either empty or a cell. Write I = {C,D}
with C denoting the single cell of I and {D} = I ∩ J . Denote the single cell of J by

E. Let C1, . . . , Ck be the cells of J different from D and E. For 1 ≤ i ≤ k, let Bi be

the cell in P such that Bi /∈ J and Ci is a neighbour cell of Bi; such a Bi must exist,

since Ci is not a single cell. We now consider the various cases.

• PI ̸= ∅. Equivalently, PI = {E}. Then we may assume that Ck is an end-cell

of J and for all i ∈ {1, . . . , k − 1}, Ci and Ci+1 are neighbours. So Bi and Bi+1

can not be neighbours, since P is thin. Hence for all i ∈ {1, . . . , k} whether Bi is

above Ci or is below Ci determined by whether i is even or odd. Therefore in the

neighbourhood of J , P is as shown in Figure 5.3.

• PI = ∅, Ck is an end-cell of J and E is a neighbour cell of Ck. We may assume

that for all i ∈ {1, . . . , k− 2}, Ci and Ci+1 are neighbours, so Bi and Bi+1 cannot

be neighbours. Therefore, using the same considerations as in the above case, we

see that P is as shown in Figure 5.4 in the neighbourhood of J .

• PI = ∅ and E is an end-cell of J . Then, in the neighbourhood of J , P is as

shown in Figure 5.5.

• PI = ∅, Ck is an end-cell of J and E is not a neighbour cell of Ck. Then, in the

neighbourhood of J , P is one of the figures in Figure 5.6.

Discussion 5.11. By the first end-cell of J , we meanE, if PI = {E};

I ∩ J, if PI = ∅.

(Note that in both of the above cases, the cell in question is an end-cell of J .) We

call the other end-cell of J the second end-cell of J . If E is the second end-cell of J ,

then E has exactly one neighbour cell. If Ck is the second end-cell of J and E is not

a neighbour cell of Ck, then Ck has exactly two neighbour cells. If Ck is the second

end-cell of J and E is a neighbour cell of Ck, then Ck has two or three neighbour cells;

see Figures 5.3, 5.4, 5.5 and 5.6.

The next lemma shows that simple thin polyominoes with the S-property have a

special collapse datum. See Figure 5.7 for an example of a simple thin polyomino P
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I

E JDC1C2· · ·Ck−1Ck

Bk

Bk−1 CB2

B1

Figure 5.3: PI non-empty

I

JDC1C2· · ·Ck−1ECk

Bk

Bk+1

Bk−1 CB2

B1

Figure 5.4: PI is empty, E is a neighbour of Ck but not an end-cell of J

I

JDC1C2· · ·CkE

Bk CB2

B1

Figure 5.5: PI is empty, E is an end-cell of J

that does not have any collapse datum (I, J,PI) in which the second end-cell of J has

two or fewer neighbours.

Lemma 5.12. Let P be a simple thin polyomino with S-property. Assume that P is not

a cell. Then there exists a collapse datum (I, J,PI) of P such that one of the following

holds:

1. The second end-cell of J has at most two neighbour cells.

2. If the second end-cell of J has three neighbour cells, then one of its neighbour cells

is both a single cell and an end-cell of the maximal inner interval containing it.

Proof. By way of contradiction, suppose that there exists a simple thin polyomino P
with the S-property for which there does not exist a collapse datum satisfying (1) or (2).
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I

JDC1C2· · ·CiECi+1

Bi+1

· · ·Ck

Bk

Bi CB2

B1

(a)

I

JDC1C2· · ·CiECi+1

Bi+1

· · ·Ck

Bk Bi CB2

B1

(b)

Figure 5.6: PI is empty, E is not a neighbour of Ck

We may assume that P has the least number of cells, among the polyominoes for which

the assertion does not hold.

Let (I, J,PI) be a collapse datum of P . If the neighbourhood of J in P looks like the

ones given in Figures 5.3, 5.5 or 5.6, then (1) holds. Therefore we are in the situation

of Figure 5.4. Let E be the single cell of J , and Ck the second end-cell of J . We may

assume that Bk and Bk+1 as marked in Figure 5.4 exist, for otherwise (1) would hold.

We may assume that either Bk is not a single cell or it is not an end-cell of the

maximal inner interval that contains {Bk, Ck, Bk+1}; for, otherwise, (2) would hold.

Similarly for Bk+1. Let

P ′ = (P \ {A ∈ P : the (unique) path between A and E does not contain Ck}) ∪ {E}.

(E.g., in Figure 5.4, P ′ is the sub-polyomino comprising E and the cells reachable

from E through Ck.) Observe that P ′ is a simple thin polyomino. We first show that

P ′ has the S-property. Let L be a maximal inner interval of P ′. Then L is a maximal

inner interval of P or L = {Ck, E}. In both cases, L has a unique single cell. Thus,

P ′ has the S-property. Also note that P ′ is not a cell. The number of cells in P ′ are

strictly less than the number of cells in P . Hence P ′ has a collapse datum (I ′, J ′,P ′I′)

satisfying the assertions of the lemma.
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Figure 5.7

Note that I ′ ̸= {Ck, E} and J ′ ̸= {Ck, E}; therefore I ′ and J ′ are maximal inner

intervals of P .

Let J1 be a maximal inner interval of P such that J1 ∩ I ′ is a cell. Since P is

simple, J1 ⊂ P ′, so J1 is a maximal inner interval of P ′. Hence J1 = J ′. Note that

P ′I′ ⊆ J ′ and that I ′ ∩ J ′ ̸⊂ P ′I′ . Moreover, since J ′ ̸= {Ck, E}, it follows that

{Ck, E} ⊆ P ′ \ (I ′ ∪ P ′I′); hence P \ (I ′ ∪ P ′I′) which equals

(P ′ \ (I ′ ∪ P ′I′)) ∪ {A ∈ P : the path between A and E does not contain Ck}

is a non-empty sub-polyomino of P . Hence (I ′, J ′,P ′I′) is a collapse datum of P that

satisfies the assertion of the lemma for P . This contradicts the assumption on P , and

completes the proof of the lemma.

Discussion 5.13. Let P be a simple thin polyomino and C be a single cell in P . Let

rP,C(t) be the polynomial
∑

k∈N rkt
k, where rk is the number of k-rook configurations

in P that have a rook at C. Let rP,Ĉ(t) be the polynomial
∑

k∈N rkt
k, where rk is the

number of k-rook configurations in P that have no rook at C. Then,

rP(t) = rP,Ĉ(t) + rP,C(t).

Let I be the maximal inner interval of P such that C ∈ I. Let rP,Î(t) be the

polynomial
∑

k∈N rkt
k, where rk is the number of k-rook configurations in P that has

no rook at any cell of I. Note that rP,C(t) = rP,Î(t)t. Hence,

rP(t) = rP,Ĉ(t) + rP,Î(t)t. (5.1)

Example 5.14. We illustrate the above definitions now. Let P be the polyomino as

shown in the Figure 5.8. Note that C is a single cell in P . The polynomials rP,Ĉ(t) and

rP,C(t) are calculated in Table 5.1. The unique maximal inner interval I containing C
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k k-rook configurations
that have a rook at C

number k-rook configurations
that do not have a
rook at C

number

0 There are no 0-rook
configurations that
have a rook at C

0 ∅ 1

1 {C} 1 {A}, {B} 2
2 {C,A} 1 none 0

k ≥ 3 none 0 none 0
rP,C(t) t+ t2 rP,Ĉ(t) 1 + 2t

Table 5.1: Calculation of rP,C(t) and r
P,Ĉ

(t)

A

B C

Figure 5.8

is {B,C}. Hence rP,Î(t) = 1 + t, since this is the rook polynomial of the polyomino

consisting of just the cell A. On the other hand, the number of k-rook configurations

in P for k = 0, 1, 2 are, respectively, 1, 3, 1; hence rP(t) = 1+ 3t+ t2. We thus see that

rP(t) = rP,Ĉ(t) + rP,C(t) = rP,Ĉ(t) + rP,Î(t)t.

We now wish to express rP,Ĉ(t) and rP,Î(t) as the rook polynomials of polyominoes

when P has the S-property.

Discussion 5.15. Let P be a simple thin polyomino that has the S-property. Let

(I, J,PI) be a collapse datum of P satisfying the conclusion of Lemma 5.12. Let C

and D be the cells of I, with C being the single cell. Let E be the single cell of J . Let

rP,Ĉ(t) and rP,Î(t) be as defined in Discussion 5.13.

Write Q = P \ {C}. Then rP,Ĉ(t) = rQ(t). If PI is empty, define R to be the

polyomino P \ I. Otherwise, i.e. if PI is a cell E, define R to be the polyomino

P \ {C,E}. Then rP,Î(t) = rR(t). Thus (5.1) becomes

rP(t) = rQ(t) + rR(t)t. (5.2)
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Note that Q does not have the S-property, so we cannot use an inductive argument

to prove Theorem 5.17 directly. Hence we need to rewrite rQ(t) in terms of smaller

polyominoes. To this end, we observe that D is a single cell of the maximal inner

interval J inside Q. Therefore, by (5.1),

rQ(t) = rQ,D̂(t) + rQ,Ĵ(t)t. (5.3)

We note that

rQ,D̂(t) = rR(t). (5.4)

We now find an expression for rQ,Ĵ(t). Let E,C1, . . . , Ck be the other cells of J in

P . E denotes the single cell of J in P . For 1 ≤ i ≤ k − 1, let Bi be the cell in P such

that Bi /∈ J and Ci is a neighbour cell of Bi. (See Discussion 5.10 and Figures 5.3, 5.4,

5.5, and 5.6 for notational conventions.) When E is the second end-cell or Ck is an

end-cell with two neighbour cells, let Bk be the cell in P such that Bk /∈ J and Ck is

a neighbour cell of Bk. When Ck is an end-cell with three neighbour cells, let Bk and

Bk+1 be the cells in P such that Bk, Bk+1 /∈ J and Ck is a neighbour cell of Bk and

Bk+1. In the case when Ck has three neighbour cells, by Lemma 5.12, we may assume

that Bk+1 is both a single cell and an end-cell of the maximal inner interval containing

it.

Now for all 1 ≤ i ≤ k − 1, define

Qi := {A ∈ Q : the path between A and Bi does not contain Ci}.

Also, define

Q̃k := {A ∈ Q : the path between A and Bk does not contain Ck}.

When E is the second end-cell or Ck is an end-cell with two neighbour cells, define

Qk = Q̃k. When Ck is an end-cell with three neighbour cells, let {a, b, a′, b′} be the

vertices of Ck where a, b ∈ V (Bk) and a
′, b′ ∈ V (Bk+1). We define Qk as the polyomino

obtained from Q̃k ∪ {Bk+1} by the identification of the vertices a and b of V (Bk) with

the vertices a′ and b′ of V (Bk+1), respectively, by translating the cell Bk+1.

Lemma 5.16. With notation as above, we have the following:

1. Q1, . . . ,Qk are precisely the connected components of Q \ J .
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2. For each 1 ≤ i ≤ k, Qi is a simple thin polyomino with the S-property.

3. rQ,Ĵ(t) =
∏k

i=1 rQi
(t) and

∑k
i=1 r(Qi) = r(P)− 2.

Proof. (1): Each Qi is connected, Qi ∩ Qj = ∅ for all i ̸= j (since P is simple) and

Q \ J = Q1 ∪ · · · ∪ Qk.

(2): Since Q is simple thin, so is Qi. Let L be a maximal inner interval of Qi. Then,

either L is a maximal inner interval of P or L = L′ \ {Ci}, where L′ is a maximal inner

interval of P . In both cases, L has a unique single cell. Hence Qi has S-property.

(3): By (1) rQ,Ĵ(t) is the rook polynomial of Q \ J . Thus, by Proposition 5.8,

rQ,Ĵ(t) =
∏k

i=1 rQi
(t). For any k-rook configuration α of Q\J , we note that α∪{C,E}

is a (k+2)-rook configuration of P . Hence
∑k

i=1 r(Qi) ≤ r(P)−2. On the other hand,

let β be a r(P)-rook configuration of P . Since P has S-property, β is the only r(P)-rook

configuration of P and β is the collection of all single cells of P . Then, β \ {C,E} is a

rook configuration of Q \ J . Therefore
∑k

i=1 r(Qi) ≥ r(P)− 2.

We are now ready to state and prove our main theorem.

Theorem 5.17. Let P be a collection of cells such that its connected components are

simple thin polyominoes with the S-property. Then K[P ] is CD.

Proof. By Proposition 5.8, we may assume that P is a simple thin polyomino with the

S-property. Let hK[P]/(1− t)dim(K[P]) be the Hilbert series of K[P ]. By Theorem 2.12,

hK[P](t) = rP(t). We proceed by induction on the rook number r(P). If r(P) is odd

(in particular if r(P) = 1), then rP(−1) = 0. Hence we may assume that r(P) is even.

Let (I, J,PI) be a collapse datum of P satisfying the conclusion of Lemma 5.12. Apply

Discussion 5.15, adopting its notation. Let Q and R be as in Discussion 5.15. Then,

by (5.2)

rP(t) = rQ(t) + rR(t)t.

Now apply Discussion 5.13 to the single cell D of the maximal inner interval J of Q.

By (5.3), (5.4) and Lemma 5.16, we see that

rP(t) = (1 + t)rR(t) + t

k∏
i=1

rQi
(t).
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By Lemma 5.16 and induction hypothesis, K[Qi] is CD for all 1 ≤ i ≤ k. If r(Qi)

is odd for some i, then rP(−1) = 0. Therefore we may assume that r(Qi) is even for

all i.

(−1)⌊
r(P)
2

⌋rP(−1) = (−1)
r(P)
2

+1

k∏
i=1

rQi
(−1)

= (−1)
r(P)−2

2

k∏
i=1

rQi
(−1)

=
k∏

i=1

(−1)
r(Qi)

2 rQi
(−1) by Lemma 5.16

≥ 0 by induction.

This completes the proof of the theorem.

5.3 Rinaldo and Romeo’s conjecture

As stated in Theorem 2.12, Rinaldo and Romeo showed that if P is a simple thin

polyomino, then hK[P](t) = rP(t), where hK[P](t) is the h-polynomial of K[P ] and rP(t)

is the rook polynomial of the polyomino P . They conjectured the following

Conjecture 5.18. [RR21, Conjecture 4.5] Let P be a polyomino. Then P is thin if

and only if hK[P](t) = rP(t).

Recently, the conjecture is confirmed for a class of closed path polyominoes [CNU22,

Theorem 5.5]. A closed path polyomino is a non-simple thin polyomino. In this section,

we partially confirm this conjectured characterization and prove the following

Theorem 5.19. Let P be a convex polyomino such that its vertex set V (P) is a sub-

lattice of N2. If P is not thin, then h2 < r2. In particular hK[P](t) ̸= rP(t).

The proof proceeds as follows: we first observe that K[P ] is the Hibi ring of the

distributive lattice V (P). We then use Proposition 5.1 to relate the h-polynomial to

descents in maximal chains of V (P), and find an injective map from the set of maximal

chains of V (P) to the rook configurations in P , to conclude that hk ≤ rk in general.

We then show that if P is not thin, this map is not surjective to show that h2 < r2.

We now set up some notations.
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Setup 5.5. Let P be a convex polyomino such that V (P) is a sublattice of N2. Let

JI(P) be the poset of join-irreducible elements of V (P). After a suitable translation, if

necessary, we assume that (0, 0) and (m,n) are the elements 0̂ and 1̂ of V (P). Hence

| JI(P)| = m+ n.

When P is as in Setup 5.5, the polyomino ring K[P ] is the Hibi ring K[V (P)].

Hence we are interested in the h-polynomial of the Hibi ring of a distributive lattice.

Discussion 5.20. We continue the Discussion 5.1 for V (P) and JI(P). Let ω : JI(P) →
{1, . . . ,m + n} be a (fixed) order-preserving map. Let M(P) be the set of maximal

chains of V (P). Let µ ∈ M(P). We think of µ as a lattice path from (0, 0) to

(m,n) consisting of horizontal and vertical edges. Label the vertices of µ as (0, 0) =

µ0, µ1, . . . , µm+n = (m,n), with µi − µi−1 a unit vector (when we think of these as

elements of R2) pointing to the right or upwards. Then, if i ∈ Des(µ), then the

direction of µ changes at µi, i.e, the vectors µi − µi−1 and µi+1 − µi are perpendicular

to each other. Hence µi−1 and µi+1 are the bottom-left and top-right vertices of a cell

(the cell C(µi+1) in our notation, see Section 2.5) of P . Thus we get a function

ψ : M(P) → Pow(C(P)), µ 7→ {C(µi+1) ∈ C(P) | i ∈ Des(µ)}. (5.6)

Discussion 5.21. Let P be as in Setup 5.5. Left-boundary vertices and bottom-

boundary vertices are join-irreducible. Let p ∈ V (P); assume that p is not a left-

boundary vertex or a bottom-boundary vertex. If p ̸∈ ∂X then it is the top-right

vertex of a cell in P , and hence is not join-irreducible. If p ∈ ∂X then p is the bottom-

left vertex of the unique cell containing it (i.e., the bottom element 0̂ of V (P)) or

the top-right vertex of the unique cell containing it (i.e., the top element 1̂ of V (P));

hence p ̸∈ JI(P). Thus we have established that JI(P) is the union of the set of the

left-boundary vertices and of the set of the bottom-boundary vertices. The sets of

the left-boundary vertices and of the bottom-boundary vertices are totally ordered in

V (P). Therefore if (p, p′) is a pair of incomparable elements of JI(P), then one of them

is a left-boundary vertex and the other is a bottom-boundary vertex.

Proposition 5.22. Let µ ∈ M(P) and i ∈ Des(µ). Write µ as a chain of order ideals

0̂ = I0 ⊊ I1 ⊊ · · · ⊊ Im+n = 1̂ and |Ii \ Ii−1| = {pi} with pi ∈ JI(P). Then

1. pi and pi+1 are incomparable;

2. i+ 1 ̸∈ Des(µ).
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Proof. (1): Assume, by way of contradiction, that they are comparable. Then pi < pi+1.

Hence ω(pi) < ω(pi+1), contradicting the hypothesis that i ∈ Des(µ).

(2): By way of contradiction, assume that i + 1 ∈ Des(µ). Then, by (1), pi+1

and pi+2 are incomparable. We see from Discussion 5.21 and the definition of the pi

that pi < pi+2. Therefore ω(pi) < ω(pi+2) contradicting the hypothesis that ω(pi) >

ω(pi+1) > ω(pi+2).

Proposition 5.23. The function ψ of (5.6) is injective.

Proof. Let µ, ν ∈ M(P) be such that ψ(µ) = ψ(ν). As earlier, write µ and ν as chains

of order ideals of JI(P):

µ : 0̂ = I0 ⊊ I1 ⊊ · · · ⊊ Im+n = 1̂;

ν : 0̂ = I ′0 ⊊ I ′1 ⊊ · · · ⊊ I ′m+n = 1̂.

For 1 ≤ i ≤ m + n, write Ii \ Ii−1 = {pi} and I ′i \ I ′i−1 = {p′i} with pi, p
′
i ∈ JI(P). We

will prove by induction on i that Ii = I ′i for all 0 ≤ i ≤ m + n. Since I0 = I ′0, we may

assume that i > 0 and that Ij = I ′j for all j < i.

Assume, by way of contradiction, that Ii ̸= I ′i. Then Ii−1 (which equals I ′i−1) is the

bottom-left vertex of a cell C. Without loss of generality, we may assume that Ii is

the top-left vertex of C and that I ′i is the bottom-right vertex of C. (In other words, µ

goes up and ν goes to the right from Ii−1, or equivalently, pi is a left-boundary vertex

and p′i is a bottom-boundary vertex.)

Let

i1 = min{j > i : p′i ∈ Ij} − 1;

i2 = min{j > i : pi ∈ I ′j} − 1.

Then the edge (Ii1−1, Ii1) is vertical while (Ii1 , Ii1+1) is horizontal; this is the first time

µ turns horizontal after Ii−1. Let C1 be the cell with Ii1−1, Ii1 and Ii1+1 as the bottom-

left, the top-left and the top-right vertices respectively. Similarly the edge (I ′i2−1, I
′
i2
) is

vertical while (I ′i2 , I
′
i2+1) is horizontal; this is the first time ν turns vertical after I ′i−1.

Let C2 be the cell with I ′i2−1, I
′
i2

and I ′i2+1 as the bottom-left, the bottom-right and

the top-right vertices respectively. (The possibility that C1 = C or C2 = C has not

been ruled out.) See Figure 5.9 for a schematic showing the cells C, C1 and C2 and the

chains µ and ν.
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I ′i

Ii

Ii1−1

I ′i2+1

Ii1+1

I ′i2Ii−1

Ii1

I ′i2−1p′i

p′i

pi pi

pi1

p′i2

C C2

C1

Figure 5.9: C, C1, C2, µ (blue) and ν (red) from the proof of Proposition 5.23.

We now prove a sequence of statements from which the proposition follows.

1. If C1 ̸∈ ψ(µ), then C2 ∈ ψ(ν). Proof: Note that pi1+1 = p′i and p
′
i2+1 = pi. Since

C1 ̸∈ ψ(µ), we see that

ω(p′i) = ω(pi1+1) > ω(pi1) ≥ ω(pi),

where the last inequality follows from noting that pi < · · · < pi1 since they are

left-boundary vertices. Therefore, in the chain ν, we have

ω(p′i2) ≥ ω(p′i) > ω(pi) = ω(p′i2+1),

i.e., i2 ∈ Des(ν). Hence C2 ∈ ψ(ν).

2. If C2 ̸∈ ψ(ν), then C1 ∈ ψ(µ). Immediate from (1).

3. If C1 ̸= C then C ̸∈ ψ(µ) and C1 ̸∈ ψ(ν). Proof: Note that µ does not pass

through the top-right vertex of C and that ν does not pass through the bottom-

left vertex of C1.

4. If C2 ̸= C then C ̸∈ ψ(ν) and C2 ̸∈ ψ(µ). Proof: Note that ν does not pass

through the top-right vertex of C and that µ does not pass through the bottom-

left vertex of C1.

5. If C1 ̸= C, then ψ(µ) ̸= ψ(ν). Proof: If C1 ∈ ψ(µ), use (3) to see that

C1 ∈ ψ(µ) \ ψ(ν).
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Now assume that C1 ̸∈ ψ(µ). Then C2 ∈ ψ(ν) by (1). If C2 = C, then C2 ̸∈ ψ(µ)

by (3); otherwise, C2 ̸∈ ψ(µ) by (4).

6. If C2 ̸= C, then ψ(µ) ̸= ψ(ν). Proof: If C2 ∈ ψ(ν), use (4) to see that

C2 ∈ ψ(ν) \ ψ(µ).

Now assume that C2 ̸∈ ψ(ν). Then C1 ∈ ψ(µ) by (2). If C1 = C, then C1 ̸∈ ψ(ν)

by (4); otherwise, C1 ̸∈ ψ(ν) by (3).

7. C belongs to at most one of ψ(µ) and ψ(ν). Proof: Suppose that C ∈ ψ(µ).

Then i1 = i + 1, pi1 = p′i and ω(pi) > ω(p′i). For C to belong to ψ(ν), we need

that I ′i+1 = Ii+1 (i.e., µ and ν are the same up to i + 1, except at i); for this to

hold, it is necessary that p′i+1 = pi, but then i ̸∈ Des(ν). The other case is proved

similarly.

8. If C1 = C2 = C then ψ(µ) ̸= ψ(ν). Proof: By (7), it suffices to show that

C ∈ ψ(µ) or C ∈ ψ(ν). This follows from (1) and (2).

The proposition is proved by (5), (6), and (8).

Proposition 5.24. Let k ∈ N and µ ∈ Mk(P). Then ψ(µ) is a k-rook configuration

in P.

Proof. Since |ψ(µ)| = k, it suffices to note that the cells of ψ(µ) are in distinct rows

and columns. This follows from Proposition 5.22(2).

Proof of Theorem 5.19. For each i ∈ N, hi = |Mi(P)| by Proposition 5.1. By Proposi-

tions 5.23 and 5.24 we see that hi ≤ ri for all i. Since P is not thin, P contains a 2-rook

configuration as in Figure 5.10. Such a rook configuration cannot be in the image of

ψ. Hence h2 < r2.

R

R

Figure 5.10: 2-rook (denoted by R) configuration in a non-thin polyomino.
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An another proof of the Theorem 5.19 is given by Qureshi-Rinaldo-Romeo [QRR22].

Using results of [EHQR21], we can extend our result to L-convex polyominoes. First,

we define L-convex polyominoes.

Let C : C1, . . . , Cm be a path of cells in a polyomino and (ik, jk) be the bottom

left corner of Ck for 1 ≤ k ≤ m. Then C has change of direction at Ck for some

2 ≤ k ≤ m−1 if ik−1 ̸= ik+1 and jk−1 ̸= jk+1. A convex polyomino P is called L-convex

if any two cells of P can be connected by a path of cells in P with at most one change

of direction.

Let P be an L-convex polyomino. Then there exists a polyomino P∗ (the Ferrer

diagram projected by P , in the sense of [EHQR21]) such that

1. P∗ is a convex polyomino such that V (P∗) is a sublattice of N2 (since P∗ is a

Ferrer diagram);

2. If P is not thin, then P∗ is not thin;

3. P and P∗ have the same rook polynomial [EHQR21, Lemma 2.4];

4. K[P ] and K[P∗] are isomorphic to each other [EHQR21, Theorem 3.1], so they

have the same h-polynomial.

Thus we get:

Corollary 5.25. Let P be an L-convex polyomino that is not thin. Let h(t) = 1 +

h1t+ h2t
2 + · · · be the h-polynomial of K[P ] and r(t) = 1+ r1t+ r2t

2 + · · · be the rook

polynomial of P. Then h2 < r2.

90



Chapter 6

Further results on Hibi rings

In this chapter, we study the Koszul relation pairs of the Hibi ideals and initial Hibi

ideals. The term “Koszul relation pair” was defined by Ene, Herzog and Hibi [EHH15],

where they studied the Koszul relation pairs of convex polyomino ideals. We start by an

observation that the initial Hibi ideal is a Stanley-Reisner ideal of the order complex

of the distributive lattice. Then we use Hochster’s formula to give a necessary and

sufficient condition for the Koszul relation pairs of the initial Hibi ideals. We use this

along with Gröbner deformation to give a necessary condition for the Koszul relation

pairs of the Hibi ideals. We also characterize complete intersection Hibi rings.

Let L = I(P ) be a distributive lattice. Let R[L] = K[L]/IL be the Hibi ring

associated to L. Let < be a total order on the variables of K[L] with the property that

xα < xβ if α < β in L. Consider the reverse lexicographic order < on K[L] induced by

this order of the variables. Recall from Section 2.6, we have

in<(IL) = (xαxβ : α, β ∈ L and α, β incomparable).

Let us define D2 := {(α, β) : α, β ∈ L and α, β incomparable}.

6.1 Syzygies of initial Hibi ideals

Let K be a field and ∆ a simplicial complex on a vertex set V = {v1, ..., vn}. Let K[∆]

be the Stanley-Reisner ring of the simplicial complex ∆. We know that K[∆] = S/I∆,

where S = K[x1, ..., xn] and I∆ = {xi1 · · ·xir : {vi1 , ..., vir} /∈ ∆}. Since K[∆] is a
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Zn-graded S-module, it has a minimal Zn-graded free resolution.

F : 0 −→ Fp
ϕp−→ Fp−1

ϕp−1−→ ... −→ F1
ϕ1−→ F0 −→ 0,

where Fi = ⊕βi

j=1S(−aij) for i = 0, ..., p with certain aij ∈ Nn, and where the maps

ϕi are homogeneous of degree 0 with ϕi(Fi) ⊂ (x1, ..., xn)Fi−1 for all i. The numbers

βia = #{j : aij = a, a ∈ Zn}, are called fine Betti numbers of K[∆].

Let W ⊂ V ; we set ∆W = {F ∈ ∆ : F ⊂ W}. It is clear that ∆W is again a simplicial

complex.

Theorem 6.1. (Hochster)[BH93, Theorem 5.5.1] Let HTi
(t) =

∑
a∈Zn βiat

a be the fine

Hilbert series of the module Ti = TorRi (K,K[∆]). Then

HTi
(t) =

∑
W⊂V

(dimkH̃|W |−i−1(∆W ;K))
∏
vj∈W

tj.

Let L = I(P ) be a distributive lattice. Let ∆(L) be the order complex of L. We

have K[∆(L)] = K[L]/I∆(L), where K[L] = K[{xα : α ∈ L}] and I∆(L) = (xα1 . . . xαr :

{αr, . . . , αr} /∈ ∆(L)).

Lemma 6.2. I∆(L) = in<(IL).

Proof. If α, β ∈ L such that α and β are incomparable, then {α, β} /∈ ∆(L). Hence,

xαxβ ∈ I∆(L).

On the other hand, if xα1 · · ·xαr ∈ I∆(L), then {α1, . . . , αr} is not a chain. So there

exist α, β ∈ {α1, . . . , αr} such that α and β are incomparable. Hence, xα1 · · ·xαr ∈
(xαxβ) ⊆ I∆(L). This concludes the proof.

Theorem 6.3. Under the above notations, Let (α1, β1), (α2, β2) ∈ D2. Then

xα1xβ1 , xα2xβ2 is a Koszul relation pair of K[∆(L)] if and only if either α2∨β2 ≤ α1∧β1
or α1 ∨ β1 ≤ α2 ∧ β2.

Proof. We are interested in HT2(t). By Theorem 6.1,

HT2(t) =
∑
W⊂L

s.t. #W=4

(dimkH̃|W |−3(∆W ;K))
∏
vj∈W

tj.
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(a) H̃1(∆;K) =
0

(b) H̃1(∆;K) =
0

(c) H̃1(∆;K) =
K

(d)

H̃1(∆;K) =
0

(e)

H̃1(∆;K) =
0

(f)

H̃1(∆;K) =
0

(g)

H̃1(∆;K) =
0

(h)

H̃1(∆;K) =
0

(i)

H̃1(∆;K) =
0

(j)

H̃1(∆;K) =
0

(k)

H̃1(∆;K) =
0

Figure 6.1

Suppose that xα1xβ1 , xα2xβ2 is a Koszul relation pair of K[∆(L)]. Let W =

{α1, β1, α2, β2}. Then, by Theorem 6.1, H̃1(∆W ;K) ̸= 0. All possible subsets of L

with cardinality 4 are listed in Figure 6.1. For W ′ ⊂ L with #W ′ = 4, one can check

that H̃1(∆W ′ ;K) ̸= 0 only if W ′ is as in Figure 6.1c. Hence, the forward part follows.

For the converse part, suppose that (α1, β1), (α2, β2) ∈ D2. Without loss of gen-

erality, assume that α1 ∨ β1 ≤ α2 ∧ β2. Let W = {α1, β1, α2, β2}. It is easy to see

that

H̃j(∆W ;K) =

K for j = 1,

0 for j ̸= 1.

So by Theorem 6.1, xα1xβ1 , xα2xβ2 is a Koszul relation pair of K[∆(L)]. Hence the

proof.

Note that in Theorem 3.33, we characterized all posets for which the initial Hibi

ideal has a linear resolution. Here we prove a result about the (non-)vanishing of β24

for the ring K[I(P )]/ in<(II(P )).

Theorem 6.4. Let P be a poset. Let P ′ = {pi1 , ..., pir} be the subset of all elements of

P which are comparable to every element of P . Let P ′′ be the induced subposet of P on

the set P \ P ′. Then β24(K[I(P )]/ in<(II(P ))) = 0 if and only if P is a chain or P ′′
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is an antichain of three elements or P ′′ is a disjoint union of a chain and an isolated

element.

Proof. First we prove the forward part. If width(P ) ≥ 4, then there exists an antichain

{p1, . . . , p4} of P . For i = 1, 2, define αi = {p ∈ P : p ≤ pi} and for i = 3, 4, define

αi = {p ∈ P : p ≤ pi, p ≤ p1, p ≤ p2}. Clearly, αi is an order ideal of P for all

1 ≤ i ≤ 4. Observe that (α1, α2), (α3, α4) ∈ D2 and α1 ∨ α2 ≤ α3 ∧ α4. Thus, by

Theorem 6.3, β24(K[I(P )]/ in<(II(P ))) ̸= 0. So we may assume that width(P ) ≤ 3.

First, observe that P ′′ is simple. Consider the case width(P ) = 3 and #P ′′ ≥ 4. Let

{p1, p2, p3} be an antichain of P . Possibly by replacing P by P ∂, we may assume that

there exists a p4 ∈ P ′′ with p1 < p4. Define αi = {p ∈ P : p ≤ pi} for i = 1, 2,

α3 = {p ∈ P : p ≤ pj for 1 ≤ j ≤ 3} and α4 = {p ∈ P : p ≤ p4 and p ≤ p2}.
Observe that (α1, α2), (α3, α4) ∈ D2 and α1 ∨ α2 ≤ α3 ∧ α4. Thus, by Theorem 6.3,

β24(K[I(P )]/ in<(II(P ))) ̸= 0.

So we may assume that width(P ) ≤ 2. If width(P ) = 1, then P is a chain. We

now consider width(P ) = 2. Suppose that P ′′ is a poset on the set ∪2
i=1{pi,1, . . . , pi,ni

}
such that {pi,1, . . . , pi,ni

} is a chain in P ′′ with pi,1 ⋖ · · ·⋖ pi,ni
for all i = 1, 2. We have

to show that either n1 = 1 or n2 = 1. Suppose, on the contrary,that ni ≥ 2 for all

i = 1, 2. Let αi = {pi,1} for i = 1, 2, α3 = {p1,1, p2,1, p1,2} and α4 = {p1,1, p2,1, p2,2}.
Observe that (α1, α2), (α3, α4) ∈ D2 and α1 ∨ α2 ≤ α3 ∧ α4. Thus, by Theorem 6.3,

β24(K[I(P )]/ in<(II(P ))) ̸= 0. Hence the proof.

For the converse, if P is a chain, then R[I(P )] is a polynomial ring; thus in<(II(P )) =

0 we are done. Consider the case when P ′′ is an antichain of three elements or P ′′ is a

disjoint union of a chain and an isolated element. Let (α1, α2) ∈ D2. By Theorem 6.3,

it suffice to show that L′ = {α ∈ I(P ′′) : α ≥ α1 ∨ α2} is a chain. When P ′′ is an

antichain of three elements, it is easy to see that either L′ = {P ′′} or L′ is a chain of

two elements.

Now, suppose that P ′′ is a disjoint union of a chain and an isolated element. Write

P ′′ = {p1, . . . , pn} ∪ {q} such that p1 ⋖ p2 ⋖ · · · ⋖ pn is a chain in P ′′. Since α1 is

incomparable to α2, q is in exactly one of them. Thus, q ∈ α1 ∨ α2. Therefore, L
′ is a

chain. Hence the proof.
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6.2 Syzygies of Hibi ideals

Definition 6.5. Let L = I(P ) be a distributive lattice with #L = n. Given a weight

vector w = (w1, ..., wn) with real coordinates, we define a weight function w on the

monomials of K[L] by

w(xa1α1
...xanαn

) = w.(a1, ..., an) =
n∑

i=1

wiai.

Define the weight order <w on the monomials in K[L] by

xα1

a1 ...xαn

an ≤w xα1

b1 ...xαn

bn if and only if
n∑

i=1

wiai ≤
n∑

i=1

wibi.

This is a partial order.

Theorem 6.6. [Pee11, Theorem 22.3] Let < be the monomial order on K[L] as defined

above. Then, there exist a weight vector w with strictly positive integer coordinates such

that in<w(IL) = in<(IL).

Consider the polynomial ring K̃[L] = K[L][t] and the weight vector

w̃ = (w1, ..., wn, 1). Let f =
∑

i cili ∈ K[L], where ci ∈ K \ {0} and li is a

monomial in K[L]. Let l be a monomial in f such that w(l) = maxi{w(li)}. Define

f̃ =
∑

i t
w(l)−w(li)cili. If we grade K̃[L] by deg(t) = 1 and deg(xi) = wi for all i, then

f̃ is homogeneous. Note that the image of f̃ in K̃[L]/(t − 1) is f , and its image in

K̃[L]/(t) is in<w(f).

Lemma 6.7. Let ĨL = (f̃ |f ∈ IL). Then ĨL = ( ˜xαxβ − xα∩βxα∪β : α, β ∈
L and α, β incomparable).

Lemma 6.8. [Pee11, Theorem 22.8] K̃[L]/ĨL is flat as a K[t]-module. In particular,

t− c is a regular element on K̃[L]/ĨL for every c ∈ K.

Lemma 6.9. Let a = (a1, ..., an) and b = (b1, ..., bn) be vectors with non-negative

integer coordinates. Suppose that b has positive coordinates. We consider the following

two gradings of S = K[x1, ..., xn]:

(1) the a-grading with deg(xi) = ai for all i.

(2) the b-grading with deg(xi) = bi for all i.
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Let I be an ideal in S which is homogeneous with respect to both gradings. Then there

exists a minimal free resolution of S/I over the ring S which is both a-graded and

b-graded.

Theorem 6.10. [Pee11, Theorem 22.9] The graded Betti numbers of K[L]/IL over

K[L] are smaller or equal to those of K[L]/ in<(IL).

Proof. Choose a weight vector w with positive integer coordinates such that in<w(IL) =

in<(IL). By Lemma 6.9, there exist a minimal free resolution F̃ of K̃[L]/ĨL over the

ring K̃[L] which is graded with respect to the following gradings:

(1) deg(xi) = 1 for all i, and deg(t) = 0.

(2) deg(xi) = wi for all i, and deg(t) = 1.

From now onwards, we grade K̃[L] by deg(xi) = 1 and deg(t) = 0. Let c ∈ K. First

consider the case c = 0. Since t is a homogeneous non-zero divisor on K̃[L]/ĨL and on

K̃[L], F̃⊗ K̃[L]/(t) is a graded free resolution of K[L]/ in<(IL) over the ring K[L]. The

resolution is minimal, since the differential matrices in F̃ have entries in (x1, ..., xn, t)

and after we set t = 0 we get that the entries in (x1, ..., xn). Therefore, the i′th Betti

number of K[L]/ in<(IL) is equal to the rank of F̃i.

Now, consider the case c = 1. Since t − 1 is a homogeneous non-zero divisor on

K̃[L]/ĨL and on K̃[L], F̃ ⊗ K̃[L]/(t − 1) is a graded free resolution of K[L]/IL over

the ring K[L]. This resolution might be non-minimal because we have set t = 1 in

the matrices of differential. Therefore, the i′th Betti number of K[L]/ in<(IL) is less or

equal to the rank of F̃i.

Remark 6.11. In the proof of Theorem 6.10, we have also proved that if

˜xα1xβ1 − xα1∩β1xα1∪β1 , ˜xα2xβ2 − xα2∩β2xα2∪β2 is a Koszul relation pair of K̃[L]/ĨL then

xα1xβ1 , xα2xβ2 is a Koszul relation pair of K[L]/ in<(IL). The reason is the following:

Let d2 : F̃2 → F̃1 in F̃. Fix a basis {e1, ..., eµ(IL)} for F̃1 and a basis {f1, ..., fm} for

F̃2. Then, the map d2 is given by a matrix A and the map d2 ⊗ 1
K̃[L]/(t)

be given by

a matrix B. Since ˜xα1xβ1 − xα1∩β1xα1∪β1 , ˜xα2xβ2 − xα2∩β2xα2∪β2 is a Koszul relation

pair in K̃[L]/ĨL. So, there is a column in A, in which the only non-zero entries are

˜xα1xβ1 − xα1∩β1xα1∪β1 and ˜xα2xβ2 − xα2∩β2xα2∪β2 . Therefore, there is a column in B, in

which the only non-zero entries are xα1xβ1 and xα2xβ2 .
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Corollary 6.12. Let (α1, β1), (α2, β2) ∈ D2. If xα1xβ1 − xα1∩β1xα1∪β1 , xα2xβ2 −
xα2∩β2xα2∪β2 is a Koszul relation pair of R[L], then xα1xβ1 , xα2xβ2 is a Koszul rela-

tion pair of K[L]/ in<(IL).

Proof. Suppose that xα1xβ1 , xα2xβ2 is not a Koszul relation pair of K[L]/ in<(IL).

Therefore, by Remark 6.11, ˜xα1xβ1 − xα1∩β1xα1∪β1 , ˜xα2xβ2 − xα2∩β2xα2∪β2 is not a Koszul

relation pair of K̃[L]/ĨL. Hence, xα1xβ1 − xα1∩β1xα1∪β1 , xα2xβ2 − xα2∩β2xα2∪β2 is not a

Koszul relation pair of R[L].

Theorem 6.13. Let (α1, β1), (α2, β2) ∈ D2. If xα1xβ1 − xα1∧β1xα1∨β1 , xα2xβ2 −
xα2∧β2xα2∨β2 is a Koszul relation pair of R[L], then either α2 ∨ β2 ≤ α1 ∧ β1 or

α1 ∨ β1 ≤ α2 ∧ β2.

Proof. The proof follows from Corollary 6.12 and Theorem 6.3.

6.3 Complete intersection Hibi rings

In this section, we will combinatorially characterize complete intersection Hibi rings.

Example 6.14. Let P1 and P2 be the posets as shown in Figure 6.2b and Figure 6.2c

respectively. Then the respective graded Betti table of R[I(P1)] and R[I(P2)] are the

following:

0 1 2 3 4

total: 1 9 16 9 1

0: 1 . . . .

1: . 9 16 9 .

2: . . . . 1

0 1 2

total: 1 3 2

0: 1 . .

1: . 3 2

Now, we prove the main theorem of this section.

Theorem 6.15. Let P be a poset and P ′ = {pi1 , ..., pir} be the subset of all elements

of P which are comparable to every element of P . Let P ′′ be the induced subposet of P

on the set P \ P ′. Then the following are equivalent:

(a) R[I(P )] is a complete intersection.

(b) Either P is a chain or P ′′ is as shown in Figure 6.2a.
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p1

p3

p2

p4

p2n−3 p2n−2

p2n−1 p2n

(a) (b) β23 = 16

p2p1

p3

(c) β23 = 2

Figure 6.2

Proof. (a) ⇒ (b). Suppose that R[I(P )] is a complete intersection. Then, we

have β23(R[I(P )]) = 0. Now, we break the proof by width of the poset. If

width(P ) ≥ 3, then there exists an antichain P1 = {p1, p2, p3} of P . By Discussion 3.7,

β23(R[I(P1)]) ≤ β23(R[I(P )]). Since by Example 6.14, β23(R[I(P1)]) ̸= 0, we obtain

that β23(R[I(P )]) ̸= 0. So we may assume that width(P ) ≤ 2. If width(P ) = 1, then

P is a chain. Hence, the only case we need to consider is width(P ) = 2. Now if P ′′ is

not as shown in Figure 6.2a, then P ′′ will contain the poset as shown in Figure 6.2c as a

cover-preserving subposet, call it P2. Let B and B′ be the sets of minimal and maximal

elements of P2 respectively. From Discussion 3.7 and Example 6.14, β23(R[I(P )]) ̸= 0.

This concludes the proof.

(b) ⇒ (a). If P is a chain, then R[I(P )] is a polynomial ring. So we may assume

that P is not a chain. Since R[I(P )] ∼= R[I(P ′′)] ⊗K K[y1, ..., yr] by Corollary 2.21,

it is enough to show that R[I(P ′′)] is a complete intersection. For 1 ≤ i ≤ n, let

Pi = {p2i−1, p2i} and Qi = {a ∈ P ′′ : a ≤ p2i−1} ∪ {p2i} be the subposets of P . Observe

that Qn = P ′′. For 1 ≤ i ≤ n− 1, by Lemma 2.19,

R[I(Qi+1)] ∼= (R[I(Qi)]⊗K R[I(Pi+1)])/(xQi
− y∅).

We prove the theorem by induction on i. It is easy to see that the result holds for

i = 1. Now assume that the result holds for i. Since R[I(Pi+1)] ∼= R[I(Q1)], we have

R[I(Qi)] ⊗K R[I(Pi+1)] is a complete intersection. Hence, R[I(Qi+1)] is a complete

intersection.
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[Brä06] Petter Brändén. Sign-graded posets, unimodality ofW -polynomials and the

Charney-Davis conjecture. Electron. J. Combin., 11(2):Research Paper 9,

15, 2004/06.

[CD95] Ruth Charney and Michael Davis. The Euler characteristic of a nonposi-

tively curved, piecewise Euclidean manifold. Pacific J. Math., 171(1):117–

137, 1995.

[CNU22] Carmelo Cisto, Francesco Navarra, and Rosanna Utano. Hilbert-Poincaré
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Birkhäuser/Springer, New York, 2015. With a foreword by Richard Stanley.

[PW85] Piotr Pragacz and Jerzy Weyman. Complexes associated with trace and

evaluation. Another approach to Lascoux’s resolution. Adv. in Math.,

57(2):163–207, 1985.

[QRR22] Ayesha Asloob Qureshi, Giancarlo Rinaldo, and Francesco Romeo. Hilbert

series of parallelogram polyominoes. Research in the Mathematical Sciences,

9(2):1–24, 2022.

[QSS17] Ayesha Asloob Qureshi, Takafumi Shibuta, and Akihiro Shikama. Simple

polyominoes are prime. J. Commut. Algebra, 9(3):413–422, 2017.

[Qur12] Ayesha Asloob Qureshi. Ideals generated by 2-minors, collections of cells

and stack polyominoes. J. Algebra, 357:279–303, 2012.

[RR21] Giancarlo Rinaldo and Francesco Romeo. Hilbert series of simple thin poly-

ominoes. Journal of Algebraic Combinatorics, pages 1–18, 2021.

[Rub02] Elena Rubei. On syzygies of Segre embeddings. Proc. Amer. Math. Soc.,

130(12):3483–3493, 2002.

[Rub07] Elena Rubei. Resolutions of Segre embeddings of projective spaces of any

dimension. J. Pure Appl. Algebra, 208(1):29–37, 2007.

[RW05] Victor Reiner and Volkmar Welker. On the Charney-Davis and Neggers-

Stanley conjectures. J. Combin. Theory Ser. A, 109(2):247–280, 2005.

[sage] The Sage Developers. SageMath, the Sage Mathematics Software System

(Version 9.2), 2020. https://www.sagemath.org.

[Sha64] D. W. Sharpe. On certain polynomial ideals defined by matrices. Quart. J.

Math. Oxford Ser. (2), 15:155–175, 1964.

[Sta00] Richard P. Stanley. Positivity problems and conjectures in algebraic combi-

natorics. In Mathematics: frontiers and perspectives, pages 295–319. Amer.

Math. Soc., Providence, RI, 2000.

102



[Sta12] Richard P. Stanley. Enumerative combinatorics. Volume 1, volume 49 of

Cambridge Studies in Advanced Mathematics. Cambridge University Press,

Cambridge, second edition, 2012.
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