
On Effective Verification of
Replicated Data Types

A thesis submitted in partial fulfilment of the requirement of the degree of

Doctor of Philosophy (Ph.D.) in Computer Science

by

Gautham Shenoy R
Chennai Mathematical Institute, Chennai

Supervisors

Prof. Madhavan Mukund Prof. S. P. Suresh

Declaration

I declare that the thesis “On Effective Verification of Replicated Data Types” submitted

by me for the degree of Doctor of Philosophy is the record of work carried out by me from

August 2012 to September 2021 under the guidance of Prof. Madhavan Mukund and Prof.

S. P. Suresh from the Chennai Mathematical Institute. This work has not formed the basis

for the award of any degree, diploma, associateship, fellowship, titles in this or any other

university or other similar institution of higher learning.

September 2021 Gautham Shenoy R.

Chennai Mathematical Institute

H1, SIPCOT IT Park

Siruseri, Kelambakkam

Tamil Nadu 603103, India

2

Certificate

This is to certify that the Ph.D. thesis titled “On Effective Verification of Replicated Data

Types” submitted by Gautham Shenoy R. to Chennai Mathematical Institute is a record of

bona fide research work done during the period August 2012 – September 2021 under our

guidance and supervision. The research work presented in this thesis has not formed the

basis for the award of any degree, diploma, associateship, fellowship, titles in this or any

other university or other similar institution of higher learning.

It is further certified that the thesis represents independent work by the candidate and

collaboration when existed was necessitated by the nature and scope of the problems dealt

with therein.

Madhavan Mukund

Chennai Mathematical Institute

H1, SIPCOT IT Park

Siruseri, Kelambakkam

Tamil Nadu 603103, India

S. P. Suresh

Chennai Mathematical Institute

H1, SIPCOT IT Park

Siruseri, Kelambakkam

Tamil Nadu 603103, India

3

Abstract

In this thesis, we investigate formal methods for providing cogent specifications and per-

forming effective verification of replicated data types such as the CRDTs adhering to weaker

notions of consistency. We analyse a particular CRDT known as the Observed-Remove Set

(OR-Set) where the conflicts between concurrent add and remove operations are handled in

a coordination free manner, even when updates are presented out of order. We provide an

optimized implementation of this data type. Further, we provide a framework for defining

declarative specifications for these data types. We present two methodologies to construct

bounded reference implementations of these data types. We show how these reference imple-

mentations can be used for effective verification of given implementations of replicated data

types. Finally we turn our attention to the verification of read-write key-value stores that

support multiple consistency criteria. Some of the novel contributions in this thesis include

• Interval Version Vectors, which allow us to robustly keep track of concurrent updates

in the absence of causal delivery. We use these to provide an optimized implementation

of OR-set in the absence of causal-delivery.

• Formulation of a generalization of the Gossip Problem [Mukund and Sohoni, 1997;

Mukund et al., 2003] and a bounded solution to this Generalized Gossip Problem that

provides a principled approach towards synthesizing distributed reference implementa-

tions of CRDTs from their specifications.

• A technique for synthesizing a simple global reference implementation of CRDTs from

their specification using the concept of Later Appearance Records (LAR) introduced

in [Gurevich and Harrington, 1982].

• A formal framework for defining the correctness of behaviours of read-write data-stores

which provide multiple consistency levels.

• A systematic methodology for deriving bad patterns characterizing a wide range of

consistency models and combinations thereof.

4

• An effective algorithmic framework for testing the behaviours of modern data-stores

that providing multiple levels of consistency.

5

Acknowledgements

First and foremost I would like to thank my advisors Prof. Madhavan Mukund and Prof. S. P.

Suresh for their unwavering support and invaluable guidance during the course of my Ph.D.

degree. My interaction with them on Formal Methods began in the year 2012 with a read-

ing assignment on a paper related to Gossiping, Asynchronous Automata, and Zielonka’s

theorem. These interactions eventually resulted in the work that I did on Bounded Version

Vectors for my Master’s thesis under the supervision of Madhavan and Suresh. Since then,

I have been fortunate to work alongside them to explore several interesting problems in the

areas of weak consistency and conflict-free replicated data types (CRDTs). As someone with

no prior grounding in Formal Methods, it was not an easy task for me to get acquainted

with the fundamental principles of Automata Theory and Formal Verification. Madhavan

and Suresh were instrumental in ensuring that I got the necessary exposure to the relevant

literature in this field. They also helped me grasp the finer aspects of several key results

in Automata Theory. My interactions with them over the years have helped me to better

understand and appreciate the role of Formal Methods in Computer Science. In addition to

their tutelage and their ability to create a friendly atmosphere where it was possible to have

interesting technical discussions, both Madhavan and Suresh were very supportive when,

in 2014, I decided to pursue my Ph.D. part-time. I remain ever-grateful for their patience

and understanding which made it very easy for me to divide my time between my career,

personal life, and my Ph.D. studies.

I would like to thank Prof. Narayan Kumar for being a part of my Doctoral Commit-

tee and providing valuable feedback during the Doctoral Committee meetings. I would

also like to express my sincere gratitude to our collaborators, Prof. Ahmed Bouajjani and

Prof. Constantin Enea from the University of Paris Diderot (Paris 7), for several stimulating

discussions on the behaviours of data stores that satisfy weak consistency. These discussions

eventually led to our work on formalizing and testing multilevel consistency.

I am very grateful to Tata Consultancy Services (TCS) for offering me a research scholar-

ship from 2012 to 2014. I would like to thank the administrative staff of CMI, in particular,

Rajeshwari Nair and S. Sripathy, for helping me with the administrative issues and also for

the interesting conversations on books, movies, and music.

6

While in CMI, I was fortunate to be surrounded by a vibrant set of peers who ensured

that there was never a dull moment in their company. For this, I thank Nikhil Balaji, Ab-

hishek Bhrushundi, Nitesh Jha, Prakash Saivasan, Prateek Karandikar, Suryajith Chillara,

Vaishnavi Sundararajan, Gopakumar Mohandas and Mithilesh Kumar.

I would like to thank Suresh Mallya and Sandesh Prabhu, who were my roommates in

Chennai after I moved out of the CMI Hostels. Since both of them were from my hometown,

staying with them was akin to staying at home! I would also like to offer special thanks to

my cousin Naveen Shenoy, his wife Sandhya Shenoy, my good friend Madhusudan Rao, and

his wife Arathi Rao for inviting me over to their homes during the weekends for good food

and good times!

I am extremely grateful to my friends Vijay and Trupti Sukthankar, and Shuaib Shukur,

for hosting me during my frequent trips to Bangalore between 2012 and 2013. More impor-

tantly, I would like to thank them for supporting me in every way possible when I made

the not-so-easy decision to pursue my Ph.D. part-time. There are a few others who, de-

spite not being around physically, provided the much-needed support in the form of phone

and text conversations during this time. In particular, I want to thank Kevin Pais, Pooja

Gundlur, Sathyaparathpara Chakravarthy, Balagopala Nair, Neethu Pillai, and Luvlyn and

Lester D’Souza for being there for me. I would be remiss if I forgot to mention the help and

encouragement provided by Maya and Jagadish Shenoy, who were our neighbours and good

friends in Bangalore. When my wife was pregnant with our first child, thanks to the support

provided by Maya and Jagadish Shenoy, I was able to continue visiting Chennai at regular

intervals to discuss with my advisors.

In the year 2014, I joined the IBM Linux Technology Center (LTC) Bangalore, as a full-

time Linux Kernel Developer. The LTC leadership team provided me with all the necessary

support that enabled me to pursue my Ph.D. studies. They allowed me to spend one day

every week in Chennai so that I did not miss out on any interactions with my advisors.

They also provided me with the flexibility to take time off when I was working on a paper or

travelling to a conference. I want to thank my team members from IBM LTC, especially my

technical leads Dipankar Sarma, Vaidyanathan Srinivasan, Aneesh Kumar, my managers Kr-

ishna Prabhu, Tarundeep Singh Kalra, and Nilesh Joshi, and my colleagues Ananth Narayan

MG, Bharata B. Rao, Shivaprasad Bhat, and Nikunj Dadhania for their consistent support.

I would like to acknowledge the influence that two remarkable individuals have had over

my decision to pursue Doctoral studies. First, I want to thank my mathematics teacher Prof.

Sudhakar Shetty, whose passion for exploring new ideas and for discovering new connections

between existing ideas is something that I greatly admire. I would also like to thank Paul E.

McKenney, a former Distinguished Engineer at IBM, who was my first collaborator at IBM

LTC when I started my career as a rookie out of college in the year 2006. Paul has made

several important contributions towards improving the scalability of the Linux Kernel on

large concurrent systems. My interest in concurrent and distributed systems was piqued by

7

his work on the different variants of the Read-Copy-Update (RCU) synchronization primitive

in the Linux Kernel. I am grateful for the advice and guidance that I have received from

him at various points over the last fifteen years.

Finally, I want to thank my family for their unconditional support and their belief in me

over all these years. In particular, I would like to express my gratitude to my parents Dr.

Girish Shenoy and Nirmala Shenoy, my sister Sapna Shenoy and brother-in-law Chaitanya

Nayak, for being a constant source of encouragement amid the various transformations in my

professional and personal life. I am also greatly indebted to wife Shwetha Pai for her support,

patience, and understanding, through all these years while I was pursuing the research work

for this thesis. In the end, I want to thank our three children, Bhargav, Raghav, and

Vaishnav, for kindly putting up with my absence in the late evenings and over the weekends

in these last few months, which provided me with the much-needed time to complete this

thesis.

‖ Śr̄ı Kr.s.n. ārpan. amastu ‖

8

Contents

1 Introduction 12

1.1 Replicated Datatypes . 15

2 A Formal Model for CRDTs 23

2.1 Definitions . 23

2.2 Convergent and Commutative Replicated Data Types 35

2.3 Further Reading . 44

3 Optimized OR-Sets Without Ordering Constraints 46

3.1 Original implementation of the OR-Set [Shapiro et al., 2011a,b] 49

3.2 Optimized OR-Set with causal-delivery [Bieniusa et al., 2012] 52

3.3 Distributed Specification of OR-Sets . 54

3.4 Generic Optimized Implementation [Mukund et al., 2014] 57

3.5 Correctness of the Generic Optimized Implementation 60

3.6 Equivalence of the original and the generic optimised implementations 75

3.7 Space Complexity and Payload Size . 88

3.8 Summary . 91

4 Declarative Specification for CRDTs 94

4.1 Introduction . 94

4.2 Definitions for Declarative Specifications . 95

4.2.1 Specifications of popular replicated data types 117

4.2.2 Correctness of implementations with respect to a Specification 119

4.3 Reference Implementations of Replicated Data Types from Specifications . . 123

5 Bounded Implementations of

Replicated Data Types using Generalized Gossip 133

5.1 Introduction . 133

9

5.2 Bounded CmRDTs . 134

5.2.1 Strategy for constructing a bounded reference implementation 136

5.3 Generalized Gossip Problem . 138

5.3.1 Constructing a Bounded Secondary Information 145

5.3.2 Bounding CmRDTs using Generalized Gossip Problem 153

5.4 Summary . 159

6 Bounded Reference implementations of Replicated Data Types using Later

Appearance Records (LAR) 160

6.1 Global Implementation of a Replicated Datatype 161

6.1.1 Reference Implementation . 163

6.1.2 Details of the reference implementation 166

6.1.3 Correctness of the reference implementation 167

6.1.4 Bounding the reference implementation 170

6.2 Applications to verification . 172

6.2.1 Effective verification using Bounded Reference Implementation via CE-

GAR . 172

6.2.2 Testing of distributed systems . 174

6.3 Summary and Related Work . 174

7 Formalizing and Checking Multilevel Consistency 177

7.1 Motivation . 177

7.2 Multilevel consistency in the wild . 179

7.3 Formalizing Multilevel Consistency . 184

7.4 Testing Multilevel Correctness of a Hybrid History 191

7.4.1 Bad Pattern characterization for multilevel correctness 191

7.5 Correctness of the Bad Patterns Charecterization 193

7.5.1 Constructing Minimal Visibility Relations 196

7.6 Correctness of the testing procedure . 199

7.6.1 Complexity . 207

7.7 Related Work . 208

8 Summary, Future Work and Conclusion 211

8.1 Summary . 211

8.2 Future Work . 212

8.2.1 Bounded Interval Version Vectors . 212

8.2.2 Complexity of testing the correctness of differentiated histories 213

8.2.3 Generalizing Bad-Patterns and minimum visibility relation to other

data types . 214

8.3 Conclusion . 214

11

List of Figures

2.1 Behaviour of LWW register . 28

3.1 Non-transitivity of the happened-before relation. 55

3.2 Non-intuitive behaviour of deletes in the absence of causal delivery. 56

4.1 An example of a Run . 95

4.2 Replica Order : Sequence of operations seen by each replica 97

4.3 Broadcast and Merge Orders : Between communicating replicas. 98

4.4 Trace of a Run from Figure 4.1 . 101

4.5 Visible event set of event M . 104

4.6 Ideal of the event M . 109

4.7 View of the event M . 114

7.1 An example of a read-write store behaviour with strong and weak reads . . . 182

7.2 Strong and Weak fragments of the hybrid behaviour 182

List of Tables

7.1 Well known consistency criteria . 188

12

1

Introduction

The Internet hosts many services that maintain replicated copies of data across distributed

servers which support local updates and queries. An early example is the Domain Name

Service (DNS) that maintains a distributed mapping of Internet domain names to numeric

IP addresses. This map is replicated across multiple servers across the different geographies.

Clients typically access the server that is geographically closest to them. Since the same

mapping is replicated across different servers, when the owner of a website chooses to change

the mapping, it takes up to 72 hours for the change to be propagated across all the replicas

which have cached this map.

The users of such services implemented in a distributed manner expect the following

properties.

• Consistency: The distributed service behaves as if there is a single up-to-date copy

of the data. Thus the queries are always expected to return the most up-to-date

information and the updates are expected to be serialized against each other.

• Availability: Every request made by the client to the distributed service is eventually

honored with a response.

• Partition Tolerance: The service continues to remain operational even when some of

the replicas experience crash failures, or the network connectivity between the replicas

is disrupted.

In the year 2000, Eric Brewer conjectured that there is a fundamental trade-off between

the consistency, availability and partition tolerance properties: any distributed web-service,

where the servers share data, can simultaneously satisfy at most two of these three proper-

ties [Brewer, 2000]. For example, single-site data bases and LDAP forgo partition tolerance

and satisfy consistency and availability [Brewer, 2000] while distributed databases, services

that implement distributed locking, and majority based protocols forgo availability and sat-

isfy consistency and partition tolerance [Brewer, 2000]. Brewer’s Conjecture was formally

13

proven by Gilbert and Lynch in [Gilbert and Lynch, 2002] and the trade-off has been popu-

larly known as the CAP theorem ever since.

Given that several distributed services such as virtual shopping carts of online merchants

like Amazon and Content Distribution Networks (CDNs) such as Netflix have data that is

replicated across the globe, these service need to be robust against network partitions and

replicas becoming inaccessible. Hence, partition tolerance is a critical feature that ought to

be supported by such services. Furthermore, high availability is critical to the business model

of many of the services such as content distribution networks and social networks. Thus, it

may appear that such services will not be able to guarantee the consistency property.

However, it must be noted that the definition of consistency in both [Brewer, 2000]

and [Gilbert and Lynch, 2002] is a strong consistency criterion, namely linearizability [Her-

lihy and Wing, 1990; Herlihy, 2008]. Thus, distributed data services which need to satisfy

availability and partition tolerance only need to forgo strong consistency, where local queries

about distributed objects return answers consistent with the most recent update [Gilbert

and Lynch, 2002]. They can instead support weaker consistency criteria. There are many

well understood weaker consistency criteria including, but not limited to, Basic Eventual

Consistency [Shapiro and Kemme, 2009; Saito and Shapiro, 2005; Vogels, 2008], Session

Guarantees such as Read-Your-Writes, Monotonic Reads, Write Follows Reads, Monotonic

Writes [Terry et al., 1994], Strong Eventual Consistency [Shapiro et al., 2011a,b], FIFO Con-

sistency [CS551, 2001] and Causal Consistency [Lamport, 1979; Perrin et al., 2016; Bouajjani

et al., 2017] that are used in distributed data stores. We shall now explain some of the weak

consistency criteria using the example of a timeline of the popular social network Twitter.

The Twitter service allows users to post short messages, known as tweets, on their website

or app. It allows users to follow other users. A user U1’s timeline is a sequence of tweets

from U1 as the tweets of those other users whom U1 follows. These tweets are arranged in

the decreasing order of the global timestamps. The user U1 can retweet the tweet made by

some other user U2 (whom U1 may or may not follow). When this happen, that tweet of U2

becomes visible in the timeline of U1 as well as in the timelines of all the users U3 who follow

U1. Similarly user U1 can comment on a tweet made by some other user U2. Each comment

itself is another tweet which is linked to the original tweet. We can imagine that the Twitter

service is implemented as a distributed system where the users tweets are replicated across

various servers across the globe. We refer to these servers as replicas. The users of the service

are unaware of the existence of the replicas. Thus their interaction with the service could be

handled by any one of the replicas spread across the world.

• Basic Eventual Consistency: This criteria states that if no new updates are made

to the data-service, then all the queries made to the data-service will return the last

updated value. This is more of a liveness property. If Twitter were to satisfy Basic

Eventual Consistency, it would have to ensure that if a user U1 stops posting any more

14

tweets then eventually all the followers of U1 will see all of U1’s tweets and retweets in

their timeline.

• Read-Your-Writes: This is a session-guarantee that requires that effects of prior

operations in the session are visible to later operations in the same session. A session

in the context of twitter is an instance where the user has logged into the twitter service

from a browser window or a mobile app. Each distinct login on a different window or

a differnt app on a device is treated as a different session. If Twitter were to satisfy

Read-Your-Writes, it would have to ensure that every tweet made by a user U1 in a

given session would be visible in the timeline of that session. It makes no guarantee of

those tweets being visible on any other session that the user U1 may have open on the

browser or on the Twitter app on another device.

• Monotonic-Reads: This is also a session-guarantee that requires that once the effect

of an operation becomes visible within a session, it remains visible to all subsequent

operations in that session. If Twitter were to satisfy Monotonic-Reads, it would have

to ensure that once some tweet is visible in user U1’s session, it would continue to

remain visible for the rest of that session.

• Strong Eventual Consistency: This requires that replicas which have received the

same set of updates should have equivalent states, no matter in what order they received

those updates. If Twitter were to satisfy Strong Eventual Consistency, then for any

two users U1 and U2 who follow each other and who follow the same set of other users,

if the timelines of U1 and U2 are respectively constructed from replicas r1 and r2, and

both r1 and r2 have received the same set of tweets, then the timelines of U1 and U2

should be identical.

• Causal Consistency: This requires that effects of prior operations in a session are

always visible to later operations. Further, if the effect of an operation is visible to

another operation, then every operation that has seen the effects of the latter would

have seen the effects of the former. Suppose a user U1 posts a tweet and another user

U2 comments on it. Another user U3 comments on U2’s comment. If Twitter were to

implement Causal Consistency then any user U4 who follows U3 and see’s U3’s comment

on their timeline should also see U2’s comment and U1’s tweet.

Among these, Strong Eventual Consistency is a variant of Eventual Consistency that re-

quires that all replicas which have received the same update messages have equivalent states,

irrespective of the order in which they received those update messages. Hence, data stores

that satisfy Strong Eventual Consistency are robust and conflict-free. Shapiro et al. have

studied a class of data structures called the Conflict-free Replicated Data Types (CRDTs) are

designed to satisfy strong eventual consistency by construction [Shapiro et al., 2011a,b]. This

15

class includes widely used data types such as replicated counters, sets, registers, and certain

kinds of graphs. In the next section we provide an introduction to conflict free replicated

data types using some of the popular data types.

1.1 Replicated Datatypes

Consider the abstract data type counter. It provides three methods for the users to interact

with it.

• Inc() : Increments the value of the counter by one.

• Dec() : Decrements the value of the counter by one.

• Fetch() : Get the current value of the counter.

In a sequential setting, an implementation of the counter would typically have a memory

location modelling the counter. The implementation would also provide functions corre-

sponding to the Inc(), Dec() and Fetch() methods to respectively increment, decrement and

read the value of that memory location. Such an implementation would be referred to as a

sequential implementation of the counter. The behaviour of the sequential implementation

of the counter should satisfy the well understood sequential specification of the counter.

However the abstract counter can also be implemented over a distributed system with N

nodes, where each node would contain a replica of the counter. Such an implementation is

referred to as a replicated implementation of the counter. When we say replicated counter,

we mean this replicated implementation of the counter. We shall now see one such replicated

counter named the Positive Negative Counter (PN-Counter) [Shapiro et al., 2011b].

In the PN-Counter, when a client issues an Inc(), Dec(), or a Read() request, these requests

could be redirected to any of the N replicas. The client has no say in the matter. When

a replica receives a Fetch() request from a client, it responds to the request based on its

current local state. We say that this replica is the source replica for that Fetch() request.

When a replica receives an Inc() or a Dec() request from some client, it updates its local

state to cause the value of the counter to increment by one (in case of a Inc() request) or

decrement by one (in case of a Dec() request) . However, since this is a replicated counter,

the other replicas must be informed of this Inc() or Dec() operation. For this purpose, the

replicas can follow one of two strategies to inform the other replicas about these requests.

• It can send a broadcast message to all the other replicas indicating that it has re-

ceived an increment/decrement request. The other replicas on receiving this broadcast

will update their respective states in order to incorporate the effect of this incre-

ment/decrement.

16

• Otherwise, the replica can periodically share its entire state with the others replicas

in the system. The other replicas, on receiving this state update their respective local

states by merging the contents of the remote state that they have just received into

their local state.

If the PN-counter implementation follows the first strategy of broadcasting a message af-

ter every Inc() or Dec(), then it needs to rely upon the underlying network that the broadcast

messages are not lost. It also needs to take precaution to handle the cases when the same

broadcast message is delivered more than once unless the underlying network guarantees

that there will not be duplicated delivery.

However sending a broadcast message after every operation will flood the network and

may not be desirable in certain scenarios. In such cases, the PN-counter implementation

could follow the second strategy and periodically broadcast their entire state to the remote

replicas. This state would contain information along with some meta-data about the incre-

ments and decrements. The recipient replicas can use this information to update their own

states. While the network will have considerably lesser traffic in this strategy compared to

the earlier one, the size of the paylaod that needs to be communicated to the other replicas

is relatively higher. This is because the state could contain additional meta data which

will help the recipient replicas to safely merge this state into their states without causing

over-accounting or under-accounting of the counter value.

Suppose the underlying network provides a guarantee against message loss and duplicate

message delivery. Then, a PN-counter that follows the first strategy can maintain a indi-

vidual counter at every replica. When the replica receives an Inc() (respectively a Dec())

request from the client, it can increment (respectively decrement) its local counter value.

It can then send a broadcast pertaining to the increment (respectively decrement) to the

other replicas. Those replicas, on receiving this increment broadcast (respectively decrement

broadcast), can increment (respectively decrement) their respectively local counters. When

a replica receives a Fetch() request from some client, it returns the value of its local counter.

It can be observed that with this implementation, when all the replicas become aware of all

the increment and decrement requests, either through the clients or through the respective

broadcast messages, their local counters will have the same value. Thus this implementation

satisfies the requirement of strong eventual consistency. Such an implementation where the

replicas send broadcast messages after every Inc() and Dec() request is known as an operation

based PN-counter.

On the other hand, if the PN-counter implementation chooses not to send a broadcast

message on every Inc() or Dec() they can go for the following implementation.

• Every replica i ∈ [1, . . . , N] maintains two arrays Ii[1 : N] and Di[1 : N]. The value

Ii[j] denotes the number of increments at the replica j ∈ [1, . . . , N] that i is aware

17

of. Similarly the value Di[j] denotes the number of decrements at a replica j that i is

aware of. Initially Ii[j] = Di[j] = 0 for all i, j.

• On receiving an Inc() request from the client, replica i increments the value Ii[i] by

one, i.e

Ii[i] := Ii[i] + 1

• On receiving an Dec() request from the client, replica i increments the value Di[i] by

one. Thus

Di[i] := Di[i] + 1

• Periodically replica i broadcasts its state (Ii[1 : N], Di[1 : N]) to the other replicas in

the system.

• Replica j on receiving (Ii[1 : N], Di[1 : N]) will update its own state as follows

– For all k ∈ [1, . . . , N], set Ij[k] := max (Ii[k], Ij[k])

– For all k ∈ [1, . . . , N], set Dj[k] := max (Di[k], Dj[k])

• On receiving a Fetch() request from the client, replica i would return the value

(ΣN
k=1Ii[k])− (ΣN

k=1Di[k])

Thus, in this case, the state of each replica of the replicated counter keeps a count of

the number of increment and decrement requests sent by the client to every replica in the

system. Periodically the replica shares its entire state to the other replica in the system.

The recipient replicas can safely update their knowledge of the number of increment and

decrement requests at every other replica based on information of the state that it just

received. In this implementation, it can be noted that once all the replicas share their states

with every other replica, their local states will be identical. Thus this implementation of the

PN-counter satisfies strong eventual consistency. Since the replicas send their entire states

to the other replicas, this kind of an implementation is called as a state based PN-counter.

Now, since by definition, the Inc() and the Dec() operations of the PN-counter commute,

the order in which a replica receives the broadcast message corresponding to these requests

will not matter to the final state of the replica of operation based replicated data type. How-

ever, this need not be true for some of the other replicated data type implementations that

satisfy strong eventual consistency. In order to illustrate this, we provide the example of a

replicated ipmplementation of a Read-Write register known as Last Writer Wins Register

(LWW Register).

A register is an abstract data type that provides two methods for the users to interact

with it.

18

• Write() method, which allows the users to update the value of the register with a new

value. Let us assume that the values come from the set of natural numbers N.

• Read() method, which allows the users to query the current value of the register.

The LWW Registers is a replicated implementation of a register. As in the case of

PN-Counter, the LWW-Register is implemented over a distributed system with N replicas

[1, . . . , N] where replica contains a copy of the register. When a replica receives a Read()

request from some client, it returns a value based on its current local state. When a replica

receives Write() request from a client, it will update its local state. Like in the case of

the PN-Counter, it can either choose to broadcast this information to all the other replicas

(operation based LWW Register), or, it can periodically broadcast its entire state to the other

replicas, which on receiving the state will update their own state by merging the contents of

the received state into their local states (state based LWW Register).

Unlike the operation based PN-Counter, it is not sufficient for an operation based LWW-

Register to just maintain a register as a part of its local state. We explain this with an

example. Consider the case where a client sends a Write(3) request to a replica i. Replica i

updates its local register value i = 3. It then broadcasts the information that it has received

a Write(3) to every other replica in the system. Concurrently, another replica j receives the

Write(4) request from a client. It processes the Write(4) request by updating its local state

to valuej := 4. It then broadcasts the information pertaining to this Write(4) to all the other

replicas. Eventually, replica i will receive the broadcast message from replica j saying that

it has applied Write(4) locally. Likewise, replica j will receive the broadcast message from

i regarding Write(3). Thus the replica i and j will have to decide if they want to overwrite

their local register with the value corresponding to the broadcast or if they want to ignore

the value corresponding to the broadcast. If they choose to overwrite, the local state of

replica i will be value i = 4 and the local state of replica j will be valuej = 3. Thus the

states have diverged. Similarly if they both choose to ignore the values corresponding to the

broadcast, then the local states of i and j will respectively be value i = 3 and valuej = 4. In

this case too, the states have diverged. Thus, even though both the replicas i and j have

received the same set of updates, their states not equivalent.

However if replica i were to overwrite its local value with the value corresponding to the

broadcast and replica j were to ignore the value corresponding to the broadcast, the local

states of both the replicas would have converged to the same value. Thus, what is needed

in this case is a strategy that allows the replicas to arbitrate between concurrent Write()

requests in a uniform manner. We present one such strategy below.

19

Operation-based LWW Register

Assume that each replica has a clock that produces a monotonically increasing sequence of

timestamps from TS. We can assume that the clocks across the different replicas progress

more or less at the same rate, but are allowed to drift and will periodically synchronise using

protocols such as NTP.

• State at replica i ∈ [1, . . . , N] is an array of pairs [(value ij, t
i
j) | j ∈ [1, . . . , N]] where

value ij ∈ N ∪ {⊥} denotes the latest value written by replica j that replica i is aware

of. tij ∈ TS is the timestamp corresponding to the latest Write() request at replica j

that the replica i is aware of. Initial value [(value ij = ⊥, tij = 0) | j ∈ [1, . . . , N]].

• When replica i receives Write(value) request from the client it performs the following.

– Let t = getTS().

– Set (value ii, t
i
i) := (value, t)

– Broadcast (value, i, t) to all the replicas.

• When a replica j receives (value, i, t), it does the following

– If t > tji

∗ Set (valueji , t
j
i) := (value, t)

• When the replica i receives a Read() request from the clients, it computes the response

and returns the value as follows.

– Let j ∈ [1, . . . , N] be such that ∀k ∈ [1, . . . , N] : (tij > tik) ∨ ((tij = tik) ∧ j > k)

– Return value ij

When the replica i receives a Write request from some client to write a new value value,

it generates a new timestamp t based on the current value of its local clock. Replica i then

updates (value ii, t
i
i) to (value, t) to take into account the latest Write method that it locally

applied. It then broadcasts the tuple (value, i, t) to inform all the other replicas about this

Write request.

When a replica j receives this broadcast message (value, i, t), it will check if the timestamp

t is greater than the timestamp tji corresponding to the latest Write at i that it is currently

aware of. If so, it will update (valueji , t
j
i) to (value, t).

Finally, when a replica i receives a Read request from the client, it determines the latest

timestamp corresponding to any Write performed in the system that it is currently aware of.

Suppose tij is such a timestamp for some replica j. Suppose there is another replica k which,

as per i’s knowledge, has performed a write at the exact timestamp as j, then we pick the

20

replica with the larger index. Thus having determined the replica which has performed the

most recent Write, the Read method at i returns the value value ij written by that Write.

It can be observed that any pair of replicas i, j which have received the same information

pertaining to the same set of Write operations will have (value ik, t
i
k) = (valuejk, t

j
k) for all

k ∈ [1, . . . , N]. Thus, they both will return the same value when a Read method is applied

at them. Hence this operation based LWW-Register implementation satisfies strong eventual

consistency. We can also describe a state based LWW-Register implementation which would

be useful when it is desirable to keep the network traffic to a minimum.

State-based LWW Register

• State at replica i ∈ [1, . . . , N] is an array of pairs [(value ij, t
i
j) | j ∈ [1, . . . , N]] where

value ij ∈ N ∪ {⊥} denotes the latest value written by replica j that replica i is aware

of. tij ∈ TS is the timestamp corresponding to the latest Write() request at replica j

that the replica i is aware of. Initial value [(value ij = ⊥, tij = 0) | j ∈ [1, . . . , N]].

• When replica i receives Write(value) request from the client it performs the following.

– Let t = getTS().

– Set (value ii, t
i
i) := (value, t).

• Periodically replica i sends its entire current state [(value ik, t
i
k) | k ∈ [1, . . . , N]].

• Suppose a replica j receives the state of i , i.e [(value ik, t
i
k) | k ∈ [1, . . . , N]]. It will

update its local state as follows.

– For k ∈ [1, . . . , N] such that tik > tjk

∗ Set (valuejk, t
j
k) := (value ik, t

i
k)

• Read() method applied at replica i:

– Let j ∈ [1, . . . , N] be a replica such that

∀k ∈ [1, . . . , N] : (tij > tik) ∨ ((tij = tik) ∧ j > k)

– Return value ij

In the state-based implementation, the local state of the replicas is the same as that in

the case of the operation-based implementation described earlier. When a replica i gets the

Read() request from a client, it computes the response in the same manner as the operation-

based implementation. On receiving a Write request, the replica updates its local state in

a manner similar to the earlier operation-based implementation. The only difference is that

21

after updating the local state, it doesn’t broadcast the message. Instead, the replicas can

periodically send their current state to other replicas. When a replica j receives the state of

replica i, then, for every replica k ∈ [1, . . . , N], j checks if i has a more recent knowledge of

the latest Write at k by comparing the timestamps tik with tjk. If so, it will update (valuejk, t
j
k)

to (valuejk, t
j
k). Thus, in this implementation, once all the replicas have sent their states to

all the other replicas, the local states of every replica will be the same. The monotonically

increasing timestamps along with the replica indices help every replica to determine which

was the last writer in an unambiguous manner. In particular, every replica will order a pair

of concurrent Write() requests in a similar way.

The PN-Counter and LWW-Register implementations described here are examples of

a class of replicated implementations of data types known as Conflict-free Replicated Data

Types (CRDTs). Prior works such as [Shapiro et al., 2011a,b] provide a comprehensive

survey of the replicated implementations of various kinds of conflict-free replicated data types

including counters, registers, sets and graphs. All these replicated implementations satisfy

the strong eventual consistency property. Apart from the simpler CRDTs mentioned above,

there also exists replicated implementations of complex data types such as JSON [Kleppmann

and Beresford, 2017; Grosch et al., 2020; Brocco, 2021], and word sequences, which are

the building blocks of collaborative editing tools [Attiya et al., 2016; Briot et al., 2016;

Grishchenko and Patrakeev, 2020; Nicolas et al., 2020]. There are frameworks that allow

decompostion of complex CRDTs as a semi-direct product of simpler ones, and construction

of novel CRDTs by combining the operations of pairs of CRDTs [Weidner et al., 2020]. Real

world data stores such as RiakDB support several CRDTS including counters, flags, register,

sets and maps [Riak, 2015]. There are programming models for large scale distributed

programming such as Lasp [Meiklejohn and Van Roy, 2015] and CScript [De Porre et al.,

2020] that support replicated data types as first class objects. There is also active work

in the fields of formal specifications [Burckhardt, 2014; Burkhardt et al., 2014] and formal

verification of these replicated data types [Burkhardt et al., 2014; Mukund et al., 2015a,b;

Gomes et al., 2017; Blau, 2020].

In this thesis we undertake the study the replicated implementations of data types (hence-

forth referred to as replicated data types) from the following perspectives:

1. Constructing replicated implementations of abstract data types that satisfy strong

eventual consistency.

2. Formulating concurrent specifications for abstract data types independent of imple-

mentation details.

3. Verifying the correctness of a given replicated data type with respect to its concurrent

specification. The replicated implementations of data type describe the behaviour of

the data-types from the perspective of the communicating replicas.

22

4. Verifying the correctness of the behaviours of the replicated data types as seen by

the clients. Since the clients are oblivious to the implementation details such as the

number of replicas involved, the frequency at which they communicate, the constraints

on message delivery, the behaviours as observed by them are modelled as the sequences

of method-invocations made by the clients and the responses they receive from the data

types.

In this thesis we also explore the applicability of concepts and tools from traditional trace

theory and automata theory, and wherever required, adapt them and extend them in the

study and analysis of relatively modern replicated data types.

The thesis is organized as follows. In the next chapter we provide a formal model for

replicated data types and define some of the terminology associated with them. We also

prove two key results from [Shapiro et al., 2011b] that describe the sufficient conditions

for replicated data types to satisfy strong eventual consistency. In Chapter 3 we study a

well known CRDT named Observed-Remove Sets (OR-Sets). We describe three different

implementations of OR-Sets that require different kinds of data to be replicas to correctly

model the OR-Set for different delivery guarantees. We also provide a formal specification

for OR-Set which captures the behaviours of all the three implementations. We demonstrate

the construction of an optimized implementation of OR-Sets using a novel object known

as Interval Version Vector. This chapter is based on our published work [Mukund et al.,

2014] which describes an optimized OR-Set in the absence of any delivery constraints on the

network. In Chapter 4, we introduce a formal framework for describing the behaviours of

replicated data types independent of their implementations. Using this we provide declara-

tive specifications of some of the well known CRDTs. We also provide a principled approach

for constructing a reference implementation from their declarative specification. In Chap-

ter 5 we show how a bounded distributed reference implementation can be constructed for

certain classes of replicated data types. In order to achieve this, we define a generalization

of the classical gossip problem, whose bounded solution is used to construct the bounded

reference implementations. Chapters 4 and 5 are based on our published work on bounded

implementations of replicated data types [Mukund et al., 2015a]. In Chapter 6 we provide

methodology to construct a simpler global reference implementation from its declarative

specification whose state space is bounded for certain classes of declarative specification. We

use the concept of the Later Appearance Record(LAR) from the automata theory to arrive

at the global reference implementation. We describe how these bounded reference imple-

mentations can help in the formal verification of a given implementation of a CRDT. This

chapter is based on our published work on effective verification of replicated data types us-

ing Later Appearance Records(LAR) [Mukund et al., 2015b]. Chapters 5 and 6 focus on the

verification of the correctness of the behaviours replicated data types from the perspective

of the communicating replicas. In Chapter 7 we turn our attention towards checking the

23

correctness of the behaviours of replicated data types as seen by the clients. In particular,

we look at distributed read-write stores which offer the choice of multiple consistency levels

to the clients. We formalize the notion of multilevel-consistency for these data stores and

provide an algorithm to test the correctness of such data stores against the consistency level

and their combinations. This chapter is based on our published work on formalizing and

checking multilevel consistency [Bouajjani et al., 2020]. In the final chapter of the thesis we

will summarize our findings and describe a few new problems that have emerged from our

study of replicated data types.

24

2

A Formal Model for CRDTs

In this chapter we describe a formal model for replicated data types in general and Conflict-

Free Replicated Data Types (CRDTs) in particular. In the next section, formally define

replicated data types and some terminology associated with them. While the terminology

used in this chapter is from [Shapiro et al., 2011a,b], the formalism uused here is a synthesis

of the formalism presented in our prior works [Mukund et al., 2014, 2015a,b]. We will

be using this formalism throughout this thesis. In section 2.2 of this chapter, we provide

new rigorous proofs for the two theorems from [Shapiro et al., 2011a] which describe the

sufficient conditions for two flavours of CRDTs namely the Convergent Replicated Data

Types (CvRDTs) and the Commutative Replicated Data Types (CmRDTs).

2.1 Definitions

Replicated data types are replicated implementations of abstract data types over a dis-

tributed system with a finite number of servers, each of which hosts a replica of the data

type. We shall use the term servers or replicas interchangeably to refer to the replica of

a distributed system. The set of replicas is denoted by R which is a finite set of natural

numbers [1..N]. These numbers identify the distinct replicas. We shall use the variables r,

r′, r′′, ri, rj to refer to the individual replicas. We shall use the example of LWW Register

to introduce the technical terminology associated with CRDTs.

The LWW Register is a replicated implementation of the abstract data type known as

Register. We had previously mentioned that each value written to the register is a natural

number from N. We assumed that the initial value of the register is a special value denoted

by ⊥. Thus, N∪{⊥} forms the universe of the underlying set of values that can be present in

the register. Further, N∪{⊥} also forms the set of values that can be returned as a response

to the Read method. As we have seen, the Read() method returns a response but does not

modify the state of the replica. In general we shall denote such methods as queries. The

25

Write() method modifies the state of the replica. However it does not return a value. Such

methods are known as updates. In this thesis, we shall restrict our attention to only those

data types whose whose update methods do not return any value. With this, we present the

formal definition of an abstract data type below.

Definition 1 (Abstract Data Type (ADT)). An abstract data type D is a tuple

(Univ,Queries,Updates,Rets) where

• Univ is the underlying set of values stored in the datatype and is called the universe of

the datatype. For example N ∪ {⊥} forms the universe of the LWW Register.

• Queries denotes the set of query methods exposed by the data type. The Read method

is the query method of the LWW Register.

• Updates denotes the set of update methods. The Write method is the update method of

the LWW Register.

• Rets is the set of all return values for queries. In the case of LWW Registers, the set

of return values is N ∪ {⊥}.

We assume that ⊥ is a designated “empty value”, belonging to both Univ and Rets.

In the case of a replicated data type, when a client invokes a query (Read in the case of

LWW Register) or an update (Write in the case of LWW Register) method, it is performed

on any one of the N replicas of the replicated data type. That replica is referred to as

the source replica for that method. In the case of the query method, the source replica

returns a response based on its local state. In the case of an update method, the replica first

updates its local state and subsequently communicates with the other replicas. The replicas

communicate with each other in a couple of ways.

1. Each time a replica r receives an update request, it applies the update locally and

generates some auxiliary information pertaining to the update. It then broadcasts

that auxiliary information to all the other replicas. We will model this broadcast to be

performed via a method known as update-send. Any of those other replicas, say r′, on

receiving this broadcast will update their local states using the auxiliary information.

We shall model this as via the update-receive method associated with that particular

update request.

2. From time to time, a replica r can share its current state to some other replica r′. We

model this using a merge-send method. The other replica r′ on receiving this state,

merges it into its current state, thereby updating the state through the merge-receive

method.

26

A replicated data type where the source replica communicates with the other replicas after

every update via the update-send and the update-receive methods is known as an operation-

based replicated data type. A replicated data type where the replicas communicate with

the other replicas by sending and incorporating the entire state via the merge-send and

merge-receive are known as state-based replicated data types.

We shall now define some technical terms which will be used to reason about the be-

haviours of the state-based and operation based replicated data types. Towards this, we

model the query and update methods, the update send and receive methods, and the merge

send and receive methods as operations.

Definition 2 (Operations). An operation of a Replicated Data Type

D = (Univ,Queries,Updates,Rets)

is a tuple o = (op, r, args, ret) where

• op ∈ Queries ∪ Updates ∪ UComm ∪MComm is the method or action where

– UComm = {usend,ureceive} where usend is the corresponding update-send

method for an update operation and ureceive is the corresponding update-receive

methods for an update operation. If o is an update operation and osnd and orcv
respectively are the corresponding update-send and update-receive operations then

we say that o is the matching update operation of osnd and orcv .

– MComm = {msend,mreceive} are the send and receive operations for merge.

If omsnd is a merge-send operation and omrcv is the corresponding merge-receive

operation at a remote replica, then omsnd is said to be the matching merge-send

operation of omrcv .

• r ∈ R is the source replica where the operation is performed.

• args is a tuple of arguments from Univ,

• ret ∈ Rets is the return value

Operations satisfy the following conditions:

• if op ∈ Updates, ret = ⊥. This captures that fact that update methods do not return a

value to the clients.

• if op ∈ UComm ∪ MComm, args = ret = ⊥. The auxilliary information sent to

all the replicas by the update-send method varies from implementation to implemen-

tation. Similarly the arguments received by the update-receive method varies across

implementations. We shall model them separately later in this chapter. Similarly the

27

information sent and received by merge-send and merge-receive methods correspond to

the state of the replica performing the merge-send. This varies across implementations.

We shall model these separately.

For an operation o = (op, r, args, ret), we define Op(o) = op, Args(o) = args, Rep(o) = r,

and Ret(o) = ret. We call o a query operation if op ∈ Queries, an update operation if

op ∈ Updates, an update-send operation if op = usend, an update-receive operation if

op = ureceive, a merge-send operation if op = msend and a merge-receive operation if

op = mreceive.

We denote the set of operations of D by Σ(D).

In the previous section we saw that the operation-based LWW-Register implementation

maintains some local state. It further provides a function to update the local state on

receiving a Write() request from the client. It determines that on every Write() the tuple

consisting of the value to be written, the replica identifier and the timestamp should be

broadcast to all the other replicas. It also provides a function to update the local state on

receiving this broadcast message. Finally it provides a function that computes the response

to a Read() request by inspecting the local state of the replica. In general an operation

based implementation of a replicated data type should define what the local states should

be and what should be performed on receiving a query or an update request from the client,

what should be the auxiliary information generated for every update and how should a

remote replica incorporate this auxiliary information which would be presented to it in via

an update-receive. We define an operation-based implementation of a replicated data type as

follows.

Definition 3 (Operation-based Replicated Data Type Implementation). An operation-

based implementation of the replicated data type D = (Univ,Queries,Updates,Rets) is a

tuple DI = (S, S⊥,Γ, FQueries, FUpdates) where

• S is set of states that each of the replicas can take.

• S⊥ ∈ S is the initial state at every replica.

• Γ is the set of auxiliary information generated by the update to be sent to all the other

replicas.

• FQueries = {fq : q ∈ Queries} is a set of functions corresponding to the query methods in

Queries, where each function fq : Univ∗ × S → Univ is an implementation of the query

method q as described earlier

• FUpdates = {(fu, f rcv
u) : u ∈ Updates} is a set of pairs of computable functions corre-

sponding to the update methods in Updates. The function fu : Univ∗ × S → S × Γ

28

is an implementation of the update method u ∈ Updates that take arguments from

Univ∗ to transforms the state of its source replica into a new state. This function also

generates auxiliary information to be propagated to the other replicas as a part of the

update-send method. f rcv
u : Γ × S → S is a computable function corresponding to the

update-receive method which takes as argument the auxiliary information generated by

the fu and transforms the state of a remote replica to a new state.

• Given an update method u ∈ U , the corresponding functions (fu, f
rcv
u) are such that

for any state Si ∈ S and any argument args ∈ Univ∗ and aux ∈ Γ, if fu(args , Si) =

(S ′i, aux) and f rcv
u (aux , Sj) = S ′j, then Si = Sj =⇒ S ′i = S ′j. This captures the

requirement that given a pair of replicas which are at the same state, if an update

operation is applied to one of them and the update-receive operation at the other will

result in the same state at both the replicas.

The difference between an operation-based LWW Registers and state-based LWW Reg-

isters is that instead of sending auxiliary information on every Write() update request the

replicas periodically send their entire state. Thus the state based implementation should

provide a function that allows the replicas to merge into their local state, the remote state

which they receive via a merge-receive method. We now formally describe the state-based

implementation of a replicated data type.

Definition 4 (State-based Replicated Data Type Implementation). A state-based imple-

mentation of the replicated data type D = (Univ,Queries,Updates,Rets) is

DI = (S, S⊥, FQueries, FUpdates, fM)

where

• S is set of states that each of the replicas can take.

• S⊥ ∈ S is the initial state at every replica.

• FQueries = {fq : q ∈ Queries} is a set of functions corresponding to the query methods in

Queries. Each fq : Univ∗ × S → Univ is an implementation of the query method q that

computes the return value of that query with arguments from Univ∗ when applied at a

state in S.

• FUpdates = {fu : u ∈ Updates} is a set of computable functions corresponding to the

update methods in Updates. The function fu : Univ∗ × S → S is an implementation of

the update method u ∈ Updates that take arguments from Univ∗ to transforms a given

state of a replica to a new state.

29

Init

all

ts1 : Write(4)

r1

ts1 : usend(4, r1, ts1)

r1

ts1 : Write(2)

r2

ts1 : usend(2, r2, ts1)

r2

ts2 : ureceive(4, r1, ts1)

r3

ts3 : ureceive(2, r2, ts1)

r4

ts4 : ureceive(4, r1, ts1)

r4

ts5 : Read(2)

r4

Figure 2.1: Behaviour of LWW register

• fM is the implementation of the merge-receive method which computes the merger of

a pair of states to produce a new state. Formally fM : S × S → S.

In this thesis, we are interested in analyzing the behaviours of implementations of repli-

cated data types, and reasoning about their correctness. An example of an observable

behaviour of a LWW Register is presented in Figure 2.1. There is an initialization opera-

tion Init which initializes the states of all the replicas. At timestamp ts1, replica r1 gets a

Write(4) request from the client. r1 would update its local state and propagate (4, r1, ts1) to

all the replicas via usend. Concurrently, at timestamp ts1, the replica r2 receives a Write(2)

request from the client. It would also update its local state and broadcast (2, r2, ts1) to all

the replicas via usend. At ts2, replica r3 receives the broadcast sent by r1. It then updates

its local state via ureceive method to incorporate this new information. At ts3 and ts4 the

replica r4 receives the broadcast sent by r2 and r1 respectively. The replica r4 will update

its local state via the ureceive method. Finally at ts5, replica r4 receives a Read() query

from the client. The local state of r4 at this point is as follows:

• (value4
1, t

4
1) = (4, ts1)

• (value4
2, t

4
2) = (2, ts1)

• (value4
3, t

4
3) = (⊥, 0)

• (value4
4, t

4
4) = (⊥, 0)

Thus, the maximum timestamp that r4 is aware of is ts1 and there are two replicas r1 and

r2 which performed the Write() operation at ts1. In this case the arbitration is performed

based on the maximality of the replica-id. Hence the replica r2 arbitrates in favour of the

value written by r2. Hence the Read() request at r4 returns the value 2.

In general, the behaviour of a replicated data type can be defined from the perspective of

the replicas, in the order in which they process the queries and the updates from the clients,

and the order in which they propagate information about the updates to other replicas.

The behaviour should also capture the communication between the replicas via update-send,

30

update-receive in the case of operation based replicated data types or merge-send and merge-

receive in the case of state based replicated data types. Furthermore, from the behaviour of

an operation based replicated data type, we should be able to unambiguously determine the

matching update operation for every update-receive operation. Likewise in the case of state

based replicated data types, we should be able to unambiguously determine the matching

merge-send operation for every merge-receive operation. We model the behaviour of the

replicated data type an abstract run.

Definition 5 (Abstract Run). An Abstract Run of a replicated data type

D = (Univ,Queries,Updates,Rets) is a pair (ρ, ϕ) where

• ρ is a sequence Io1o2 . . . on of operations from Σ(D) such that

– I is an initialization operation which is uniformly applied to all the replicas in R.

– ∀i ≤ |ρ| if oi is an update-send operation at a replica r, then the previous operation

oi−1 has to be the corresponding update operation at that replica r. Thus,

Op(oi) = usend =⇒ Op(oi−1) ∈ Updates ∧ Rep(oi) = Rep(oi−1)

• ϕ is a partial function from [1..n] to [1..n] such that

– The domain of ϕ is the set of update-receive operations and the set of merge-

receive operations

dom(ϕ) = {i ≤ n | oi is a ureceive or an mreceive operation}

– For an update-receive operation oi, oϕ(i) is the matching update operation at a

remote replica.

ϕ(i) = j∧Op(oi) = ureceive =⇒ j < i∧Op(oj) ∈ Updates∧Rep(oi) 6= Rep(oj)

– Any pair of distinct update-receive operations oi, oj at the same source replica

have distinct matching update operations.

Op(oi) = Op(oj) = ureceive ∧ Rep(oi) = Rep(oj) ∧ i 6= j =⇒ ϕ(i) 6= ϕ(j)

– For a merge-receive operation oi, oϕ(i) is the matching merge-send operation at a

remote replica.

ϕ(i) = j∧Op(oi) = mreceive =⇒ j < i∧Op(oj) = msend∧Rep(oi) 6= Rep(oj)

– Any pair of distinct merge-receive operations oi, oj at the same source replica have

distinct matching merge-send operations.

Op(oi) = Op(oj) = mreceive ∧ Rep(oi) = Rep(oj) ∧ i 6= j =⇒ ϕ(i) 6= ϕ(j)

31

For a sequence ρ = Io1o2 · · · on, we denote by ρ[0] the initialization operation I, by ρ[i]

the operation oi, and we denote by ρ[i : j] the subsequence oioi+1 · · · oj.
For a run α = (ρ, ϕ) we say that another run α′ = (ρ′, ϕ′) is a prefix of α, if ρ′ = ρ[0 : n]

for some integer n and for all 1 ≤ i ≤ n, ϕ′(i) is defined iff ϕ(i) is defined such that

ϕ′(i) = ϕ(i). We say that α′ ∈ Prefixes(α).

We denote the kth operation at replica r in the run (ρ, ϕ) by ρr[k].

The associated update of an update-receive operation ρ[i] is its matching update ρ[ϕ(i)].

The associated update of an update operation ρ[i] is ρ[i] itself.

The set of all operations in the run α = (ρ, ϕ) is denoted by Σ((ρ, ϕ)).

We denote the set of all runs of D by Runs(D).

Given an abstract run (ρ, ϕ), ρ is a global sequence of operations across all the replicas

of the data type. ϕ is a function that associates every update-receive operation, denoted by

ureceive, with the matching update operation, and associates every merge-receive operation,

denoted by mreceive, with its matching merge-send operation denoted by msend.

In order to reason about the states of multiple replicas at any given point in time,

it is useful to consider a snapshot of the states of all the replicas of an implementation

of a replicated data type. This snapshot is formally defined to be a configuration of the

implementation.

Definition 6 (Configuration of an Implementation). Let S be the set of states of an imple-

mentation DI a replicated data type on a system with R = [1, . . . , N] replicas.

A configuration of this implementation is a subset of S × S × · · · × S︸ ︷︷ ︸
N times

. The set of all

configurations is denoted by C. If C ∈ C is a configuration then the state of the replica

r ∈ Reps in C is denoted by C[r].

Note that the set of abstract runs of a replicated data type is the set of all well-formed

sequences of operations, which model the behaviours of all possible implementation of that

data type. However a given implementation may only exhibit a subset of those behaviours.

When reasoning about the correctness of an implementation with respect to a given specifi-

cation, we would need to show that the subset of behaviours exhibited by the implementation

are allowed by the specification. Towards this, we formally define the criteria for determining

if a behaviour is exhibited by an implementation.

Definition 7 (Run of a replicated data type implementation). A run α = (ρ, ϕ) where

ρ = Io1 · · · on is accepted by a state-based implementation DI = (S, S⊥, FQueries, FUpdates, fM)

(resp. by a operation-based implementation DI = (S, S⊥,Γ, FQueries, F
op
Updates) if there exists a

sequence of configurations C0C1 · · ·Cn such that

• C0 = (S⊥, S⊥, . . . , S⊥︸ ︷︷ ︸
N times

)

32

• For every 1 ≤ i ≤ n, with Rep(ρ[i]) = r, Args(ρ[i]) = args, Ret(ρ[i]) = ret, Ci[r]

satisfies the following:

Case Op(ρ[i]) = msend (resp. Op(ρ[i]) = usend) :

Ci[r] = Ci−1[r]

The merge-send (resp. update-send) operation should not change the state of its

source replica.

Case Op(ρ[i]) = q ∈ Queries :

Ci[r] = Ci−1[r] and ret = fq(args , Ci−1[r])

The query operation should not change the state at the source replica. However

the value returned by the query operation in the run should be the same as the

value computed by the corresponding query function fq.

Case Op(ρ[i]) = u ∈ Updates :

Ci[r] = fu(args , Ci−1[r])

(resp. in the case of operation-based implementation

(Ci[r], aux) = fu(args , Ci−1[r])

).

The update operation should change state at the source replica as computed by the

corresponding update function fu.

Case Op(ρ[i]) = mreceive : Let j = ϕ(i) and let Op(ρ[j]) = msend be the corre-

sponding message-send operation. Let r′ = Rep(ρ[j]) be the source replica of the

message-send operation. Then,

Ci[r] = fM(aux , Ci−1[r])

. Thus, the merge-receive operation ρ[i] should update the state at replica r to be

the merge of the states Cj[r
′] and Ci−1[r] as computed by the function fM.

Case Op(ρ[i]) = ureceive : Let j = ϕ(i) and let Op(ρ[j]) = u ∈ Updates be the

corresponding update operation. Let args ′ = Args(ρ[j]) be the arguments of that

update operation. Let r′ = Rep(ρ[j]) be the source replica of that update operation.

Let aux be the auxiliary information generated by fu when applied to the state

Cj−1[r′], i.e fu(args ′, Cj−1[r′]) = (Cj[r
′], aux). Then

Ci[r] = f rcv
u (aux , Ci−1[r])

Thus, the update-receive operation ρ[i] should update the state at replica r as per

the function f rcv
u when applied to the state Ci−1[r] with the argument aux .

33

Finally for r′ ∈ R ∧ r′ 6= r], it is the case that Ci[r
′] = Ci−1[r′], i.e. the states of the

replicas should not change when the operations are performed at some remote replica.

We define the following terminology associated with runs of implementations.

• We denote the set of all runs of DI by Runs(DI).

• If α = (ρ, ϕ) ∈ Runs(DI) then, the state of replica r at the end of the prefix ρ[0 : i] is

denoted by Sr(α, i).

• We say that an operation o extends the run α = (ρ, ϕ) if there exists a ϕ′ such that

ϕ′|ρ = ϕ and α′ = (ρ.o, ϕ′) is a valid run of DI .

• We say that a valid run (ρ′, ϕ′) is an extension of (ρ, ϕ) iff (ρ, ϕ) is a prefix of (ρ′, ϕ′).

• In the run α = (ρ, ϕ), we shall denote by ρr to be the maximal subsequence of operations

from ρ whose source replica is r ∈ R.

• We shall use the notation ρr|Updates∪{ureceive} to refer to the maximal subsequence of

operations in ρr that are updates or update-receive operations. Note that these are

the only two classes of operations that can modify the state of the replica.

• Suppose ρ[i] is an update operation at replica r with arguments args with Op(ρ[i]) = u.

Let aux be the auxiliary information generated when fu is applied to Sr(α, i − 1), i.e

fu(args , Sr(α, i − 1)) = (Sr(α, i), aux). Then, we shall use the notation Aux (ρ[i]) to

denote aux .

• Suppose ρ[j] is an update-receive operation such that ϕ(j) = i. Then we write

Aux (ρ[j]) to mean Aux (ρ[i]) since the auxiliary information that is received by the

update-receive operation is the same as the auxiliary information generated by its cor-

responding update operation.

In any replicated data type, it is the update request from the client which initiates a

change in the local state. The update could further issue broadcasts via update-send or

could send the updated-state itself via merge-send in order to trigger change in the state

of a remote replica. Since we are studying replicated data types which are supposed to

satisfy strong eventual consistency, we are interested in what set of update operations have

impacted the state of any replica either directly via an update request from a client, or

indirectly through update-receive or merge-receive any point in the run. We shall formally

model this as the causal past of a replica. We shall use this in the next section to reason

about the correctness of replicated data types that satisfy strong eventual consistency.

34

Definition 8 (Causal Past of a replica). Let α = (ρ, ϕ) be a run of a replicated data-type D.

The causal past of a replica r is a function Pastrα : Prefixes(α) → 2Σ(α)|Updates which

associates with every prefix of the run, the set of all the update operations that are visible to

r in that prefix. We define it inductively as follows.

• Pastrα(ρ[0 : i]) =

{ρ[0]} if i = 0

Pastrα(ρ[0 : i− 1]) if Op(ρ[i]) ∈ Queries ∪ {msend,usend}
∨ Rep(ρ[i]) 6= r

Pastrα(ρ[0 : i− 1]) ∪ {ρ[i]} if Op(ρ[i]) ∈ Updates ∧ Rep(ρ[i]) = r

Pastrα(ρ[0 : i− 1]) ∪ {ρ[j]} if Op(ρ[i]) = ureceive

∧ Rep(ρ[i]) = r ∧ ϕ(i) = j

Pastrα(ρ[0 : i− 1]) ∪ Pastr
′

α (ρ[0 : j])) if Op(ρ[i]) = mreceive

∧ Rep(ρ[i]) = r

∧ ϕ(i) = j

∧ Rep(ρ[ϕ(i)]) = r′

We denote by Pastα(ρ[i]) the causal past PastRep(ρ[i])
α (ρ[0 : i]).

Thus, the causal past of a replica in a prefix of a run will not change when the latest

operation in the prefix is a query or a update-send or a merge-send or any operation that is

performed on some other replica. If the latest operation in the prefix of the run is an update

operation performed at the replica, then the causal past of replica includes that update

operation. If the latest operation in the prefix of the run is an update-receive operation, then

the matching update operation will be included into causal past of the replica. Finally, if the

latest operation in the prefix of the run is a merge-receive operation, then the causal past

of the replica will be extended with the causal past of the remote replica when that remote

replica performed the matching merge-send.

The notion of the causal past helps us formally define when an update operation gets

delivered at another replica in a run. This helps us reason about the delivery of updates

across both state-based and operation-based implementations in a uniform manner, even

though update operations are not explicitly propagated to the other replicas in a state-based

implementation.

Definition 9 (Delivery of an update). An update operation ρ[i] is said to be delivered at a

replica r 6= Rep(ρ[i]) in the run α = (ρ, ϕ), if there exists a j such that Rep(ρ[j]) = r and

ρ[i] ∈ Pastα(ρ[j]).

An update operation ρ[i] is said to be delivered in the run (ρ, ϕ) if it is delivered at every

replica r 6= Rep(ρ[i]).

35

A run α = (ρ, ϕ) is said to be a complete run iff all the updates in the run are delivered.

We say that a complete run (ρ′, ϕ′) is a completion of (ρ, ϕ) iff (ρ′, ϕ′) extends (ρ, ϕ) and

for all i > |ρ| : Op(ρ′[i]) ∈ UComm ∪MComm.

Given a pair of update operations ρ[i], ρ[j] in a run (ρ, ϕ), there are only three relations

possible between them. It may be the case that ρ[i] has happened-before ρ[j], in which case,

the source replica of the ρ[j] would already be aware of ρ[i]. Or it may be the case that ρ[j]

has happened-before ρ[i]. If neither of the source replicas of the two updates is aware of the

other update operation at the time when it is performing its update operation locally, then

the two update operations are said to be concurrent in the run. Formally we can define this

as follows.

Definition 10 (Concurrency and Happened-Before). Let (ρ, ϕ) be a run of a replicated data

type. Let ρ[i], ρ[j] be a pair of update operations.

Then we say that ρ[i] has happened before ρ[j] (denoted by ρ[i]
hb−→ ρ[j]) if ρ[i] ∈ Past(ρ,ϕ)(ρ[j]).

They are said to be concurrent if neither ρ[i] happened-before ρ[j] nor vice-versa. We denote

this by ρ[i] ‖ ρ[j].

Certain replicated data types require that any pair of updates which are related by the

happened-before relation be delivered to all the replicas in that same order. This is known

as the causal delivery of the updates. Formally,

Definition 11 (Causal Delivery of an updates). We say that updates are causally delivered

in a run α = (ρ, ϕ), iff for every i, j : 0 < i ≤ j ≤ |ρ|, if ρ[i] is an update operation such

that ρ[i] ∈ Pastα(ρ[j]), then, Pastα(ρ[i]) ⊆ Pastα(ρ[j]).

Note that it is possible that two distinct states are indistinguishable for an end user

because they always respond to queries in a similar manner. We shall define this property

to be the query equivalence of those states.

Definition 12 (Query Equivalence). A pair of states S, S ′ ∈ S of an implementation

DI = (S, S⊥, FQueries, FUpdates, fM)

(resp. by a operation-based implementation DI = (S, S⊥,Γ, FQueries, F
op
Updates)) are said to be

query-equivalent, or simply equivalent, they return the same return-value for the same query

operations with the same arguments. For every query operation q ∈ Queries and every valid

argument args ∈ Univ∗, fq(args , S) = fq(args , S ′).

If S and S ′ are query equivalent, we write it as S ∼= S ′.

We formally define the consistency criteria known as strong eventual consistency which

requires that replicas which have received the same set updates are query equivalent.

36

Definition 13 (Strong Eventual Consistency). An implementation DI of a replicated data

type D is said to satisfy Strong Eventual Consistency if for every run (ρ, ϕ) ∈ Runs(DI),

for any pair of operations ρ[i], ρ[j], with Rep(ρ[i]) = ri and Rep(ρ[j]) = rj, it is the case

that, Past(ρ,ϕ)(ρ[i]) = Past(ρ,ϕ)(ρ[j]) =⇒ Sri(ρ, ϕ, i)
∼= Srj(ρ, ϕ, j)

2.2 Convergent and Commutative Replicated Data Types

In their work [Shapiro et al., 2011b], Shapiro et al. define Convergent Replicated Data Types

(CvRDTs) to be the State-based implementations of replicated data types that satisfy strong

eventual consistency and as [Shapiro et al., 2011b] and Commutative Replicated Data Types

(CmRDTs) to be the Operation-based implementations of replicated data types that satisfy

strong eventual consistency. They also provide sufficient conditions for a state based or an

operation based replicated data type to satisfy strong eventual consistency. The gist is that

an operation based replicated data type satisfies strong eventual consistency if the underlying

network guarantees causal delivery of updates and if the concurrent update commute, i.e it

does not matter in which order the replicas receive the broadcast messages corresponding to

concurrent updates since the resultant state will be equivalent no matter in what order they

are applied. On the other hand, state-based replicated data types satisfy strong eventual

consistency if i) the set of states along with a partial order defined on the set forms a

join-semilattice, and ii) as a result of every update operation, the state move up in the join-

semilattice and the result of a merge function applied on a pair of states produces the least

upper bound of those two states in the join-semilattice. In this section we formalize these

sufficient conditions and provide a rigorous proof for these sufficient conditions pertaining

to CvRDTs and CmRDTs.

Consider an operation-based implementation DI = (S, S⊥,Γ, FQueries, FUpdates). Let u ∈
Updates be an update method and (fu, f

rcv
u) be the functions implementing the update method

and its update-receive methods. Let args ∈ Univ∗ be the argument to u. Let S, Su ∈ S be a

pair of states of the implementation and let aux ∈ Γ be an auxiliary information such that

fu(args , S) = (Su, aux). Then we write S.fu(args) to denote the state Su. Furthermore, for

a pair of states state S ′, S ′′ ∈ S, if f rcv
u (aux , S ′) = S ′′, then we write S ′.f rcv

u (aux) to refer to

the state S ′′ which is obtained as a result of f rcv
u (aux , S ′).

Note that the sufficient condition for CmRDTs requires the concurrent updates to com-

mute. So we first formally define commutative updates as follows.

Definition 14 (Commutative Updates). Let u, u′ ∈ Updates be a pair of update methods of

a replicated data type D = (Univ,Queries,Updates,Rets).

Let DI = (S, S⊥,Γ, FQueries, F
op
Updates) be an operation-based implementation of D with

(fu, f
rcv
u) and (fu′ , f

rcv
u′) being the functions implementing the update and update-receive

methods of u and u′ respectively. Let S, S ′, S ′′ ∈ S be states of a replica r. Let args , args ′ ∈

37

Univ∗ respectively be valid arguments to fu and fu′ respectively. Let aux , aux ′ respectively be

the auxiliary information generated by applying fu(args) at S ∈ S and fu′(args ′) at S ′ ∈ S.

Then we say that u and u′ are commutative updates in DI iff

S ′′.fu′(args ′).f rcv
u (aux) = S ′′.f rcv

u (aux).f rcv
u′ (aux ′)

Thus, when a pair of commutative updates are applied to replicas with the same state, the

resultant state remains the same, irrespective of the order in which the information pertaining

to the updates were delivered.

For an operation based implementation, the state of a replica at the end of a run is

obtained by applying the sequence of corresponding update and the update-receive methods

from the run to the initial state S⊥. Due to the property that an update method applied to

a state S produces the same result state as when the corresponding update-receive method

applied at the state S, it is possible to represent the state of a replica at the end of a run

as a sequence of update-receive methods applied to the starting state. This property helps

us reason about the evolution of the state of a replica in a run using only the update-receive

methods, which simplifies some of the technical proofs later on. We prove this result in the

proposition below.

Proposition 15. Let DI = (S, S⊥,Γ, FQueries, F
op
Updates) be an operation-based implementation

of a replicated data type D = (Univ,Queries,Updates,Rets). Let α = (ρ, ϕ) be a run of DI .
Let the update method associated with an update operation ρ[i] be Op(ρ[i]) and the update

method associated with an update-receive operation ρ[j] be Op(ρ[ϕ(j)]).

Suppose r ∈ R be a replica. Let ρ′ be the maximal sequence of just the update and the

update receive operations from ρ whose source replica is r. Let |ρ′| = n. For i ∈ [1, . . . , n],

let the update operation associated with ρ′[i] be ui and let Aux (ρr[i]) be aux i. Then,

Sr(α) = S⊥.f
rcv
u1

(aux 1).f rcv
u2

(aux 2).f rcv
un (auxn)

Proof. Since the only operations which modify the states of a replica are the update and the

update-receive operations, the state of a replica r at the end of the run α = (ρ, ϕ) is exactly

the state of the replica after applying the sequence operations in ρ′ to the initial state. Let

the state of r be Sir at the end of ρ′[i]. Then Sr(α) = Snr .

We know that,

Si+1
r =

Sir.fui(args i) if Op(ρr[i]) = ui ∧ Args(ρr[i]) = args i

Sir.f
rcv
ui

(aux i) if Op(ρr[i]) = ureceive∧
the associated update is ui ∧ Aux (ρr[i]) = aux i

38

By definition of the operation-based replicated data type, for any state S, S.fui(args i) =

S.f rcv
ui

(aux i).

Thus, if Op(ρ′[i]) is an update operation, Sir.fui(args i) = Sir.f
rcv
ui

(aux i). Thus, we can

unconditionally write Si+1
r = Sir.f

rcv
ui

(aux i).

Since S0
r = S⊥, we can see that the state of r at the end of ρ′ is

Snr = S⊥.f
rcv
u1

(aux 1).f rcv
u2

(aux 2).f rcv
un (auxn)

.

From this, and the fact that Sr(α) = Snr , the result follows.

We shall now prove a result pertaining to the commutativity of updates.

Proposition 16. Let α = (ρ, ϕ) be a run of an operation-based implementation

DI = (S, S⊥,Γ, FQueries, F
op
Updates)

. Let r ∈ R be a replica. Let ρ′ be the maximal sequence of update and update-receive

operations from ρ whose source replica is r. Let

• Sjr be the state of r at the end of ρ′[j].

• uj be the update method of the update operation associated with the operation ρ′[j].

(Note: ρ′[j] could be an update or an update-receive operation and uj is the associated

update method).

• xj = Aux (ρ′[j]).

Suppose there exists some i and m, such that for all k ∈ [1, . . . ,m], ρ′[i] commutes with

ρ′[i+ k]. Then, for all k ∈ [0, . . . ,m],

Si+mr = Si−1
r .f rcv

ui+1
(xi+1).f rcv

ui+2
(xi+2).f rcv

ui+k
(xi+k).f

rcv
ui

(xi).f
rcv
ui+k+1

(xi+k+1).f rcv
ui+m

(xi+m)

Proof. We shall prove this by induction over k. The case with k = 0, is trivially proved since

the RHS is

Si−1
r .f rcv

ui
(xi).f

rcv
ui+1

(xi+1).f rcv
ui+m

(xi+m)

which is the same as Si+mr by definition.

We assume that the result holds for k − 1

Let S = Si−1
r .f rcv

ui+1
(xi+1).f rcv

ui+2
(xi+2).f rcv

ui+k−1
(xi+k−1).

Then since ρ′[i] commutes with ρ′[i+ k],

S.f rcv
ui+k

(xi+k).f
rcv
ui

(xi) = S.f rcv
ui

(xi).f
rcv
ui+k

(xi+k)

39

Thus,

Si−1
r .f rcv

ui+1
(xi+1).f rcv

ui+k−1
(xi+k−1).f rcv

ui+k
(xi+k).f

rcv
ui

(xi).f
rcv
ui+k+1

(xi+k+1).f rcv
ui+m

(xi+m)

= S.f rcv
ui+k

(xi+k).f
rcv
ui

(xi).f
rcv
ui+k+1

(xi+k+1).f rcv
ui+m

(xi+m)

= S.f rcv
ui

(xi).f
rcv
ui+k

(xi+k).f
rcv
ui+k+1

(xi+k+1).f rcv
ui+m

(xi+m)

= Si+mr (by induction hypothesis)

Thus the results holds for k if it holds for k − 1. By the principle of mathematical

induction, the results holds for all k.

We next show that the final state of a replica in an operation-based implementation

remains unchanged when the commutative updates are reordered with respect to each other.

Lemma 17. Let α = (ρ, ϕ) be a run of an operation-based implementation

DI = (S, S⊥,Γ, FQueries, F
op
Updates)

where the updates are causally delivered. Let r ∈ R be a replica. Let ρ′ be the maximal

sequence of update and update receive operations from ρ whose source replica is r. Let

• |ρ′| = n

• uj be the update method of the update operation associated with ρ′[j]

• xj = Aux (ρ′[j]).

We say that a permutation π : [1, . . . , n] → [1, . . . , n] is a causality-preserving permuta-

tion if for any pair of integers i, j ∈ [1, . . . , n], such that the updates associated with ρ′[i] and

ρ′[j] are not concurrent, then i < j iff π(i) < π(j).

Suppose all the concurrent updates of the replicated data type commute, then the state of

replica r, at the end of the run α is

Sr(α) = S⊥.f
rcv
uπ(1)

(xπ(1)).f
rcv
uπ(2)

(xπ(2)).f
rcv
uπ(n)

(xπ(n))

where π : [1, . . . , n]→ [1, . . . , n] is a causality-preserving permutation.

Proof. We need to prove that

S⊥.f
rcv
uπ(1)

(xπ(1)).f
rcv
uπ(2)

(xπ(2)).f
rcv
uπ(n)

(xπ(n)) = S⊥.f
rcv
u1

(x1).f rcv
u2

(x2).f rcv
un (xn)

We shall prove this by induction over |ρ′|. If |ρ′| = 0, then the result is trivially true as

both LHS and RHS are S⊥.

40

Assume that the result holds for all the cases when |ρ′| < n. We shall now prove the

result when |ρ′| = n.

Suppose π(n) = n. Let π′ : [1, . . . , n − 1] → [1, . . . , n − 1] be a permutation such that

π′(i) = π(i). Thus π′ is a valid order-preserving permutation over ρ′[1 : n− 1]. By induction

hypothesis,

S⊥.f
rcv
uπ′(1)

(xπ′(1)).f
rcv
uπ′(2)

(xπ′(2)).f
rcv
uπ′(n−1)

(xπ′(n−1)) = S⊥.f
rcv
u1

(x1).f rcv
u2

(x2).f rcv
un−1

(xn−1)

Thus,

S⊥.f
rcv
uπ(1)

(xπ(1)).f
rcv
uπ(2)

(xπ(2)).f
rcv
uπ(n)

(xπ(n))

= S⊥.f
rcv
uπ′(1)

(xπ′(1)).f
rcv
uπ′(2)

(xπ′(2)).f
rcv
uπ′(n−1)

(xπ′(n−1)).f
rcv
uπ(n)

(xπ(n))

= S⊥.f
rcv
u1

(x1).f rcv
u2

(x2).f rcv
un−1

(xn−1).f rcv
uπ(n)

(xπ(n))

= S⊥.f
rcv
u1

(x1).f rcv
u2

(x2).f rcv
un−1

(xn−1).f rcv
un (xn)

Hence the result holds for |ρ′| = n when π(n) = n.

Suppose π(n) 6= n. Then, let π(n) = k and k′ be such that π(k′) = n. Note that since

π is a causality-preserving permutation, it is the case that ρ[n] and ρ[k] are concurrent.

Otherwise, since k < n and π(n) = k and π(k′) = n, it would require n < k′ which is a

contradiction.

Furthermore, it is the case that for any j : k < j ≤ n, ρ′[k] and ρ′[j] are concurrent. To

see why this is true, assume that they are not concurrent. Then, since k < j, it has to be

the case that ρ′[k] happened-before ρ′[j]. Let j′ ∈ [1..n] be an integer such that π(j′) = j.

Now, it is clear that j′ ≤ n. But then, it is easy to see that j′ is distinct from n. Because if

j′ = n, then, π(j′) = π(n). But then π(j′) = j and π(n) = k and j and k are distinct. Thus,

j′ and n are distinct. Thus, it is clear that j′ < n. We are assuming that ρ′[k] happened

before ρ′[j]. That is the same as saying that ρ′[π(n)] happened before ρ′[π(j′)]. Since π is

an causality-preserving permutation it has to be the case that n < j′. But this contradicts

our earlier observation that j′ < n. Hence, our original assumption that ρ′[k] and ρ′[j] are

not concurrent is incorrect. Which proves the fact that for any j : k < j ≤ n, ρ′[k] and ρ′[j]

are concurrent.

Hence, by proposition 16, we can shuffle f rcv
uk

(xk) towards the end, closer to f rcv
un (xn).

Thus,

S⊥.f
rcv
u1

(x1).f rcv
un (xn)

= S⊥.f
rcv
u1

(x1).f rcv
uk−1

(xk−1).f rcv
uk+1

(xk+1).f rcv
un (xn).f rcv

uk
(xk)

By similar reasoning as above, for any j′ : k′ < j′ ≤ n, it is the case that ρ′[π(k′)]

and ρ′[π(j′)] are concurrent. Otherwise, since π is a causality-preserving permutation, and

41

k′ < j′, it is the case that π(k′) < π(j′). But that is not possible since π(k′) = n and

π(j′) = j for some j < n. Thus, π(k′) < π(j′) =⇒ n < j which is a contradiction. Hence

for all j′ : k′ < j′ ≤ n, we it is the case that ρ′[π(k′)] and ρ′[π(j′)] are concurrent. Once

again, by proposition 16, we have

S⊥.f
rcv
uπ(1)

(xπ(1)).f
rcv
uπ(n)

(xπ(n))

= S⊥.f
rcv
uπ(1)

(xπ(1)).f
rcv
uπ(k′−1)

(xπ(k′−1)).f
rcv
uπ(k′+1)

(xπ(k′+1)).f
rcv
uπ(k′)

(xπ(k′)).f
rcv
uπ(n)

(xπ(n))

Since

f rcv
un (xn) = f rcv

uπ(k′)
(xπ(k′))

and

f rcv
uk

(xk) = f rcv
uπ(n)

(xπ(n))

in order to prove the induction result for k, it is sufficient to show that

S⊥.f
rcv
u1

(x1).f rcv
uk−1

(xk−1).f rcv
uk+1

(xk+1).f rcv
un−1

(xn−1)

= S⊥.f
rcv
uπ(1)

(xπ(1)).f
rcv
uπ(k′−1)

(xπ(k′−1)).f
rcv
uπ(k′+1)

(xπ(k′+1)).f
rcv
uπ(n−1)

(xπ(n−1))

Now suppose α′′ is the run α without any query operations and without any update and

the update-receive operations associated with ρ′[k] and ρ′[n]. Clearly, α′′ is a well-defined

run. Let ρ′′ is the maximal sequence of update and update-receive operations in α′′ at replica

r. It is clear that ρ′′ = ρ′ \ {ρ′[k], ρ′[n]}. Thus we can write

ρ′′[i] = ρ′[g(i)]

where g : [1, . . . , n− 2]→ [1, . . . , k− 1, k+ 1, . . . , n− 1] is a the bijective function defined as

follows

g(i) =

{
i for 1 ≤ i < k

i+ 1 for k ≤ i ≤ n− 2

It can be noted that for i < j ⇐⇒ g(i) < g(j). Let u′i be the update method associated

with ρ′′[i]. Then, u′i = ug(i).

If the auxiliary information generated by the update associated with ρ′′[j] is denoted by

x′j, i.e. x′j = Aux (ρ′′[j]), then it is the case that x′j = xg(j) = Aux (ρ′[g(j)]). The reasoning is

as follows.

In ρ′, the update associated with ρ′[k] is not in the causal past of the update associated

with ρ′[j] for all j : 1 ≤ j 6= k < n. This is because for j : k < j < n, we have shown earlier

that the update associated with ρ′[k] is concurrent with the update associated with ρ′[j].

42

For 1 ≤ j < k, due to causal-delivery, it is clear that the update associated with ρ′[j] either

happened before the update associated with ρ′[k] or is concurrent with it. Thus, ρ′[k] is not

in the causal-past of any other update operation in ρ′. By similar reasoning, the update

operation associated with ρ′[n] is not in the causal past of any other update operation in

ρ′. Since α′′ is the run α without the queries and without the update and update-receive

operations associated with ρ′[k] and ρ′[n], and the fact that the update associated with ρ′′[j]

is exactly the update associated with ρ′[g(j)] it follows that set of updates visible to ρ′′[j] in

α′′ are exactly the set of updates visible to ρ′[g(j)] in α and in the exact same order. Thus,

it follows that thus state of the source replica of the update associated with ρ′′[j] prior to

performing that update in the run α′′ is the same as the state of that source replica prior to

performing the corresponding update associated with ρ′[g(j)] in α. Thus, if x′j = Aux (ρ′′[j])

then, x′i = xg(i).

From this, have

S⊥.f
rcv
u′1

(x′1).f rcv
u′n−2

(x′n−2)

= S⊥.f
rcv
ug(1)

(xg(1)).f
rcv
ug(n−2)

(xg(n−2))

= S⊥.f
rcv
u1

(x1).f rcv
uk−1

(xk−1).f rcv
uk+1

(xk+1).f rcv
un−1

(xn−1)

Recall that k′ ∈ [1, . . . , n] is the integer such that π(k′) = n. We define another bijective

map h : [1, . . . , n− 2]→ [1, . . . , k′ − 1, k′ + 1, . . . , n− 1] as follows:

h(i′) =

{
i′ for 1 ≤ i′ < k′

i′ + 1 for k′ ≤ i′ ≤ n− 2

Again it is the case that i′ < j′ ⇐⇒ h(i′) < h(j′).

Now for the operations in ρ′′, we define the permutation π′ : [1, . . . , n−2]→ [1, . . . , n−2]

such that π′(i′) corresponds to π(h(i′)) in ρ′. Formally

π′(i′) = g−1(π(h(i′)))

Thus g(π′(i′)) = π(h(i′)) and by construction,

(u′π′(i′), x
′
π′(i′)) = (ug(π′(i′)), xg(π′(i′))) = (uπ(h(i′)), xπ(h(i′)))

Thus,

S⊥.f
rcv
u′
π′(1)

(x′π′(1)).f
rcv
u′
π′(n−2)

(x′π′(n−2))

is the same as

S⊥.f
rcv
uπ(1)

(xπ(1)).f
rcv
uπ(k′−1)

(xπ(k′−1)).f
rcv
uπ(k′+1)

(xπ(k+1)).f
rcv
uπ(n−1)

(xπ(n−1))

43

Thus, if we prove that π′ is an causality-preserving permutation function, from induction

hypothesis, since |ρ′′| < n, it follows that

S⊥.f
rcv
u1

(x1).f rcv
uk−1

(xk−1).f rcv
uk+1

(xk+1).f rcv
un−1

(xn−1) is equal to

S⊥.f
rcv
uπ(1)

(xπ(1)).f
rcv
uπ(k′−1)

(xπ(k′−1)).f
rcv
uπ(k′+1)

(xπ(k+1)).f
rcv
uπ(n−1)

(xπ(n−1))

Suppose ρ′′[i] and ρ′′[j] are not concurrent.

Let i′, j′ be such that π′(i′) = i and π′(j′) = j. Since, π′(i′) = g−1(π(h(i′)) we have

i′ = h−1(π−1(g(π′(i′)))). Similarly, j′ = h−1(π−1(g(π′(j′)))).

Now

i < j ⇐⇒ π′(i′) < π′(j′) by definition

⇐⇒ g(π′(i′)) < g(π′(j′)) (by definition of g)

⇐⇒ π−1(g(π′(i′))) < π−1(g(π′(j′))) (as π is causality-preserving)

⇐⇒ h−1(π−1(g(π′(i′)))) < h−1(π−1(g(π′(j′)))) by definition of h

⇐⇒ i′ < j′ by definition of i′ and j′

Thus the permutation π′ is a causality-preserving. This completes the proof of this

lemma.

We now state and prove two theorems from [Shapiro et al., 2011b] which provide the

sufficient conditions for a replicated data type to be a CvRDT or a CmRDT.

Theorem 18 (Sufficient condition for CmRDT [Shapiro et al., 2011b]). Assuming termina-

tion and causal delivery of updates, a sufficient condition for an op-based replicated datatype

to satisfy strong eventual consistency is that all the concurrent updates should commute and

all delivery preconditions are compatible with causal delivery.

Proof. Let α = (ρ, ϕ) be a run of an operation-based replicated data types where the updates

are causally delivered and concurrent updates commute. Let r, s ∈ R be two replicas which

have the same causal past at the end of α. We need to show that the states of r and s at

the end of α are query-equivalent. Let ρ′r = ρr|Updates∪{ureceive} and ρ′s = ρs|Updates∪{ureceive}.
Since ρ′r and ρ′s contain only update operations and update-receive operations, and the

fact that they have the same causal past at the end of α, it follows that they both have

the same number of operations. Let |ρ′r| = |ρ′s| = n. Let π : [1, . . . , n] → [1, . . . , n] be an

bijective map defined as follows.

Since r and s have the same causal past,

• If ρ′s[i] is an update operation, then, the corresponding update-receive operation should

appear in ρ′r. Suppose it is ρ′r[j]. We define π(i) = j.

44

• If ρ′s[i
′] is an update-receive operation whose matching update operation occurred at

r, then, that update operation appears in ρ′r. Suppose it is ρ′r[j
′]. We define π(i′) = j′.

• If ρ′s[i
′′] is an update-receive operation whose associated update operation occured at

neither r nor s, then, there exists a corresponding update-receive operation in ρ′r. Let

ρ′r[j
′′] be that operation. We define π(i′′) = j′′.

Thus, π is a bijective map and a permutation.

Further, suppose for some i, j, the updates associated with ρ′r([π(i)) and ρ′r([π(j)) are

not concurrent. Since the updates are delivered in causal order, every replica sees them

in the order of their happened before relation. Thus, π(i) < π(j) iff i < j. Thus π is a

causality-preserving permutation.

From this, and from Proposition 15 and Lemma 17, it follows that the state of replicas

r at the end of ρ′r and the state of s at the end of ρ′s are the same. Thus, their states are

query-equivalent. This proves the theorem.

Theorem 19 (Sufficient condition for CvRDT [Shapiro et al., 2011b]). Let

DI = (S, S⊥, FQueries, FUpdates, fM) be a state-based implementation of a replicated data type

D = (Univ,Queries,Updates,Rets) over a distributed system with replicas R such that:

• There exists a partial order ≤ over S such that (S,≤) is a join-semilattice with t
denoting the least-upper-bound operation.

• For any state S, u ∈ Updates, args ∈ Univ∗, S ≤ S.fu(args)

• For any pair of state S, S ′, fM(S, S ′) = S t S ′.

Then DI is a CvRDT.

Proof. Let α = (ρ, ϕ) be a run of DI . For any i ∈ [0, |ρ|] with Rep(ρ[i]) = r. Let the causal

past of r at the end of ρ[0 : i] be {ρ[i1], ρ[i2], . . . , ρik′]. Let Sij denote the state of the source

replica of ρ[ij] at the end of the run ρ[0 : ij]. Then, we shall show that the state of r at the

end of ρ[i] is

Sr(ρ, ϕ, i) = S⊥ t Si1 t Si2 t t Sik′
This will prove that any pair of replicas that have the same causal past in a run will be

at the same state.

We prove this by induction over i. If i = 0, then, Pastr(ρ,ϕ)(ρ[0 : 0]) = {I}. Thus,

Sr(ρ, ϕ, i) = S⊥ which completes the proof for i = 0.

Suppose the result holds for all i < k.

Consider ρ[k]. If Op(ρ[k]) ∈ Queries ∪ {msend}, or Rep(ρ[k]) 6= r, then Pastr(ρ,ϕ)(ρ[0 :

i]) = Pastr(ρ,ϕ)(ρ[0 : i−1]) and Sr(ρ, ϕ, i) = Sr(ρ, ϕ, i−1). Thus, the result holds by induction

hypothesis.

45

Suppose ρ[k] is an update operation with update method u at replica r. Let args =

Args(ρ[k]). Then, Sr(ρ, ϕ, k) = Sr(ρ, ϕ, k − 1).fu(args). Pastr(ρ,ϕ)(ρ[0 : k]) = Pastr(ρ,ϕ)(ρ[0 :

k − 1]) ∪ {ρ[k]}. Since it is given that, Sr(ρ, ϕ, k − 1) ≤ Sr(ρ, ϕ, k − 1).fu(args),

Sr(ρ, ϕ, k − 1) t Sr(ρ, ϕ, k) ≤ Sr(ρ, ϕ, k − 1).fu(args) t Sr(ρ, ϕ, k)

= Sr(ρ, ϕ, k) t Sr(ρ, ϕ, k)

= Sr(ρ, ϕ, k)

By induction hypothesis, if Pastr(ρ,ϕ)(ρ[0 : k−1]) = {ρ[i1], ρ[i2], . . . , ρ[ik′]}, then, Sr(ρ, ϕ, k−
1) = S⊥. t Si1 t Si2 t t Sik′ . Thus, Sr(ρ, ϕ, k) = S⊥ t Si1 t Si2 t · · · t Sik′ t Sr(ρ, ϕ, k).

Thus the result is true when ρ[k] is an update operation at r.

Suppose ρ[k] is an mreceive operation. Let j = ϕ(k) and Rep(ρ[j]) = r′. Then,

Sr(ρ, ϕ, k) = fM(Sr(ρ, ϕ, k−1), Sr′(ρ, ϕ, j)). It is given that, fM(Sr(ρ, ϕ, k−1), Sr′(ρ, ϕ, j)) =

Sr(ρ, ϕ, k − 1) t Sr′(ρ, ϕ, j). By induction hypothesis, if

Pastr(ρ,ϕ)(ρ[0 : k−1]) = {ρ[k1], ρ[k2], . . . , ρ[kn]} and Pastr
′

(ρ,ϕ)(ρ[0 : j]) = {ρ[j1], ρ[j2], . . . , ρ[jm]}
then,

Sr(ρ, ϕ, k − 1) = S⊥ t Sk1 t Sk2 t · · · t Skn

and

Sr′(ρ, ϕ, j) = S⊥ t Sj1 t Sj2 t · · · t Sjm

Since t is the least upper bound, it is idempotent, commutative and associative. Thus,

the result is true for k when ρ[k] is an mreceive operation at r.

Thus, the result is true for all i. Hence, in any run of DI , any pair of replicas that have

the same causal past have the same state. Thus DI satisfies strong eventual consistency.

Hence DI is a CvRDT.

In the next chapter, we shall survey in detail a conflict-free replicated data type known

as the Observed-Remove Set (OR Set).

2.3 Further Reading

The study of Conflict Free Replicated Data types was undertaken in detail by [Shapiro et al.,

2011a]. The formalism to provide the first proofs for the sufficient conditions for state based

and operation based replicated data types to be CvRDTs and CmRDTs respectively was

discussed in [Shapiro et al., 2011b]. Since then there have been some interesting developments

in the fields of state-based and operation-based. We list some of them here, though their

detailed study is beyond the scope of this thesis.

46

[Auvolat and Täıani, 2019] show how state based replicated data types can be efficiently

implemented by encoding the states as specialized Merkle trees known as a Merkle Search

Tree. This a balanced search tree which maintains key-ordering.

[Almeida et al., 2015] introduce δ-state based conflict free replicated data types that

address the draw back of the classical state-based replicated data types which share entire

states by defining delta-operators which return delta states. These delta states can be merged

both locally as well as remotely to arrive at the resultant final state. [Enes et al., 2019]

notices that despite the lower payload size of the δ-state based CRDTs, the synchronization

algorithms induce wasteful delta propagation . In this work, they identify the two sources

of ineffeciency in the state of the art synchronization algorithms and introduce the concept

of join-decomponistion to state-based CRDTs in order to obtain optimal deltas.

Most of the existing CRDTs have no support for a native undo operation that can undo

the effects of an update. To address this, [Yu et al., 2020] provides an generic “out-of-box”

undo support for state based CRDTs with the help of an abstraction that captures the

semantics of concurrent undo and redo operations through equivalence classes.

[Weidner et al., 2020] presents a new construction that allows composition and decompon-

sition of operation-based CRDTs using semi-direct products. This helps decompose complex

operation-based CRDTs as a semi-direct product of simpler CRDTs. They also demonstrate

construction of novel CRDTs by combining the operations of a pair of CRDTs by handing

conflicts in a uniform way.

47

3

Optimized OR-Sets Without Ordering

Constraints

A Set is a common data type used to represent a collection of elements. For example, in the

social network Twitter, the collection of all the accounts that a particular user follows can be

modelled as a set. Likewise the set of all the accounts who follow a user is modelled as a set.

Furthermore, the collection of all the tweets made by a user can again be modelled by a set,

only in this case the tweets in the collection are also ordered by the decreasing order of their

timestamps. Thus sets form the building block of other data types that consist of a collection

of elements with possible additional associations between those elements. Examples of this

include lists, stacks, trees, graphs among other data types.

The abstract data type set provides three methods for the clients to interact with it. As

per the standard semantics of the set data type, the method add(x) takes as a parameter

an element x of the universe and adds it to the set. Again, as per the standard semantics,

the method delete(x) takes as a parameter an element x of the universe and removes x

from the set. Lastly the method contains(x) takes as a parameter an element x of the

universe and informs if the element x is present or not in the set. Thus the add and delete

methods update the state of the set while the contains methods allows clients to query the

state of the set. Formally, we define the set as follows. Formally, the Set is an abstract

datatype with Queries = {contains} and Updates = {add, delete} over a universe Univ, and

Rets = {True,False}. The arity of contains, add and delete is 1 since they each take 1

argument.

In this chapter, we explore the replicated implementation of the set data type imple-

mented over a distributed system containing multiple replicas. We shall refer to such repli-

cated implementations as replicated sets.

In a sequential setting, given a sequence of add and delete operations performed over a

set, it is easy to determine at the end of the sequence of operations, whether an element x

is present in the set or not by looking at the latest x-operation in the sequence. If the latest

48

x-operation is an add(x), then contains(x) should return True. Otherwise it should return

False. However, in a distributed setting, we need a specification of the set that provides

coherent semantics while taking into account concurrent update operations delivered to the

replicas of the replicated set in potentially different orders.

We can observe that for a pair of distinct elements x and y, add(x) and add(y) opera-

tions commute with each other. So do the update operations in the pairs (add(x), delete(y)),

(delete(x), add(y)) and (delete(x), delete(y)). Furthermore, for the same element x, a opera-

tions in the (add(x), add(x)) and (delete(x), delete(x)) are idempotent. However operations in

the pair (add(x), delete(x)) do not commute with each other. Suppose one of them happened

before the other, then the distributed specification can insist that the effect after performing

this pair of operations at every replica should be the same as effect of performing these op-

erations in their happened-before order, irrespective of the order in which they get delivered

at the other replica. Thus if a delete(x) happened-before an add(x), then the element x is

a member of the set. On the other hand, if add(x) happened before a delete(x), then, the

element x is not a member of the set. However, if the add(x) and delete(x) operations are

concurrent, then, the distributed specification must provide a way to arbitrate between these

two operations, so that every replica which has performed both the operations, perhaps in

a different orders, converges to the same state, i.e. either x is a member of the set in all the

replicas which have received these two operations in any order, or x is not a member of the

set in all of them.

In this chapter, we shall focus on distributed specifications which favor the add(x) over

a concurrent delete(x), thereby ensuring that the element x is a member of the set. This is

known as the add-wins strategy. A replicated set which implements the add-wins strategy,

where a delete(x) operation can only remove the effects of the add(x) operations that have

happened-before that delete (that were observed by the delete) is known as an Observed-

Remove Set (OR Set).

Definition 20 (Observed-Remove Set (OR-Set)). An Observed-Remove Set (OR-Set) is

a replicated set where the conflict between concurrent add(x) and delete(x) operations is

resolved by giving precedence to the add(x) operation so that x is eventually present in all

the replicas when both the concurrent operations are delivered [Shapiro et al., 2011a].

This conflict resolution strategy is termed as “ add-wins”.

In this chapter we shall have a detailed look into the different implementations of Observed-

Removed Sets. These implementations are both state-based as well as operation-based. On

every add and a delete operation, the source replica prepares auxiliary information that is

sent to all the other replicas which perform the addrcv and delrcv operations respectively.

The implementations also provide a compare function that allows comparison of any two

states of the the replica and a merge function which allows the replicas to share their entire

49

state with other replicas to converge faster. Further more, all these implementations satisfy

strong eventual consistency. Thus, these implementations are both CvRDTs and CmRDTs.

An implementation of the OR-Set can be formally defined as follows.

Definition 21 (Implementation of OR-Set). A CRDT implementation of an OR-Set over

a universe Univ is a tuple

(S, S⊥,Γ, {contains}, {(add, addrcv), (delete, delrcv)}, compare,merge)

where

• S is the set of states that the replicas can take.

• S⊥ ∈ S is the initial state of all the replicas.

• contains is the implementations of the query operation that returns True or False de-

pending on whether a given element is present in the OR-Set or not.

• add and delete respectively are implementations of the add and delete update operation

implementations.

• addrcv and delrcv correspond to the ureceive operations of the respective add and delete

operations.

• Γ is a set of auxiliary information that the replicas generate during an add (resp.

delete) operation to be sent send to other replicas along with corresponding addrcv

(resp. delrcv).

• compare is a method which given a pair of states S, S ′ ∈ S will return True if S ′ is

more up-to-date than S and a False otherwise.

• merge is a function that merges the state of a replica with that of another replica.

We formally express this as follows:

• contains : S × Univ→ {True,False}

• add : S × Univ→ S × Γ.

• delete : S × Univ→ S × Γ.

• addrcv : S × Γ→ S

• delrcv : S × Γ→ S

• compare : S × S → {True,False}

50

• merge : S × S → S

The organization of this chapter is as follows.

In the next section (section 3.1) we present an implementation of the OR-Set from [Shapiro

et al., 2011b], which we call the original implementation. This is a robust implementation

of the OR-Set which works even when the updates are not delivered in a causal order. How-

ever, in order to achieve this, it keeps track of a significant amount of data which is the

key drawback of this implementation. In section 3.2 we will discuss an optimized imple-

mentation presented in [Bieniusa et al., 2012] which works when the updates are delivered

causally. We shall refer to this as the causally-optimized implementation. In section 3.4 we

shall present our generalization of the causally-optimized implementation. We call this the

generic-optimized implementation [Mukund et al., 2014]. This implementation is as robust

as the original implementation and works even correctly when the updates are delivered out-

of-order or duplicate delivery. Furthermore, if we define the space complexity of a replicated

data type to be the size of the information that is maintained at each of the replicas as a

function of the number of update operations in the run, then the generic optimized imple-

mentation has a smaller space complexity than the original implementation and its space

complexity is comparable to that of the causally-optimized implementation. In section 3.3,

we provide a precise formal specification for OR-sets in terms of its runs. This specification

that captures the intent of definition 20.

In section 3.7 we shall discuss the space complexity of each of these implementations.

Finally in section 3.5 we shall present the proofs of correctness of the generic-optimized

implementations and show that it is bisimilar to the original implementation.

3.1 Original implementation of the OR-Set [Shapiro

et al., 2011a,b]

Algorithm 1 is a variant of the original implementation from [Shapiro et al., 2011a]. This

implementation distinguishes between different add(x) operations performed across the dif-

ferent replicas by labelling the elements of the universe with some meta-data which uniquely

identifies that particular add(x). Towards this, the implementation maintains a triple (x, c, r)

where r denotes the source replica where the corresponding add(x) operation was performed

and c denotes that fact that the corresponding add(x) operation was the cth add operation

at replica r. We shall define the set of such labeled elements as the labeled-universe formally

defined as follows:

Definition 22 (Labeled Universe). The labeled universe is the set of triples

M = {(x, c, r) | x ∈ Univ, c ∈ N, r ∈ R}

51

Algorithm 1 An Original OR-Set implementation

An Original OR-set implementation for replica r

1 E ⊆M, T ⊆M, c ∈ N: initially ∅, ∅, 0.

2

3 Boolean contains(x ∈ Univ):

4 return (∃m : m ∈ E ∧ data(m) = x)

5

6 add(x ∈ Univ):

7 m = add.prepare(x)

8 Call add.apply(m)

9 Broadcast add.send(m)

10 add.prepare(x ∈ Univ):

11 return (x, c, r)

12 add.apply(m ∈M):

13 E := (E ∪ {m}) \ T
14 if (rep(m) = r)

15 c := ts(m) + 1

16 Receive add.receive(m ∈M):

17 Call add.apply(m)

18

19 delete(x ∈ Univ):

20 Let M := delete.prepare(x)

21 Call delete.apply(M)

22 Broadcast delete.send(M)

23 delete.prepare(x ∈ Univ):

24 return M := {m ∈ E | data(m) = x}
25 delete.apply(M ⊆M):

26 E := E \M
27 T := T ∪M
28 Receive delete.receive(M ⊆M):

29 Call delete.apply(M)

30

31 Boolean compare(S′, S′′ ∈ S):

32 Assume that S′ = (E′, T ′, c′)

33 Assume that S′′ = (E′′, T ′′, c′′)

34 Let bseen := (E′ ∪ T ′) ⊆ (E′′ ∪ T ′′)
35 Let bdeletes := T ′ ⊆ T ′′
36 return bseen ∧ bdeletes
37

38 merge(S′ ∈ S):

39 Assume that S′ = (E′, T ′, c′)

40 E := (E \ T ′) ∪ (E′ \ T)

41 T := T ∪ T ′

For a triple m = (x, c, r) ∈ M, we say data(m) = x (the data or payload), ts(m) = c (the

timestamp), and rep(m) = r (the source replica).

In Algorithm 1, each replica maintains a local set E ⊆ M. When replica r receives an

add(x) operation from the client, it invokes the add.prepare method which tags x with a

unique identifier (c, r) (line 7,10,11), where this add(x) operation is the cth add operation

overall at r. It then invokes the add.apply operation which will add the triple (x, c, r)

to its local copy of E and increment the value of the counter c (lines 8,12-15). Finally it

broadcasts the triple (x, c, r) to all the replicas via the Broadcast add.send(x, c, r) method

(line 9). The other replicas, on receiving this broadcast via the Receive add.receive(x, c, r)

(lines 16–17) will add (x, c, r) to their local set E via the add.apply method (line 13).

Symmetrically, deleting an element x involves identifying every triple m from E with

data(m) = x. This is done via the delete.prepare method (lines 20,23-24) which returns

the set M ⊆ E containing all the triples m with data(m) = x. These triples in M are removed

from the E set via delete.apply method (lines 21,25-27). Finally this set of triples are

propagated to the other replicas via Broadcast delete.send(M) (line 22). Those replicas

on receiving this set of triples via Receive delete.receive(M) (Lines 28–29) will remove

the elements in M from their local E set, via delete.apply (line 25-27).

For the rest of the paper, we shall identify “Receive add.receive()” with addrcv() and

“Receive delete.receive()” with delrcv().

52

When a replica receives an addrcv(m), it should add the corresponding triple m to its

local copy of E. However, with no constraints on the delivery of operations, it is possible that

a delrcv operation corresponding to a delete(x) is delivered before the addrcv(m) operation

corresponding to an add(x) which happened-before the delete(x). For example in Figure 3.1,

replica r′′ receives delrcv({(x, c+1, r)})) before it receives addrcv((x, c+1, r)). Alternatively,

after applying a delrcv, a replica may merge its state with that of another replica that has

not performed this delrcv, but has performed the corresponding addrcv(). For instance, in

Figure 3.1, replica r′′ merges its state with replica r when r′′ has applied delrcv({(x, c+1, r)})
but r has not. In such cases, we need to ensure that the triple m which has been deleted

in the past is not added back into E. Towards this, each replica maintains a set T of

tombstones, containing every triple m ever deleted (line 27). Thus, before adding m to E

during an addrcv, the replica first checks that it is not in T (line 13).

We say that a state S ′′ of a replica r′′ has more knowledge than a state S ′ of replica r′ if r′′

has seen all the triples present in S ′ (either through an add or a delete) and r′′ has deleted all

the triples that r′ has deleted. This is checked by compare (lines 31–36) where compare(S ′, S ′′)

returns True if S ′′ has more knowledge than S ′. When compare(S ′, S ′′) returns False it only

means that S ′′ does not have more knowledge than S ′ and not that S ′ is more up-to-date

than S ′′ (it could be the case that neither state has more knowledge than the other).

Finally, the merge function of states S and S ′ retains only those triples from S.E ∪ S ′.E
that have not been deleted in either S or S ′ (line 40). The merge function also updates the

tombstone set to contain the triples that have been deleted in either S or S ′ (line 41).

We can note that if there is a pair of concurrent add(x) and delete(x) operations involving

the same element x ∈ Univ, the unique identifier (c, r) that the source replica of add(x) tags

to x will be different from the identifiers of x seen by the source replica performing the

delete(x). Thus, when the addrcv(m) and delrcv(M) operations of these add and delete are

propagated to all the replicas, the recepient replicas will not evict the triple (x, c, r) as they

won’t be a part of the argument of delrcv(M) operation of delete(x). This is true even when

the addrcv() operation gets delivered after the delrcv operation, since (x, c, r) won’t be in

the tombstone set T of the recipient of the addrcv(). Thus, in this way the add(x) operation

wins over the concurrent delete(x) operation as its triple (x, c, r) survives in the E set at all

the recipient replicas after both the add and delete are delivered. At this point a contains(x)

query made at any such recipient replica shall return True.

Problem of Tombstones

Note that in the original implementation, the triple (x, c, r) introduced into the state of any

replica, during an add(x) operation, will forever remain in the state even after it has been

deleted, as in the latter case it is merely shifted from the E set to the tombstone-set T . The

tombstone set T is never purged, and hence the size of E ∪ T is proportional to the number

53

of adds that the replica has received (directly or through other replicas). A solution to this

was proposed in [Bieniusa et al., 2012], where they implemented an optimized version of the

OR-set, but it works only in the presence of causal delivery of updates.

3.2 Optimized OR-Set with causal-delivery [Bieniusa

et al., 2012]

Algorithm 2 An optimized OR-Set implementation with causal-delivery

Optimized OR-set implementation for the replica r with causal de-

livery constraint

1 E ⊆M, V : R→ N, c ∈ N: initially ∅, [0, · · · , 0], 0

2

3 Boolean contains(e ∈ Univ):

4 return (∃m : m ∈ E ∧ data(m) = e)

5

6 add(x ∈ Univ):

7 Let m := add.prepare(x)

8 Call add.apply(m)

9 Broadcast add.send(m)

10 add.prepare(x ∈ Univ):

11 return (x, c, r)

12 add.apply(m ∈M):

13 if ts(m) > V [rep(m)]

14 E := E ∪ {m}
15 V [rep(m)] := ts(m)

16 if (rep(m) = r)

17 c := ts(m) + 1

18 Receive add.receive(m ∈M):

19 Call add.apply(m)

20

21 delete(x ∈ Univ):

22 Let V ′ := delete.prepare(x)

23 Call delete.apply((x, V ′))

24 Broadcast delete.send(x, V ′)

25 delete.prepare(x ∈ Univ):

26 Let V ′ := [0, . . . , 0]

27 for r′ ∈ R
28 Let C := {ts(m) | m ∈ E∧

(data(m), rep(m)) = (x, r′)}
29 V ′[r′] := max(C)

30 return V ′

31

32 delete.apply(x ∈ Univ, V ′ : R→ N)

33 Let M := {m ∈ E | ts(m) ≤ V ′[rep(m)]∧
data(m) = x}

34 E := E \M
35 Receive delete.receive(x ∈ Univ, V ′ : R→ N):

36 Call delete.apply(x, V ′)

37

38 Boolean compare(S′, S′′ ∈ S):

39 Assume that S′ = (E′, V ′)

40 Assume that S′′ = (E′′, V ′′)

41 bseen := ∀i(V ′[i] ≤ V ′′[i])
42 bdeletes := ∀m ∈ E′′ \ E′

(ts(m) > V ′[rep(m)])

43 // If m is deleted from E′ then

44 // it is also deleted in E′′.

45 // So anything in E′′ \ E′
46 // is not even visible in S′.

47 return bseen ∧ bdeletes
48

49 merge(S′ ∈ S):

50 Assume that S′ = (E′, V ′)

51 E := (E ∩ E′) ∪
{m ∈ E \ E′ | ts(m) > V ′[rep(m)} ∪
{m ∈ E′ \ E | ts(m) > V [rep(m)}

52 // We retain m if it is either

53 // in the intersection, or if it is fresh

54 // (so one of the states has not seen it).

55 ∀i.(V [i] := max(V [i], V ′[i]))

When updates are delivered in a causal manner, every replica that has seen a delete(x)

would have also seen all the add(x) operations that causally precede the delete(x). In partic-

ular, they would have already seen all the add(x) whose corresponding entries in the E set

are evicted by delete(x). Thus, in the presence of causal delivery, it suffices for an operation-

54

based implementation of OR-Set to maintain only the E set. Algorithm 2 from [Bieniusa

et al., 2012] does not maintain the T set. Whenever an element is added, it is labeled with

the unique (c, r) pair and added to the E set (lines 7,11 in Algorithm 2). On the other hand,

when an element x is to be deleted, all the triples m ∈ E with data(m) = x are marked for

removal (lines 22,26–30). At the source replica, these elements are removed from the E set

(lines 23,32–34) and propagated to all the replicas(line 24). When the replicas receives this

(line 35–36), they will evict all these triples m from their E set(lines 36,32–34). Thus, in

a operation-only implementation where the operations are causally delivered, it suffices to

maintain only the E set.

However, in the presence of a merge, things can get a little complicated. Suppose a

replica r′ receives a delrcv({m = (x, c, r)}) due to which it evicts the triple m from its E

set. Soon after this, suppose it receives a merge from another replica r′′. Further, suppose

r′′ hadn’t received the corresponding delrcv before it issued the merge, but has received the

addrcv(m). (This is possible since merges may occur between the causal-delivery of updates)

Thus the triple m would be present in the E set of r′′. On receiving the merge request, r′

won’t be able to judge based only on the contents of the r′.E and r′′.E as to whether the

triple m is a new one in r′′.E which it hasn’t seen before, or is it something that it has

already seen and removed.

To address this problem, [Bieniusa et al., 2012] proposes the use of a version vec-

tor [Almeida et al., 2004] at each replica to keep track of the latest add operation that

it has received from every other replica. Thus every time an element is to be added (either

via add(x) or via the corresponding addrcv(m = x, c, r)), the replica that is doing the add

will update the version vector corresponding to the replica from which it is receiving the add

operation to the value of counter of the triple (line 15). Since updates are causally delivered,

all the adds are causally delivered. In particular, the add operations of a particular replica

are causally delivered. Thus it suffices to record the counter corresponding to the latest add

operation of every replica in the system. The version-vector isn’t updated during the delete

operation, since it only tracks the add operations from all the replicas.

When a merge happens, the replica r′ inspects the set r′′.E and retains only those triples

m which are either already in r′.E (implying that r′ knows about this add(x, c, r) and hasn’t

yet deleted it) or (x, c, r) 6∈ r′.E but c > r′.V [r] (implying that r′ hasn’t yet seen the

add(x, c, r)) (line 51). The remaining triples from r′′.E are discarded since they have already

been seen and deleted at r′. The version vectors are also updated by taking the point-wise

maximum, since after the merge, r′ has seen all the adds that r′′ has seen (line 55).

Note that a triple (x, c, r) is said to be deleted in a state S if (x, c, r) 6∈ S.E and S.V [r] > c.

This tells us that the state S has already seen the triple, and has not retained it in its E

set, which implies that it has deleted it.

Thus, the compare(S ′, S ′′) method (lines 38–47) returns True if the state S ′′ has more

knowledge than S ′. This happens when

55

• S ′′ has seen all the adds that S ′ has seen. This can be inferred by point-wise comparing

the respective version vectors S ′′.V [i] and S ′.V [i] for every replica i ∈ R (line 41).

• S ′′ performed all the deletes that S ′ has. This can be inferred by checking if all the

surviving triples in S ′′.E \ S ′.E are those that S ′ hasn’t even seen, which implies that

there are no undeleted triples in S ′′ that S ′ has seen and deleted (line 42).

We can observe that while the original algorithm keeps data for every add operation,

the optimized algorithm from [Bieniusa et al., 2012] keeps data for only those add operation

which haven’t been observed by a delete, in addition to a version vector corresponding to all

the add-operations.We shall formally show in section 3.7 that optimized algorithm requires

lesser space to store the state of a replica. However, this comes at the price of causal-delivery

of updates.

Critique of Causal Delivery for OR-Sets

Causal delivery imposes unnecessary restrictions on the delivery of independent updates. For

example, updates at a source replica of the form add(x) and delete(y), for distinct elements x

and y, need not be delivered in the same order to all other replicas. The ideal case would be

to have causal delivery of updates involving the same element x. While this is weaker than

causal delivery across all updates, it puts an additional burden on the underlying delivery

subsystem to keep track of the partial order of updates separately for each element in the

universe. A weaker delivery constraint is FIFO, which delivers updates originating at the

same source replica in the order seen by the source. However, this is no better than out-

of-order delivery since causally related operations on the same element that originate at

different sources can still be delivered out-of-order.

Additionally, it can be noted that the original implementation is quite robust and works

correctly even when updates are delivered out-of-order. Thus if there is a way to efficiently

track the deleted elements even in the absence of causal-delivery, we will have an optimization

over the original implementation.

However, before going towards the optimized implementation which is robust against

out-of-order delivery, we recognize the non-trivial challenges pertaining to reasoning about

the state of the replicas in the absence of any delivery guarantees. So we shall first illustrate

the challenges posed by out-of-order delivery and then formalize a concurrent specification

for OR-Sets that is independent of delivery guarantees.

3.3 Distributed Specification of OR-Sets

If we assume causal delivery of updates, then it is easy to see that all replicas apply non-

concurrent operations in the same order. The happens-before relation
hb−→ is thus transitive

56

Replica r

with state

S

Replica r′

with state

S ′

Replica r′′

with state

S ′′

S0.E = ∅,
S0.T = ∅ 1

add(x)
S1.E = {(x, c, r)},
S1.T = ∅ 2

add(x)

3.addrcv(x, c+ 1, r)

S2.E = {(x, c, r),
(x, c+ 1, r)},

S2.T = ∅

6.merge(S2)

S1.E = ∅,
S1.T = ∅

S ′1.E =

{(x, c+ 1, r)},
S ′1.T = ∅

4

delete(x)

5.delrcv({(x, c+ 1, r)})

S ′2.E = ∅,
S ′2.T =

{(x, c+ 1, r)}

S1.E = ∅,
S1.T = ∅

S ′′1 .E = ∅,
S ′′1 .T =

{(x, c+ 1, r)}

S ′′2 .E =

{(x, c, r)},
S ′′2 .T =

{(x, c+ 1, r)}

Figure 3.1: Non-transitivity of the happened-before relation.

and a partial order. At the end of a run α = (ρ, ϕ) for a replica r, we can look at the

x-update operations in Pastr(ρ,ϕ)(ρ) partially ordered by
hb−→. We say that an element x is

present at a replica if the maximal set of x-operations with respect to the
hb−→ relation in the

causal past contains at least one add(x). Because that add(x) would be concurrent with all

the other maximal x operations, and even if all those others are delete(x) operations, by the

add-wins semantics, x will be deemed to be present in the set. On the other hand, if the set

of maximal x update operations in the causal past of a replica does not contain an add(x)

operation, then the element x is treated to be not present at that replica. Thus, when the

updates are delivered in an order consistent with their happened-before relation, reasoning

about the state of a replica is fairly straightforward.

However, this straightforward specification fails to hold when the updates are delivered

out-of-order. The reason being, in the absence of causal delivery, even non-concurrent opera-

tions can exhibit counter-intuitive behaviours. We identify a couple of them in Examples 23

and 24.

Example 23. In the absence of causal-delivery, the happened-before relation need not be

transitive. For instance, in Figure 3.1, if we denote the add operations at 1 and 2 as add1(x)

and add2(x), respectively, then we can observe that add1(x)
hb−→ add2(x) and add2(x)

hb−→
delete(x). However, it is not the case that add1(x)

hb−→ delete(x) since the source replica of

delete(x), which is r′, has not processed the addrcv of add1(x) before processing the delete(x)

update request at 4. Hence when the merge operation at 6 occurs, the triple added by add1(x)

survives in the state S ′′ while the triple added by subsequent add operation add2(x) remains

evicted. Thus, at S ′′ even though add1(x), add2(x) and delete(x) are present in the causal

past of the replica r′′, and despite the fact that there is no add(x) operations among the

maximal x-update operations in the causal past, the contains(x) at S ′′ would return True.

57

Replica r

with state

S

Replica r′

with state

S ′

S.E = ∅,
S.T = ∅

1

add(x)

2.addrcv(x, c, r)

S.E = {(x, c, r)},
S.T = ∅

4

add(x)

5.addrcv(x, c+ 1, r)

S.E = {(x, c, r),
(x, c+ 1, r)},

S.T = ∅

S.E = {(x, c, r)},
S.T =

{(x, c+ 1, r)}

S.E = ∅,
S.T = ∅

S ′.E = {(x, c, r)},
S ′.T = ∅

3
delete(x)

S ′.E = ∅,
S ′.T =

{(x, c, r)}

S ′.E =

{(x, c+ 1, r)},
S ′.T = {(x, c, r)}

6
delete(x)

7.delrcv({(x, c+ 1, r)})

S ′.E = ∅,
S ′.T = {(x, c, r),

(x, c+ 1, r)}

Figure 3.2: Non-intuitive behaviour of deletes in the absence of causal delivery.

Example 24. In the absence of causal delivery, sometimes a delrcv(x) may not remove

all copies of x from the set—even copies corresponding to add(x) operations that happened

before. Consider Figure 3.2. Say (x, c, r) is added at r at 1, propagated to r′ at 2, and

subsequently deleted at r′ at 3. Suppose (x, c+ 1, r) is later added at r at 4, propagated to r′

at 5, and subsequently deleted at r′ at 6. If the delete at 6 is propagated from r′ to r before

the delete at 3, then the delrcv({(x, c+ 1, r)}) at r removes only (x, c+ 1, r) while retaining

(x, c, r), as illustrated in Figure 3.2.

Thus, the non-transitivity of the happened-before relation, and the non-intuitive be-

haviour of delrcv operations not necessarily getting rid of all the elements added by happened-

before add operations, introduce challenges for reasoning about the correctness of the dis-

tributed specification of OR-Sets from its sequential specification.

Hence, to address these issues, we need a more precise formulation of the concurrent

specification that captures the intent of Definition 20 (for any element x ∈ Univ, when

concurrent updates add(x) and delete(x) are applied at any state, the add(x) should win

over delete(x)) and allows us to uniformly reason about the states of the replicas of OR-Sets

independent of the order of delivery of updates. Towards this, we define the covering-delete

operation of an add operation.

Definition 25 (Covering Delete of an Add). Let (ρ, ϕ) be a run of an OR-Set. Let ρ[i] be

an add operation with Args(ρ[i]) = x. Then we define the covering delete of ρ[i] to be the

following set:

CoveringDel(ρ[i]) = {ρ[j] | ρ[j] = delete(x) ∧ ρ[i]
hb−→ ρ[j]∧

∀k : ρ[k] = delete(x) ∧ ρ[i]
hb−→ ρ[k] =⇒ ¬(ρ[k]

hb−→ ρ[j])} (3.1)

Thus, intuitively we can now say that at the end of the run α = (ρ, ϕ), at a replica r,

contains(x) should return True iff there exists an add(x) operation in the causal past of r,

which has no covering-delete. We formally define this as follows:

58

Definition 26 (Specification of OR-Set [Mukund et al., 2014]). For any reachable state S

in a run (ρ, ϕ) and element x ∈ Univ, S.contains(x) = True iff there exists a ρ[i] = add(x) ∈
Past(S) such that CoveringDel(ρ[i]) ∩ Past(S) = ∅.

We will now show that this definition captures the intention of definition 20.

Let {u1, u2, . . . , un} be a set of update operations where every pair of operations in the

set is concurrent with each other. We denote this by u1 ‖ u2 ‖ · · · ‖ un. Assume that these

operations are applied at a replica with state S which has no other undelivered operation. Let

S ′ denote the state obtained by applying u1, · · · , un to S. We shall write this as S ′ = S◦(u1 ‖
u2 ‖ · · · ‖ un). If one of the ui’s is add(x), it is clear that CoveringDel(ui) ∩ Past(S ′) = ∅.
Thus, S ′ ◦ contains(x) = True. Thus, the concurrent add wins.

This specification also explains Examples 23 and 24. In Example 23, the add(x) operation

at 1 does not have a covering delete in Past(S ′′2), which explains why S ′′2 .contains(x) = True.

Similarly in the other example, the add(x) operation at 1 does not have a covering delete in

the history of replica r, but it has a covering delete (operation 3) in the history of replica r′.

This explains why x is present in the final state of r but does not belong to the final state

of r′.

In the next section we shall provide an optimized implementation of OR-Set that doesn’t

require updates to be delivered in a causal manner 3. In section 3.5 we prove that this

optimized implementation satisfies the specification given in definition 26. We shall also

show that this optimized implementation(Algorithm 3) is bisimilar to the original imple-

mentation(Algorithm 1), thereby showing that the specification captures the intuitive idea

of add-wins resolution envisioned by the creators of the original implementation.

3.4 Generic Optimized Implementation [Mukund et al.,

2014]

Algorithm 3 describes our optimized implementation of OR-sets that does not require

causal ordering and yet uses space comparable to the solution provided in [Bieniusa et al.,

2012]. Our main observation is that tombstones are only required to track delete(x) opera-

tions that overtake add(x) operations from the same replica. Since a source replica attaches

a timestamp (c, r) with each add(x) operation, all we need is a succinct way to keep track of

those timestamps that are “already known”. We define Interval Version Vectors for this pur-

pose. We first define Interval Sequences which is a representation of a set of non-overlapping

intervals of integers.

Definition 27 (Interval Sequences). For a pair of integers s ≤ `, [s, `] denotes the inter-

val consisting of all integers from s to `. A finite set of intervals {[s1, `1], . . . , [sn, `n]} is

59

Algorithm 3 An optimized OR-Set implementation without any ordering constraints

Optimized OR-set implementation without ordering constraints for

the replica r

1 E ⊆M, V : R→ I, c ∈ N: initially ∅, [∅, . . . , ∅], 0
2

3 Boolean contains(x ∈ Univ):

4 return (∃m : m ∈ E ∧ data(m) = x)

5

6 add(x ∈ Univ):

7 Let m = add.prepare(x)

8 Call add.apply(m)

9 Broadcast add.send(m)

10 add.prepare(x ∈ Univ):

11 return (x, c, r)

12 add.apply(m ∈M):

13 if (ts(m) 6∈ V [rep(m)])

14 E := E ∪ {m}
15 V [rep(m)] :=

add(V [rep(m)], {ts(m)})
16 if (rep(m) = r)

17 c = ts(m) + 1

18 Receive add.receive(m ∈M):

19 Call add.apply(m)

20

21 delete(x ∈ Univ):

22 Let V ′ := delete.prepare(x)

23 Call delete.apply(V ′)

24 Broadcast delete.send(V ′)

25 delete.prepare(x ∈ Univ):

26 Let V ′ : R→ I = [0, . . . , 0]

27 for m ∈ E with data(m) = x

28 add(V ′[rep(m)], {ts(m)})
29 return V ′

30 delete.apply(V ′ : R→ I):

31 Let M = {m ∈ E |
ts(m) ∈ V ′[rep(m)]}

32 E := E \M
33 for i ∈ R
34 V [i] := V [i] ∪ V ′[i]
35 Receive delete.receive(V ′ : R→ I):

36 Call delete.apply(x, V ′)

37

38 Boolean compare(S′, S′′ ∈ S):

39 Assume that S′ = (E′, V ′)

40 Assume that S′′ = (E′′, V ′′)

41 bseen := ∀i(V ′[i] ⊆ V ′′[i])
42 bdeletes := ∀m ∈ E′′ \ E′

(ts(m) 6∈ V ′[rep(m)])

43 // If m is deleted from E′ then

44 // it is also deleted in E′′.

45 // So anything in E′′ \ E′
46 // is not even visible in S′.

47 return bseen ∧ bdeletes
48

49 merge(S′ ∈ S):

50 Assume that S′ = (E′, V ′)

51 E := {m ∈ E ∪ E′ |
m ∈ E ∩ E′∨
ts(m) 6∈ V [rep(m)] ∩ V ′[rep(m)]}

52 // We retain m if it is either

53 // in the intersection, or if it is fresh

54 // (so one of the states has not seen it).

55 ∀i.(V [i] := V [i] ∪ V ′[i])

60

nonoverlapping if for all distinct i, j ≤ n, either si > `j or sj > `i. An interval sequence is

a finite set of nonoverlapping intervals. We denote by I the set of all interval sequences.

We define some basic operations that can be performed on Interval Sequences below.

The function pack(X) collapses a set of numbers X into an interval sequence. The function

unpack(A) expands an interval sequence to the corresponding set of integers. Fundamental

set operations can be performed on interval sequences by first unpacking and then packing.

Definition 28 (Operations on Interval Sequences). For X ⊆ N, A,B ∈ I, and n ∈ N:

• pack(X) = {[i, j] | {i, i+ 1, . . . , j} ⊆ X, i− 1 6∈ X, j + 1 6∈ X}.

• unpack(A) = {n | ∃[n1, n2] ∈ A ∧ n1 ≤ n ≤ n2}.

• n ∈ A iff n ∈ unpack(A).

• add(A,X) = pack(unpack(A) ∪X).

• delete(A,X) = pack(unpack(A) \X).

• max(A) = max(unpack(A)).

• A ∪B = pack(unpack(A) ∪ unpack(B)).

• A ∩B = pack(unpack(A) ∩ unpack(B)).

• A ⊆ B iff unpack(A) ⊆ unpack(B).

We can now define Interval Version Vector, which is a generalization of Version Vectors

from [Almeida et al., 2004]. Recall that if V is a regular interval vector, then for a replica r,

V [r] would denote the latest r-message that is known. With Interval Version Vectors, V [r]

denotes the Interval Sequence corresponding to the messages received from r. Thus, we can

keep track of the messages received from r even if they are delivered out of order. Formally,

Definition 29 (Interval Version Vector). An Interval Version Vector over R is a vector V

of length |R| where for each r ∈ R, V [r] ∈ I.

As in the algorithm of [Bieniusa et al., 2012], when replica r receives an add(x) operation,

it tags x with a unique identifier (c, r) and propagates (x, c, r) to be added to E (Lines 7,11

in Algorithm 3). In addition, each replica r maintains the set of all timestamps c received

from every other replica r′ as an interval sequence V [r′]. Thus, the vector V is an Interval

Version Vector. Since all the ureceive operations with source replica r are applied at r

in causal order, r.V [r] contains a single interval [1, cr] where cr is the index of the latest

add operation received by r from a client. Notice that if delete(x) at a source replica r′

61

is a covering delete for an add(x) operation, then the unique identifier (ts(m), rep(m)) of

the triple m generated by the add operation will be included in the interval version vector

prepared via delete.prepare() (lines 26-29) and will be broadcast to the other replicas by

the delete operation (Line 24). When this vector arrives at a replica r as a part of delrcv, r

updates the interval sequence V [rep(m)] to record the missing add operation (lines 33–34) so

that, when m eventually arrives to be added through the addrcv operation, it can be ignored

(line 13).

Thus, we can avoid maintaining tombstones altogether without insisting on causal-

delivery. The price we pay is maintaining a collection of interval sequences, but these interval

sequences will eventually get merged once the replica receives all the pending updates, col-

lapsing the representation to contain at most one interval per replica.

In [Bieniusa et al., 2012], the authors suggest a solution in the absence of causal delivery

using version vectors with exceptions (VVwE), proposed in [Malkhi and Terry, 2007]. A

VVwE is an array each of whose entries is a pair consisting of a timestamp and an exception

set, and is used to handle out-of-order message delivery. For instance, if replica r sees oper-

ations of r′ with timestamps 1, 2, and 10, then it will store (10, {3, 4, 5, 6, 7, 8, 9}), signifying

that 10 is the latest timestamp of an r′-operation seen by r, and that {3, 4, . . . , 9} is the set

of operations that are yet to be seen. The same set of timestamps would be represented by

the interval sequence {[1, 2], [10, 10]}. In general, it is easy to see that interval sequences are

a more succinct way of representing timestamps in systems that allow out-of-order delivery.

In the next section, we prove the correctness of the generic optimized implementation.

3.5 Correctness of the Generic Optimized Implemen-

tation

In this section we prove the correctness of our optimized solution by showing that the solution

satisfies the concurrent specification of OR-Sets. We also show that the implementation is a

CvRDT as well as a CmRDT. In the next section, we provide a proof of equivalence between

the original implementation and our optimized implementation.

We shall define a few terms that we shall be referring to in the proofs.

We use r to denote replicas in R, x, y to denote elements of Univ, and m to denote

elements of M, with superscripts and subscripts as needed. For m = (x, c, r) ∈ M, recall

that we have defined data(m) = x (the data or payload), ts(m) = c (the timestamp), and

rep(m) = r (the source replica). We define a valid set of labeled elements as follows:

Definition 30 (Valid set of labelled elements). A set of labelled elements M ⊆M is said to

be valid if it does not contain distinct items from the same replica with the same timestamp.

62

Formally,

∀m,m′ ∈M : (ts(m) = ts(m′) ∧ rep(m) = rep(m′)) =⇒ m = m′

Given a reachable state S of some replica r, we define the following notations.

• v = S◦contains(x) denotes that the return value of application of the query contains(x)

to the state S is v.

• S ′ = S ◦ u denotes the fact that the state of the replica after application of the

update u is S ′ where u ∈ {add(x), delete(x) | x ∈ Univ} ∪ {addrcv(m) | m ∈
M} ∪ {delrcv(M) | M ∈ 2M,M is valid}.

• S ′ = S ◦merge(S ′′) denotes that the resultant state obtained by merging S ′′ into S is

S ′.

We say that two states S and S ′ are equivalent and write S ≡ S ′ iff S.E = S ′.E and

S.V = S ′.V . It is easy to see that if S and S ′ are equivalent then they are also query-

equivalent. Note that S and S ′ can differ in the S.count and S ′.count values because for a

local replica with state S, S.count gets incremented only when a replica receives an add(x)

from a client. However, a remote replica might receive the corresponding addrcv(m) which

results in the S ′.E and the S ′.V of the remote replica to be the same as S.E and S.V

respectively. However, since the S ′.count is not updated during an update-receive operation,

S ′.count may not be the same as S.count.

We now show that when an add(x) operation is applied at a state S, the resultant state

is equivalent to one where the corresponding addrcv(m) operation is applied at S. This will

help us uniformly reason about changes made by an add(x) operation and its corresponding

addrcv(m).

Proposition 31. Let S be state of some replica. Let m be the triple generated by the

add.prepare(x) helper method of of the add operation add(x) of Algorithm 3 when applied

to S. Let the state after applying the add(x) be S ′, i.e. S ′ = S ◦ add(x). Let S ′′ be the state

of the replica if addrcv(m) were applied at S, i.e S ′′ = S ◦ addrcv(m).

Then S ′ ≡ S ′′

Proof. We observe that the invocation of add.prepare(x) at line 7 in algorithm 3 has no

side-effects on the state of the replica. On line 8, the algorithm invokes add.apply(m)

where m is the triple generated by add.prepare(x). This updates the state of S to S ′

where S ′.E and S ′.V are updated in lines 14,15 to incorporate the triple m generated by

add.prepare(x).Subsequently, the broadcast operation on line 9, doesn’t modify the state

at the replica. So after the broadcast operation, and in effect after the add operation, the

state of the replica,S ′ = S ◦ add(x)

63

If on the other hand, with the triple m generated by add.prepare(x), if

Receive add.receive(m)

were applied at a state S, it would invoke add.apply(m) on line 19. Note that when applied

to the same state, the operation add.apply(m) updates the state in the same fashion in

lines 14,15 to incorporate m into S.E and S.V to yield a state S ′′.

Since the generated triple m is same in both cases, and the code incorporating m into

the starting state S is the same, it is clear that S ′.E = S ′′.E and S ′.V = S ′′.V ..

Hence, S ′ ≡ S ′′.

We can show a similar result for the deletes as well. Since the proof is quite similar, we

omit it, and present the result below:

Proposition 32. Let S be state of some replica. Let V ′ be the interval version vector

generated by delete.prepare(x) of the add operation delete(x) of Algorithm 3 when

applied to S. Let S ′ = S ◦ delete(x) and S ′′ = S ◦ delrcv(V ′). Then S ′ = S ′′

From propositions 31 and 32 we can see that without loss of generality an add(x) op-

eration (respectively a delete(x) operation) at a replica r can be treated as invoking a

add.prepare(x) (respectively delete.prepare(x)) which generates an argument with-

out having any side-effect on the state. The argument is then broadcast to all the replicas

including r where it is applied soon after the broadcast is sent. Thus the state at r gets

updated when the corresponding receive operation addrcv(m) (respectively delrcv(V ′)) is

broadcast and applied on the same replica soon-after the add(x) operation (respectively the

delete(x) operation). This allows us to reason about the state changes caused by the add(x)

and delete(x) operations in a uniform manner via their respective receive operations.

A receive operation u is said to be an x-add-receive operation (respectively, x-delete-

receive operation) if it is a receive operation of an add(x) (respectively, delete(x)) operation.

If O is a collection of commutative update-receive operations then for any state S, S ◦ O
denotes the state obtained by applying these operations to S in any order.

If u is an add(x) or a delete(x) operation and u ∈ Past(S) where S is a reachable state

at some replica r, and u′ is the corresponding receive operation of u at replica r, then

we say u′ ∈ Past(S). Thus, unless otherwise specified, in the proofs that follow, all the

update operations in the causal-past of a state refer to the receive operations. Similarly, if

u is an add(x) operation and u′ is the corresponding addrcv(m) operation, when we write

CoveringDel(u′), we mean CoveringDel(u), which is the set of the covering deletes of the add

operation u.

For an add(x) operation u if the triple prepared by the add.preparex is m, and if u′ is

the corresponding addrcv(m) operation, then, we write arg(u′) to mean m which is Aux (u).

64

Similarly, for an delete(x) operation u if the version vector prepared by the

delete.prepare(x)

is M , and if u′ is the corresponding delrcv(M) operation, then, we write arg(u′) to mean M

which is Aux (u).

We first prove that the addrcv and delrcv operations can be simulated using the merge

operation with appropriate arguments.

Proposition 33. Let S be a state of some replica. Let u ∈ {addrcv, delrcv} be a receive

operation. Let a = arg(u) be the argument of u.

If Sop = S ◦ u(a) then Sop ≡ S ◦merge(S⊥ ◦ u(a))

Proof. Let Sone = S⊥ ◦u(a) and Smerge = S ◦merge(Sone). We have to consider the following

two cases:

Case u(a) = addrcv(m) : In this case, from the code for add.apply(m), it is seen that

Sop .E =

{
S.E ∪ {m} if ts(m) 6∈ S.V [rep(m)]

S.E otherwise

Also,

Sop .V [r] =

{
S.V [r] ∪ {ts(m)} if r = rep(m) and ts(m) 6∈ S.V [r]

S.V [r] otherwise

Simplifying, we get

Sop .V [r] =

{
add(S.V [r], {ts(m)}) if r = rep(m)

S.V [r] otherwise

From the code of add.apply, it is immediately seen that Sone .E = {m},

Sone .V [r] =

{
{[ts(m), ts(m)]} if r = rep(m)

∅ otherwise

Again from the code of merge, it follows that for any triple m′, m′ ∈ Smerge .E iff

(m′ 6= m and m′ ∈ S.E) or {m′ = m and (m ∈ S.E or ts(m) 6∈ S.V [rep(m)])} .

Simplifying, we see that m′ ∈ Smerge .E iff

m′ ∈ S.E or (m′ = m and ts(m) 6∈ S.V [rep(m)]).

65

Thus it follows that Smerge .E = Sop .E.

Again from the code of merge, we see that

Smerge .V [r] =

{
add(S.V [r], {ts(m)}) if r = rep(m)

S.V [r] otherwise

Thus Smerge .V = Sop .V . Therefore Sop ≡ Smerge in this case.

Case u(a) = delrcv(V ′) : From the code, V ′ is the interval version vectors containing times-

tamps of triples m that have to be deleted. Now, it is easy to see that

Sone .E = ∅

and

Sone .V = V ′

From the code for the merge, for any r′,

Smerge .V [r′] = S.V [r′] ∪ Sone .V [r′]

.

Similarly from the code for delrcv,

Sop .V [r′] = S.V [r′] ∪ V ′[r′]

Hence Smerge .V = Sop .V .

Since Sone .E = ∅,

Smerge .E = S.E \ {m′ | ts(m′) ∈ Sone .V [rep(m′)]}
= S.E \ {m′ | ts(m′) ∈ V ′[rep(m′)]}
= Sop .E

From this and the fact that Sop .V = Smerge .V , we can conclude that Sop ≡ Smerge in

this case.

Any reachable state of the OR-Set is obtained by applying some sequence of addrcv, delrcv

and merge operations to the initial state S⊥. From Proposition 33, since any addrcv or delrcv

operation can be simulated using the merge operation, the structure of the reachable states

can be reasoned about using the properties of the merge operations. In the following result,

we prove two important properties of merges namely associativity and commutativity. In the

subsequent result we prove the idempotence of merges.

66

Proposition 34. If S1, S2, S3 are three reachable states of some run then

(S1 ◦merge(S2)) ◦merge(S3) ≡ S1 ◦merge(S2 ◦merge(S3)) ≡ (S1 ◦merge(S3)) ◦merge(S2)

Proof. Let

• S12 = S1 ◦merge(S2), S23 = S2 ◦merge(S3) and S13 = S1 ◦merge(S3),

• S(12)3 = S12 ◦merge(S3), S1(23) = S1 ◦merge(S23) and S(13)2 = S13 ◦merge(S2).

For any r, S(12)3.V [r] = S1(23).V [r] = S1(32).V [r] = S1.V [r] ∪ S2.V [r] ∪ S3.V [r].

For any distinct i, j ∈ {1, 2, 3} one can observe from the code of merge that for any

triple m, m ∈ Sij.E iff (m ∈ Si.E ∩ Sj.E) ∨ (m ∈ Si.E ∧ ts(m) 6∈ Sj.V [rep(m)]) ∨ (m ∈
Sj.E∧ ts(m) 6∈ Si.V [rep(m)]). Using repeated application of this principle, we can show that

m ∈ S(12)3.E iff one of the following is satisfied:

• (m ∈ S1.E ∩ S2.E ∩ S3.E)

•
∨
i,j,k∈{1,2,3}∧i 6=j 6=k(m ∈ (Si.E ∩ Sj.E) ∧ ts(m) 6∈ Sk.V [rep(m)])

•
∨
i,j,k∈{1,2,3}∧i 6=j 6=k(m ∈ Si.E ∧ ts(m) 6∈ (Sj.V [rep(m)] ∪ Sk.V [rep(m)])).

By symmetry, it can be seen that these are also the conditions for m to belong to S1(23).E

or S1(32).E. Thus we have S(12)3.E = S1(23).E = S1(32).E.

Hence S(12)3 ≡ S1(23) ≡ S1(32).

We now prove that merges are idempotent.

Proposition 35. If S1 and S2 are two reachable states then

(S1 ◦merge(S2)) ◦merge(S2) ≡ S1 ◦merge(S2)

Proof. Let S = S1◦merge(S2) and S ′ = S◦merge(S2). For any r, S ′.V [r] = S.V [r]∪S2.V [r] =

(S1.V [r] ∪ S2.V [r]) ∪ S2.V [r] = S1.V [r] ∪ S2.V [r] = S.V [r].

For any element m, m ∈ S ′.E iff m ∈ S.E ∩ S2.E or m ∈ S.E ∧ ts(m) 6∈ S2.V [rep(m)]

or m ∈ S2.E ∧ m 6∈ S.V [rep(m)]. Again, we have m ∈ S.E iff m ∈ S1.E ∩ S2.E or

m ∈ S1.E ∧ ts(m) 6∈ S2.V [rep(m)] or m ∈ S2.E ∧ ts(m) 6∈ S1.V [rep(m)].

On combining and simplifying these two conditions we can see that m ∈ S ′.E iff m ∈
S1.E ∩S2.E or m ∈ S1.E ∧ ts(m) 6∈ S2.V [rep(m)] or m ∈ S2.E ∧ ts(m) 6∈ S1.V [rep(m)). This

happens iff m ∈ S.E.

Thus S ≡ S ′ and hence (S1 ◦merge(S2)) ◦merge(S2) ≡ S1 ◦merge(S2).

67

Having proved that the merge operations are associative and idempotent, we now use

these results to prove that when a pair of replicas having the same state which apply the

same set of update-receive operations, their resultant state would be the same, irrespective

of the order in which they applied those update-receive operations.

Lemma 36. Let S be some reachable state of the OR-Set, O = {u1, u2, . . . un} be a set of

receive operations along with their arguments. Let π1 and π2 be any two permutations of

[1 · · ·n]. If S1 = S ◦ uπ1(1) ◦ uπ1(2) . . . uπ1(n) and S2 = S ◦ uπ2(1) ◦ uπ2(3) . . . uπ2(n) then S1 ≡ S2.

Proof. We prove the result by induction on |O|. If |O| = 1, the result follows trivially. As-

sume that the result holds for allO of size smaller than n. Now considerO = {u1, u2, . . . , un}.
Let π1 and π2 be any two permutations of [1 . . . n]. Let j ∈ [1 . . . n] such that π1(j) = π2(n).

S1 = (S ◦ uπ1(1) ◦ · · · ◦ uπ1(n−1)) ◦ uπ1(n)

= (S ◦ uπ1(1) ◦ · · ·uπ1(j−1) ◦ uπ1(j) ◦ uπ1(j+1) · · · ◦ uπ1(n−1)) ◦ uπ1(n)

≡ (S ◦ uπ1(1) ◦ · · ·uπ1(j−1) ◦ uπ1(j+1) · · ·uπ1(n−1) ◦ uπ1(j)) ◦ uπ1(n)

(from induction hypothesis)

≡ (S ◦ uπ1(1) ◦ · · ·uπ1(j−1) ◦ uπ1(j+1) · · ·uπ1(n−1)) ◦ uπ1(j) ◦ uπ1(n)

≡ (S ◦ uπ1(1) ◦ · · ·uπ1(j−1) ◦ uπ1(j+1) · · ·uπ1(n−1)) ◦merge(S⊥ ◦ uπ1(j)) ◦merge(S⊥ ◦ uπ1(n))

(from Proposition 33)

≡ (S ◦ uπ1(1) ◦ · · ·uπ1(j−1) ◦ uπ1(j+1) · · ·uπ1(n−1)) ◦merge(S⊥ ◦ uπ1(n)) ◦merge(S⊥ ◦ uπ1(j))

(merges commute from Proposition 34)

≡ (S ◦ uπ1(1) ◦ · · ·uπ1(j−1) ◦ uπ1(j+1) · · ·uπ1(n−1) ◦ uπ1(n)) ◦ uπ1(j)

(from Proposition 33)

Now, since

{π1(1), . . . , π1(j − 1), π1(j + 1), . . . π1(n)} = {π2(1), . . . , π2(n− 1)}

by the induction hypothesis, we have,

S ◦ uπ1(1) ◦ · · ·uπ1(j−1) ◦ uπ1(j+1) · · ·uπ1(n−1) ◦ uπ1(n) ≡ S ◦ uπ2(1) ◦ uπ2(2) · · ·uπ2(n−1)

Further since π1(j) = π2(n), we have

S1 ≡ (S ◦ uπ2(1) ◦ uπ2(2) · · ·uπ2(n−1)) ◦ uπ2(n)

= S2

68

The following lemma shows the relationship between any reachable state and its causal

past. From this result we can also conclude that any two reachable states with the same

causal history are identical.

Before that, we make the following observation.

Let S ′ and S ′′ be any two equivalent states. i.e S ′ ≡ S ′′. Then, for any state S,

S ◦ merge(S ′) = S ◦ merge(S ′′). The reason for this is that merge only updates the E

set and the version vector V . It does not modify the S.count in any way in either case.

Lemma 37. Let S be any reachable state of replica. Then, we can write S ≡ S⊥ ◦ Past(S).

Proof. Let S be a reachable state of some replica at the end of a run of OR-Set

The proof follows by induction over the length of the run.

If S is the state at the end of an empty run, Past(S) = ∅ then by definition, S = S⊥ and the

result follows.

Suppose the result is true for all runs of length smaller than k. Let S be the state of some

replica at the end of kth operation.

Let the receive operations associated with Past(S) = {u1, u2, . . . , un}.
Since S is a reachable state of some replica, we can find a reachable state S ′ 6= S of the

same replica and an operation u with Op(u) ∈ {addrcv, delrcv,merge} such that S = S ′ ◦ u.

By definition, S ′ is a reachable state in a run of length smaller than k. Hence, by the

induction hypothesis, S ′ ≡ S⊥ ◦ Past(S ′).
Consider the case when u = merge(S ′′) where S ′′ 6= S⊥ and S ′′ 6= S. By the induction

hypothesis S ′′ ≡ S⊥ ◦ Past(S ′′).
Let the receive operations associated with Past(S ′′) be {u′′1, u′′2, . . . , u′′l }. Now S = S ′ ◦

merge(S ′′). From the observation earlier, this can be written as

S = S ′ ◦merge(S⊥ ◦ u′′1 ◦ u′′2 · · ·u′′m)

By appealing to Propositions 33 and 34, this is the same as

S ≡ S ′ ◦merge(S⊥ ◦ u′′1) ◦merge(S⊥ ◦ u′′2) · · ·merge(S⊥ ◦ u′′l) ◦merge(S⊥)

.

Appealing to Proposition 33 once again, we can rewrite this as

S ≡ S ′ ◦ u′′1 ◦ u′′2 · · ·u′′l . ◦merge(S⊥)

Since for any state S ′′′, S ′′′ ◦merge(S⊥) ≡ S⊥ ◦merge(S ′′′) ≡ S ′′′, we have

S ≡ S ′ ◦ u′′1 ◦ u′′2 ◦ · · ·u′′l

69

By induction hypothesis, we can write this as

S ≡ S⊥ ◦ Past(S ′) ◦ u′′1 ◦ u′′2 · · ·u′′l
≡ S⊥ ◦ Past(S ′) ◦ Past(S ′′)
≡ S⊥ ◦ (Past(S ′) ∪ Past(S ′′))

= S⊥ ◦ Past(S)

hus, in this case S ≡ S⊥ ◦ Past(S).

If u were an addrcv or a delrcv operation, appealing to Proposition 33, we can reduce it

to the merge case.

We now analyse the structure of the state of the optimized implementation. In particular,

we state the necessary and sufficient conditions for a certain integer to be present in the

integer version vector of the state.

Proposition 38. Let S be any reachable state. c ∈ S.V [r] iff there exists a receive operation

u of an update operation u′ ∈ Past(S) such that

• Either u is an addrcv(m) with ts(m) = c and rep(m) = r or

• u is a delrcv(V ′) operation with c ∈ V ′[r].

Proof. Proof follows by induction over |Past(S)|. The base case when S = S⊥ is trivial. If

|Past(S)| = 1, then from Lemma 37, S = S⊥.u. If u is an addrcv(m) such that ts(m) = c and

rep(m) = r, then c′ ∈ S.V [r′] iff (c′ = c) and (r′ = r). If u = delrcv(V ′) then, c ∈ S.V [r] iff

c ∈ V ′[r]. Thus the result is true for all S with |Past(S)| = 1. Assume that the result holds

for all states S with |Past(S)| < n. Now consider a state S such that |Past(S)| = n.

From proposition 33 we can write S ≡ S ′ ◦ merge(S ′′) with Past(S ′) (Past(S) and

Past(S ′′) (Past(S) for appropriate S ′ and S ′′. Now c ∈ S.V [r] iff c ∈ S ′.V [r] ∪ S ′′.V [r].

Since |Past(S ′)| < n and |Past(S ′′)| < n, by induction hypothesis, this happens iff there

exists such an receive operation u of an update u′ ∈ Past(S ′) ∪ Past(S ′′) such that u is an

addrcv(m) for which ts(m) = c and rep(m) = r or u is a delrcv(V ′) operation with c ∈ V ′[r].
By definition, Past(S) = Past(S ′)∪Past(S ′′). Hence u′ ∈ Past(S) and u is the corresponding

receive operation.

We now establish the necessary and sufficient conditions for a delrcv() operation to be

a covering-delete of an addrcv() operation by inspecting their respective arguments. This

result along with Proposition 38 yields the necessary and sufficient condition characterising

the structure of the Interval Version Vectors of any reachable state through the covering-

delete relations between the addrcv() and delrcv() operations present in the state-history.

Proposition 39. If u is an addrcv(m) operation and u′ is a delrcv(V ′) operation then u′ ∈
CoveringDel(u) iff ts(m) ∈ V ′[rep(m)].

70

Proof. Suppose data(m) = x. Let p and p′ be the corresponding add.prepare() and

delete.prepare() methods of u and u′ respectively. Let r′ be the source replica of the

delete whose prepare and receive operations are (p′, u′). Let S be the state of r′ before

applying u and let S ′ be the state of r′ before applying p′. Let→ be a total order on the set

of all the update-receive operations of OR-Set such that
hb−→⊆→. Let u′ be the ith x-delrcv

operation in →. The proof follows from induction over i.

The base case occurs when i = 1. Suppose ts(m) ∈ V ′[rep(m)]. Since V ′ is prepared by

p′, from the code of delete.prepare(), we know that m ∈ S ′.E. This is possible only if

u ∈ Past(S ′), as every addrcv() operation has a unique argument. Hence u
hb−→ u′. Since u

is the earliest x-delrcv operation in → and since → is consistent with
hb−→, there is no other

x-delrcv operation u′′ such that u
hb−→ u′′

hb−→ u′. Hence by definition, u′ ∈ CoveringDel(u).

Conversely suppose u′ ∈ CoveringDel(u). Then since Past(S ′) contains u and cannot not

contain any x-delrcv() operations without contradicting the minimality of u′ in →, we can

conclude that m ∈ S ′.E. From the code of delete.prepare(), ts(m) ∈ V ′[rep(m)].

Assume that the result holds for all i < n. Suppose u′ is the nth x-delrcv operation in

→. If ts(m) ∈ V ′[rep(m)] then we know that m ∈ S ′.E which implies that u ∈ Past(S ′) and

hence u
hb−→ u′. If u′ 6∈ CoveringDel(u) then there exists an x-delrcv operation u′′ such that

u
hb−→ u′′

hb−→ u and u′′ ∈ CoveringDel(u). Since → is consistent with
hb−→, u′′ occurs before u′

in →. Let V ′′ = arg(u′′). By induction hypothesis, ts(m) ∈ V ′′[rep(m)]. If S ′′ is the state

of r′ after applying u′′ then, from the code of delrcv, we know that m 6∈ S ′′.E. No addrcv or

merge operation applied by the replica to attain a state S ′ from S ′′ can reintroduce m into

the E set of the replica since ts(m) ∈ S ′′.V [rep(m)] (from proposition 38). Hence m 6∈ S ′.E
which implies that ts(m) 6∈ V ′[rep(m)] which is a contradiction. Hence u′ ∈ CoveringDel(u).

Conversely suppose u′ ∈ CoveringDel(u). Suppose there is an x-delrcv operation u′′ ∈
Past(S ′) such that arg(u′′) = V ′′ and ts(m) ∈ V ′′[rep(m)]. Since u′′

hb−→ u′, u′′ appears

before u′ in the total order →. By induction hypothesis, u′′ ∈ CoveringDel(u) which implies

u
hb−→ u′′

hb−→ u′ which contradicts the fact that u′ ∈ CoveringDel(u). Hence no such u′′ exists.

Since u ∈ Past(S ′), m ∈ S ′.E. From the code of delete.prepare(), m is in the argument

set prepared by p′. Hence ts(m) ∈ V ′[rep(m)].

Once a replica has applied a delrcv operation, any subsequent addrcv operation for which

the earlier delrcv operation was a covering-delete has no effect on the state of the replica.

We formally prove this through the following proposition.

Proposition 40. Let S be a reachable state, u be a addrcv operation and u′ a delrcv operation

such that u′ ∈ CoveringDel(u). Let S be any reachable state with {u, u′} ∩ Past(S) = ∅.
Then S ◦ u′ ◦ u ≡ S ◦ u′.

Proof. Let S ′ = S ◦ u′. We need to show that S ′ ◦ u ≡ S ′. Let m = arg(u), V ′ = arg(u′).

From proposition 39, ts(m) ∈ V ′[rep(m)]. From proposition 38, ts(m) ∈ S ′.V [rep(m)].

71

Hence from the code of addrcv, the operation u will not affect any change in the state.

Hence S ′ ◦ u ≡ S ′.

We now prove the necessary and sufficient conditions characterising the structure of the

E set of any reachable state. With this result we are closer to showing that the optimized

OR-Set implementation satisfies the concurrent-specification.

Lemma 41. Let S be any state and u be an x-addrcv operation such that u 6∈ Past(S) and

arg(u) = m, and let S ′ = S ◦ u. Then m ∈ S ′.E iff CoveringDel(u) ∩ Past(S) = ∅.

Proof. We first note that since if arg(u) = m, and u 6∈ Past(S), then m 6∈ S.E. This is

because, the auxiliary information m is unique to u and thus, since S = S⊥ ◦ Past(S), no

other add or addrcv operation from Past(S) could have added m into S.E. Thus m 6∈ S.E.

Suppose CoveringDel(u) ∩ Past(S) = ∅. Suppose u′ is some covering-delete of u, i.e.

u′ ∈ CoveringDel(u). Let V ′ = arg(u′). From Proposition 39, it is the case that ts(m) ∈
V ′[rep(m)]. Since it is given that u 6∈ Past(S) and since CoveringDel(u) ∩ Past(S) = ∅, from

proposition 38, we know that ts(m) 6∈ S.V [rep(m)]. Since S ′ = S ◦ u, from the code of

addrcv(m), we can conclude that m ∈ S ′.E.

Thus if CoveringDel(u) ∩ Past(S) = ∅ then m ∈ S ′.E.

Conversely, suppose m ∈ S ′.E. We need to show that CoveringDel(u) ∩ Past(S) = ∅.
Suppose not. Let u′ ∈ CoveringDel(u) ∩ Past(S).

Let O = Past(S) \ {u′}. If Sold ≡ S⊥ ◦ O, then it is clear that S ≡ Sold ◦ u′.
Now it is given that S ′ = S ◦u which is to say, S ′ ≡ Sold ◦u′ ◦u. But from Proposition 40

we know that Sold ◦ u′ ◦ u ≡ Sold ◦ u′ ≡ S. Thus S ′ ≡ S. We have shown above that

m 6∈ S.E. Since S ′ ≡ S, it implies that m 6∈ S ′.E. But this contradicts our premise that

m ∈ S ′.E. The contradiction is due to our assumption that there exists a u′ such that u′ ∈
CoveringDel(u)∩Past(S). Hence no such u′ exists, which implies CoveringDel(u)∩Past(S) = ∅.

Thus we have shown that if m ∈ S ′.E then, CoveringDel(u) ∩ Past(S) = ∅.
From these two cases, we can conclude that

m ∈ S ′.E ⇐⇒ CoveringDel(u) ∩ Past(S) = ∅

.

Theorem 42. The optimized OR-set implementation satisfies the concurrent specification

for OR-Sets provided in Definition 26

Proof. Given a state S and an element x, let Oadd be the set of all x-add-receive operations

u in Past(S) such that CoveringDel(u) ∩ Past(S) = ∅. Let Oothers = Past(S) \ Oadd and

S ′ ≡ S⊥ ◦ Oothers . Then, S ≡ S ′ ◦ Oadd .

72

Since Oothers contains no x-addrcv operation u such that CoveringDel(u) ∩ Past(S) = ∅,
from Lemma 41, we can conclude that for allm ∈ S ′.E, data(m) 6= x. Hence S ′◦contains(x) =

False. Now S ◦ contains(x) = True iff ∃m ∈ S.E such that data(m) = x. Since S ≡ S ′ ◦Oadd ,

from Lemma 41, this is possible iff there exists an x-addrcv operation u ∈ Oadd such that

arg(u) = m and CoveringDel(u) ∩ Past(S) = ∅ iff Oadd 6= ∅.

Thus, we have shown that our generic optimized implementation is correct with respect

to the distributed specification.

We now prove that the implementation is a CRDT. In particular, it is both a CvRDT

and a CmRDT. Towards this, we define the notion of Seen() and Deletes() which capture

which are the elements that have been observed in a state, and which elements have been

deleted.

Definition 43 (Seen and Delete for a state). Let S be a reachable state of the optimized

implementation.

We define the set of timestamps of all the elements added and deleted in a state S, denoted

by Seen(S), as

Seen(S) = {(c, r) | c ∈ S.V [r]}

.

The set of timestamps for all the elements that are currently present in a state S, is

denotedy by Exists(S). This is defined to be

Exists(S) = {(c, r) | ∃x : (x, c, r) ∈ S.E}

Similarly, we denote the set of all the timestamps of elements deleted in a state S as

Deletes(S) defined as

Deletes(S) = Seen(S) \ Exists(S)

.

We then define a binary-relation that allows us to compare a pair of states of the optimized

implementation.

Definition 44 (compare relation). For states S, S ′ we say S ≤compare S ′ to mean that

compare(S, S ′) returns True.

To show that the optimized OR-Set implementation is a CvRDT we need to define a

partial order on the set of reachable states of the implementation.

We can observe that for states S1 and S2, if Seen(S1) = Seen(S2) and Deletes(S1) =

Deletes(S2) then S1.E = S2.E and S1.V = S2.V . Thus the (Seen(S),Deletes(S)) pair

uniquely identifies a state S for all query-purposes. We use this definition to show that there

exists a well-defined partial order on the set of states of the optimized OR-Set implementation

through the following Proposition.

73

Proposition 45. For states S1 and S2 , S1 ≤compares S2 iff Seen(S1) ⊆ Seen(S2) and

Deletes(S1) ⊆ Deletes(S2). ≤compare induces a partial order on S.

Proof. (=⇒)Suppose S1 ≤compares S2.

From the code, ∀r′ : S1.V [r′] ⊆ Sr.V [r′]. Now,

∀r′ : S1.V [r′] ⊆ Sr.V [r′] ⇐⇒ {(c′, r′) | c ∈ S1.V [r′]} ⊆ {(c′, r′) | c ∈ S2.V [r′]}
⇐⇒ Seen(S1) ⊆ Seen(S2)

Let m be a triple such that ts(m) = c and rep(m) = r. Suppose (c, r) ∈ Deletes(S1).

Then, by definitions (c, r) ∈ Seen(S1) and (c, r) 6∈ Exists(S1). Thus by definition, m 6∈ S1.E.

We need to show that (c, r) ∈ Deletes(S2). Suppose that is not the case. Since (c, r) ∈
Seen(S1) and since Seen(S1) ⊆ Seen(S2), we know that (c, r) ∈ Seen(S2). Since we are

assuming that (c, r) 6∈ Deletes(S2), it implies that (c, r) ∈ Exists(S2). Thus, by definition of

Exists(), m ∈ S2.E.

Thus, m 6∈ S1.E. and m ∈ S2.E. Hence m ∈ S2.E \ S1.E. Since we are considering the

case where S1 ≤compare S2, from the code of compare,

m ∈ S2.E \ S1.E =⇒ c 6∈ S1.V [r]

which is a contradicts the fact that (c, r) ∈ Seen(S1). Hence our assumption that (c, r) 6∈
Deletes(S2) is incorrect. Thus, if (c, r) ∈ Deletes(S1) then (c, r) ∈ Deletes(S2). Hence

Deletes(S1) ⊆ Deletes(S2)

(⇐=) Conversely, suppose Seen(S1) ⊆ Seen(S2) and Deletes(S1) ⊆ Deletes(S2).

By definition of Seen(), for all r′, S1.V [r′] ⊆ S2.V [r′].

Let m be a triple such that m ∈ S2.E \ S1.E. Thus (c, r) ∈ Exists(S2) and (c, r) 6∈
Exists(S1). Since for any state S, Exists(S) = Seen(S) \ Deletes(S), this implies that

(c, r) ∈ Seen(S2) and (c, r) 6∈ Deletes(S2). Furthermore, (c, r) 6∈ Seen(S1) or (c, r) ∈
Deletes(S1). Since Deletes(S1) ⊆ Deletes(S2), it is clear that if (c, r) 6∈ Deletes(S2), then

(c, r) 6∈ Deletes(S1). Thus, we have (c, r) ∈ Seen()S2 and (c, r) 6∈ Seen(S1) which implies

that c 6∈ S1.V [r]. Since c = ts(m) and r = rep(m), we have

m ∈ S2.E \ S1.E =⇒ ts(m) 6∈ S1.V [rep(m)]

From this and the fact that

∀r′ : S1.V [r′] ⊆ S2.V [r′]

, we can conclude that S1 ≤compare S2.

For any S, S ≤compare S. For S1 and S2, S1 ≤compare S2 and S2 ≤compare S1 implies

that Seen(S1) = Seen(S2) and Deletes(S1) = Deletes(S2). This implies that S1 ≡ S2.

74

Finally S1 ≤compare S2 and S2 ≤compare S3 implies Seen(S1) ⊆ Seen(S2) ⊆ Seen(S3) and

Deletes(S1) ⊆ Deletes(S2) ⊆ Deletes(S3). Hence from the previous part S1 ≤compare S3.

Thus ≤compare is a partial order on the set of states S.

We now show that the state computed merge operation is the upper bound of the two

states in the partial order defined by ≤compare .

Proposition 46. For states S1, S2 and S3 we have S3 = S1 ◦ merge(S2) iff Seen(S3) =

Seen(S1) ∪ Seen(S2) and Deletes(S3) = Deletes(S1) ∪ Deletes(S2).

Proof. (=⇒) : Suppose S3 = S1 ◦merge(S2).

From the code, for any r′, S3.V [r′] = S1.V [r′]∪S2.V [r′]. Hence, by definition, Seen(S3) =

Seen(S1) ∪ Seen(S2).

Let m be a triple with ts(m) = c and rep(m) = r.

By definition of Deletes() ,

(c, r) ∈ Deletes(S3) ⇐⇒ (c, r) ∈ Seen(S3) ∧ (c, r) 6∈ Exists(S3)

⇐⇒ (c, r) ∈ Seen(S3) ∧m 6∈ S3.E

⇐⇒ (c, r) ∈ Seen(S3) ∧m 6∈ S3.E

⇐⇒ (c, r) ∈ Seen(S3) ∧ [m 6∈ (S1.E ∪ S2.E)∨
(m 6∈ (S1.E ∩ S2.E) ∧ c ∈ (S1.V [r] ∩ S2.V [r]))]

(From the code of merge)

We will consider the (m 6∈ (S1.E ∪ S2.E)) case and (m 6∈ (S1.E ∩ S2.E) ∧ c ∈ (S1.V [r] ∩
S2.V [r])) case sepearately.

Case : m 6∈ S1.E ∪ S2.E : Then from the above it is clear that

(c, r) ∈ Deletes(S3) ⇐⇒ (c, r) ∈ Seen(S3) ∧m 6∈ S1.E ∧ (c, r)mS2.E

⇐⇒ (c, r) ∈ Seen(S3) ∧ (c, r) 6∈ Exists(S1) ∧ (c, r) 6∈ Exists(S2)

⇐⇒ (c, r) ∈ Seen(S1) ∨ (c, r) ∈ Seen(S2)

∧ (c, r) 6∈ Exists(S1) ∧ (c, r) 6∈ Exists(S2)

=⇒ (c, r) ∈ Seen(S1) \ Exists(S1) ∨ (c, r) ∈ Seen(S2) \ Exists(S2)

=⇒ (c, r) ∈ Deletes(S1) ∨ (c, r) ∈ Deletes(S2)

=⇒ (c, r) ∈ Deletes(S1) ∪ Deletes(S2)

Case : m ∈ S1.E ∪ S2.E : Without loss of generality, let us assume that m ∈ S1.E. Thus,

(c, r) ∈ Exists(S1) and by definition, (c, r) ∈ Seen(S1).

75

From the equivalence before the case analysis, it is clear that

(c, r) ∈ Deletes(S3) ⇐⇒ (c, r) ∈ Seen(S3) ∧ (m 6∈ S1.E ∧ S2.E)∧
c ∈ (S1.V [r] ∩ S2.V [r]))

⇐⇒ (c, r) ∈ Seen(S3) ∧ (m 6∈ S2.E) ∧ c ∈ (S1.V [r] ∩ S2.V [r])

(Since m ∈ S1.E)

=⇒ m 6∈ S2.E ∧ c ∈ S2.V [r]

=⇒ (c, r) 6∈ Exists(S2) ∧ (c, r) ∈ Seen(S2)

=⇒ (c, r) ∈ Deletes(S2)

=⇒ (c, r) ∈ Deletes(S1) ∪ Deletes(S2)

Thus in both these cases, Deletes(S3) ⊆ Deletes(S1) ∪ Deletes(S2).

Conversely, suppose (c, r) ∈ Deletes(S1) ∪ Deletes(S2). Without loss of generality let us

assume (c, r) ∈ Deletes(S1). Thus (c, r) ∈ Seen(S1) and (c, r) 6∈ Exists(S1). We need to show

that (c, r) ∈ Deletes(S3). Suppose not. Then, either (c, r) 6∈ Seen(S3) or (c, r) ∈ Exists(S3).

It cannot be the case that (c, r) 6∈ S3 since (c, r) ∈ Seen(S1) and Seen(S1) ⊆ Seen(S3). Thus

(c, r) ∈ Exists(S3). Thus in this case, we can say that

(c, r) 6∈ Deletes(S3) ⇐⇒ (c, r) ∈ Exists(S3)

⇐⇒ m ∈ S3.E

⇐⇒ m ∈ S1.E ∪ S2.E ∧ (m ∈ S1.E ∩ S2.E ∨ c 6∈ S1.V [r] ∩ S2.V [r])

(From the code of merge)

⇐⇒ m ∈ S2.E ∧ (c 6∈ S1.V [r] ∩ S2.V [r])

(Since (c, r) 6∈ Exists(S1) =⇒ m 6∈ S1.E)

⇐⇒ m ∈ S2.E ∧ (c 6∈ S2.V [r])

(Since (c, r) ∈ Seen(S1) =⇒ c ∈ S1.V [r])

⇐⇒ A contradiction since m ∈ S2.E =⇒ c ∈ S2.V [r]

Hence (c, r) ∈ Deletes(S3). Thus, (c, r) ∈ Deletes(S1) ∪ Deletes(S2) =⇒ (c, r) ∈
Deletes(S3). Thus, Deletes(S1) ∪ Deletes(S2) ⊆ Deletes(S3).

Thus, from this and the earlier case analysis, Deletes(S3) = Deletes(S1) ∪ Deletes(S2)

(⇐=) Conversely suppose Seen(S3) = Seen(S1)∪Seen(S2) and Deletes(S3) = Deletes(S1)∪
Deletes(S2). Let S ′3 = S1.merge(S2). From the previous part, Seen(S ′3) = Seen(S1)∪Seen(S2)

and Deletes(S ′3) = Deletes(S1) ∪Deletes(S2). Since the code of the merge effects only the E

and the V elements and doesn’t update the counter c, (Seen(S),Deletes(S)) pair uniquely

identifies a state. Thus S3 = S ′3.

76

Using this result we show that merge operation indeed computes the least-upper-bound.

Proposition 47. If S3 = S1 ◦ merge(S2) then S3 is the least upper bound of S1 and S2 in

the partial order defined by ≤compare .

Proof. From propositions 46 and 45 it is clear that S1 ≤compare S3 and S2 ≤compare S3. Hence

S3 is an upper bound of S1 and S2. If S4 is any other upper bound of S1 and S2 then by lemma

45, Seen(S1) ⊆ Seen(S4) and Seen(S2) ⊆ Seen(S4). This implies that Seen(S1)∪ Seen(S2) ⊆
Seen(S4). Similarly, Deletes(S1)∪Deletes(S2) ⊆ Deletes(S4). Since from lemma 46, we have

Seen(S1) ∪ Seen(S2) = Seen(S3) and Deletes(S1) ∪ Deletes(S2) = Deletes(S3) we can infer

that Seen(S3) ⊆ Seen(S4) and Deletes(S3) ⊆ Deletes(S4). From lemma 45 this implies that

S3 ≤compare S4. Hence S3 is the least upper bound of S1 and S2 in the partial order defined

by ≤compare .

Lemma 48. For states S1,S2 and S3 ,

1. S1 ≤compare S2 iff Seen(S1) ⊆ Seen(S2) and Deletes(S1) ⊆ Deletes(S2). Therefore

≤compare defines a partial order on S.

2. S3 = S1◦merge(S2) iff Seen(S3) = Seen(S1)∪Seen(S2) and Deletes(S3) = Deletes(S1)∪
Deletes(S2) iff S3 is the least upper bound of S1 and S2 in the partial order defined by

≤compare .

Proof. Follows from Propositions 45, 46 and 47.

From Lemma 36 and Lemma 48, we can show that the optimized OR-Set implementation is

a CRDT. In particular it is both CmRDT as well as CvRDT.

Theorem 49. The optimized OR-Set implementation is a CmRDT and a CvRDT.

Proof. From Lemma 36, we know that all the update-receive operations of OR-Set commute.

Furthermore, the OR-Set specification does not have any delivery preconditions. Thus, the

implementation is a CmRDT since it satisfies the sufficient condition for a replicated datatype

to be a CmRDT.

From Lemma 45, we know that ≤compare induces a partial order on the set of states S
such that (S,≤compare) is a join-semilattice. From propositions 33 and 46, we know that the

states are monotonically non-decreasing across update operations. Finally, from proposition

47 we know that the merge of any pair of states yields the least upper bound of the two

states in the join semi-lattice (S,≤compare). Hence the implementation is a CvRDT.

77

3.6 Equivalence of the original and the generic opti-

mised implementations

In this section, we want to show the functional equivalence between the original implemen-

tation (Algorithm 1) and our generic optimized implementation (Algorithm 3). This way,

the proof of correctness that we have provided for the generic optimized implementation

with respect to the distributed specification will be applicable for the original implemen-

tation as well. We achieve this by establishing a strong correspondence between the two

implementations in terms of bisimulation.

A original state describes the local state of one replica during the execution of Algorithm 1.

Definition 50. A original state is a tuple (E, T, count) where E, T ⊆ M such that E ∪ T
is valid, E ∩ T = ∅ and count ∈ N. Soriginal denotes the set of original states. The initial

original state is the state (∅, ∅, 0). For a valid set M , a original state (E, T, count) is called

M-compatible if E ∪ T ⊆M .

An opt state describes the local state of one replica during the execution of Algorithm 3.

Definition 51. An opt state is a tuple (E, V, count) where E ⊆M is a valid set, V : R → I
is a vector of interval sequences and count ∈ N such that ∀m ∈ E : ts(m) ∈ V [rep(m)].

Sopt denotes the set of opt states. In the initial opt state, E = ∅, V [i] = ∅ for each i ∈ R,

count = 0. For a valid set M , an opt state (E, V, count) is called M-compatible if E ⊆ M

and for all r ∈ R and c ∈ V [r], there is some x such that (x, c, r) ∈M .

Let S = Soriginal ∪ Sopt be the set of all states. For a state S ∈ S, we use the notation S.E,

S.T , S.V , and S.count, to refer to the appropriate components of S.

To show the correspondence between the behaviour of the two implemenations, we have to

define when an original state is equivalent to an opt state. The intuition is that (E, T, count)

is equivalent to (E, V, count), if the elements seen so far in E∪T correspond to the timestamps

represented in V—this exploits the fact that for each element (x, c, r) ∈ E ∪T the pair (c, r)

is unique.

Definition 52. Let S = (E, T, count) be an original state, S ′ = (E ′, V ′, count′) be an opt

state, and M be a valid set of labelled elements. We say that S is M-equivalent to S ′

(denoted S ≡M S ′) if E = E ′, count = count′, E ∪ T ⊆ M and for all m ∈ M , m ∈ E ∪ T
iff ts(m) ∈ V ′[rep(m)].

We now characterize an original state in terms of Seen() and Deletes() as we did in the

previous section for an optimized state.

78

Definition 53. Let S = (E, T, count) be an original state. Then, we define the following

Existsorig(S) = {(ts(m), rep(m)) | m ∈ E}

Deletesorig(S) = {(ts(m), rep(m)) | m ∈ T}

Seenorig(S) = Existsorig(S) ∪ Deletesorig(S)

Since for any original state S, we have S.E ∩ S.T = ∅ from the definitions above, we can

observe that

Existsorig(S) = Seenorig(S) \ Deletesorig(S)

and

Deletesorig(S) = Seenorig(S) \ Existsorig(S)

In the following, we use S1 ≤orig S2 to denote that compareorig(S1, S2) returns true,

for two original states S1 and S2. We shall denote by S ◦mergeorig(S) the state obtained by

merging the state S2 into S1 using the merge function of the original implementation. We

now present the following three results which will characterize the ≤orig and mergeorig() in

terms of Seenorig() and Deletesorig()

Proposition 54. For a pair of original states S1 and S2 S1 ≤orig S2 iff Seenorig(S1) ⊆
Seenorig(S2) and Deletesorig(S1) ⊆ Deletesorig(S2)

Proof. From the code,

S1 ≤orig S2 ⇐⇒ (S1.E ∪ S1.T ⊆ S2.E ∪ S2.T) ∧ (S1.T ⊆ S2.T)

⇐⇒ (Seenorig(S1) ⊆ Seenorig(S2)) ∧ (Deletesorig(S1) ⊆ Deletesorig(S2))

(By the definition of Seenorig() and Deletesorig())

Proposition 55. For three original states S1, S2 and S3, we have S3 = S1 ◦ mergeorig(S2)

iff

• Seenorig(S3) = Seenorig(S1) ∪ Seenorig(S2) and

• Deletesorig(S3) = Deletesorig(S1) ∪ Deletesorig(S2) and

• S3.count = S1.count.

Proof. From the code of the original implementation,

79

S3 = S1 ◦mergeorig(S2) ⇐⇒ (S3.T = S1.T ∪ S2.T)∧
(S3.E = S1.E \ S2.T ∪ S2.E \ S1.T) ∧ S3.count = S1.count

Now,

S3.T = S1.T ∪ S2.T ⇐⇒ Deletes(S3) = Deletes(S1) ∪ Deletes(S2)

and

S3.E = S1.E \ S2.T ∪ S2.E \ S1.T

⇐⇒ S3.E = (S1.E ∪ S1.T) \ (S1.T ∪ S2.T) ∪ (S2.E ∪ S2.T) \ (S1.T ∪ S2.T)

(Since Si.E ∩ Si.T = ∅ for i ∈ {1, 2})
⇐⇒ S3.E = ((S1.E ∪ S1.T) \ S3.T) ∪ ((S2.E ∪ S2.T) \ S3.T)

⇐⇒ S3.E ∪ S3.T = (S1.E ∪ S1.T) ∪ (S2.E ∪ S2.T)

⇐⇒ Seenorig(S3) = Seenorig(S1) ∪ Seenorig(S2)

This proves the proposition.

We now show that the state produced by the mergeorig of a pair of states is the least

upper bound of the two states.

Proposition 56. For three original states S1, S2 and S3 S3 = S1 ◦ mergeorig(S2) iff S3 is

the least upper bound of S1 and S2 with respect to ≤orig .

Proof. Let S ′ be an upper bound of S1 and S2 with respect to ≤orig .

Thus we have S1 ≤orig S
′ and S2 ≤orig S

′. By Proposition 54, we have for i ∈ {1, 2},
Seenorig(Si) ⊆ Seenorig(S ′) and Deletesorig(Si) ⊆ Deletes(S ′). Thus,

Seenorig(S1) ∪ Seenorig(S2) ⊆ Seenorig(S ′)

and

Deletesorig(S1) ∪ Deletesorig(S2) ⊆ Deletesorig(S ′)

. Since S3 = S1 ◦mergeorig(S2), by Proposition 55, we have

Seenorig(S3) ⊆ Seenorig(S ′)

and

Deletesorig(S3) ⊆ Deletesorig(S ′)

80

.

Once again, by Proposition 54, we have

S3 ≤orig S
′

Thus, S3 is not just an upper bound of S1 and S2 with respect to ≤orig , but also a least

upper bound.

We shall denote the Seen(), Deletes() and Exists() sets defined in the previous section for

opt states as Seenopt(), Deletesopt() and Existsopt() to contrast them with the corresponding

sets defined for the original state. We now provide a characterization of M−equivalent

original and opt states in terms of their respective Seen() and Deletes() sets.

Proposition 57. Let S and S ′ respectively be original and opt states such that both S and

S ′ are M−compatible for some M ⊆M. Then,

S ≡M S ′ ⇐⇒ Seenorig(S) = Seenopt(S
′)∧Deletesorig(S) = Deletesopt(S

′)∧S.count = S ′.count

Proof. From the definition of M−equivalence,

S ≡M S ′ ⇐⇒ (∀m ∈M : m ∈ S.E ∪ S.T ⇐⇒ ts(m) ∈ S ′.V [rep(m)])∧
(S.E = S ′.E) ∧ (S.count = S ′.count)

⇐⇒ Seenorig(S) = Seenopt(S
′)∧

Existsorig(S) = Existsopt(S
′)∧

(S.count = S ′.count)

⇐⇒ Seenorig(S) = Seenopt(S
′)∧

Seenorig(S) \ Existsorig(S) = Seenopt(S
′) \ Existsopt(S

′)∧
(S.count = S ′.count)

⇐⇒ Seenorig(S) = Seenopt(S
′)∧

Deletesorig(S) = Deletesopt(S
′)∧

(S.count = S ′.count)

Thus the following observation is immediate for any valid set M of labelled elements.

Observation 58. 1. For every M-compatible original state S = (E, T, count), there is

exactly one opt state S ′ such that S ≡M S ′.

81

2. For every M-compatible opt state S ′ = (E ′, V ′, count′), there is exactly one original

state S with S ≡M S ′.

The global configurations of the original and optimized implementations consists of tuples

of their respective states.

Definition 59. A original (respectively, opt) configuration is a tuple (S0, . . . , SN−1) of original

(respectivelly, opt) states, one for each replica. The collection of original and opt configura-

tions are denoted, respectively, by Coriginal and Copt. A original (respectively, opt) configura-

tion C = (S0, . . . , SN−1) is an initial configuration if each Si is an initial original (repectively,

opt) state.

Given a valid set of labelled elements M , an original configuration C = (S0, . . . , SN−1) is

M-equivalent to an opt configuration C ′ = (S ′0, . . . , S
′
N−1) iff Si ≡M S ′i for all i ∈ R.

Since the auxiliary information generated by the original and our generic optimized algo-

rithms are different we need a way to associate the corresponding update-receive operations

of the two implementations. Towards this, we define the following abstract operations on

the states of our formal model.

Definition 60. The set of operations is given by

{r.contains(x), r.add(x), r.addrcv(m), r.delete(x), r.delrcv(M), r.delrcv(V ′), r.merge(S)}

where r ∈ R, x ∈ Univ,m ∈M, M,M ′ ⊆M, V ′ : R → I and S ∈ S.

We say that an operation is original (respectively, opt) operation if the state S on which

it is applied satisfies S ∈ Soriginal (respectively, S ∈ Sopt). The sets of original and opt

operations are denoted Opsoriginal and Opsopt, respectively.

For an operation o, Site(o) = r where o = r.contains(x), r.add(x), r.merge(S), etc. This

is the replica at which the operation is applied.

Given a valid sets of labelled elements M , a subset M ′ ⊆ M and an interval version

vector V ′ we say that M ′ is M-equivalent to V ′ (written as M ′ ≡M V ′) iff ∀m ∈ M,m ∈
M ′ ⇐⇒ ts(m) ∈ V ′[rep(m)]. If M = M ′ then we drop the subscript M and write M ′ ≡ V ′.

Given a valid set of labelled elements M , a original operation o is M-equivalent to an

opt operation o′ iff either o = o′ or (o = r.delrcv(M ′), o′ = r.delrcv(V ′), and M ′ ≡M V ′) or

(o = r.merge(S), o′ = r.merge(S ′), and S ≡M S ′).

The operations r.add(x) and r.delete(x) take an element as argument and prepare the cor-

responding set of labelled elements to be added or deleted. This information is propa-

gated through the network. The actual addition or deletion is handled by r.addrcv(m) and

r.delrcv(M) (or r.delrcv(V ′) in case of the opt-implementation), respectively, which add or

delete the labelled elements provided as an argument. Formally, the effect of these opera-

tions on original and opt configurations is captured through the transition relations described

below.

82

Definition 61. Given two original configurations C = (S0, . . . , SN−1) and C ′ = (S ′0, . . . , S
′
N−1)

from Coriginal, and a original operation o ∈ Opsoriginal with Site(o) = r, we say that C
o−→origC

′

iff:

• For i 6= r, Si = S ′i.

• If o = r.contains(x) or then E ′ = E, T = T ′, and count = count′ and Ret(o) =

Si.contains(x).

• if o = r.add(x) with m := Sr.add.prepare(x) or o = r.addrcv(m) then E ′ = (E ∪

{m}) \ T , T ′ = T , and count′ =

{
ts(m) + 1 if rep(m) = r

count otherwise

• If o = r.delete(x) with M := Sr.delete.prepare(x) or o = r.delrcv(M) then E ′ =

E \M , T ′ = T ∪M , and count′ = count.

• If o = r.merge(S) and S = (E1, T1, count1) then E ′ = (E \ T1) ∪ (E1 \ T), T ′ = T ∪ T1

and count′ = count.

Definition 62. Given two opt configurations C = (S0, . . . , SN−1) and C ′ = (S ′0, . . . , S
′
N−1)

from Copt, and an opt operation o ∈ Opsopt with Site(o) = r, we say that C
o−→optC

′ iff:

• for i 6= r, Si = S ′i

• with Sr = (E, V, count) and S ′r = (E ′, V ′, count′), the following conditions are satisfied:

– if o = r.contains(x) then E ′ = E and V ′ = V and Ret(o) = Si.contains(x).

– if o = r.add(x) with m = Sr.add.prepare(x) or o = r.addrcv(m) then

∗ E ′ = E ∪ {m},
∗ V ′[rep(m)] = add(V [rep(m)], {ts(m)}) and V ′[i] = V [i] for i 6= rep(m), and

∗ count′ =

{
ts(m) + 1 if rep(m) = r

count otherwise

– if o = r.delete(x) with Sr.delete.prepare(x) = V ′′ or o = r.delrcv(V ′′) then

∗ E ′ = E \M where M = {m ∈ E | ts(m) ∈ V ′′[rep(m)]}.
∗ for all i ∈ R: V ′[i] = V [i] ∪ V ′′[i], and

∗ count′ = count.

– if o = r.merge(S) and S = (E1, V1, count1) then

∗ E ′ = {m ∈ E ∪ E1 | m ∈ E ∩ E1 ∨ ts(m) 6∈ V [rep(m)] ∩ V1[rep(m)]}.
∗ for all i ∈ R: V ′[i] = V [i] ∪ V1[i].

83

∗ count′ = count.

In this section, when we say run of a system, we mean a sequence of configurations starting

from the initial configuration that respects the transition relation. In addition, we have to

ensure that each update-receive operation has a corresponding update operation that occurs

before the update-receive operation it in the sequence.

Definition 63. A original run (respectively, opt run) of an OR-set implementation is a se-

quence C0o1C1 · · ·Cn−1onCn where (letting each Ci = (Si0, . . . , S
i
N−1)):

• each Ci is a original (respectively, opt) configuration

• C0 is an initial original (respectively, opt) configuration

• each oi is a original (respectively, opt) operation

• for all i < n, Ci
oi+1−→origCi+1 (respectively, Ci

oi+1−→optCi+1)

• if oi is an r.add(x) operation, then the corresponding

Si−1
r .add.prepare(x) = (x, Si−1

r .count, r) = m

which will be broadcast to all the other replicas. Further, Si−1
r

r.addrcv(m)−−−−−−→orig S
i
r (resp.

Si−1
r

r.addrcv(m)−−−−−−→opt S
i
r)

• if oi is an r.delete(x) operation, then Si−1
r .delete.prepare(x) = M in case of original-

implementation (resp. Si−1
r .delete.prepare(x) = V ′ in case of opt-implementation)

such that M = {m ∈ Si−1
r .E | data(m) = x} (respectively, V ′ : R → I such that for

all m ∈ Si−1
r .E with data(m) = x, ts(m) ∈ V ′[rep(m)]). and Si−1

r

r.delrcv(M)−−−−−−→orig S
i
r

(respectively Si−1
r

r.delrcv(V ′)−−−−−−→opt S
i
r)

• if oi is an r′.addrcv((x, c, r)) operation, then there exists j < i such that oj is an r.add(x)

operation and c = Sj−1
r .count.

• if oi is a r′.delrcv(M) operation (respectively, r′.delrcv(V ′) operation), then there exists

j < i, r ∈ R such that oj is a r.delete(x) operation and M = {m ∈ Sj−1
r .E | data(m) =

x} (respectively, V ′ : R → I such that for all m ∈ Sj−1
r .E with data(m) = x, ts(m) ∈

V ′[rep(m)]).

• if oi is a r.merge(S) operation, then S is a state in some earlier configuration Cj.

84

By a run (without any qualifiers) we mean either a original run or an opt run. For a run

α = C0o1C1 · · ·Cn−1onCn, define C(α) to be Cn.

We can now define what it means for a original run to be equivalent to an opt run.

We begin with the following preliminary definition of the set of labelled elements generated

during a run.

Definition 64. If α = C0o1C1 . . . Cn−1onCn is a run, then M(α) = {m | ∃i ≤ n, r ∈ R such

that oi is an r.addrcv(m) operation}.

Proposition 65. For any run α, M(α) is a valid set of labelled elements.

Proof. We prove by induction on the length of α the following property (letting C(α) =

(S0, . . . , SN−1) and M(α) = M):

[∀m ∈M.ts(m) < Srep(m).count] ∧M is valid.

The base case is a run with zero operations. In this case M = ∅ and all count values are

zero. So the proposition is true.

Suppose now that α = α′ ·oC for some operation o and configuration C. Let M ′ =M(α′)

and let C(α′) = (S ′0, . . . , S
′
N−1). We observe that the M = M ′ and S ′i.count = Si.count

for all i ∈ R, except when o = r.add(x) with S ′r.add.prepare(x) = m with rep(m) =

r, ts(m) = S ′r.count In this cases, M = M ′ ∪ {m} and ts(m) = S ′r.count and therefore

Sr.count = S ′r.count + 1.

By induction hypothesis, for every m′ ∈ M ′, ts(m′) < S ′rep(m′).count. And ts(m) <

Sr.count. And hence the first part of the statement is true. Also, since every m′ ∈ M ′ with

rep(m) = r, ts(m′) < S ′r.count = ts(m). Thus m is distinct from all other labelled elements

in M . And the statement of the proposition is proved.

Definition 66. For an original run

α = C0o1C1 . . . Cn−1onCn,

and an opt run

α′ = C ′0o
′
1C
′
1 . . . C

′
n−1o

′
nC
′
n,

we say that α is equivalent to α′ (denoted α ≡ α′) iff for every i ≤ n, Ci ≡M(α) C
′
i and

oi ≡M(α) o
′
i.

Remark Though it is not obvious from the definition above, the relation α ≡ α′ is sym-

metric. We will show that if α is equivalent to α′, then M(α) =M(α′).

We now show that the optimized OR-set implementation behaves the same as the original

implementation. The strategy is to set up a correspondence between the configurations of

the original and the optimized implementations through a bisimulation.

85

For a pair of opt states S and S ′, we say S ≤opt S
′ iff compareopt(S, S

′) returns True.

Our first claim is that≡M guarantees query equivalence. We use the notation S.mergeorig(S ′)

to denote the resulting state of a replica r on invoking r.mergeorig(S
′) with r in state S.

S.mergeopt(S
′) has a similar meaning.

Lemma 67. Suppose M is a valid set of labelled elements. Suppose S1, S2 are M-compatible

original states, and S ′1, S
′
2 are M-compatible opt states such that S1 ≡M S ′1 and S2 ≡M S ′2.

Then

1. For any x ∈ Univ, S1.containsorig(x) returns True iff S ′1.containsopt(x) returns True.

2. S1 ≤orig S2 iff S ′1 ≤opt S
′
2.

3. S1.mergeorig(S2) ≡M S ′1.mergeopt(S
′
2)

4. If S1.mergeorig(S2) is the least upper bound of S1 and S2, then S ′1.mergeopt(S
′
2) is the

least upper bound of S ′1 and S ′2.

Proof. Let Si = (Ei, Ti, counti) and S ′i = (E ′i, V
′
i , count′i), for i ∈ {1, 2}. Given the assump-

tions, the following statements hold for i ∈ {1, 2}:

• Ei = E ′i,

• for m ∈M , m ∈ Ei ∪ Ti iff ts(m) ∈ Vi[rep(m)].

• for all r ∈ R, V ′i [r] = {ts(m) | m ∈ Ei ∪ Ti, rep(m) = r}.

• Ti = {m ∈M \ E ′i | ts(m) ∈ V ′i [rep(m)]}.

• Seenorig(Si) = Seenopt(S
′
i)

• Deletesorig(Si) = Deletesopt(S
′
i)

1. S1.containsorig(x) returns True iff there is m ∈ E1 such that data(m) = x iff there is

m ∈ E ′1 such that data(m) = x iff S ′1.containsopt(x) returns True.

2.

S1 ≤orig S2 ⇐⇒ Seenorig(S1) ⊆ Seenorig(S2) ∧ Deletesorig(S1) ⊆ Deletesopt(S2)

(By Proposition 54)

⇐⇒ Seenopt(S1) ⊆ Seenopt(S2) ∧ Deletesorig(S1) ⊆ Deletesopt(S2)

(By Proposition 57)

⇐⇒ S ′1 ≤opt S
′
2(By Lemma 48)

86

3.

S3 = S1.mergeorig(S2) ⇐⇒ Seenorig(S3) = Seenorig(S1) ∪ Seenorig(S2)∧
Deletesorig(S3) = Deletesorig(S1) ∪ Deletesorig(S2)∧
S3.count = S1.count

(By Proposition 55)

⇐⇒ Seenopt(S
′
3) = Seenopt(S

′
1) ∪ Seenopt(S

′
2)∧

Deletesopt(S
′
3) = Deletesopt(S

′
1) ∪ Deletesopt(S

′
2)∧

S ′3.count = S ′1.count

(By Proposition 57)

⇐⇒ S ′3 = S ′1.mergeopt(S
′
2)(By Lemma 48)

4. This result follows from Lemma 48 and Proposition 56.

Our second claim is that equivalent runs reach configurations that are strongly equivalent

to each other. We use the following useful observation which simplifies the proof. A bit of

notation first: for a original (respectively, opt) state S, we define incr(S) to be the original

(respectively, opt) state S ′ which is the same as S except that S ′.count = S.count + 1.

Observation 68. Let o1 = r.add(x) with r.add.prepare(x) := m.

Let orcv1 = r.addrcv(m).

Let o2 = r.delete(x) with r.delete.prepare(x) = M .

Let orcv2 = r.delrcv(M).

Let o′2 = r.delrcv(x) with r.delete.prepare(x) = V .

Let o
′rcv
2 = r.delrcv(V).

Let Soriginal
add = ({m}, ∅, 0), Soriginal

del = (∅,M, 0),

Sopt
add = ({m}, V ′1 , 0), and Sopt

del = (∅, V ′2 , 0)

where

87

• V ′1 [rep(m)] = {ts(m)}, and V ′1 [i] = ∅ for i 6= rep(m).

• V ′2 [i] = V [i] for all i ∈ R.

Let C = (S0, . . . , Sr, . . . , SN−1) and C ′ = (S0, . . . , S
′
r, . . . , SN−1) be two configurations.

Then

1. If C
o1−→origC

′ or C
orcv1−→origC

′ then

S ′r =

{
incr(Sr.mergeorig(Soriginal

add)) if rep(m) = r

Sr.mergeorig(Soriginal
add) otherwise

2. If C
o1−→optC

′ or C
orcv1−→optC

′ then

S ′r =

{
incr(Sr.mergeopt(S

opt
add)) if rep(m) = r

Sr.mergeopt(S
opt
add) otherwise

3. If C
o2−→origC

′ or C
odown
2−→origC

′ then S ′r = Sr.mergeorig(Soriginal
del).

4. If C
o′2−→optC

′ then S ′r = Sr.mergeopt(S
opt
del).

Lemma 69. Suppose α is a original run and α′ is an opt run such that α ≡ α′. Then

1. M(α) =M(α′).

2. For any original operation o and original configuration C such that α · oC is a original

run, there exists an opt operation o′ and an opt configuration C ′ such that α′ · o′C ′ is

an opt run and α · oC ≡ α′ · o′C ′.

3. For any opt operation o′ and opt configuration C ′ such that α′ · o′C ′ is an opt run,

there exists a original operation o and a original configuration C such that α · oC is a

original run and α · oC ≡ α′ · o′C ′.

Proof. We prove the lemma by induction on the number of operations in α (and hence in

α′). Assume that the result holds for all equivalent runs α and α′, each having strictly

fewer than n operations. Now let α = C0o1C1 · · ·Cn−1onCn be a original run and α′ =

C ′0o
′
1C
′
1 · · ·C ′n−1o

′
nC
′
n be an opt run such that α ≡ α′. Let Mn = M(α) and M ′

n = M(α′).

When n > 0, let Mn−1 =M(C0o1C1 · · ·Cn−1) and M ′
n−1 =M(C ′0o

′
1C
′
1 · · ·C ′n−1).

1. If n = 0 then Mn = M ′
n = ∅. Hence the statement holds. Assume that n > 0. Then

by induction hypothesis Mn−1 = M ′
n−1. The following cases need to be considered.

88

on = r.contains(x) or on = r.add(x) or on = r.delete(x): In this case on = o′n, Mn =

Mn−1, and M ′
n = M ′

n−1. Therefore Mn = M ′
n.

on = r.add(x): Suppose r.add.prepare(x) = m In this case also on = o′n. Since

rep(m) = r, then Mn = Mn−1 ∪ {m} and M ′
n = M ′

n−1 ∪ {m}. Hence Mn = M ′
n.

on = r.addrcv(m): In this case also on = o′n. Since rep(m) 6= r, then Mn = Mn−1 and

M ′
n = M ′

n−1. Hence Mn = M ′
n.

on = r.delete(x): Suppose r.delete.prepareoriginal(x) = M . Then, o′n = on
with r.delete.prepareopt(x) = V such that M ≡Mn V . Further, M ⊆ Mn−1 =

M ′
n−1. Therefore Mn = Mn−1. and importantly, M ′

n = M ′
n−1. Hence Mn = M ′

n.

on = r.delrcv(M): like in the earlier case we set o′n = r.delrcv(V) such that M ≡Mn V .

As before, M ⊆ Mn−1 = M ′
n−1. Therefore Mn = Mn−1. and importantly, M ′

n =

M ′
n−1. Hence Mn = M ′

n.

on = r.merge(S): In this case o′n = r.merge(S ′) such that S and S ′ are states from

configurations Ci and C ′i respectively, i < n. Thus both the states are Mn−1-

compatible. But then Mn = Mn−1 and M ′
n = M ′

n−1. Hence Mn = M ′
n.

2. Let o and C be a original operation and configuration, respectively, such that α · oC is

a run. Let M =M(α · oC). Note that since Cn ≡Mn C
′
n, it is also the case Cn ≡M C ′n.

We aim to show that there is an opt operation o′ and an opt configuration C ′ such that

α′ · o′C ′ is a run and α · oC ≡ α′ · o′C ′. Let Site(o) = r. Then the only state change

happens in replica r. We denote the state of r in Cn and C ′n by S1 and S ′1 respectively

and the state of r in C and C ′ by S2 and S ′2 respectively.

The following cases need to be considered.

o = r.contains(x) or o = r.add(x) or o = r.delete(x): In this case C = Cn. We choose

o′ to be o and C ′ = C ′n. From the fact that α ·oC is a original run, it easily follows

that α′ · o′C ′ is an opt run. Furthermore, o ≡M o′ and C = Cn ≡M C ′n = C ′.

Therefore α · oC ≡ α′ · o′C ′.

o = r.add(x): Suppose r.add.prepare(x) = m. In this case, M = Mn ∪ {m}. We

choose o′ to be o and C ′ such that C ′n
o′−→optC

′. Since α · oC is a original run,

α′ · o′C ′ is an opt run. By the observation preceding this lemma, there is a

original state S and an opt state S ′ such that S ≡M S ′, S2 = S1.mergeorig(S), and

S ′2 = S ′1.mergeopt(S
′). Thus it follows that S2 ≡M S ′2 (from part 3 of Lemma 67).

Therefore Cn ≡M C ′n and hence α · oC ≡ α′ · o′C ′.

o = r.addrcv(m): In this case, M = Mn. We choose o′ to be o and C ′ such that

C ′n
o′−→optC

′. Since α·oC is a original run, α′·o′C ′ is an opt run. By the observation

preceding this lemma, there is a original state S and an opt state S ′ such that

89

S ≡M S ′, S2 = S1.mergeorig(S), and S ′2 = S ′1.mergeopt(S
′). Thus it follows that

S2 ≡M S ′2 (from part 3 of Lemma 67). Therefore Cn ≡M C ′n and hence α · oC ≡
α′ · o′C ′.

on = r.delete(x): Suppose r.delete.prepareoriginal(x) = M ′. In this case, M = Mn.

Choose o′ = o with r.delete.prepareopt(x) = V ′ such that M ′ ≡M V ′ and C ′

such that C ′n
o′−→optC

′. Since α · oC is a original run, α′ · o′C ′ is an opt run. By

the observation preceding this lemma, there is a original state S and an opt state

S ′ such that S ≡M S ′, S2 = S1.mergeorig(S), and S ′2 = S ′1.mergeopt(S
′). Thus it

follows that S2 ≡M S ′2 (from part 3 of Lemma 67). Therefore Cn ≡M C ′n and

hence α · oC ≡ α′ · o′C ′.
on = r.delrcv(M ′): In this case, M = Mn. Choose o′ to be r.delrcv(V ′) with M ′ ≡M V ′

and C ′ such that C ′n
o′−→optC

′. Since α · oC is a original run, α′ · o′C ′ is an opt

run. By the observation preceding this lemma, there is a original state S and an

opt state S ′ such that S ≡M S ′, S2 = S1.mergeorig(S), and S ′2 = S ′1.mergeopt(S
′).

Thus it follows that S2 ≡M S ′2 (from part 3 of Lemma 67). Therefore Cn ≡M C ′n
and hence α · oC ≡ α′ · o′C ′.

on = r.merge(S): In this case too, M = Mn. Since α · oC is a original run, there exists

a replica r′ and an index i ≤ n such that S is the local state of r′ in Ci. Choose

o′ = r.merge(S ′) where S ′ is the local state of r′ in C ′i, and choose C ′ such that

C ′n
o′−→optC

′. It is easily seen that α′ ·o′C ′ is an opt run. Since α ≡ α′, S ≡M S ′ and

hence o ≡M o′. Since S ≡M S ′, S2 = S1.mergeorig(S), and S ′2 = S ′1.mergeopt(S
′),

it follows that S2 ≡M S ′2 (from part 3 of Lemma 67). Therefore C ≡M C ′ and

hence α · oC ≡ α′ · o′C ′.

3. Similar to the proof of previous item by swapping the roles of o and o′, α and α′, and

C and C ′.

We can now describe the correspondence we seek between original runs and opt runs.

We match a original configuration C with an opt configuration C ′ if they can be reached by

equivalent runs

Definition 70. Let B be a binary relation on Coriginal × Copt defined by

B def
= {(C,C ′) | ∃ a original run α and an opt run α′ such that C = C(α), C ′ = C(α′), α ≡ α′}.

Lemma 71. B is a nontrivial bisimulation.

Proof. Follows from Lemmas 67, 69, and the fact that (C0, C
′
0) ∈ B, where C0 and C ′0 are

the initial original and initial opt configurations, respectively.

90

Having established a bisimulation between the two systems, we can assert that our opti-

mized implementation of OR-Sets inherits all the properties that have already been estab-

lished for the original implementation in [Shapiro et al., 2011a].

In the next section we evaluate the space complexity for the original implementation, the

implementation requiring causal-delivery, and the generic optimized implementation.

3.7 Space Complexity and Payload Size

Let |R| = N . Let Sr denote the state of a replica r ∈ R at the end of some run α. Let nr
be the number of add operations at source replica r in the run α. Let nt =

∑
r∈R

nr. Let

nm = max{nr | r ∈ R}. Let npr(x) denote the number all add(x) operations u ∈ Past(Sr)

such that CoveringDel(u) ∩ Past(Sr) = ∅. Let npr = Σx∈Univn
p
r(x) denote the total number of

add operations in the Past(Sr) that are not covered by any delete. Let np = max{npr | r ∈
R}. Clearly np ≤ nt.

The space required to store Sr in the original implementation (Algorithm 1) is bounded

by O(nt log (nt)), since every update seen by a replica is preserved either in the Sr.E set

or the Sr.T tombstone set. If we refer to the data sent via the add(x)-send and delete(x)-

send operations as the payload of those operations, then the payload-size of the add(x)-send

operation isO(log(nt)+N) since we only send the triplem. The payload-size of delete(x)-send

operation is O(npr(x)log(nt)) since we send all the triples of the form (y, c, r′′) ∈ Sr.E \ Sr.T
such that y = x. Note that npr(x) ≤ nt. The worst case occurs when all the add operations

correspond to add(x) with no deletes covering any of them. Then the first delete ends up

covering all those add operations, thus npr(x) = nt.

Let nint denote the maximum number of intervals across any index r′ in Vr[r
′] for all the

replicas r.

In our optimized implementation(Algorithm 3), the space required to store Sr.V is

bounded by Nnint log(nt) and the space required to store Sr.E is bounded by np log(nt).

The space required to store Sr is thus bounded by O((np + Nnint) log(nt)). In the worst

case, nint is bounded by nm/2, which happens when r sees only the alternate elements gen-

erated by some replica. Thus the worst case complexity is O((np + Nnm) log(nt)). The

payload-size of add(x)-send operation is O(log(nt) + N). In case of delete(x)-send opera-

tion, our generic optimized implementation sends the interval version vector associated with

{(c′, r′) | (x, c′, r′) ∈ Sr.E}. If ndint is the total number of intervals in this interval version

vector, then, the payload-size of the delete(x)-send is O(ndintlog(nt). Note that in the worst

case ndint = npr(x) where each triple (x, c′, r′) to be deleted corresponds to an interval of single

element. The best case occurs when there is exactly one interval in each of the N interval

sequences and thus ndint = N . Thus the worst case payload-size of delete(x)-send operation is

O(npr(x)log(nt)) while the best-case payload-size of delete(x)-send operation is O(Nlog(nt)).

91

Note that the factor that is responsible for increasing the space complexity is the number

of intervals in the interval sequences of the Interval Version Vector. We propose a reasonable

way of bounding this value below.

Definition 72 (k-Causal-Delivery of an updates). Let α = (ρ, ϕ) be a run with ρ = Io1 · · · on.

We say that updates are k-causally-delivered in this run, iff for any update ρr[i] at replica

r, for any j : 0 < j < |ρ|, if ρr[i] ∈ Pastα(ρ[j]) then Pastα(ρr[i− k]) ⊆ Past(ρ,ϕ)(ρ[j]).

When k = 1, this is the same as causal delivery.

Intuitively it means that when a replica r′ sees the ith add operation originating at replica

r, it should have already seen all the operations that causally-precede the operations at r

with index smaller than i− k. Thus k-causal-delivery ensures that the out of order delivery

of updates is restricted to a bounded suffix of the sequence of operations submitted to the

replicated datatype.

In particular, if the latest add operation u received by a replica r from a replica r′

corresponds to the cth add operation at r′, then k-causal-delivery ensures that r would have

received all the addrcv operations from r′ whose index is less than or equal to (c− k). Thus,

Sr.V [r′] consists of one interval corresponding to the first (c − k) add-receive operations

from r′ and at most k/2 intervals for the remaining k add-receive operations from r′. Since

this is true for every r′, we can conclude that nint is bounded by O(k). Hence, the space-

complexity of the state Sr of an optimized-OR-Set in the presence of k-causal-delivery is

O((np +Nk) log(nt)). If we assume causal delivery of updates (k = 1), the space complexity

is bounded by O((np+N) log(nt)), which is the space complexity of the algorithm in [Bieniusa

et al., 2012].

Coalescing adds: An Optimization

[Bieniusa et al., 2012] also provides an optimization of their algorithm which allows to co-

alesce add-operations of the same element by the same replica. This is achievable even in

the case of k-causal-delivery which allows us to enforce a bound on the size of the E set at

every replica by coalescing the adds of the same element originating from the same replica.

The algorithm 4 captures this optimization. Whenever a replica r receives an addrcv(x, c, r′)

from a replica r′ , it could evict all the triples (x, c′, r′) from its E set for in which c′ ≤ c− k
(lines 13–14 in Algorithm 4). Every replica can uniformly do this add-coalescing on receiving

(x, c, r′) since k-causal-delivery ensures that any replica which sees (x, c, r′) would have seen

all the triples (y, c′, r′) with c′ ≤ c− k. Similarly, whenever a replica sees a triple (x, c, r′) as

a part of the delete-receive, it knows that the source-replica of that delete operation would

have seen all the triples (y, c′, r′) with c′ ≤ c− k, and would have performed add-coalescing

of all such triples with y = x. So this replica on receiving the delete-receive can also evict all

92

triples (x, c′, r′) with c′ ≤ c− k (lines 34-35) even though c′ may not feature in the interval

version vector V ′[r′] sent as an argument of the delete-receive operation.

These optimisations ensures that every replica r stores at most k triples corresponding

to a visible element x ∈ Univ added by the source replica r′. Thus if the number of visible

elements is denoted by na, the size of the E set is bounded by O(nakN log (nt)). Thus

the total space complexity with add-coalescing is O((na + 1)kN log(nt)). The payload-size

of the delete(x)-send operation is bounded by O(Nk log (nt)) since due to add coalition we

would have only retained at most a single x-triple from the first interval, owing to k-causal

delivery, there can be at most k intervals in the interval-sequence corresponding to each of

the N replicas. If we assume causal delivery of updates (k = 1), the space complexity and

the payload-size of the optimized solution with coalescing adds matches he space complexity

and the payload-size of the solution in [Bieniusa et al., 2012].

It should also be noted that if the messages are delivered in FIFO order, we can coalesce

the adds in a manner similar to the case when k = 1 in Algorithm 4. Thus, the space

complexity of the E set at every replica would be O(naN log (nt)). However, FIFO does

not guarantee any bound on the the number of intervals in each component of the interval-

version-vector as illustrated in example 73.

Example 73. Consider an OR-Set with three replicas r, r′ and r′′. Suppose r gets unbound-

edly many add requests of which every alternate add request corresponds to that of element

x and every other add request correspond to that of distinct elements of the universe. Thus

the E set at r would be of the form

{(x, 0, r), (y, 1, r), (x, 2, r), (z, 3, r), (x, 4, r), . . .}

Suppose further that all the add operations from r get propagated to replica r′, but none of

those operations are yet propagated to replica r′′. This is allowed in FIFO ordering. Now,

replica r′ gets delete requests corresponding to all the non-x elements that have been added

by replica r. Suppose further that the receive operations of these deletes are delivered at r′′

in FIFO order. Thus at r′′, V [r] = {[1, 1], [3, 3], [5, 5], . . .}. Hence the number of intervals

can be unbounded.

In the case where message delivery is constrained by FIFO ordering, the worst case space

complexity in would be O((na + nint)N log(nt)) which is comparable to space complexity of

the generalized algorithm without ordering constraints since O(nint) can be as large as O(nt)

as highlighted in the example above.

3.8 Summary

In this chapter, we have presented an optimized OR-Set implementation that does not depend

on the order in which updates are delivered. The worst-case space complexity is comparable

93

Algorithm 4 An optimized OR-Set implementation with k-causal-delivery

Optimized OR-set implementation for the replica r with k-causal

delivery constraint

1 E ⊆M, V : R→ I, c ∈ N: initially ∅, [∅, . . . , ∅], 0
2

3 Boolean contains(x ∈ Univ):

4 return (∃m : m ∈ E ∧ data(m) = x)

5

6 add(x ∈ Univ):

7 Let m := add.prepare(x)

8 Call add.apply(m)

9 Broadcast add.send(m)

10 add.prepare(x ∈ Univ):

11 return (x, c, r)

12 add.apply(m ∈M):

13 M = {m′ | data(m′) = data(m) ∧
rep(m′) = rep(m) ∧
ts(m′) ≤ ts(m)− k}

14 E = E \M
15 if (ts(m) 6∈ V [rep(m)])

16 E := E ∪ {m}
17 V [rep(m)] :=

add(V [rep(m)], {ts(m)})
18 if (rep(m) = r)

19 c = ts(m) + 1

20 Receive add.receive(m ∈M):

21 Call add.apply(m)

22

23 delete(x ∈ Univ):

24 Let V ′ := delete.prepare(x)

25 Call delete.apply(x, V ′)

26 Broadcast delete.send(x, V ′)

27 delete.prepare(x ∈ Univ):

28 Let V ′ : R→ I = [0, . . . , 0]

29 for m ∈ E with data(m) = x

30 add(V ′[rep(m)], {ts(m)})
31 return V ′

32 delete.apply(x ∈ Univ,

33 V ′ : R→ I):

34 Let M = {m ∈ E |
ts(m) ∈ V ′[rep(m)]∨
(data(m) = x ∧
∃c ∈ V ′[rep(m)] ts(m) ≤ c− k)}

35 E := E \M
36 ∀i ∈ R.(V [i] := V [i] ∪ V ′[i])
37 Receive delete.receive(x ∈ Univ, V ′ : R→ I):

38 Call delete.apply(x, V ′)

39

40

41 Boolean compare(S′, S′′ ∈ S):

42 Assume that S′ = (E′, V ′)

43 Assume that S′′ = (E′′, V ′′)

44 bseen := ∀i(V ′[i] ⊆ V ′′[i])
45 bdeletes := ∀m ∈ E′′ \ E′

(ts(m) 6∈ V ′[rep(m)])

46 // If m is deleted from E′ then

47 // it is also deleted in E′′.

48 // So anything in E′′ \ E′
49 // is not even visible in S′.

50 return bseen ∧ bdeletes
51

52 merge(S′ ∈ S):

53 Assume that S′ = (E′, V ′)

54 E := {m ∈ E ∪ E′ |
m ∈ E ∩ E′∨
ts(m) 6∈ V [rep(m)] ∩ V ′[rep(m)]}

55 // You retain m if it is either

56 // in the intersection, or if it is fresh

57 // (so one of the states has not seen it).

58 ∀i.(V [i] := V [i] ∪ V ′[i])

94

to the original implementation [Shapiro et al., 2011a] and the best-case complexity is the

same as that of the solution proposed in [Bieniusa et al., 2012].

The solution in [Bieniusa et al., 2012] requires causal ordering over all updates. As we

have argued, this is an unreasonably strong requirement. On the other hand, there seems to

be no simple relaxation of causal ordering that retains the structure required by the simpler

algorithm of [Bieniusa et al., 2012]. Our new generalized algorithm can accommodate any

specific ordering constraint that is guaranteed by the delivery subsystem. Moreover, our

solution has led us to identify k-causal ordering as a natural generalization of causal ordering,

where the parameter k directly captures the impact of out-of-order delivery on the space

requirement for bookkeeping.

Our optimized algorithm uses interval version vectors to keep track of the elements that

have already been seen. It is known that regular version vectors have a bounded represen-

tation when the replicas communicate using pairwise synchronization [Almeida et al., 2004].

An alternative proof of this in [Mukund et al., 2020] is based on the solution to the gossip

problem for synchronous communication [Mukund and Sohoni, 1997], which has also been

generalized to message-passing systems [Mukund et al., 2003]. It would be interesting to see

if these ideas can be used to maintain interval version vectors using a bounded representa-

tion. This is not obvious because intervals rely on the linear order between timestamps and

reusing timestamps typically disrupts this linear order.

Another direction that can be explored is to characterize the class of datatypes with non-

commutative operations for which a CRDT implementation can be obtained using interval

version vectors.

We end this chapter by noting that the OR-Set is also supported by real-world data stores

such as RiakDB and Redis. RiakDB supports a variant of OR-Set known as ORSWOT where

the delete() operation can be associated with a context [Owen, 2015]. The Redis datastore

has support for the classical OR-Set which guaratees the add-wins semantics [Redis, 2020].

95

4

Declarative Specification for CRDTs

4.1 Introduction

It is well understood that in a serialized setting, where operations are performed in a se-

quential order, the properties of data types can be described independent of their imple-

mentations. For instance, in a serialized setting, in the case of the stack, the expectation

is that the pop() method should return the value that was the argument to the most re-

cent push(). Similarly, in the case of a Queue, the result of a dequeue() operation should

correspond to the value enqueued by the earliest unmatched enqueue() operation. Thus,

every implementation of a stack or a queue would have these properties. This behavioural

description of the data type independent of their implementation is known as its abstract

specification. In the previous chapter, we saw that for the OR-Set CRDT, there were three

different implementations which all adhered to the same specification. Such a specification

plays a crucial role in formal verification of the correctness of any implementation of the

data type. However, in their initial days, most of the early work on replicated data types

described these data types through implementations [Shapiro et al., 2011a,b; Bieniusa et al.,

2012; Mukund et al., 2014].

In the serialized setting, the specification of a data type can be described in terms of

its observable behavior, which is a sequence of operations. For instance in the case of the

stack, where the specification says that the return value of a pop() should be the same as the

latest value that was pushed, the notion of latest push is unambiguous since the sequence

of operations is a total order. However such a serialized specification cannot be applied in

a distributed setting, where there are concurrent operations and the data types guarantee

weaker consistency criteria such as eventual consistency. Hence there was a need for a formal

framework in which declarative specification of a wide variety of distributed data-types could

be described. Such a framework was first proposed in [Burkhardt et al., 2014]. This work also

provided a methodology to prove the correctness of an implementation via replication-aware

96

Init

all

A

r1

B

r1

C

r2

D

r1

E

r2

F

r2

G

r2

H

r3

I

r3

J

r4

K

r4

L

r3

M

r4

Figure 4.1: An example Run. Here, we denote the update operations A, B, D, E as cir-

cles, the corresponding update-receive operations C, F, H, I, J as triangles, the merge-send

and merge-receive operations as hexagons and the query operations L, M as diamonds.

The source replicas of the operations are indicated above the shape representing the op-

eration. Furthermore, the solid arrows associate every update-receive operation with the

corresponding update operation and also associates every merge-receive operation with the

corresponding merge-send operation.

simulations.

In this chapter we shall present a simplified version of the framework from [Burkhardt

et al., 2014]. Our simplified framework is based on our work [Mukund et al., 2015a] that

describes the behaviours of replicated data types using the concept of standard labelled

partial orders which were introduced in [Mazurkiewicz, 1987; Pratt, 1986] to describe the

properties of asynchronous communicating automata. This simplified framework is sufficient

for providing the abstract specification of the existing replicated data types. Our motivation

for using a simpler framework to synthesize a reference implementation of the replicated data

type from its abstract specification. This reference implementation will serve as a foundation

in the next chapter where we will adapt some of the results, originally proved in the context

of asynchronous automata, to replicated data types in order to obtain a bounded reference

implementation of a replicated data type from its specification. This bounded reference

implementation can be used towards the effective verification of a given implementation of

the replicated data type.

4.2 Definitions for Declarative Specifications

In this section we introduce a framework for providing declarative-specification for replicated

data-types. The notation followed here is an amalgamation of the notation used in [Burck-

hardt, 2014] and [Mukund et al., 2015a].

97

Consider the example of a run in Figure 4.1.For an external observer, this is the se-

quence of operations that was performed by the implementation of the replicated data type.

However since the implementation contains several independent communicating replicas, the

observable behaviour of the data type depends on the sequence operations observed by the

individual replicas. This is because when a user issues a query request, the source replica of

that query provide a response based on its current local state. Thus, in order to reason about

the response provided by the replica to a query, we only need to consider the operations that

have impacted that replica. In the example in Figure 4.1, in order to answer the query L at

replica r3, we need to reason about the impact of the operations {A,E,H, I} on r3. While

in order to answer the query M at replica r4, we need to reason about the operations that

have impacted the replica r4. This set includes {A,B,C,D,E, F,G, J,K}.
The set of operations that impact a replica at any given point in the run can be modeled

using the notion of event structures [Mazurkiewicz, 1987]. Here, where we model every

operation as an event and record the relationships between these events.

We first associate an event with each operation of a run.

Definition 74 (Events). Let α = (ρ, ϕ) be a run of a replicated data type. We define Eρ to

be the set of events associated with the operations in ρ.

Eρ = {ei | 0 ≤ i < |ρ|}

. Let ei be the event associated with ρ[i] then, for F () ∈ {Rep(),Op(),Ret(),Args()} we let

F (ei) = F (ρ[i]).

For an event ei ∈ Eρ we say that

• ei is a query event if Op(ei) ∈ Queries

• ei is an update event if Op(ei) ∈ Updates

• ei is an update-send event if Op(ei) = usend

• ei is an update-receive event if Op(ei) = ureceive

• ei is an merge-send event if Op(ei) = msend

• ei is an merge-receive event if Op(ei) = mreceive

If ei is an event with Op(ei) ∈ {ureceive,mreceive} associated with the operation ρ[i] then

we define the matching update event(if ei is an ureceive event) or the matching-msend

event (if ei is an mreceive event) denoted by ϕ(ei) to be

ϕ(ei) = ej ⇐⇒ in the run α = (ρ, ϕ), we have ϕ(i) = j.

98

Init

all

r1 A B D

r2 C E F G

r3 H I L

r4 J K M

Figure 4.2: Replica Order : Sequence of operations seen by each replica

If ei is an update event associated with ρ[i] then the corresponding sent of update-receive

events is denoted by ϕ−1(ei) and defined to be the set

ϕ−1(ei) = {ej | ϕ(ej) = ei}

If ei is an update event at a replica which is distinct from another replica r, then ϕ−1
r (ei)

denotes the ureceive event ej at replica r whose matching update is ei. Formally,

ϕ−1
r (ei) = ej ⇐⇒ Rep(ej) = r ∧ ϕ(ej) = ei

If ei, ej are a pair of update events, we say ei happened-before ej, written as ei
hb−→ ej iff

ρ[i]
hb−→ ρ[j].

Each replica in the system sees operations applied at them in a particular order. From

the example in Figure 4.1, the events at replica r1 is {A,B,D}, while at replica r2 is

{C,E, F,G} respectively, in that order. This is shown in Figure 4.2. We model the total

order of operations performed at each replica as the replica order.

We capture this notion via the following definition.

Definition 75 (Replica Order). Let Eρ be the events associated with a run α = (ρ, ϕ) of a

replicated data type.

Let Erρ = {ei ∈ Eρ | Rep(e) = r}.
We define the replica order for r, denoted by

r−→, to be the order in which the events occur

at r. Formally,

r−→= {(ei, ej) | ei, ej ∈ Erρ ∧ i ≤ j}

Note that
r−→ is a total order.

Then, we define the replica-order of a run, denoted by
R−→, to be the union of the replica

orders of all the replicas.
R−→=

⋃
r∈R

r−→

99

Init

all

r1 A B D

r2 C E F G

r3 H I L

r4 J K M

Figure 4.3: Broadcast and Merge Orders : Between communicating replicas.

The replicas communicate with each other via broadcast messages after every update

operation (in the case of operation-based replicated data types) and merge operations (in

the case of state-based replicated data types). In the run from Figure 4.1, the update A

at replica r1 is communicated to replicas r2 and r3 via update receive methods C and I

respectively. Similarly replica r2 sends its state to replica r4 via merge-send operation G

which is received by r4 as the merge-receive operation K.

We can model these communication in our event structure framework as broadcast-orders

and merge-orders over the events of a run (Figure 4.3). We formally define these below.

Definition 76 (Broadcast Order). Let Eρ be the events associated with some run α = (ρ, ϕ).

Then we define the broadcast-order, denoted by
broadcast−−−−−→, to be the the set associating an

update operation with its corresponding update-receive operations. Formally,

broadcast−−−−−→= {(ϕ(ei), ei) | ei ∈ Eρ ∧Op(e) = ureceive}

Definition 77 (Merge Order). Let E be the events associated with some run α = (ρ, ϕ).

Then we define the merge-order, denoted by
merge−−−→, to be the set associating a merge-send

with the corresponding merge receive.

merge−−−→= {(ϕ(ei), ei) | ei ∈ Eρ ∧Op(e) = mreceive}

The state of a replica at any point in the run is determined by the set of operations that

are known to the replica at that point in the run. Note at any point in the run, a replica

knows of

• The operations whose source replica was itself.

100

• Remote update operations whose broadcast was received by the replica.

• Remote operations of the run whose effect was merged into the replica through a merge

receive operation.

In the example run from Figure 4.1, the replica r4 at the end of the query operation M

knows of

• The locally performed update-receive operation J and the merge-receive operation K

along with the query operation M itself.

• The remote update D from replica r1 whose information was received through the

update-receive operation J.

• The merge-send operation G from replica r2 and the operations {A,B,C,E, F,G}
which were known to replica r2 at G. These information about these operations reaches

r via the merge-receive operation K.

To reason about the state of replica r4 at G, it is sufficient to consider the set of operations

known to it and the relationships between these operations. It is immaterial if r4 receives the

knowledge of these operations either because they were locally performed or via an update-

receive or a merge-receive. Thus, we capture this flow of knowledge of operations in our

event structure as a visibility relation over the events of the run.

Definition 78 (Visibility Relation). Let α = (ρ, ϕ) be a run and let Eρ denote the set of

events corresponding to the operations in ρ.

We define the visibility relation over Eρ for the run α, denoted by vis, to be the smallest

acyclic relation over E satisfying the following:

1.
R−→ ∪ broadcast−−−−−→ ∪ merge−−−→⊆ vis

2. vis;
R−→⊆ vis

3. vis;
merge−−−→⊆ vis.

where X;Y denotes the composition of a pair of binary relations X and Y

X;Y = {(a, c) | (a, b) ∈ X ∧ (b, c) ∈ Y }

The visibility relation captures the set of events of the run that any particular replica

is aware of during any point in the run. Thus, if an event ei is visible to ej, denoted by

ei
vis−→ ej, it implies that the source replica of the event ej is aware of the event ei at that

point in time. In the definition above,

101

Condition 1 insists that the visibility relation should contain the replica order, the broad-

cast order and the merge order. Thus the replica continues to be aware of any operation in

the run that it had previously locally performed. The replica becomes aware of a remote

update when it receives the corresponding broadcast. The replica becomes aware of a merge

request sent by a remote replica when it receives that merge request.

Condition 2 insists that once some remote update is visible to a replica, it continues

to remain visible to all the subsequent operations at the replica. This is equivalent of the

Monotonic-Reads constraint defined in [Burckhardt, 2014].

Condition 3 ensures that once a replica receives a merge request from any other replica,

all the operations that are visible to the sending replica at the time of the merge-send are

visible to the recepient of the merge.

Thus, given a run, the event-set along with the visibility relation over the events in that

set is sufficient to reason about the state of the replicas at different points in that run. This

event-structure consisting of the event set along with the visibility relation is defined to

be the trace of a run. Using the abstraction of traces, we can declarative specifications of

replicated data-types [Burckhardt, 2014].

Definition 79 (Trace of a Run). Let α = (ρ, ϕ) be a valid run of a replicated data-type. Let

Eρ be the set of events associated with ρ and vis be the visiblity relation of α.

Then we define the trace of the run α to be the tuple T (α) = (Eρ, vis).

The set of all the traces of all the runs of a replicated data type D, denoted by T (D) is

defined to be the set
⋃
α∈Runs(D) T (α).

Figure 4.4 shows the trace of a run from Figure 4.1. In this we have a single relationship

between the events of the operations of the run, namely the visibility relation.

Note: In the trace of a run, when an event (say B) becomes visible to another event

(say K) it remains visible to all the future events of the same replica (here L). In Figure 4.4

we have omitted those edges for the sake of clarity.

The trace of a run consists of an event set where there is a representative event for every

operation in the run. In addition there is a visibility relation which describes the relationship

between these events. We will now show that the visibility relation over the events a run is

uniquely computable, thereby showing that every run has a unique computable trace.

Proposition 80. Let α = (ρ, ϕ) be a run and let T (α) = (Eρ, vis) be the trace of α. Let
R−→,

broadcast−−−−−→ and
merge−−−→ be relations over Eρ as defined earlier.

Let vis0 =
R−→ ∪ broadcast−−−−−→ ∪ merge−−−→.

For i > 0 Let visi = visi−1 ∪ (visi−1;
R−→) ∪ (visi−1;

merge−−−→)

Then, the visiblity relation over Eρ for α is vis = visk for the smallest k ∈ N such that for

all k′ > k, visk′ = visk.

102

Init

all

A

r1

B

r1

D

r1

J

r4

K

r4

M

r4

C

r2

E

r2

F

r2

G

r2

H

r3

I

r3

L

r3

Figure 4.4: Trace of a Run from Figure 4.1

103

Proof. Note that vis0 ⊆ vis1 ⊆ · · · ⊆ (Eρ × Eρ).
Since α is a finite run, Eρ is a finite set of events and thus, (Eρ × Eρ) is finite.

From this, it follows that there will be a k such that for all k′ > k, visk′ = visk.

We will show that vis ⊆ visk. Towards that, we will first prove that visk satisfies the

constraints that need to be satisfied by the visibility relation.

Note that since vis0 =
R−→ ∪ broadcast−−−−−→ ∪ merge−−−→⊆ visk, the first constraint is satisfied.

Now, by definition, visk+1 = visk ∪ (visk;
R−→) ∪ (visk;

merge−−−→). Hoewever since visk′ = visk

for all k′ > k, it follows that, visk+1 = visk ∪ (visk;
R−→) ∪ (visk;

merge−−−→) = visk.

From this we can see that (visk;
R−→) ⊆ visk and (visk;

merge−−−→) ⊆ visk.

Thus, the second and the third constraints are satisfied.

We now need to show if vis is the visibility relation, then, visk = vis.

Note that since by definition the visibility relation vis is the minimal relation satisfying

the three constraints, we have vis ⊆ visk.

If we show that visk ⊆ vis, it follows that vis = visk.

We shall show that each i ≥ 0, visi ⊆ vis.

For i = 0, vis0 =
R−→ ∪ broadcast−−−−−→ ∪ merge−−−→⊆ vis Hence, the result holds for i = 0. Let us

assume that the result holds for all i < n.

By definition, visn = visn−1 ∪ (visn−1;
R−→) ∪ (visn−1;

merge−−−→)

• By induction hypothesis, visn−1 ⊆ vis.

• Since visn−1 ⊆ vis, it can be seen that (visn−1;
R−→) ⊆ (vis;

R−→). Since vis satisfies the

second constraint, we have (vis;
R−→) ⊆ vis. Thus (visn−1;

R−→) ⊆ vis

• Since visn−1 ⊆ vis, It can be seen that (visn−1;
merge−−−→) ⊆ (vis;

merge−−−→). Since vis satisfies

the third constraint, we have (vis;
merge−−−→) ⊆ vis. Thus (visn−1;

merge−−−→) ⊆ vis

From this, it can be seen that visn ⊆ vis.

Thus, by the principle of mathematical induction, for all i ≥ 0, visi ⊆ vis. In particular,

visk ⊆ vis.

Thus, since vis ⊆ visk and visk ⊆ vis it follows that vis = visk.

Thus, the visibility relation for a given run is uniquely computable.

We can intuit that when a run of a replicated data type is extended with newer operations,

the events corresponding to these newer operations in the trace of the extended run do not

become visible to the events of the trace of the original run. Nor do the events which were

visible to some event in the trace of the original run cease to become visible to that event in

the trace of the extended run. Thus for a given event in a trace of a run, the set of events

that are visible to it remains fixed in the trace of any extension of the run. We formally

prove this through this next proposition.

104

Proposition 81. Let α = (ρ, ϕ) be a run. Let α′ = (ρ′, ϕ′) be a prefix of α with ρ′ =

ρ[1, . . . , i] and ϕ′ = ϕ|ρ′ for some i < |ρ|. Let (Eρ, vis) be the trace of α and let (Eρ′ , vis′) be

the trace over α′.

Then, vis′ = vis|Eρ′

Proof. Let
R−→
′

and
R−→ denote the replica order over α′ and α respectively.

Let
broadcast−−−−−→

′
and

broadcast−−−−−→ respectively denote the broadcast order for α′ and α respec-

tively.

Let
merge−−−→

′
and

merge−−−→ denote the merge order for α′ and α respectively.

It can be seen that
R−→
′
=
R−→ |Eρ′ ,

broadcast−−−−−→
′
=

broadcast−−−−−→ |Eρ′ and
merge−−−→

′
=

merge−−−→ |Eρ′ .
From Proposition 80, vis′ and vis can be uniquely computed through an iterative proce-

dure.

Let vis′j and visj denote the subsets of vis′ and vis respectively after the jth iterations.

We shall show that for each j ≥ 0, vis′j = visj|Eρ′ .

vis′0 =
R−→
′
∪ broadcast−−−−−→

′
∪ merge−−−→

′
= (

R−→ |Eρ′) ∪ (
broadcast−−−−−→ |Eρ′) ∪ (

merge−−−→ |Eρ′) = (
R−→ ∪ broadcast−−−−−→

∪ merge−−−→)|Eρ′ = vis0|Eρ′ . Thus, the result holds for j = 0.

Assume that the result holds for all j < n.

By definition, vis′n = vis′n−1 ∪ (vis′n−1;
R−→
′
) ∪ (vis′n−1;

merge−−−→
′
). By inductive hypothesis and

the definitions of
R−→
′

and
merge−−−→

′
, we can rewrite this as

vis′n = (visn−1|Eρ′) ∪ ((visn−1|Eρ′); (
R−→ |Eρ′)) ∪ ((visn−1|Eρ′); (

merge−−−→ |Eρ′)).

Now, it can be seen that ((visn−1|Eρ′); (
R−→ |Eρ′)) ⊆ (visn−1;

R−→)|Eρ′ .

Suppose (ek, ek′) ∈ (visn−1;
R−→)|Eρ′ . Then, ek, ek′ ∈ Eρ′ . Since ρ′ = ρ[1, . . . , i], it follows

that k, k′ ≤ i. Again, since (ek, ek′) ∈ (visn−1;
R−→), here exists a k′′ such that (ek, ek′′) ∈ visn−1

and (ek′′ , ek′) ∈
R−→. Since (ek′′ , ek′) ∈

R−→, it follows that k′′ < k′. Thus, k′′ < i which implies

that ek′′ ∈ Eρ′ .
Thus, (ek, ek′) ∈ (visn−1|Eρ′); (

R−→ |Eρ′).

Since ek and ek′ were arbitrary events such that, (ek, ek′) ∈ (visn−1;
R−→)|Eρ′ , it follows that

(visn−1;
R−→)|Eρ′ ⊆ (visn−1|Eρ′); (

R−→ |Eρ′).

Thus, we have (visn−1|Eρ′); (
R−→ |Eρ′) = (visn−1;

R−→)|Eρ′ .

Using similar line of reasoning, replacing
R−→ with

merge−−−→, we can show that

(visn−1|Eρ′); (
merge−−−→ |Eρ′) = (visn−1;

merge−−−→)|Eρ′ .

From this, we can see that vis′n = (visn−1|Eρ′) ∪ (visn−1;
R−→)|Eρ′ ∪ (visn−1;

merge−−−→)|Eρ′ .

From this, vis′n = (visn−1 ∪ (visn−1;
R−→) ∪ (visn−1;

merge−−−→))|Eρ′ = visn|Eρ′ .
Thus it follows that, for all j ≥ 0, vis′j = visj|Eρ′ which implies that vis′ = vis|Eρ′ .

105

Init

all

A

r1

B

r1

D

r1

J

r4

K

r4

M

r4

C

r2

E

r2

F

r2

G

r2

Figure 4.5: Visible event set of event M

The set of events visible to any replcia at any point in the round would involve identifying

the latest event of the replica at that point in the run and determining the set of events that

are visible to that latest event. We formally define this set of events as the visible events set

of that event. For example, the Figure 4.5 shows the visible event set of the replica r4 at the

end of the operation M. This includes the operations {Init , A,B,C,D,E, F,G, J,K,M}.

Definition 82 (Visible Event Set). Given the trace (Eρ, vis) of a run α = (ρ, ϕ), for any

event ei ∈ Eρ, we define the visible event set of ei, denoted by vis−1(ei), to be the set of all

the events visible to ei, i.e vis−1(ei) = {ej ∈ Eρ | ej
vis−→ ei}.

We note that when a run is extended with a new operation, the visible event set of the

event corresponding to the new operation includes the visible event set of the predecessors

of that event. We now show how the visible event set of an event can be computed from the

visible event sets of its immediate predecessors in the visibility relation. (Note: An event

can have more than one immediate predecessors as per the visibility relation. In the case of

an update-receive event, its immediate predecessors would be the latest event of that same

replica prior to the update-receive event, and the remote update event corresponding to the

update-receive event. Same is the case with a merge-receive event. All other types of events

will have a unique predecessor, being the latest event on the source replica prior to them).

Proposition 83. Let α = (ρ, ϕ) be a run. Let i and j be integers such that j < i ≤ |ρ| and

Rep(ρ[i]) = Rep(ρ[j]) and for all k : j < k < i, Rep(ρ[k]) 6= Rep(ρ[i]). Then,

106

vis−1(ei) =

vis−1(ej) ∪ {ei} if Op(ei) ∈ Queries ∪ Updates ∪ {usend,msend}
vis−1(ej) ∪ {ϕ(ei)} ∪ {ei} if Op(ei) = ureceive

vis−1(ej) ∪ vis−1(ϕ(ei)) ∪ {ei} if Op(ei) = mreceive

Proof. We shall prove the following direction of containment first

vis−1(ei) ⊇

vis−1(ej) ∪ {ei} if Op(ei) ∈ Queries ∪ Updates ∪ {usend,msend}
vis−1(ej) ∪ {ϕ(ei)} ∪ {ei} if Op(ei) = ureceive

vis−1(ej) ∪ vis−1(ϕ(ei)) ∪ {ei} if Op(ei) = mreceive

We consider the following cases

Op(ρ[i]) ∈ Queries ∪ Updates ∪ {usend,msend}: Note that if some ek ∈ vis−1(ej) then since

ej
Rep(ei)−−−−→ ei and vis;

R−→⊆ vis, we have ek ∈ vis−1(ei). By defintion, ei ∈ vis−1(ei). Thus,

vis−1(ej) ∪ {ei} ⊆ vis−1(ei).

Op(ρ[i]) = ureceive: If ek ∈ vis−1(ej) then since ej
Rep(ei)−−−−→ ei and vis;

R−→⊆ vis, we have

ek ∈ vis−1(ei) Thus vis−1(ej) ⊆ vis−1(ei). Since ϕ(ei)
broadcast−−−−−→ ei and

broadcast−−−−−→⊆ vis, we

have ϕ(ei) ∈ vis−1(ei). By definition, ei ∈ vis−1(ei). Thus, vis−1(ej) ∪ {ϕ(ei)} ∪ {ei} ⊆
vis−1(ei).

Op(ρ[i]) = mreceive: If ek ∈ vis−1(ej) then since ej
Rep(ei)−−−−→ ei and vis;

R−→⊆ vis, we have

ek ∈ vis−1(ei) Thus vis−1(ej) ⊆ vis−1(ei). Since ϕ(ei)
merge−−−→ ei and vis;

merge−−−→⊆ vis,

for any ek ∈ vis−1(ϕ(ei)), we have ek ∈ vis−1(ei). Thus vis−1(ϕ(ei)) ⊆ vis−1(ei). By

defintion, ei ∈ vis−1(ei). Thus, vis−1(ej) ∪ vis−1(ϕ(ei)) ∪ {ei} ⊆ vis−1(ei).

Thus, having proved one direction of the equality, to prove the result, it sufficies to prove

that

vis−1(ei) ⊆

vis−1(ej) ∪ {ei} if Op(ei) ∈ Queries ∪ Updates ∪ {usend,msend}
vis−1(ej) ∪ {ϕ(ei)} ∪ {ei} if Op(ei) = ureceive

vis−1(ej) ∪ vis−1(ϕ(ei)) ∪ {ei} if Op(ei) = mreceive

Let vis−1
n (ei) = {ek | ek

visn−−→ ej}. We shall show by induction that for each n ≥ 0,

vis−1
n (ei) ⊆

vis−1

n (ej) ∪ {ei} if Op(ei) ∈ Queries ∪ Updates ∪ {usend,msend}
vis−1

n (ej) ∪ {ϕ(ei)} ∪ {ei} if Op(ei) = ureceive

vis−1
n (ej) ∪ vis−1

n (ϕ(ei)) ∪ {ei} if Op(ei) = mreceive

For n = 0, recall that vis0 =
R−→ ∪ broadcast−−−−−→ ∪ merge−−−→. We consider the following cases

107

Op(ρ[i]) ∈ Queries ∪ Updates ∪ {usend,msend}: Note that in this case there is no event ek

such that ek
broadcast−−−−−→ ei or ek

merge−−−→ ei.

Thus, ek ∈ vis−1
0 (ei) =⇒ ek

Rep(ei)−−−−→ ei or ek = ei.

If ek
Rep(ei)−−−−→ ei, then either ek = ej or ek

Rep(ei)−−−−→ ej. In both these cases ek ∈ vis−1
0 (ej).

Thus, ek ∈ vis−1
0 (ei) =⇒ ek ∈ vis−1

0 (ej) ∪ {ei}. Thus vis−1
0 (ei) ⊆ vis−1

0 (ej) ∪ {ei}

Op(ρ[i]) = ureceive: In this case there is no event ek such that ek
merge−−−→ ei. Thus, if

ek ∈ vis−1
0 (ei) then either ek = ei or ek

Rep(ei)−−−−→ ei or ek
broadcast−−−−−→ ei.

If ek
Rep(ei)−−−−→ ei then using the reasoning from the previous case we have ek ∈ vis−1

0 (ej).

If ek
broadcast−−−−−→ ei then ek = ϕ(ei).

Thus, ek ∈ vis−1
0 (ei) =⇒ ek ∈ vis−1

0 (ej) ∪ {ϕ(ei)} ∪ {ei}.

Thus vis−1
0 (ei) ⊆ vis−1

0 (ej) ∪ {ϕ(ei)} ∪ {ei}

Op(ρ[i]) = mreceive: In this case there is no event ek such that ek
broadcast−−−−−→ ei. Thus, if

ek ∈ vis−1
0 (ei) then either ek

Rep(ei)−−−−→ ei or ek
merge−−−→ ei or ek = ei.

If ek
Rep(ei)−−−−→ ei then using the reasoning from the first case we have ek ∈ vis−1

0 (ej). If

ek
merge−−−→ ei then ek = ϕ(ei) and thus ek ∈ vis−1

0 (ϕ(ei)).

Thus, ek ∈ vis−1
0 (ei) =⇒ ek ∈ vis−1

0 (ej) ∪ vis−1
0 (ϕ(ei)) ∪ {ei}.

Hence in this case we have vis−1
0 (ei) ⊆ vis−1

0 (ej) ∪ vis−1
0 (ϕ(ei)) ∪ {ei}

Thus, the result holds for n = 0. Suppose the result holds for all integers smaller than

n. We shall now show that the result holds for n as well. Recall that

visn = visn−1 ∪ visn−1;
R−→ ∪visn−1;

merge−−−→

Op(ρ[i]) ∈ Queries ∪ Updates ∪ {usend,msend}: Note that in this case for no ek is it the

case that ek
broadcast−−−−−→ ei or ek

merge−−−→ ei.

Thus if ek ∈ vis−1
n (ei) then either ek ∈ vis−1

n−1(ei) or there exists ek′ such that ek
visn−1−−−→

ek′
Rep(ei)−−−−→ ei.

Now if ek ∈ vis−1
n−1(ei) by induction hypothesis, ek ∈ vis−1

n−1(ej)∪{ei}. Since vis−1
n−1(ej) ⊆

vis−1
n (ej), this implies that in this case ek ∈ vis−1

n (ej) ∪ {ei}.

Otherwise if there exists ek′ such that ek
visn−1−−−→ ek′

Rep(ei)−−−−→ ei, then either ek′ = ej or

ek′
Rep(ei)−−−−→ ej. If ek′ = ej, then ek

visn−1−−−→ ek′ =⇒ ek
visn−1−−−→ ej =⇒ ek ∈ vis−1

n−1(ej) =⇒
ek ∈ vis−1

n (ej).

108

If ek′
Rep(ei)−−−−→ ej, then ek

visn−1−−−→ ek′
Rep(ei)−−−−→ ej =⇒ ek ∈ vis−1

n (ej).

Thus, in both these sub-cases, we have ek ∈ vis−1
n (ej).

From this we can conclude that for Op(ei) ∈ Queries ∪ Updates ∪ {usend,msend}
ek ∈ vis−1

n (ei) =⇒ ek ∈ vis−1
n (ej) ∪ {ei}. Thus vis−1

n (ei) ⊆ vis−1
n (ei) ∪ {ei}.

Op(ρ[i]) = ureceive: In this case for no ek we have ek
merge−−−→ ei. Thus, if ek ∈ vis−1

n (ei) then

either ek ∈ vis−1
n−1(ei) or there exists ek′ such that ek

visn−1−−−→ ek′
Rep(ei)−−−−→ ei.

If ek ∈ vis−1
n−1(ei), by induction hypothesis, ek ∈ vis−1

n−1(ej) ∪ {ϕ(ei)} ∪ {ei} since

vis−1
n−1(ej) ⊆ vis−1

n (ej), this implies that ek ∈ vis−1
n (ej) ∪ {ϕ(ei)} ∪ {ei}

Otherwise if there exists ek′ such that ek
visn−1−−−→ ek′′

Rep(ei)−−−−→ ei, then using the reasoning

similar to the previous case we can conclude that ek ∈ vis−1
n (ej).

Thus, ek ∈ vis−1
n (ei) =⇒ ek ∈ vis−1

n (ej) ∪ {ϕ(ei)} ∪ {ei}.
Thus in this case vis−1

n (ei) ⊆ vis−1
n (ei) ∪ {ϕ(ei)} ∪ {ei}.

Op(ρ[i]) = mreceive: In this case, if ek ∈ vis−1
n (ei) then either ek ∈ vis−1

n−1(ei) or there exists

ek′ such that ek
visn−1−−−→ ek′

Rep(ei)−−−−→ ei or there exists a ek′′ such that ek
visn−1−−−→ ek′′

merge−−−→ ei.

If ek ∈ vis−1
n−1(ei), by induction hypothesis, ek ∈ vis−1

n−1(ej) ∪ vis−1
n−1(ϕ(ei)) ∪ {ei}. Since

vis−1
n−1(ej) ⊆ vis−1

n (ej) and vis−1
n−1(ϕ(ei)) ⊆ vis−1

n (ϕ(ei)), this implies that ek ∈ vis−1
n (ej)∪

vis−1
n (ϕ(ei)) ∪ {ei}.

Otherwise if there exists ek′ such that ek
visn−1−−−→ ek′

Rep(ei)−−−−→ ei, then using the reasoning

similar to the first case we can conclude that ek ∈ vis−1
n (ej).

Finally if there exists ek′′ such that ek
visn−1−−−→ ek′′

merge−−−→ ei, then, ek′′ = ϕ(ei). Thus,

ek
visn−1−−−→ ek′′ =⇒ ek

visn−1−−−→ ϕ(ei) =⇒ ek
visn−−→ ϕ(ei) =⇒ ek ∈ vis−1

n (ϕ(ei))

Thus, ek ∈ vis−1
n (ei) =⇒ ek ∈ vis−1

n (ej) ∪ vis−1
n (ϕ(ei)) ∪ {ei}.

Thus in this case vis−1
n (ei) ⊆ vis−1

n (ei) ∪ vis−1
n (ϕ(ei)) ∪ {ei}.

Thus, by the principle of mathematical induction we have shown that for each n ≥ 0,

vis−1
n (ei) ⊆

vis−1

n (ej) ∪ {ei} if Op(ei) ∈ Queries ∪ Updates ∪ {usend,msend}
vis−1

n (ej) ∪ {ϕ(ei)} ∪ {ei} if Op(ei) = ureceive

vis−1
n (ej) ∪ vis−1

n (ϕ(ei)) ∪ {ei} if Op(ei) = mreceive

With this we have shown that

vis−1(ei) =

vis−1(ej) ∪ {ei} if Op(ei) ∈ Queries ∪ Updates ∪ {usend,msend}
vis−1(ej) ∪ {ϕ(ei)} ∪ {ei} if Op(ei) = ureceive

vis−1(ej) ∪ vis−1(ϕ(ei)) ∪ {ei} if Op(ei) = mreceive

109

The abstract specification of the replicated data type should explain the observable be-

haviour of that replicated data types. The observable behaviour would be the response of

a query operation submitted to some replica in a run. The abstract specification should

provide this response as a function of the update operations that were visible to the replica

at that point in the run. This is because only the update methods result in change of the

state of the data type. The update-receive, merge-send and merge-receive are operations

which are defined by the implementation, but they are not methods defined by the abstract

replicated data type. In the trace of a run, the visible event set of an event may consist of all

kinds of events, including the ones corresponding to query operations, and communication

operations apart from the update operations. Thus, for the purpose of defining the abstract

specification, we are interested only in the subset of update events from the visible event set

of an event. This subset is known as an ideal of that event. Before we formally define an

ideal we set up the following notation.

Suppose α = (ρ, ϕ) is a run and (Eρ, vis) is its trace. Let E ⊆ Eρ be some subset of events.

Then,

• E|Updates = {ei ∈ E | Op(ei) ∈ Updates}

• E|Queries = {ei ∈ E | Op(ei) ∈ Queries}

• E|(Queries∪Updates) = E|Queries ∪ E|Updates

Definition 84 (Ideal of an event). Let T = (Eρ, vis) be a trace of some run. Let e ∈ Eρ.
Then the ideal of e in the trace T , denoted by IdealT (e) is the set of update events visible to

e.

IdealT (e) = vis−1(e)|Updates

For example, the Figure 4.6 shows the Ideal of the event M contains the update operations

{Init , A,B,D,E}.
Here, we recall that the causal past of an operation is the set of update operations in the

run which were delivered at the source replica of that operation at that point in the run.

The causal past plays an important role in determining if the implementation of a replicated

data type satisfies strong eventual consistency. We now show that in the trace of a run, the

causal past of an operation in a run corresponds to the ideal of the corresponding event in

the trace.

Proposition 85. Let α = (ρ, ϕ) be a run. Let Eρ be the set of events corresponding to the

operations in ρ. Then for j ≤ i ≤ |ρ|,

ρ[j] ∈ Pastα(ρ[i]) ⇐⇒ ej ∈ IdealT (ei)

110

Init

all

A

r1

B

r1

D

r1

M

r4

E

r2

Figure 4.6: Ideal of the event M

Proof. We shall prove this by induction over the length of ρ. For a n = 0 with just the

initialization operation, the result trivially holds.

Let us assume that the result is true for all runs of length at most n− 1.

Consider a run α = (ρ, ϕ) with |ρ| = n. Let T = (E , vis) be its trace.

Suppose there exists j ≤ i < n, such that ρ[j] ∈ Pastα(ρ[i]). If we consider the prefix run

α′ = (ρ′, ϕ′) with ρ′ = ρ[1, . . . , i] and ϕ′ = ϕ|ρ′ . Then, we have ρ[j] = ρ′[j] ∈ Pastα′(ρ
′[i]).

Let T ′ = (E ′, vis′) be the trace of α′.

For j ≤ i < n, we have,

ρ[j] ∈ Pastα(ρ[i]) ⇐⇒ ρ′[j] ∈ Pastα′(ρ
′[i]) [Since ρ′ is a prefix of ρ and |ρ′| = i]

⇐⇒ ej ∈ IdealT ′(ei) [By Induction Hypothesis]

⇐⇒ ej ∈ vis′−1(ei)|Updates [By Definition of an Ideal]

⇐⇒ ej ∈ vis−1(ei)|Updates [Since vis′ = vis|E ′ and ei, ej ∈ E ′]
⇐⇒ ej ∈ IdealT (ei)

Thus for j ≤ i < n, the result is proved.

We now consider the case when i = n. It suffices to prove that for all j ≤ n,

ρ[j] ∈ Pastα(ρ[n]) ⇐⇒ ej ∈ IdealT (en).

Let k < n be the largest integer such that Rep(ρ[k]) = Rep(ρ[n]).

We consider the following cases.

111

Op(en) ∈ Queries ∪ {msend,usend}: In this case Pastα(ρ[n]) = Pastα(ρ[k]).

ρ[j] ∈ Pastα(ρ[n]) ⇐⇒ ρ[j] ∈ Pastα(ρ[k]) [By definition]

⇐⇒ ej ∈ IdealT (ek) [By induction hypothesis]

⇐⇒ ej ∈ vis−1(ek)|Updates [By definition of ideal]

⇐⇒ ej ∈ (vis−1(ek) ∪ {en})|Updates
[Since en is not an update event]

⇐⇒ ej ∈ vis−1(en)|Updates [proposition 83]

⇐⇒ ej ∈ IdealT (ei) [By definition]

Op(en) ∈ Updates: In this case,

Pastα(ρ[n]) = Pastα(ρ[k]) ∪ {ρ[n]}

. And ρ[j] = ρ[n] if and only if ej = en.

ρ[j] ∈ Pastα(ρ[n]) ⇐⇒ ρ[j] ∈ Pastα(ρ[k]) ∪ {ρ[n]} [By definition]

⇐⇒ ej ∈ (IdealT (ek) ∪ {en}) [By induction hypothesis]

⇐⇒ ej ∈ (vis−1(ek)|Updates ∪ {en}) [By definition of an Ideal]

⇐⇒ ej ∈ (vis−1(ek) ∪ {en})|Updates [Since en is an update event]

⇐⇒ ej ∈ vis−1(en)|Updates [proposition 83]

⇐⇒ ej ∈ IdealT (ei) [By definition]

Op(en) = ureceive : Let ϕ(ρ[n]) = ρ[k′]. In this case,

Pastα(ρ[n]) = Pastα(ρ[k]) ∪ {ρ[k′]}

112

. And ρ[j] = ρ[k′] if and only if ej = ek′ .

ρ[j] ∈ Pastα(ρ[n]) ⇐⇒ ρ[j] ∈ Pastα(ρ[k]) ∪ {ϕ(ρ[n])} [By definition]

⇐⇒ ρ[j] ∈ Pastα(ρ[k]) ∪ {ρ[k′]} [Since ϕ(ρ[n]) = ρ[k′]]

⇐⇒ ej ∈ (IdealT (ek) ∪ {ek′}) [By induction hypothesis]

⇐⇒ ej ∈ (vis−1(ek)|Updates ∪ {ek′}) [By definition of the Ideal]

⇐⇒ ej ∈ (vis−1(ek) ∪ {ek′})|Updates
[Since ek′ is an update event]

⇐⇒ ej ∈ (vis−1(ek) ∪ {ek′} ∪ {en})|Updates
[Since en is not an update event]

⇐⇒ ej ∈ vis−1(en)|Updates [Proposition 83]

⇐⇒ ej ∈ IdealT (ei) [By definition]

Op(en) = mreceive : Let ϕ(ρ[n]) = ρ[k′].

Pastα(ρ[n]) = Pastα(ρ[k]) ∪ Pastα(ρ[k′]).

ρ[j] ∈ Pastα(ρ[n]) ⇐⇒ ρ[j] ∈ Pastα(ρ[k]) ∪ Pastα(ϕ(ρ[n])) [By definition]

⇐⇒ ρ[j] ∈ Pastα(ρ[k]) ∪ Pastα(ρ[k′]) [By definition]

⇐⇒ ej ∈ IdealT (ek) ∪ IdealT (ek′) [By induction hypothesis]

⇐⇒ ej ∈ vis−1(ek)|Updates ∪ vis−1(ek′)|Updates [By definition]

⇐⇒ ej ∈ (vis−1(ek) ∪ vis−1(ek′))|Updates
[By property of restriction |Updates]

⇐⇒ ej ∈ (vis−1(ek) ∪ vis−1(ek′) ∪ {en})|Updates
[Since en is not an update event]

⇐⇒ ej ∈ vis−1(en)|Updates [Proposition 83]

⇐⇒ ej ∈ IdealT (ei) [By definition]

Thus, in each of these cases we have shown that for all j ≤ n, ρ[j] ∈ Pastα(ρ[n]) ⇐⇒
ej ∈ IdealT (en). Thus, the result is true when |ρ| = n.

By principle of mathematical induction, the for all runs α = (ρ, ϕ), for all j ≤ i ≤ |ρ|,

ρ[j] ∈ Pastα(ρ[i]) ⇐⇒ ej ∈ IdealT (ei)

113

Thus, the ideal of an event captures the causal past of the corresponding operation. In

the following corollary we show that for a pair of update events of a run, the visibility relation

captures happened-before relation between the corresponding update operations.

Corollary 86. Let α = (ρ, ϕ) be a run. Let Eρ be the set of events corresponding to the

operations in ρ. Then, for any pair of update operations ρ[i], ρ[j], ρ[i]
hb−→ ρ[j] iff ei

vis−→ ej.

Proof. Let Rep(ρ[j]) = r.

By definition ρ[i]
hb−→ ρ[j] iff ρ[i] ∈ Pastα(ρ[j]). From Proposition 85 this is true iff

ei
vis−→ ej.

Note that in a run α = (ρ, ϕ) where the updates are causally delivered, for any three

update operations ρ[i], ρ[j] and ρ[k], if ρ[i] happened-before ρ[j] and ρ[j] happened-before

ρ[k], then, by causal delivery, ρ[i] would have happened-before ρ[k]. Thus the causal past of

any operation would be downward closed under the happened-before relation. Since in the

trace representation of a run, the ideal of an event corresponds to the causal past of the

corresponding operation of an event, we can define the notion of a downward closed ideal

with respect to the visibility relation.

Definition 87 (Downward closed Ideal). Let T = (E , vis) be a trace of some run. Let e ∈ E
be some event. Then, IdealT (e) is said to be downward closed with respect to vis iff for any

pair of update events e′′, e′, such that e′′
vis−→ e′ and e′ ∈ IdealT (e), we have e′′ ∈ IdealT (e).

We now show that in the trace of any causally-delivered run, all the ideals are downward

closed with respect to the visibility relation.

Proposition 88. Let T = (E , vis) be a trace of some causally-delivered run. Then, for every

event e ∈ E, IdealT (e) is downward closed with respect to vis.

Proof. Let α = (ρ, ϕ) be the run of T . Then, E = Eρ.
Let ek, ej be update events such that ek

vis−→ ej. Let ej ∈ IdealT (ei) for some ei ∈ E . We

need to show that ek ∈ IdealT (ei). If k = j, there is nothing to prove. Consider the case

where k 6= j.

Let Rep(ei) = r. Let Rep(ej) = r′.

Since ej ∈ IdealT (ei) and by definition IdealT (ei) = vis−1(ei)|Updates, by proposition 85,

ρ[j] ∈ Pastα(ρ[i]).

Since ek
vis−→ ej, from proposition 85, ρ[k] ∈ Pastα(ρ[j]).

Since α is a causally delivered run, ρ[j] ∈ Pastα(ρ[i]) =⇒ Pastα(ρ[j]) ⊆ Pastα(ρ[i]).

Thus, ρ[k] ∈ Pastα(ρ[i]). Again from proposition 85, ek ∈ vis−1(ei)|Updates = IdealT (ei).

Since ei, ej, ek were arbitrary events chosen, for all the events in T , the ideal is downward

closed with respect to vis.

114

As a corollary to this proposition we can show the following interesting property for traces

of causally-delivered runs where the ideal of an update receive event can be computed from

the ideal of its predecessors. We will use this later when we define reference implementations

for replicated-data types.

Corollary 89. If T = (E , vis) be a trace of a causally delivered run.

Let e be an ureceive event with Rep(e) = r. Let e′ be the immediate predecessor of e in
r−→. Then,

IdealT (e) = IdealT (e′) ∪ IdealT (ϕ(e))

Proof. From proposition 83, Now vis−1(e) = vis−1(e′) ∪ {ϕ(e)} ∪ {e}. Thus, IdealT (e) =

vis−1(e)|Updates = vis−1(e′)|Updates ∪ {ϕ(e)} = IdealT (e′) ∪ {ϕ(e)}. Since ϕ(e) ∈ IdealT (ϕ(e)),

IdealT (e) ⊆ IdealT (e′) ∪ IdealT (ϕ(e)).

Now, since, IdealT (e) = IdealT (e′) ∪ {ϕ(e)}, we have IdealT (e′) ⊆ IdealT (e).

Suppose e′′ ∈ IdealT (ϕ(e)). Then, e′′ is an update event such that e′′
vis−→ ϕ(e). Since

ϕ(e) ∈ IdealT (e), and T is a trace of a causally delivered run, IdealT (e) is downward closed

with respect to vis. Thus e′′ ∈ IdealT (e).

Since e′′ is an arbitrary member of IdealT (ϕ(e)) it implies that IdealT (ϕ(e)) ⊆ IdealT (e).

Thus, IdealT (e′) ∪ IdealT (ϕ(e)) ⊆ IdealT (e).

From this, we can conclude that IdealT (e) = IdealT (e′) ∪ IdealT (ϕ(e)).

Many a times, we are only interested in the relationship between a subset of events in the

trace of a run. For instance, we would like to know how the update events in the ideal of an

event are related to each other with respect to the visibility relation. This can be obtained

by restricting the trace over these interesting subset of events. In general, a trace restricted

to a subset of its events is known as subtrace induced by that subtrace of events.

Definition 90 (Subtrace of a Trace). Let T = (E , vis) be a trace of some run. Let E ⊆ E be

some subset of events. Let vis|E denote the visibility relation restricted to the events in E.

Then, the subtrace of the trace T induced by the subset E, denoted by TE is (E, vis|E)

The subtrace induced by the ideal of an event is of particular interest to us for defining

the abstract specification of the replicated data type. We call this subtrace the view of that

event. For example, the Figure 4.7 shows the view of the event M induced by its ideal

{Init , A,B,D,E}.

Definition 91 (View of an Event). Let T = (Eρ, vis) be a trace of some run. Let e ∈ Eρ.
The view of e in T is the subtrace generated by the ideal IdealT (e). We denote the view of

e in T by ∂T (e).

∂T (e) = (IdealT (e), vis|IdealT (e))

115

Init

all

A

r1

B

r1

D

r1

M

r4

E

r2

Figure 4.7: View of the event M

The set of all the views of a RDT D is denoted by V(D) and is defined to be

V(D) =
⋃

T∈T (D)

⋃
e∈Events(T)

∂T (e)

For some replicated data types, such as the OR-Sets, where the updates are delivered in

a causal order, or MV-Registers the observable behaviour of the data type is defined by the

latest update events in the view which do not have a successor in that view with respect to

the visibility relation. In the view of the event M in Figure 4.7, the events D and E do not

have any successors as per the visibility relation inside the view. We denote such events to

be the maximal events in the view. We shall define the maximal events in a sub-trace first.

Since a view is also a subtrace, the definition can be extended to a view as well.

Definition 92 (Maximal events in a sub-trace). Let T = (Eρ, vis) be a trace of some run.

Let TE be a subtrace of T induced by the events E ⊆ Eρ. Then set of maximal events in TE,

denoted by max (TE) is defined to be the subset of events in E that do not have a successor

with respect to the visibility relation vis in E. Thus

max (TE) = {e ∈ E : | ∀e′ ∈ E : e′
vis−→ e ∨ e′||e}

Let e be an event in T , then the set of maximal update events in the view of e in T is

denoted by max∂T (e).

116

A trace presents us with a picture of which operations were visible to other operations.

However , it does not shed any light on the manner in which the replicas arbitrate among

concurrent conflicting update events. This arbitration information might be relevant to

certain kind of replicated data types, such as the Key-Value stores, where multiple Write

operations to the same key might be visible to a Read operation, but the order in which they

were arbitrated determines what is returned by the replica as a response to the Read() query.

In practice, the replicas may choose any strategy to arbitrate between the concurrent update

operations. Popular strategies include last-writer-wins (where every update is tagged with a

timestamp and the replicas arbitrate among on the maximal update events to pick the event

with the greatest timestamp) or picking the arbitrating the update based on the greatest

replica-id. We now formally define arbitration strategy which provides an total order known

as arbitration relation over the events of a trace of a given run.

Definition 93 (Arbitration Strategy and Arbitration relation). Let T = (E , vis) be a trace

of a run α = (ρ, ϕ). Then, we define an arbitration strategy to be a function Farb(α, T) which

generates a total order arb over the update events in E such that vis|Updates ⊆ arb. This total

order arb is said to be an arbitration relation over α.

We say that an arbitration strategy Farb() is consistent if for any prefix α′ of α whose

trace is T ′ = (E ′, vis′), if arb′ = Farb(α
′, T ′), then, it is the case that arb′ = arb|E ′.

Given a subset of update events E ⊆ E|Updates and an arbitration relation arb over the

update events in E, we can determine the unique maximum event in E with respect to the

arbitration relation. We denote this maximum event as max arb(E) which can be defined as

max arb(E) = e ∈ E ⇐⇒ ∀e′ ∈ E : e′
arb−→ e

A run has a unique trace associated with it, since the visibility relation is obtained from

the replica-order, the broadcast-order and the merge-order which are derived from the run.

However, an arbitration relation is dependent on the arbitration-strategy which is implemen-

tation dependent. Hence, in order to reason about the behaviours of the implementations

of such replicated data types that rely upon an arbitration strategy, we need to include the

arbitration relation in our model along with the trace of a run. Hence we define an execution

of a run which contains both the trace of a run and the arbitration relation over the events

of the trace.

Definition 94 (Execution of a Run). Let α = (ρ, ϕ) be a valid run of a replicated data-type.

Let arbitration strategy function Farb(). Let T = (E , vis) be the trace of α. Let arb = Farb(α, T)

be the arbitration relation over T defined by Farb

Then an execution of this run is the tuple A(α, arb) = (Eρ, vis, arb), where (Eρ, vis) is the

trace of α and arb is an arbitration order over the trace (Eρ, vis)
The set of all the executions of all the runs of a replicated data type D, denoted by A(D)

is defined to be the set
⋃

α∈Runs(D)

⋃
arb over T (α)

A(α, arb).

117

Note that the observable behavior of a replica at any point in the run is based on the

view of the latest event of the replica in the trace of the run. In case of implementations

that depend on arbitrating among the update events, it would also depend on the arbitration

relation over the update events in that view. In order to model this, we define the context

of an event in an execution.

Definition 95 (Context). Let A = (Eρ, vis, arb) be an execution of D. Let the corresponding

trace be T = (Eρ, vis). Let e ∈ Eρ be some event.

Then the Context of event e, written as CtxtA(e) is the the sub-execution of A restricted

to IdealT (e). Thus

CtxtA(e) = (Eρ|IdealT (e), vis|IdealT (e), arb|IdealT (e))

Set of all contexts of D, denoted by Ctxt(D), is defined to be
⋃
A∈A(D)

⋃
e∈Events(A) CtxtA(e).

We say that a pair of context U = (E , vis, arb) and U ′ = (E ′, vis′, arb′) where U,U ′ ∈
Ctxt(D) are isomorphic if there exists a bijective map g : E → E ′ such that for all e ∈ E

Op(e) = Op(g(e)) ∧ Args(e) = Args(g(e))

and for all e1, e2 ∈ E,we have

e1
vis−→ e2 ⇐⇒ g(e1)

vis′−→ g(e2) ∧ e1
arb−→ e2 ⇐⇒ g(e1)

arb′−−→ g(e2)

Thus, a pair of isomorphic contexts are identical, except that the corresponding update

events in the two context may have different source replicas.

Note that any run of a replicated data type can be extended by a query operation

performed at of the replicas in the system. The abstract specification of the data type should

tell us what should the response of this query be if it is performed at the replica at that point

in the run. The abstract specification should be able to inform this based on the update

operations that are visible to the replica at that point, the visibility relation between the

update operations themselves. In case the implementation requires an arbitration strategy

to answer the query, the abstract specification should also take that arbitration strategy into

consideration. For a given arbitration strategy, the context of an event in an execution of a

run contains all this relevant information. Thus, we now define the declarative specification

for a replicated data-type in terms of the return value of the query when that query is applied

to a particular context.

Definition 96 (Specification of an RDT [Burckhardt, 2014]). A specification of a replicated

datatype D is a function

SpecD : Ctxt(D)× Queries× Univ∗ → Rets

118

which given a context and a query and some valid argument to the query provides the value

that the query should return when applied at this context such that for any pair of isomorphic

contexts U,U ′ and any query q and any valid arguments to the query arg

SpecD(U, q, arg) = SpecD(U ′, q, arg)

Thus a specification defines the observable behaviour of a replicated data-type in an

implementation-independent manner. We will define a particular kind of specification called

the arbitration agnostic specification, which we shall be using in this and the subsequent

chapters. These specification do not depend on the arbitration relation of a context to

determine what should be the return value of a query when applied to a context.

Definition 97 (Arbitration Agnostic Specification). A specification SpecD is said to be ar-

bitration agnostic if for every query q ∈ Queries and every valid argument arg ∈ Univ∗, for

any pair of contexts U = (E , vis, arb) and U ′ = (E ′, vis′, arb′) such that E = E ′ and vis = vis,

we have SpecD(U, q, arg) = SpecD(U ′, q, arg)

Thus an arbitration-agnostic specification is the function SpecD : V(D)×Queries×Univ∗ →
Rets.

4.2.1 Specifications of popular replicated data types

We shall now provide declarative specifications of some of the popular CRDTs.

PN counters

A PN counter is a replicated counter which allows clients to increment the value of a counter

by 1 via the method Inc() and decrement the value of the counter by one via the method

Dec(). It also allows the clients to know the current value of the counter via the method

Fetch(). In an operation-based implementation of the PN Counter, the replicas on receiving

an Inc() (respectively Dec()) request from the clients will update their local state to reflect

the state change following the increment (respectively decrement). They will then propa-

gate some auxiliary information which will help the remote replicas modify their respective

local states to incorporate this latest increment (respectively decrement). In a state-based

implementation of the PN Counter, when the replica receives an Inc() (respectively Dec())

request, it updates the local state to incorporate the increment (respectively decrement) into

the state. From time to time, the replicas share their entire state with other replicas and the

recepient replicas will update their state so that the value of the counter corresponds to the

total number of unique increments and decrements requests seen by replica and the sender

of the merge. When a replica receives a Fetch() requests, it returns the value of the counter

that it is currently aware of. Below, we provide an arbitration agnostic specification for the

PN-Counter.

119

• Updates = {Inc,Dec}

• Queries = {Fetch} and arity(Fetch) = 0

• Specification: Let V be a view in the trace T of a well-defined run of PN-Counters.

Let I(V) = {e ∈ T | Op(e) = Inc} and D(V) = {e ∈ V | Op(e) = Dec}.

SpecCounter(V, Fetch,⊥) = |I(V)| − |D(V)|

LWW registers

An Last Writer Wins (LWW) register is a replicated read-write register. It provides a method

named Write which allows the clients to modify the state of the register and a method named

as Read to query the current state of the register. Since there could be concurrent writes to

the register, in order for the state to eventually converge, all the replicas should agree on

the order in which the concurrent write operations are applied. Thus, the implementations

will follow an arbitration strategy, in this case the Last Writer Wins strategy where the

replicas will typically tag every write operation with a time-stamp which is consistent with

the happened-before relation. Thus, on a Read request from a client, the replicas return the

value corresponding to the Write operation with the greatest timestamp.

• Updates = {Write}

• Queries = {Read} and arity(Read) = 0

• Specification: Let U = (E , vis, arb) be a context of in the abstract execution of a

well-defined run of LWW-registers. Let W (U) = {e ∈ E(U) | Op(e) = Write}. Then,

SpecLWWReg(U,Read ,⊥) = Args(max arb(max (U |(W (U)))))

MV Registers

A Multi-Valued Register (MV Register) is a replicated read-write register which like the LWW

Register provides a Write method to update the state of the register and a Read method to

query the state of the register. However, unlike the LWW Register, the MV Register does

not arbitrate between the concurrent writes. Instead, when a replica of the MV Register

receive a Read() request from the client, it will return a set of values corresponding to the

maximal concurrent Write requests that it is aware of. Thus, the response may contain more

than one value and it is up to the clients to perform the reconciliation by issuing a fresh

Write. The specification of the MV registers provided below is arbitration agnostic.

• Updates = {Write}

120

• Queries = {Read} and arity(Read) = 0

• Specification: Let V be a view in the trace of a well-defined run of MV-registers. Let

W (V) = {e ∈ V | Op(e) = Write}. Then,

SpecMVReg(V,Read ,⊥) =
⋃

Args(max (V |(W (V))))

OR sets

An OR set is a distributed set that follows the “add-wins” semantics for concurrent adds

and deletes of the same element. The specification of OR-Sets is arbitration agnostic.

• Updates = {add, delete}

• Queries = {contains} and arity(contains) = 1

• Specification: For an element x ∈ Univ, and a view V = (E , vis) in the trace of any

well-defined run of OR-set, we define the set Ex = {e ∈ V | x ∈ Args(e)}. Then,

SpecORSet(V, contains, x) = True ⇐⇒ ∃e ∈ Ex : Op(e) = add∧

∀e′ ∈ Ex : e
vis−→ e′ =⇒ Op(e′) 6= delete

Thus, this specification is equivalent to the specification defined in Chapter 3 (Defi-

nition 26) where at any event in the trace, a contains(x) query returns True iff there

exists an add(x) event in the view which doesn’t have a covering delete.

If the updates are causally delivered, this specification reduces to checking the existence

of maximal add(x) event in V |Ex . Thus, in the case where the updates are causally

delivered,

SpecORSet(V,Contains , x) = True ⇐⇒ ∃e ∈ max (V |Ex) : Op(e) = add

In the next subsection, we discuss the correctness of a run and an implementation of a

replicated data type with respect to its declarative specification.

4.2.2 Correctness of implementations with respect to a Specifica-

tion

A run of a replicated data type is said to be correct with respect to an abstract specification

if the return value of every query operation in the run matches the return value provided

by the abstract specification when applied to the context of the event corresponding to that

query operation in the execution of that run. We formally define it below.

121

Definition 98 (Valid Runs defined by a Specification). Let α = (ρ, ϕ) be a run of a replicated

data type D. Let T = (Eρ, vis) be its trace. Let Farb() be an arbitration strategy with

arb = Farb(α, T). Thus the context of α defined by Farb is A = (Eρ, vis, arb).

We say that α is correct with respect to a specification SpecD and the arbitration strategy

Farb() iff for all events e ∈ Eρ with Op(e) ∈ Queries we have have

Ret(e) = SpecD(CtxtA(e),Op(e),Args(e))

The set of all valid runs of the replicated data type D with respect to the specification

SpecD and an arbitration strategy Farb() is denoted by Runs(D, SpecD, Farb).

Further, if SpecD is arbitration-agnostic, then α is valid with respect to this specification

iff with T = (Eρ, vis) being the trace of α, for every event query event e ∈ Eρ we have,

Ret(e) = SpecD(∂T (e),Op(e),Args(e))

The set of all valid runs of D as per the arbitration-agnostic specification SpecD is denoted

by Runs(D, SpecD)

We can now formally define the notion of correctness of an implementation is correct

with respect to a given specification. Note that the behaviour of an implementation of a

replicated data type is the set of all its runs. Thus, for an implementation to be correct, all

its runs should be correct.

Definition 99 (Correctness of an implementation). Let DI be an implementation of D. DI
is said to be correct with respect to a specification SpecD iff

• SpecD is an arbitration agnostic specification and Runs(DI) ⊆ Runs(D, SpecD).

OR

• There exists an arbitration strategy Farb() such that

Runs(DI) ⊆ Runs(D, SpecD, Farb).

Note that at the end of some run of an implementation of a replicated data type, if a pair

of replicas have the same causal past, then, the contexts of the respective latest events of

the two replicas in any execution of the run will be identical. Thus, if that implementation

is correct with respect to a declarative specification, then any query operations performed

at these two replicas at this point will return the same result since the return value of a

query in any correct run is defined by the declarative specification of that replicated data

type and the declarative specification only concerns with the context. Thus, we can prove

the following key result that shows that any implementation of a replicated data type that

is correct with respect to the declarative specification satisfies strong eventual consistency.

122

Theorem 100. If an implementation of a replicated data is correct with respect to specifi-

cation, then it satisfies strong eventual consistency.

Proof. Suppose DI is an implementation of a replicated data-type D and it correct with

respect to a update-based specification SpecD. Then by definition, there exists an arbitration

strategyh Farb() such that Runs(DI) ⊆ Runs(D, SpecD, Farb).

Consider a run α = (ρ, ϕ) of DI . Let T = (Eρ, vis) be the trace of this run. Let

arb = Farb(α, T) be the arbitration relation over the events of this trace defined by Farb().

Thus, in the execution of the run Aα = (Eρ, vis, arb), for any query event e, Ret(e) =

SpecD(CtxtAα(e),Op(e),Args(e)).

Let q ∈ Queries be a query method and let fq() be the corresponding function provided

by DI such that whenever a query operation q is submitted with arguments args, the replica

whose state is S computes the return value fq(S, args).

Suppose there exist integers i and j with Rep(ρ[i]) = r and Rep(ρ[j]) = r′ such that

Pastα(ρ[i]) = Pastα(ρ[j]). Since q is an arbitrary query method, if we show that fq(Sri(α, i), args) =

fq(Sri(α, i), args) then it follows that Sri(α, i)
∼= Srj(α, j).

Since the runs of an implementation are prefix closed, it implies that (ρ[1, . . . , i], ϕ|[1,...,i])
and (ρ[1, . . . , j], ϕ|[1,...,j]) are valid runs of DI .

Since any valid run can be extended by a query operation applied at any site, for a

query q ∈ Queries and arg ∈ Univ∗, we can define operations o and o′ such that Rep(o) = r,

Rep(o′) = r′ with Op(o) = Op(o′) = q and Args(o) = Args(o′) = args.

Then, the run α1 = (ρ[1, . . . , i].o, ϕ|[1,...,i]) is a valid extention of (ρ[1, . . . , i], ϕ|[1,...,i]) for

some value v = Ret(o). Similarly, the run the run α2 = (ρ[1, . . . , j].o′, ϕ|[1,...,j]) is a valid

extention of (ρ[1, . . . , j], ϕ|[1,...,j]) for some value v′ = Ret(o). Thus α1, α2 ∈ Runs(DI).
To show query equivalence of states Sr(α, i) and Sr′(α, j) is same as showing query

equivalence of states Sr(α1, i+ 1) and Sr′(α2, j + 1) which is the same as showing Ret(o) =

Ret(o′).

Let E1 = Eρ[1,...,i].o and E2 = Eρ[1,...,j].o′

Let e be the query event in E1 corresponding to o and e′ be the query event in E2

corresponding to o′.

Let T1 = (E1, vis1) be the trace of α1 and T2 = (E2, vis2) be the trace of α2. Let arb1 =

arb|E1 and arb2 = arb|E2 . Let A1 = (E1, vis1, arb1) be an execution of α1 consistent with the

execution A of α. Similarly, let, A2 = (E2, vis2, arb2) be the execution of α2 that is consistent

with A of α.

Since Pastα(ρ[i]) = Pastα(ρ[j]), we have by construction, Pastα1(o) = Pastα2(o
′). By the

definition of the visibility relation, this implies that

IdealT1(e) = IdealT (ei) = IdealT (ej) = IdealT2e
′

From this, we have

123

vis1|IdealT1 (e) = vis|IdealT (ei) = vis|IdealT (ei) = vis2|IdealT2 (e′)

and

arb1|IdealT1 (e) = arb|IdealT (ei) = arb|IdealT (ei) = arb2|IdealT2 (e′)

This implies that the CtxtA1 (e) = CtxtA2 (e ′).

Thus we have,

Ret(o) = Ret(e)

= SpecD(CtxtA1 (e),Op(e),Args(e))

= SpecD(CtxtA1 (e), q , args)

= SpecD(CtxtA2 (e ′), q , args)

= SpecD(CtxtA2 (e ′),Op(e ′),Args(e ′))

= Ret(e′)

= Ret(o′)

Thus Ret(o) = Ret(o′). Since o and o′ were query events for an arbitrary query q with

an arbitrarily chosen argument arg, this is true for all queries and all arguments.

Thus, Sr(α1, i+ 1) and Sr′(α2, j + 1) are query equivalent. By construction this happens

iff Sr(α, i) and Sr′(α, j) are query-equivalent.

Thus, we have shown that in any valid run α of the implementation DI , Pastα(ρ[i]) =

Pastα(ρ[j]) =⇒ Sri(α, i)
∼= Srj(α, j).

Hence the implementation DI by satisfies Strong Eventual Consistency.

For the remainder of this thesis, we shall be focussing on the problem of verifying the

correctness of a given implementation of a replicated data-type with respect to an arbitration-

agnostic specification. Thus, in the subsequent section and the next chapter, when we use the

term context of an event in the execution, it refers to the view of that event in the trace of the

execution. From the proposition we just proved, it entails that any correct implementation

with respect to the declarative specification satisfies strong eventual consistency. In the next

section we shall provide an algorithm to construct a reference implementation of a replicated

data type from its declarative specification.

124

4.3 Reference Implementations of Replicated Data Types

from Specifications

For the purpose of effective automatic verification of a given implementation, it is reasonable

to assume that the declarative specification is a computable function. Typically such a

function would do two things :

• Based on the query method and argument to the query method, the computable func-

tion would identify the subtrace from the view to limit the scope of the decision. For

example, in the case of OR-Sets, in order to answer the query contains(x) it is sufficient

to restrict the view to only add(x) and delete(x) events in the view. The other events

are not relevant for this query. Furthermore, we can restrict our scope to only those

add(x) events which are not superceded by a delete(x) event in that view.

• Based on the subtrace of the view thus generated, the function would provide the

response of the given query and the argument. In the aforementioned example of OR-

Sets, by looking into the subtrace of view consisting of only those add(x) events which

are not superceded by a delete(x), the specification can return True for contains(x) if

and only if the subtrace computed earlier is non-empty.

Since a view of an event is a finite object, the function to extract tha relevant subtrace

from the view is computable. Furthermore, the function to provide the return value of the

query for given arguments based on this finite relevant subtrace is also computable. Thus,

the declarative specification is computable. Formally we define it as follows

Definition 101 (Computable Specification). A specification SpecD is said to be computable

if there exists computable functions

RelevantCtxt : Ctxt(D)× Queries× Univ∗ → Ctxt(D) and

ComputeRet : Ctxt(D)× Queries× Univ∗ → Rets such that

for every context U ∈ Ctxt(D), query q ∈ Queries, and arguments to the query args ∈ Univ∗

with U ′ = RelevantCtxt(U, q, args) we have

1. U ′ ⊆ U

2. SpecD(U, q, args) = ComputeRet(U ′, q, args)

3. If there exists U ′′ ∈ Ctxt(D) such that U ′ ⊆ U ′′ ⊆ U , then

U ′ = RelevantCtxt(U ′′, q, args)

4. If there exists a U ′′ that is isomorphic to U ′, then,

ComputeRet(U ′, q, args) = ComputeRet(U ′′, q, args)

125

The RelevantCtxt function extracts the relevant sub-context that is required to answer the

query, and the ComputeRet function computes the value that needs to be returned when the

query is made on the relevant context.

Condition 1 requires that the context computed by the RelevantCtxt() function be a sub-

context of the given context.

Condition 2 says that the value returned by the specification for a given context is the

value computed by the ComputeRet() function applied to the relevant context.

Condition 3 describes the consistency property of the RelevantCtxt() function. Note that

RelevantCtxt() is a filter function that retains only a subcontext of a given context that is

required to answer this query. Thus if a subcontext U ′ happens to be a relevant context of

a larger context U , then, for any other subcontext U ′′ which contains the original relevant

context U ′ and is contained in the larger context U , the relevant context of U ′′ computed by

RelevantCtxt() is exactly same as the subcontext U ′.

Condition 4 requires that ComputeRet() function, when applied to any two contexts that

are isomorphic to each other, the computed return value is identical. Thus, the ComputeRet()

is only concerned with the structure of the context and not which replicas were the update

operations applied on. This follows from the requirement that the specification function treats

any pair of isomorphic contexts alike.

Suppose SpecD is an arbitration-agnostic, update-based, computable specification. We

shall now provide an algorithm to generate an implementation of D whose runs that satisfy

causal-delivery are correct with respect to SpecD. In the next chapter, we will show how the

size of this reference implementation may be bounded in order to be used for verification of

the correctness of given implementations of replicated data types.

Definition 102 (Reference Implementation with Causal Delivery). We shall provide an op-

based implementation of the RDT D with respect to a specification SpecD. We have replicas

R = [1, . . . , N].

The state at each replica Sr is an acyclic graph Gr = (Er, visr) that corresponds to the

view at the replica restricted to only the update events. Initially ∀r ∈ R : Gr = (∅, ∅)

In Algorithm 102, the Lines 5–11 provide the implementation of the function fu corre-

sponding to the update method u. On a new update request the replica generates a new

event (line 6). The replica then adds the new event to its set of events (line 8) and adds

new edges between all the other events in the event set to the new event (line 9). This is

equivalent to updating the visibility relation. The replica then updates its set of events and

the set of edges between these events to the newly computed event set and newly computed

set of edges (line 10). The replica then broadcasts this updated event set and the edge

relation to all the other replicas (line 11).

Lines 13–17 provide the implementation of f rcv
u corresponding to the update receive

method of the update method u. The replica updates the event set and the edge set with

126

Algorithm 5 Reference Implementation of Replicated Data Type with Causal Delivery

Reference Implementation with Causal Delivery at replica r

1 Er is a set of nodes corresponding to update events. Initially ∅
2 visr is an acyclic binary relation over Er. Initially ∅
3

4 Implementation for an update method u ∈ Updates.

5 fu(arg ∈ Univ∗)

6 Let e = NewEvent().

7 Set Op(e) := u, Args(e) := arg

8 Let Enewr := Er ∪ {e}.
9 Let visnewr := visr ∪ {(e′, e) | e′ ∈ Enewr }

10 Set (Er, visr) := (Enewr , visnewr)

11 Broadcast u.send(Er, visr)
12

13 Implementation of update-receive method for the update u

14 f rcv
u ((E ′, vis′)):

15 Enewr := Er ∪ E ′
16 Let visnewr := visr ∪ vis′.

17 Set (Er, visr) := (Emerge , vismerge)

18

19 Implementation of a query q ∈ Updates at replica r.

20 fq(arg ∈ Univ∗) :

21 Let Ret = SpecD((Er, visr), q, arg)

22 return ret

127

with the set of events and the set of edges that it has received as a part of the auxiliary

information(lines 15–17).

Lines 19–22 provides the implementation of fq corresponding to the query method q. The

replica applies the specification function of the replicated data type on the context that it

maintains in the form of the event graph to compute a value (line 21) which is returned to

the client that had invoked the query method (line 22).

We will show that in any run of the reference implementation where updates are causally-

delivered, the state at every replica is the view at the replica restricted to update-events.

Lemma 103. Let α = (ρ, ϕ) be any run of the reference implementation where the updates

are causally delivered. Let Gi
r = (E ir, visir) denote the state of the replica at the end of the run

ρ[1, . . . , i]. Let T = (Eρ, vis) be the trace of α.

Let Erefer(α) =
⋃
r∈R

|ρ|⋃
i=1

E ir denote the set of all the events generated by the NewEvent()

function of the reference implementation during the course of this run.

Let g : [1, . . . , |ρ|] ⇀ Erefer(α) be a partial function that associates each update operation

with unique event generated by NewEvent() method of the reference implementation. Then if

Rep(ρ[i]) = r,

• E ir = {g(j) | ej ∈ IdealT (ei)}

• For g(j), g(k) ∈ E ir, (g(j), g(k)) ∈ visir ⇐⇒ ej
vis−→ ek.

Proof. We shall prove this by induction over |ρ|. Note that for |ρ| = 0, the result trivially

holds.

Assume that the result holds for all |ρ| < i. We now look at the case where |ρ| = i. We

consider the following cases based on the nature of the operation of ρ[i]. Let i′ < i be the

maximal integer such that Rep(ρ[i′]) = Rep(ρ[i]) = r.

Case Op(ρ[i]) ∈ Queries : In this case E ir = E i−1
r = E i′r and visir = visi−1

r = visi
′

r . Further, by

definition of the ideal, IdealT (ei) = IdealT (ei′).

By induction hypothesis, since E i′r = {g(j) | ej ∈ IdealT (ei′)}.

Thus E ir = E i′r = {g(j) | ej ∈ IdealT (ei′)} = {g(j) | ej ∈ IdealT (ei)}.

For g(j), g(k) ∈ E ir, (g(j), g(k)) ∈ visir iff g(j), g(k) ∈ E i′r and (g(j), g(k)) ∈ visi
′

r which

by induction hypothesis is true iff ej
vis−→ ek.

Case Op(ρ[i]) ∈ Updates : In this case E ir = E i′r ∪{g(i)}. Also, IdealT (ei) = IdealT (ei′)∪{ei}.

By induction hypothesis, E i′r = {g(j) | ej ∈ IdealT (ei′)}. Thus E ir = E i′r ∪ {g(i)} =

{g(j) | ej ∈ IdealT (ei′)} ∪ {g(i)} = {g(j) | ej ∈ IdealT (ei)}.

128

For j, k < i, by induction hypothesis, g(j), g(k) ∈ E i′r , we have (g(j), g(k)) ∈ visi
′

r iff

ej
vis−→ ek.

Now visir = visi
′

r ∪ {(g(j), g(i)) | g(j) ∈ E ir}

Thus, for g(j), g(k) ∈ E ir, we have (g(j), g(k)) ∈ visir iff j, k < i and (g(j), g(k)) ∈ visi
′

r

or j ≤ i, k = i and {(g(j), g(i)) | g(j) ∈ E ir}. The former is the case iff by induction

hypothesis ej
vis−→ ek. The latter is true iff ej

vis−→ ek from the fact that E ir = {g(j) | ej ∈
IdealT (ei)} and by the definition of Ideal (), ∀ej ∈ IdealT (ei), ej

vis−→ ei.

Case Op(ρ[i]) = usend Note that in this case, i′ = i − 1 and Op(ρ[i′]) ∈ Updates. E ir =

E i−1
r = E i′r and visir = visi−1

r = visi
′

r . Further, by definition of the ideal, IdealT (ei) =

IdealT (ei′).

By induction hypothesis, since E i′r = {g(j) | ej ∈ IdealT (ei′)}.

Thus E ir = E i′r = {g(j) | ej ∈ IdealT (ei′)} = {g(j) | ej ∈ IdealT (ei)}.

For g(j), g(k) ∈ E ir, (g(j), g(k)) ∈ visir iff g(j), g(k) ∈ E i′r , (g(j), g(k)) ∈ visi
′

r which by

induction hypothesis is true iff ej
vis−→ ek.

Case Op(ρ[i]) = ureceive: Let i′′ be such that ϕ(ρ[i]) = ρ[i′′]. Let Rep(ρ[i′′]) = r′′. Then,

by construction, E ir = E i′r ∪ E i
′′

r′′ . Since α is a run where all the udpates are causally

delivered, from Corollary 89 IdealT (ei) = IdealT (ei′) ∪ IdealT (ei′′). By induction hy-

pothesis, E i′r = {g(j) | ej ∈ IdealT (ei′)} and E i′′r′′ = {g(j) | ej ∈ IdealT (ei′′)}. Thus

E ir = E i′r ∪ E i
′′

r′′ = {g(j) | ej ∈ IdealT (ei′)} ∪ {g(j) | ej ∈ IdealT (ei′′)} = {g(j) | ej ∈
IdealT (ei′) ∪ IdealT (ei′′)} = {g(j) | ej ∈ IdealT (ei)}. Thus, E ir = {g(j) | ej ∈
IdealT (ei)}

From the update-receive method of the reference implementation visir = visi
′

r ∪ visi
′′

r′′ .

Now g(j), g(k) ∈ E ir iff

1. either g(j), g(k) ∈ E i′r or

2. g(j), g(k) ∈ E i′′r′′ or

3. g(j) ∈ E i′′r′′ \ E i
′
r and g(k) ∈ E i′r \ E i

′′

r′′

4. g(k) ∈ E i′′r′′ \ E i
′
r and g(j) ∈ E i′r \ E i

′′

r′′

Now, if g(j), g(k) ∈ E i′r (g(j), g(k)) ∈ visir ⇐⇒ (g(j), g(k)) ∈ visi
′

r which by induction

hypothesis is true iff ej
vis−→ ek.

Similarly, if g(j), g(k) ∈ E i′′r′′ (g(j), g(k)) ∈ visir ⇐⇒ (g(j), g(k)) ∈ visi
′′

r′′ which by

induction hypothesis is true iff ej
vis−→ ek.

129

If g(j) ∈ E i′′r′′ \ E i
′
r and g(k) ∈ E i′r \ E i

′′

r′′ or g(k) ∈ E i′′r′′ \ E i
′
r and g(j) ∈ E i′r \ E i

′′

r′′ then g(j)

and g(k) are not related in visir. Thus if we show that ej and ek are not related by vis,

the proof for this case follows.

Suppose g(j) ∈ E i′′r′′ \E i
′
r and g(k) ∈ E i′r \E i

′′

r′′ . By induction hypothesis, ej ∈ IdealT (ei′′)\
IdealT (ei′) and ek ∈ IdealT (ei′) \ IdealT (ei′′).

Now suppose ek
vis−→ ej, then, ek ∈ IdealT (ei′′) since ideals of causally delivered runs are

downward closed. But we are considering the case where ek ∈ IdealT (ei′) \ IdealT (ei′′)

and thus, ek 6∈ IdealT (ei′′). Thus it is not the case that ek
vis−→ ej.

Similarly, if it were the case that ej
vis−→ ek, then by downward closure, ej ∈ IdealT (ei′)

which contradicts the fact that ej ∈ IdealT (ei′′) \ IdealT (ei′). Thus this is not the case.

Thus, for g(j) ∈ E i′′r′′ \ E i
′
r and g(k) ∈ E i′r \ E i

′′

r′′ , ej and ek are not related in vis.

By similar line of reasoning we can show that for g(k) ∈ E i′′r′′ \ E i
′
r and g(j) ∈ E i′r \ E i

′′

r′′ ,

ej and ek are not related in vis.

Thus, from this, and the earlier proof we can conclude that for g(j), g(k) ∈ E ir, we have

(g(j), g(k)) ∈ visir iff ej
vis−→ ek

With this we have shown that the result holds for |ρ| = i. By the principle of mathemat-

ical induction, the result holds for all runs α where the updates are causally delivered.

Thus, we have shown that the state maintained by each of the replicas is the view at that

replica. Since SpecD is an arbitration agnostic specification, to correctly answer any query

posed to the replica as per the specification, the view of the replica is sufficient. We will now

formally show that the reference implementation is correct with respect to SpecD

Theorem 104 (Correctness of the Reference Implementation).

Runs(Drefer
I) ⊆ Runs(D, SpecD)

Proof. We will show this through induction over the length of the run in Runs(Drefer
I). In case

of the emptyrun, it is trivially true, since it belongs to both Runs(Drefer
I) and Runs(D, SpecD).

Suppose the result is correct for all runs in Runs(Drefer
I) whose length is atmost n.

We will consider a run α = (ρ, ϕ) from Runs(Drefer
I) such that |ρ| = n.

Note that if Op(ρ[n]) 6∈ Queries then since α ∈ Runs(Drefer
I), we have α′ = (ρ[1, . . . , n−

1], ϕ|ρ[1,...,n−1]) ∈ Runs(Drefer
I) since Runs(Drefer

I) is prefix closed. By inductive hypothesis,

this implies that α′ ∈ Runs(D, SpecD). Thus, for every i < n, if ρ[i] is a query operation,

then Ret(ρ[i]) is as per the specification. from this we can conclude that α ∈ Runs(D, SpecD)

as all the return values of all query operations in this run are as per the specification.

Thus, the only case we have to consider is when Op(ρ[n]) ∈ Queries. Let Rep(ρ[n]) = r.

Let the state of replica r of the reference implementation be (Enr , visnr). Let T = (Eρ, vis)

130

be the trace of α. By definition, ∂T (en) = (IdealT (en), vis|IdealT (en)). From the previous

Lemma 103, we have shown that (Enr , visnr) is isomorphic to (IdealT (en), vis|IdealT (en)).

Thus,

SpecD((Enr , visnr),Op(ρ[n]),Args(ρ[n])) = SpecD(∂T (en),Op(en),Args(en))

Now from the reference implementation

Ret(ρ[n]) = SpecD((Enr , visnr),Op(ρ[n]),Args(ρ[n]))

= SpecD(∂T (en,Op(en)),Args(en))

From this, and the inductive hypothesis, the return values of all the the queries of α are as

per the specification. Hence α ∈ Runs(D, SpecD). Since α is any arbitrary run of length n,

this is true for all runs of Drefer
I .

By the principle of mathematical induction, it follows that the result holds for all runs

of Drefer
I . Hence Runs(Drefer

I) ⊆ Runs(D, SpecD).

In fact we can show that all the correct runs with respect to the specification are runs of

the reference implementation if all updates in these runs are causally delivered.

Theorem 105. If α = (ρ, ϕ) ∈ Runs(D, SpecD) and all the updates in α are causally

delivered, then α ∈ Runs(Drefer
I).

Proof. We shall show by induction that all the prefixes of α are in Runs(Drefer
I). The empty

prefix of α is trivially in Runs(Drefer
I).

Suppose for all j < i, αj = (ρ[1, . . . , j], ϕ|ρ[1,...,j]) it is the case that αj ∈ Runs(Drefer
I).

Consider the run αi = (ρ[1, . . . , i], ϕ|ρ[1,...,i]). Let Rep(ρ[i]) = r. Let Ti be the trace of αi.

Op(ρ[i]) ∈ Updates: Since any run of Drefer
I can be extended by an update operation, if

Op(ρ[i]) ∈ Updates then αi ∈ Runs(Drefer
I) since by inductive hypothesis αi−1 ∈

Runs(Drefer
I).

Op(ρ[i]) = usend: Since α is a correct run as per the specification, this implies that ρ[i −
1] ∈ Updates. Since a run of the reference implementation ending with an update

operation can be extended by the corresponding update-send operation, and since

αi−1 ∈ Runs(Drefer
I), we can conclude that αi ∈ Runs(Drefer

I)

Op(ρ[i]) = ureceive : Since α is a correct execution, if ρ[i] is a ureceive operation, then,

there exists j < i such that ρ[j] = ϕ(ρ[i]). This implies that the broadcast of the

update ρ[j] wasn’t delivered at replica r in αi−1. Since α is a causally-delivered run,

αi is also causally delivered run. This implies that for all updates ρ[k] ∈ Pastαj(ρ[j]),

there exists a k′ : k < k′ < i such that Rep(ρ[k′]) = r and ϕ(ρ[k′]) = ρ[k].

131

Since we can extend a run of the reference implementation with an update-receive

operation if all the causally preceding updates of have been delivered in the original

run, αi ∈ Runs(Drefer
I) since by induction hypothesis, αi−1 ∈ Runs(Drefer

I) and ρ[i] is

such a ureceive operation.

Op(ρ[i]) ∈ Queries : Since α is correct as per the specification,

Ret(ρ[i]) = SpecD(∂Ti(ei),Op(ei),Args(ei))

We have shown via lemma 103 that ∂Ti(ei) is isomorphic to the state of replica r,

(E ir, visir). Since SpecD is a computable specification, by defintion,

SpecD(∂Ti(ei),Op(ei),Args(ei)) = SpecD((E ir, visir),Op(ei),Args(ei))

This is same as SpecD((E ir, visir),Op(ρ[i]),Args(ρ[i])) which is the value returned by the

reference implementation for a query Op(ρ[i]) with arguments Args(ρ[i]) is issued at

replica r at the end of the run αi−1. Thus, the run obtained by extending αi−1 with

ρ[i] is a valid run of the reference implementation. Hence αi ∈ Runs(Drefer
I).

Thus, the reference implementation covers all the correct causally delivered runs with

respect to a specification.

Note: The algorithm for a reference implementation of a replicated data type D with

causal delivery provided in Definition 102 can be slightly modified in order to arrive at a

reference implementation whose runs are exactly the runs in Runs(D, SpecD). We provide it

below.

Definition 106 (Reference Implementation without delivery constraints). The state at each

replica Sr is a labelled acyclic graph Gr = (Er, visr, Seenr) where Seenr : Er → {True,False}
which identifies the update events from the graph that have been seen by the replica r, either

through an update event or an update-receive event.

If ESeenr = {e ∈ Er | Seenr(e) = True} and visSeenr = visr|ESeenr
, then, (ESeenr , visSeenr)

denotes the view of the replica r.

Initially ∀r ∈ R : Gr = (∅, ∅,False) where False() always returns False.

The operational details are presented in Algorithm 106.

At every replica,this generic implementation keeps track of the downward closed subtrace

of the run which contains the view of the replica in the trace of the run. The Seenr() function

indicates which of these update events in the downward closed subtrace have been delivered

to replica r, either through an update operation or via an update-receive operation. Thus,

even when the updates are delivered out of order, this implementation works as expected

132

Algorithm 6 Reference Implementation of a Replicated Data Type without any delivery

constraints

Reference Implementation without delivery constraints replica r

1 Er is a set of nodes corresponding to update events. Initially ∅
2 visr is an acyclic binary relation over Er. Initially ∅
3 Seenr : Er → {True,False}. Initially Seenr() is a function that always returns False.

4

5 Implementation for an update method u ∈ Updates.

6 u(arg ∈ Univ∗)

7 Let e = NewEvent().

8 Set Op(e) := u, Args(e) := arg

9 Let Enewr := Er ∪ {e}.
10 Let Seennew

r : Enewr → {True,False} such that for any e′ ∈ Enewr ,

Seennew
r (e′) =

{
True if e′ = e

Seenr(e
′) if e′ ∈ Er

11 Let visnewr := visr ∪ {(e′, e) | e′ ∈ Enewr ∧ Seennew
r (e′) = True}

12 Set (Er, visr, Seenr) := (Enewr , visnewr , Seennew
r)

13 Broadcast u.send((Er, visr, e))
14

15 Implementation of update-receive method for the update u

16 u.receive((E ′, vis′)):
17 Let Emerge

r := Er ∪ E ′
18 Let vismerge

r := visr ∪ vis′.

19 Let Seenmerge
r : Emerge

r → {True,False} such that for any e′′ ∈ Emerge
r ,

Seenmerge
r (e′′) =

True if e′′ = e′

Seenr(e
′′) if e′′ ∈ Er

False Otherwise

20 Set (Er, visr, Seenr) := (Emerge
r , vismerge

r , Seenmerge
r)

21

22 Implementation of a query q ∈ Updates at replica r.

23 q(arg ∈ Univ∗) :

24 Let ESeenr = {e ∈ Er | Seenr(e) = True}.
25 Let visSeenr = visr|ESeenr

26 Let v = SpecD((ESeenr , visSeenr), q, arg)

27 return v

133

since all the queries are answered with respect to the subgraph corresponding to only the

seen events which is exactly the the view of the replica at that point in the run. If all the

the updates were causally delivered then Seenr(e) = True for every e ∈ Er. Thus, in the

case when the updates are causally delivered, this generic implementation reduces to the

implementation given in Definition 102. For our purpose of obtaining bounded reference

implementation, we would be restricting our attention to the implementation where the

updates are causally delivered.

We explore these bounded reference implementations for replicated data types in the

next two chapters.

134

5

Bounded Implementations of

Replicated Data Types using Generalized

Gossip

5.1 Introduction

Finite state abstractions have been widely studied in the context of formal verification.

Model checking, for instance, uses techniques such as state space enumeration, abstract

interpretation and symbolic execution to algorthmically verify if an abstract finite state

system satisfies its specification. Finite state models such as automata over distributed

words, communicating finite state machines and Petri nets have been successfully used to

model and verify concurrent and distributed systems.

In this chapter, we focus on deriving a bounded implementation for Commutative Repli-

cated Data Types (CmRDTs) whose replicas broadcast auxiliary information for every update

they receive from a client.

In the field of asynchronous communicating automata, there is a well understood prob-

lem termed as the gossip problem first studied in [Mukund and Sohoni, 1997]. This problem

involves an automaton keeping track of the latest information about every automaton in

the system and correctly updating the latest information whenever it receives a communi-

cation from one of the other automatons in the system. In this chapter, we will define a

generalization of the gossip problem introduced in [Mukund and Sohoni, 1997] and explore

a bounded solution to this problem. We will show that under certain restrictions on the

concurrency between the updates, a bounded solution is possible. We also identify a class of

declarative specifications called bounded specifications which require the replicas to maintain

only a bounded fragment of their view to answer any query. Using the bounded solution

135

of the gossip problem, we obtain finite state reference implementations of CmRDTs whose

specifications are bounded specifications. In the next chapter, we will discuss how such

finite state reference implementations can be used for formal verification of CmRDT imple-

mentations via CEGAR and also help in designing more effective test suites for CmRDT

implementations.

In the following section, we will discuss bounded implementations of replicated data

types which have a bounded specification. In this chapter and the next, we shall restrict our

attention to operation based replicated data type implementations where the updates are

causally delivered.

5.2 Bounded CmRDTs

Finite state implementations have played an important role in formal verification of reactive

systems. In this section we study the sufficient conditions that guarantee the existence

of finite state implementations of replicated data types whose specifications have certain

properties. In the next chapter, we shall discuss how a finite state reference implementation

can be used for the purpose of automated formal verification of a given implementation of

a replicated data type. Towards this, we first define a finite state implementation, or a

bounded implementation. We shall use the terms finite state implementation and bounded

implementations interchangeably throughout this and the next chapter.

Definition 107. We say that an implementation of a CRDT is bounded if the information

maintained by every replica and the contents of each message propagating an update are

bounded, regardless of the length of the run.

Any implementation of a replicated data type with an unbounded universe Univ will have

to maintain information pertaining to the elements of the universe. If the universe Univ is

unbounded, in general, it is likely that the states of the implementation are also unbounded.

Hence, we restrict our attention to implementations of data types where the size of the

universe supported is bounded.

Even with a bounded universe, the number of states of the reference representation grows

proportional to the length of the run, since the state is the view at the replica which grows

proportional to the length of the run. For example, as per the OR-Set specification, an

implementation of OR-set needs to keep track of all the add(x) operations that do not have

a covering delete(x) operation. This is especially true when the underlying network does not

guarantee causal delivery of updates. Now, a delete(x) operation that is a covering-delete

for add(x) operation o may not be a covering delete for any other add(x) operation that

happened-before o. Thus, in any such implementation of OR-set, the number of add(x)

operations that are not covered by any delete(x) operations is unbounded in an arbitrarily

136

long run. Hence, even when the universe of the OR-set is bounded, the state of the replicas

may be unbounded merely because the specification requires the implementation to maintain

information pertaining to unbounded number of events.

However, we observe that for many of the well behaved data types, it is sufficient to keep

track of a finite fragment of the view that will help us correctly answer all potential queries.

For example in the case of MV-Register, for a view V , the specification function would be

RelevantCtxt(V,Read,⊥) = max (VWrite) where VWrite is the subtrace of V restricted to only

the Write events. Now, since there there can be at most one maximal Write event per replica,

the total number of events in max (VWrite) is bounded by the number of replicas. Thus it is

sufficient for the replicas to only maintain information corresponding to the maximal writes.

In the case of OR-Sets, as discussed earlier, the relevant context for a contains(x) query

may have unbounded number of add(x) events which are not covered by any delete(x) events.

But if the updates are causally delivered, then, it is suficient for the replicas to maintain

information corresponding to a finite number of add and delete operations. Consider a view

V in a trace T of a causally delivered run. Suppose e is an add(x) event which does not have

a covering delete(x). Suppose e′ is some other x-update event and e′′ is a delete(x) event. It

cannot be the case that e
vis−→ e′′ since e does not have a covering delete. Further, if e

vis−→ e′,

then it cannot be the case that e′ is a delete(x) event, since that would imply that e has a

covering-delete. Finally, it cannot be the case that e
vis−→ e′

vis−→ e′′, since by causal-delivery

this would imply e
vis−→ e′′, which would imply that e has a covering delete. Thus, if there

is an x-update event that is a successor of e in the view V , then that successor has to be

an add(x) event. Thus, when updates are causally delivered, we know that there exists an

add(x) event without a covering delete(x) in a view of a replica V iff there exists an add(x)

in max (Vx) where Vx is the view V restricted to only the x-events. The size of max (Vx) is

bounded by the number of replicas.

Thus there exists a class of specifications of replicated data types where it is sufficient

for every replica to maintain bounded fragment of its view in order to correctly answer all

the queries. We call such specifications bounded specifications.

Definition 108 (Bounded Specification). A computable specification SpecD is said to be

a bounded specification if the associated function that extracts the relevant context always

produces a context of bounded size. Formally, SpecD is bounded specification iff

∃K ∈ N : ∀U ∈ Ctxtarb(D) : ∀q ∈ Queries : ∀args ∈ Univ∗ : |RelevantCtxt(U , q , args)| < K

Thus, on a network where all the updates are causally delivered, if the size of Univ is

bounded by KUniv, then the number of unique queries instances contains(x) is also bounded

by KUniv. For every x, the maximal events in a view restricted to only the x-events is bounded

by the number of replicas N . In this case, the number of events required to answer a query at

137

any point in time is bounded by N ×KUniv. Thus, in a reference implementation, it suffices

to keep track of only this finite fragment of the partial order at any replica. Replicas can

purge the events from their view that are no longer relevant for answering any of the queries.

In the following subsection, we shall briefly describe our strategy for constructing a

bounded reference implementation for replicated data types with bounded specifications.

The formal details are covered in Section 5.3.

5.2.1 Strategy for constructing a bounded reference implementa-

tion

We can adapt the reference implementation provided in the Chapter 4 where, instead of

maintaining an acyclic graph corresponding to the complete view of the replica, we ensure

that every replica maintains a graph corresponding to some bounded fragment of the view

which contains all relevant events. Since the replicated data type has a bounded specification,

the number of relevant events in view of the trace of any run is bounded. Thus, it is possible

to define a bounded fragment of the view containing all the relevant events. This bounded

fragment is sufficient for the replicas to answer every query correctly.

When a new update event occurs at the replica, it will update this local graph to reflect

the updated relevant view that incorporates this latest update event. In this process, some

of the nodes of the graph, which correspond to prior events that are no longer relevant in the

current view, can be purged from its local graph. Following this, the replica will broadcast its

latest graph (referred to as the payload of the update-receive below) to all the other replicas.

The other replicas, on receiving this broadcast via an update-receive event, will recompute

their local graphs using the received payload. In this process, they can purge any nodes

that correspond to events that are no longer relevant. Thus, the amount of information

maintained by every replica is bounded, irrespective of the length of the run.

Note that in the trace of any run of a replicated data type, it is possible that two distinct

update events at a replica have the same update method with the same arguments (for

example a replica can have multiple add(x) requests from the clients). Hence care must

be taken to represent them by two distinct nodes in the acyclic graph corresponding to

the relevant view. To ensure this, it is reasonable to assume that every node has a unique

identifier associated with it. This can help us distinguish between the nodes representing

two distinct events. One may imagine that every replica keeps a monotonically increasing

counter which gets incremented every time the replica gets a new update event. The replica

then uses the current value of the counter to label the node representing this new update

event. However, since the value of the counter can grow with the size of the run, such a

strategy would violate our requirement of having bounded states at every replica. Hence,

the identifiers for the nodes should come from a finite set. Since every replica maintains a

bounded superset of relevant events, it should be possible to reuse the identifiers of prior

138

nodes which have been purged from the local graph. However, reusing the identifiers of a

node that has been purged in a safe manner is non-trivial as we explain below.

For a replica r, suppose ` is the identifier of a node corresponding to an r-update event

which has been purged from the local graph r. In order to safely reuse ` for a new r-update

event e, we need to ensure the following two things:

1. The node previously labelled with ` is currently not present in the local graph of any

other replica r′. Otherwise when r′ receives the updated local graph of r through

the update-receive event of e, it will now have no way of distinguishing between the

nodes representing the latest r update event and the old r-update event, since both of

them are identified by the same label `. This will violate our requirement that distinct

events in the local graph are unambiguously represented by distinct nodes labelled

with distinct labels.

2. The node that was previously labelled with ` is not a part of the payload of broadcast

message sent by some replica r′′. It may be the case that r′′ does not have that node

in its local graph at present. However if r′′ had sent out a broadcast for an update

event previously when the node was a part of its local graph, then the node would

have been in the payload of that broadcast. It is possible that some replica r′ has not

yet received that broadcast. Thus, if r′ now receives the broadcast corresponding to

the new r-update event e and sometime later it receives the broadcast message from

r′′, there will be two nodes representing distinct events, that will be labelled with the

same label `.

The ability to safely reuse labels in a distributed setting has been dealt with in earlier

works such as [Mukund and Sohoni, 1997; Mukund et al., 2003], which implement a bounded

timestamping algorithm in distributed systems by solving what is known as the gossip prob-

lem. In the standard gossip problem, each replica keeps track of the latest event that it is

aware of in every other replica in the system. From time to time, they exchange their knowl-

edge of the latest events with other replicas in the system. The recipient replicas then update

their own knowledge of the latest events. In [Mukund and Sohoni, 1997] and [Mukund et al.,

2003], the view of a replica r restricted to the set of the latest r′ events, for every replica r′

is termed as the primary information of r. The replicas are expected to periodically broad-

cast their primary information to the other replicas in the system. It is shown in [Mukund

and Sohoni, 1997; Mukund et al., 2003] that it is possible to locally recompute the primary

information of a replica whenever it receives an update or an update-receive event.

Since there can be at most one latest event for every replica r′ known to r, it is evident

that as the run progresses, earlier events get dropped from the primary information of r.

Thus, it is possible to reuse the labels of those events which are no longer in the primary

information. To do this safely, the authors define a secondary information at every replica.

139

An event e′′ is in the secondary information of a replica r, iff there exists an r′ event e′ in the

primary information of r such that e′′ is present in the primary information of r′ at e′. Under

certain restrictions over the delivery of messages, the authors show that if an event is not in

the secondary information of a replica, then that event is not in the primary information of

any other replica in the system. Thus it is safe to reuse the label of such an event that is no

longer in the secondary information.

Thus, for our bounded reference implementation of a replicated data type with bounded

specification, we want to explore a similar mechanism which allows us to safely reuse the

labels of the purged nodes. However, the key difference between our requirement and that

in [Mukund and Sohoni, 1997; Mukund et al., 2003] is that we want to maintain a bounded

set of events as our primary information as opposed to only the latest events of every other

replica. Furthermore, unlike the replicas in [Mukund and Sohoni, 1997] which communicated

via pairwise synchronization or the replicas in [Mukund et al., 2003] which performed a point

to point broadcast of their primary information at the time of their choosing, in our model

of operation-based replicated data types, the replicas can only initiate a broadcast to all the

replicas when they receive a new update event. Thus, the techniques from [Mukund and

Sohoni, 1997] and [Mukund et al., 2003] cannot be directly applied in our model.

To address this, in Section 5.3, we define a generalized version of the gossip problem. Here

we generalize the notion of the primary information to any bounded fragment of the view,

that is locally computable. We also define the sufficient conditions for a generalized secondary

information such that if an event is not present in the generalized secondary information of a

replica, then it is present in neither the generalized primary information of any replica nor is

it part of a payload of any broadcast message in transit. We show that if such a generalized

secondary information exists for a primary information, then the generalized gossip problem

has a bounded solution, where every replica maintains a finite amount of information. In

Section 5.3.1 we show that such a generalized secondary information can be constructed when

certain constraints are imposed over the delivery of messages. Finally in Section 5.3.2 we

show how the bounded solution to the generalized gossip problem can be used to construct

a bounded reference implementation of a replicated data type with a bounded specification.

We illustrate this using the example of OR-Sets where the updates are causally-delivered.

5.3 Generalized Gossip Problem

Consider a distributed system with replicas R = [1, . . . , N]. Whenever a replica interacts

with a client, it does some local processing and broadcasts a message to all the other replicas.

These broadcast messages are delivered in the causal order of the updates. This is similar

to the behaviour of operation based replicated data types described earlier. Suppose now

that every replica keeps track of the latest event it knows about every other replica in the

140

system. During a broadcast, along with the message, each replica r also sends across its

knowledge about the latest event of every other replica r′ in the system. A recipient replica

r′′ needs to correctly compute whether the latest event that it knows about some replica r′

is more up to date than the latest event about r′ in the message that it has just received.

Having determined which is the more up-to-date information, the replica r′′ should update its

knowledge. This problem is known as the gossip problem, and has been studied in [Mukund

and Sohoni, 1997; Mukund et al., 2003].

We propose the following generalization. Instead of maintaining only the latest events,

suppose the replicas were to maintain some finite fragment of their past as defined by a

computable function. In the case of CRDTs with bounded specifications, this finite fragment

could be the fragment of the view containing the union of the relevant contexts for all the

queries. In such a case, the information maintained by the replicas will not be merely a

set of events, but a graph containing the set of events along with the visibility relation over

them. We model this as an information graph.

Definition 109 (Information graphs). An information graph G of a trace T = (E , vis) is a

subtrace T |E induced by the subset of update events E ⊆fin EUpdates. We denote the set of all

information graphs of T by G(T). Let GD =
⋃
T∈T (D) G(T).

We shall denote the set of all views of a trace T , by V(T) =
⋃

e∈Events(T)

{∂e(T)} and the

set of all views of a replicated data type D to be V(D) =
⋃

T∈T (D)

V(T)

In a trace T , if V = ∂T (e) for some event e. Then, for a replica r, max r(V) denotes the

maximal r-update event in V , i.e,.

max r(V) = e′ ⇐⇒ Rep(e′) = r ∧Op(e) ∈ Updates ∧ ∀e′′ ∈ V : e′
vis−→ e′′ =⇒ Rep(e′′) 6= r

We shall denote by Vr the view of max r(V), i.e Vr = ∂T (max r(V)). Thus Vr is the view

of the maximal r-event in the view V . This includes all the update events that are visible

to the r-update event max r(V). Since T is a trace of a causally delivered run it follows that

∀r : Vr ⊆ V .

We say that a view V = ∂T (e) is an r-view, if Rep(e) = r.

In any trace T = (E , vis), and any event e, we denote by PredT (e) the set of events which

form the immediate predecessors of e in T , i.e,

PredT (e) = {e′ ∈ E | e′ vis−→ e ∧ e′ 6= e ∧ ∀e′′ ∈ E : e′′
vis−→ e =⇒ e′′

vis−→ e′ ∨ e′′||e}

Note that for an update event, a query event and a update-send event e, there is a single

immediate predecessor, which is the latest event occuring prior to e at the source replica

of e. However if e is an update-receive event, then it will have two immediate predecessors.

141

One of them will be the immediate predecessor on the same replica, and the other will be

the update event associated with e.

We denote the r-event in PredT (e), when it exists by Pred rT (e). Note that if r = Rep(e),

then Pred rT (e) always exists. This is because the event e0 corresponding to the initialization

operation ρ[0] in the run α = (ρ, ϕ) of the trace T is an operation that is common to all the

replicas.

Observe that in the case of the standard gossip problem, each replica maintained the latest

events corresponding to every other replica that was delivered to them. This set of events

is defined by a computable function which can compute the latest r′ events for every other

replica r′ in the system. Similarly in the case of the generalized gossip problem, it is desirable

that the finite fragment of the view that is maintained by every replica is determined by

a computable function which can be uniformly applied at the view of every replica. This

computable function is referred to as the primary information function and the information

graph computed by this function is termed as the primary information at the replica.

Definition 110 (Primary information function and Primary Information). A primary in-

formation function is a function f : V(D) → GD that assigns an information graph to each

view so that the following conditions are satisfied: For any trace T and any event e ∈ E(T),

1. f(∂T (e)) ∈ G(∂T (e)), i.e the primary information is a finite fragement of the view

containing only update events.

2. If Op(e) ∈ Queries∪{usend}, f(∂T (e)) = f(∂T (e′)) where Rep(e) = r∧e′ = Pred rT (e).

Thus the primary information of a replica does not change with an query or an update-

send event.

3. If e is an update event then, e ∈ f(∂T (e)). Thus an update event at a replica is always

contained in the primary information of the replica, soon after the update event occurs.

4. For any e′ ∈ maxSet(∂T (e) \ {e}), f(∂T (e)) ∩ ∂T (e′) ⊆ f(∂T (e′)).

The first condition ensures that the primary information in any view is a finite fragment

of the view comprising of only the update events.

The second condition ensures that the primary information of a view of a replica doesn’t

change with query or send-events.

The third condition ensures that an update event is always in the primary information of

the view of that update event.

The fourth condition says that if an update event is not present in the primary information

of any event e′, then that update event will not be present in any subsequent event which e to

which e′ is visible. This imposes a sort of a monotonicity property that things once excluded

from the primary information of some view remain excluded in the primary information of

any larger view.

142

The information graph computed by the primary information function f in any view V

is deemed to be the primary information at that view. A primary information function f is

said to be bounded if ∃M ∀V ∈ V(D) : |Events(f(V))| ≤M .

Every replica maintains the primary information at its latest view. After every update

event, the replica will broadcast its primary information to every other replica. Thus, when

a replica receives the primary information from some other replica, it needs to recompute

its primary information from the primary information that it just received as a part of

the update-receive and the primary information that it had prior to the update-receive event.

Thus, for any event e in any trace T , the generalized gossip problem for a primary information

function f involves computing the primary information in the view of e, i.e f(∂T (e)), from

the primary information of the views of the immediate predecessors of e, i.e f(∂T (eprev)) and

e, where eprev ∈ PredT (e). We cay that the generalized gossip problem for f has a solution,

iff the replicas can compute their primary information locally.

Suppose we have a bounded primary information function f() for which the solution for

the generalized gossip problem exists. Thus every replica maintains only the finite fragment

of its view as defined by f(). Note that the replicas send each other their primary information

graph on every update event. Each vertex in this graph corresponds to a unique update event

in the trace. Since the solution to the generalized gossip problem exists, the replicas can

locally recompute their primary information on an update or an update-receive event. In order

to do that, the replicas need to unambiguously represent the update events in the primary

information graph, so that any pair of distinct update events in the primary information at

any replica can be distinguished whenever a replica receives the primary information from

some other replica.

We observe that during every update, a new event gets added to the primary information

of the source replica corresponding to the update. Suppose the source replica labels every

event originating at its end with a unique identifier from a set of labels L, such that for any

two distinct events e, e′ in the trace are labelled by distinct labels L(e), L(e′) respectively

such that L(e) 6= L(e′). As the computation grows, and more new events are added we need

newer labels from L to uniquely identify these new events. Thus, the size of L in general is

unbounded.

However, if we are only interested in keeping track of the primary information generated

by a bounded primary information function at any given point in time, then the total number

of relevant events in any view of the trace is bounded. Thus, once an event is no longer in

the primary information of any maximal event in the trace, the label assigned to that event

could be reused. We say that the gossip problem for f has a bounded solution if it has a

solution and if the set of labels used to uniquely identify the events in the system is bounded.

In a bounded solution, the replicas will be forced to reuse labels for newer update events.

However, in order to distinguish between distinct events, the replicas must take care to reuse

143

label of an update event only after ensuring that the update event is not in the primary

information of any replica, nor is the event part of any message in transit. Furthermore,

the replicas should be able to arrive at this decision locally based on the information that

it locally possesses, and any information that it receives as a part of the update-receive

message. Towards this, replicas may maintain some additional information locally, which

will help them determine if a given event is in the primary information of some other replica

or is a part of the transit message. This additional information is termed as the secondary

information in the definition below. The replicas communicate with each other not only the

primary information, but also the secondary information.

Definition 111 (Secondary information). Let e be an event in a trace T of a replicated data

type D. Let V denote the view of the event e in T , i.e ∂T (e). Recall that for a replica r,

the view of the maximal r-update event in T is denoted Vr i.e., Vr = ∂T (max r(V)) where

max r(V) is the maximal r-update event in V .

A function F : R×V(D)→ 2(ED|Updates) is a secondary information function for a primary

information function f if, in any trace T , for each any event e, if V = ∂T (e), then

1. Events(f(Vr)) ∩ ErUpdates ⊆ F (r, V) ⊆ Events(V) ∩ Er.

2. If e is not an r-event, F (r, V) = F (r, Vr)

3. If e is an r-event, F (r, V) is computable from e, f(V) and F (r, ∂T (e′)) where e′ =

Pred rT (e).

4. If e and e′ be r-events such that e′ ∈ V \ F (r, V), then for any event e′′ ∈ T , e ∈
∂T (e′′) =⇒ e′ 6∈ f(∂T (e′′))

5. For an r-event e′ ∈ V \ F (r, V), if e′ ∈ f(∂T (e′′)), then ϕ−1
r′′ (e

′′)
vis−→ ϕ−1

r′′ (max r(V)) for

all r′′.

A secondary information function F is said to be bounded if ∃M ∀r ∀V : |F (r, V)| ≤M .

We shall refer to F (r, V) as the r-secondary information in the view V.

The first condition says that the r-secondary information in any view V is a subset of

the r-update events in the trace. Furthermore, the r-secondary information at V contains

all the r-update events in the primary information of Vr. The second condition says that

r-secondary information of any non r-view V is exactly the r-secondary information at the

view of the maximal r event in V (which is Vr). The third condition says that the r-secondary

information in an r-view can be computed locally using the r-secondary information of the

previously maximal events in the view and the primary information of the view. These

three conditions ensure that the secondary information in the view for every replica can

be computed locally. The fourth condition says that once an r-update event e′ goes out

144

of the r-secondary information in an r-view V , then, the event e′ is not in the primary

information of any subsequent view V ′ where V ⊆ V ′. The last condition, is a bit subtle.

It says that when an r-update event e′ goes out of the r-secondary information in an r-

view corresponding to an r-update event e, and suppose there is an any update event e′′

that had e′ in its primary information. Then, it says that at every replica, the broadcast

message associated with e′′ gets delivered before the broadcast message associated with e.

This condition ensures that when an event goes out of the secondary information, it is not a

part of any primary information that has been broadcast but not been delivered. The fourth

and the fifth conditions, allow us to safely reuse the label of an r-event e′ when it goes out of

the r-secondary information of an r-view, since in any subsequent view which subsumes this

r-view, e′ is neither in the primary information, nor is it a part of the primary information

in transit.

To summarize, the secondary information should have three properties

• The secondary information must be locally computable.

• If an r-update event is not in the secondary information of another r-update event,

then, it is guaranteed that the former event is evicted from the primary information of

any replica r′ before it receives the latter.

• If an r-event is not in the secondary information of another r-event, then it is guaran-

teed any update-receive messages which contain the former r-event would be delivered

at every replica before the latter r-event gets delivered, thereby ensuring that once the

r-event is not in the secondary information, it is not a part of any message in transit.

It is clear from the definition that, as the run grows, the older update events, which are

no longer in the primary information of any replica and which are no longer a part of any

broadcast messages in transit, drop out of the secondary information. Note that for the

purpose of arriving at a bounded solution for the generalized gossip problem, the secondary

information maintained by every replica should also be bounded. We now show that the

generalized gossip problem for a primary information function has a bounded solution if it

has a bounded secondary information function.

Theorem 112 (Bounded solution for the generalized gossip problem). Let f be a primary

information function such that the generalized gossip problem for f has a solution. It has a

bounded solution if there is a bounded secondary information function F for f .

Proof. In order to show that f has a bounded solution for the generalized gossip problem,

we need to show that the size of set of labels used to uniquely identify the events in the

primary information of all the replicas is bounded.

Let the gossip problem for f have a solution, and let the bound on F be M ′. We fix a

label set L of size M ′+1. We shall label an r-update event with (r, `) where ` ∈ L. We need

145

to show that we can safely associate a label ` from the set L to a new r-update event ein
such that if any other r-update event eout is labelled with the same label `, at every replica

r′, prior to receiving the broadcast message containing ein , it is the case that

• eout is no longer in the primary information of r′.

• r′ has received all the broadcast messages which may contain eout in them.

Let V be the view of replica r just prior to the r-update event ein . Since the secondary

information F (r, V) is bounded by M ′ and the label set L has M ′+1 events, there is at least

one label in L which is not associated with any r-update event in F (r, V). Suppose one such

label is `. We will show that it is safe to associate the label ` with the new r-update event

ein .

If ` has never been associated with any r-update event previously in the trace, then our

claim is true. So, let us assume that an r-update event eout was previously associated with

`. It is clear that eout 6∈ F (r, V), since we chose the label ` based on the fact that it was not

labelling any event in F (r, V). By the property of the secondary information, if an r-event is

not in the secondary information of r at any point in the run, then, it is not in the primary

information either of r at that point. Thus eout 6∈ f(V). By monotonicity of the primary

and the secondary information, eout will never be in the primary or secondary information

any future event whose view contains the view V .

Let e be the earliest r-update event such that eout is not in the secondary information

the view of r at e. Thus eout 6∈ F (r, ∂T (e)). Thus we have that eout is not in the primary

information of r at e, i.e eout 6∈ f(∂T (e)).

Let e′ be the update-receive event of e at some replica r′. Thus e′ = ϕ−1
r′ (e). By definition

e
vis−→ e′. By the property of secondary information, since eout 6∈ F (r, ∂T (e)), eout 6∈ f(∂T (e′)).

Thus, eout is not in the primary information of the replica r′ at event e′. Since we only

consider traces where updates are causally delivered, if e′in is the update-receive event of the

new event ein at replica r′, then since e
vis−→ ein , we have e′

vis−→ e′in . Thus at r′, prior to

receiving the broadcast of ein , the event eout is no longer in the primary information.

Furthermore, suppose eother be some event such that eout is in the primary information

its source replica at the event eother in T . Thus eout ∈ f(∂T (eother)). Let e′other be the

update-receive event of eother at replica r′. By the definition of secondary information, since

eout 6∈ F (r, ∂T (e) and eout ∈ f(∂T (eother) at the replica r′, it is the case that e′other gets

delivered before e′. Thus e′other
vis−→ e′. By causal-delivery, we have e′

vis−→ e′in . Thus, it follows

that e′other
vis−→ e′in . Since eother is any event which contained eout in its primary information,

it is guaranteed that the broadcast messages of eother are delivered at every replica prior to

the broadcast messages of the new event ein .

Thus, at the time of the receipt of the new event ein it is guaranteed that not only has

every other replica purged the old event eout from its primary information, it cannot expect

146

eout to be a part of any other broadcast message that it might receive in the future. Hence,

the label ` associated with identify ein unambiguously identifies the new event.

This shows that a bounded secondary information function implies a bounded labelling

solution for the gossip problem for the primary information function f which has a solution.

In the following section we shall show a sufficient condition for the existence of a bounded

secondary information function for any primary information function that has a solution for

the generalized gossip problem.

5.3.1 Constructing a Bounded Secondary Information

In the gossip problem considered in [Mukund and Sohoni, 1997; Mukund et al., 2003], the

primary information f at V is the set {max r(V) | r ∈ R} along with the secondary

information {max r′(Vr) | r, r′ ∈ R} which ensures that the gossip problem for f is solvable.

A bounded solution for f is provided in [Mukund et al., 2003] when f itself is bounded, but

under additional restrictions on the traces of the system. A notion of acknowledgements is

introduced, and all traces of the system are required to have at most B unacknowledged

messages. An acknolwedgement, as defined in [Mukund et al., 2003] is a message sent by the

recepient of the broadcast message to the sender of the broadcast message acknowledging

the receipt of the broadcast. This helped the sender keep track of how many messages are

potentially undelivered (Note : If a replica r does not receive an acknowledgement from

another replica r′ for a broadcast message sent by r, it does not necessarily mean that the

broadcast message hasn’t been delivered at r′. It could just be that the acknowledgement

from r′ hasn’t reached r yet).

In [Mukund et al., 2003], replicas piggyback acknowledgements to previously received

messages in their subsequent broadcasts. Hence, the bound on unacknowledged messages

requires that replicas communicate with each other at regular intervals. Such a solution

would not work in our model for operation based replicated data types, because replicas

broadcast messages only when they receive an update request from a client. Hence, we need

a different guarantee from the underlying messaging system. We identify one such restriction

below

Definition 113 (B-concurrency). A trace T is B-concurrent if for every update e ∈ T , the

number of other update events that are concurrent with e are bounded by B. Thus

∀e ∈ Events(T)|Updates : |{e′ ∈ Events(T)|Updates | e′ ‖ e}| ≤ B

.

An implementation is B-concurrent if all its traces all its runs are B-concurrent.

147

In this section, we will show how to construct a secondary information function for a

bounded primary information function f to which a solution to its generalized gossip exists

in the case of B-concurrent traces.

Since the primary information function f() is bounded, as the length of the computation

grows, update events keep dropping out of the primary information at every replica. For

every r-update event e that goes out of the primary information of the replica r, we try to

identify the earliest r event e′ which did not have e its primary information. We define this

e′ to be the evict-cause of e.

Definition 114 (Evict-Cause and Evict-order). In any trace T , we define the Evict-Cause

of an r-update event e with respect to a primary information function f(), denoted by

EvictCauseT,f (e) to be the earliest r-event e′ that comes after e, such that e 6∈ f(∂T (e′)).

If no such e′ exists, then we set EvictCauseT,f (e) = ⊥.

For any pair of r-update events e and e′ whose evict-causes are valid r-update events,

i.e EvictCauseT,f (e) 6= ⊥ and EvictCauseT,f (e
′) 6= ⊥, we define the evict-order between the

r-update events e and e′, denoted by ≺rT,f , as follows e ≺rT,f e′ iff

• Either EvictCauseT,f (e) 6= EvictCauseT,f (e
′) and EvictCauseT,f (e)

r−→ EvictCauseT,f (e
′)

or

• EvictCauseT,f (e) = EvictCauseT,f (e
′) and e

r−→ e′

Thus, in any view V of a trace T , we define the set of evicted r-events in V , denoted by

EvictedEventsrV,f , to be the r-events in the view Vr which are not in the primary information

at Vr.

EvictedEventsrV,f = {e ∈ Vr \ f(Vr) | Rep(e) = r}

Note that the evict-order ≺rT,f restricted to the set of evicted events EvictedEventsrV,f is

well defined and it imposes a total order on the r-events in . We shall denote this evict-order

restricted to the evicted events EvictedEventsrV,f by ≺rV,f . Thus, ≺rV,f imposes a total order

on the r-events in EvictedEventsrV,f .

The position of an evicted r-event e in this total order is defined to be its evict-rank,

denoted by EvictRankrV,f (e), formally defined as

EvictRankrV,f (e) = |{e′ ∈ EvictedEventsrV,f | e ≺rV,f e′}|

The latest n-prefix of EvictedEventsrV,f consisting of n events is defined to be the set of

evicted events of rank atmost n. This is denoted by RecentEvictedEventsrV,f (n).

RecentEvictedEventsrV,f (n) = {e ∈ EvictedEventsrV,f | EvictRankrV,f (e) ≤ n}

148

Given a B-concurrent trace T and a bounded primary information function f() with a

bound M , we can say whether or not an r-update event e in the view V is a recent event

whether e is present in the primary information of V or if e is in the recent M + B evicted

events of V . The intuition here is that as long as e event is recent, it may be present in the

primary information of some replica.

Definition 115 (Recent Event in B-concurrent traces). Let f be a bounded primary infor-

mation function with a bound M , the solution to whose generalized gossip problem exists.

We say that an r-update event e is recent with respect to f in a view V of a B-concurrent

trace T iff

1. Either e ∈ f(Vr) or

2. e ∈ RecentEvictedEventsrV,f (M +B)

We denote the set of all such r-recent events with respect to f in V by Recentrf,B(V)

Note that with a bounded primary information function f with a bound M , then, in any

view V of any B-Concurrent trace, |Recentrf,B(V)| ≤ 2M +B.

Definition 116 (Secondary information function for B-concurrent traces). Let T be a trace

and V be any view in T . For any replica r ∈ R, we define F(f,B)(r, V) = (Recentrf,B(V),≺rV,f)

Note: Technically, the r-secondary information F(f,B)(r, V) is set of r-update events.

Hence should just be Recentrf,B(V). Here, in addition to this set of events, we are also main-

taining a total order ≺rV,f on the update events in this set. This order can be maintained by

the replicas separately. However for the ease of presentation, we tag the evict order alongside

Recentrf,B(V), though it is not required by the definition of the secondary information.

We now show that the F(f,B) is locally computable.

Proposition 117. For any event e in a B-concurrent trace T , for any replica r, F(f,B)(r, ∂T (e))

is computable from f(∂T (e)), e and F(f,B)(r, ∂T (e′)) where e′ ∈ PredT (e).

Proof. We shall prove this by induction on the height of the event e in T .

For an empty trace, the result trivially holds.

Suppose the result holds for all events e of height smaller than n. Now consider an event

e, of height n. Let Rep(e) = r. Let e′ = Pred rT (e). Let V ′ = ∂T (e′).

e is a query or an usend event: Then, by definition, the primary information at e is the

same as the primary information at e′. Since V = V ′, no new update event has entered

the view of e. Thus, by definition, Recentr
′

f,B(V) = Recentr
′

f,B(V ′) for all r′.

Hence F(f,B)(r
′, V) = F(f,B)(r

′, V ′) for all r′.

149

e is an update event: Since e is an r-update event, for any distinct replica r′ 6= r, the

maximum r′ event in V is same as the maximum r′ event in V , i.e.

max r′(V) = max r′(V
′)

Thus the views of the maximal r′ events in V and V ′ are the same.

∂T (max r′(V)) = ∂T (max r′(V
′))

Hence, the primary information of the maximal r′ event in V and V ′ is the same.

f(∂T (max r′(V))) = f(∂T (max r′(V
′)))

Also, by definition, the evicted r′ events in max r′(V) is the same as the evicted r′

events in max r′(V
′), and hence the evict-order over those events is the same. Thus

EvictedEventsr
′

V,f = EvictedEventsr
′

V ′,f and ≺r′V,f=≺r
′

V ′,f

Thus, by definition, Recentr
′

f,B(V) = Recentr
′

f,B(V ′).

Hence for a replica r′ distinct from r F(f,B)(r
′, V) = F(f,B)(r

′, V ′).

We will now show how F(f,B)(r, V) can be locally computed.

Now, by definition, f(V) is computable from f(V ′) and e.

Let us denote the set of r-update events in the trace T by Events(T)rUpdates. Let us

denote the recent r-events in V ′ which are still in the primary information of V ′ as

E ′in . Thus,

E ′in = f(V ′) ∩ Events(T)rUpdates

Let E ′out denote remaining r-update events in Recentrf,B(V ′).

E ′out = Recentrf,B(V ′) \ E ′in

.

Similarly, let Ein denote the r-update events which are in the primary information at

V .

Ein = f(V) ∩ Events(T)rUpdates

and let Eout denote the r-update events which were evicted in V ′ along with the r-

update events which recently got evicted in V . Thus

Eout = Recentrf,B(V ′) \ Ein

150

Note since more r-update events could have been evicted from the primary information

of V compared to the primary information of V ′, we have

E ′out ⊆ Eout

.

Furthermore, from the way we have defined these sets,

Ein ∪ Eout = E ′in ∪ E ′out ∪ {e}

.

Thus, for any pair of events e′′, e′′′ ∈ E ′out , since these were already evicted in V ′, we

know their evict order from ≺rV ′,f in F(f,B)(r, V
′). Their evict-order remains the same

in V . Hence, for such events, we set the evict order

≺rV,f |E′out =≺rV ′,f

Suppose e′′ was newly evicted in V , i.e. e′′ ∈ Eout \E ′out and e′′′ was evicted in V ′, i.e.

e′′′ ∈ E ′out , then, we set e′′′ ≺rV,f e′′, since e′′ got evicted recently.

Finally, if both e′′, e′′′ were evicted recently in V , i.e e′′, e′′′ ∈ Eout \ E ′out , then we set

the evict-order between these two events as the replica order. This replica order is

available from the primary information of V ′, i.e f(V ′). Thus in this case,

e′′′ ≺rV,f e′′ iff e′′′
r−→ e′′

Thus, we now have a total order ≺rV,f on Eout . From Eout , we pick the latest M + B

r-events ordered by ≺rV,f . Let us denote this set by EM+B
out .

Then, by definition Recentrf,B(∂T (e)) = Ein ∪ EM+B
out and the ≺rV,f is a total order over

EM+B
out .

Thus, in this case, F(f,B)(r, V) can be locally computed.

e is an ureceive event: Let e′′ = ϕ(e). Let Rep(e′′) = r′′. Let V ′′ = ∂T (e′′).

Note that f(V) is computable from f(V ′) and f(V ′′). Some additional r-update events

may have been evicted from the primary information of V compared to the primary

information of V ′. Thus, we can compute F(f,B)(r, V) from F(f,B)(r, V
′) and f(V) as

we did in the case when e was an update event. Thus for r, the function F(f,B)(r, V)

can be locally computed.

Since the maximal r′′-update event in V is max r′′(V) = e′′, by definition, Recentr
′′

f,B(V) =

Recentr
′′

f,B(V ′′). Hence, F(f,B)(r
′′, V) = F(f,B)(r

′′, V ′′).

151

Thus for r′′, the function F(f,B)(r
′′, V) can be locally computed.

For any other replica r′ 6∈ {r, r′′}, let the latest r′ update event the predecessor view

V ′ be eV,r′ and let the latest r′-update event in V ′′ be eV ′′,r′ . Since both these events

are in the view V , we set

F(f,B)(r
′, V) =

{
F(f,B)(r

′, V ′) if eV ′,r′ is maximal r′-update event in V

F(f,B)(r
′, V ′′) if eV ′′,r′ is maximal r′-update event in V

We now show that the maximal r′-update event in V is always eV ′,r′ .

Since eV ′′,r′ would be in the view of V ′′, it is clear that

eV ′′,r′
vis−→ e′′

Furthermore, since e′′ is the update event associated with the update-receive event e,

e′′
vis−→ e

Thus, by causal delivery of updates, it is clear that

eV ′′,r′
vis−→ e

.

Now, since the replicas communicate only by broadcasting information on an update-

message, the only way the eV ′′,r′ could have entered the view of the replica r, is via

the corresponding update-receive event at r. But then, such an update receive event

would be in the predecessor view V ′. Thus eV ′′,r′ ∈ V ′.

Since we have mentioned that the maximal r′ event in V ′ is eV ′,r′ , we have

eV ′′,r′
vis−→ eV ′,r′

.

Thus, in the view V , the maximal r′ event is the maximal r′ event in the predecessor

view V ′. From this, it follows that F(f,B)(r
′, V) is the same as F(f,B)(r

′, V ′). Thus, even

in this case, for all the replicas r′, we can compute F(f,B)(r
′, V) locally.

Thus, F(f,B)(r
′, V) is locally computable.

We next show that between the time when an r-update event is in the primary information

of the replica r to the time when that event ceases to be a recent event at the replica r, there

would have been more than B update events at r.

152

Lemma 118. Let T be a B-concurrent trace. Let eout be an r-update event in T . Let eprev
be the latest r-event such that eout is in the primary information at eprev . Let e be the earliest

r-event such that eout is not a recent event at e, i.e eout 6∈ Recentrf,B(∂T (e)). Then, there are

more than B update events between eprev and e.

Proof. Let us denote V = ∂T (e), and Vprev = ∂T (eprev).

Since eout 6∈ Recentrf,B(V), it is clear that eout 6∈ f(Vr) and eout 6 RecentEvictedEventsrV,f (M+

B). Hence, there have been more than M +B r-update events that have been evicted after

eout . Thus we have

EvictRankrV,f (e) > M +B

Note that since f() is a bounded primary information function with a bound M , the

number of events in f(Vprev) is bounded by M . This implies that the number of r-update

events in f(Vprev) is bounded by M .

Furthermore, if e′ is any r-event between eprev and e, then, if e′ is a query or an update-

receive event, it does not introduce a new r-update event into the primary information of

r. If e′ is an update event, then it introduces exactly one new r-event into the primary

information of r, which is e′ itself.

Thus, if there are k update events between eprev and e, the number of distinct r-update

events that have been in the primary information of the replica r between eprev to e (including

eprev) is bounded by M + k.

If ecause is the immediate r-successor of eprev . Let us denote by Vcause the view ∂T (ecause).

Then since eprev is the latest r-event containing eout in its primary information, we have

eout 6∈ f(Vcause)

Since the number of r-update events in f(Vprev) is bounded by M , and since in the

extreme case, all of them can be evicted out from f(Vcause), we have

EvictRankrVcause ,f (eout) ≤M

.

Since eprev and e , there can be at most k new r-update events that can be introduced

into the primary information of r, and since in the extreme case, all these events can be

evicted at e, we have

EvictRankrV,f (eout) ≤M + k

.

Thus, we have

M + k ≥ EvictRankrV,f (eout) > M +B =⇒ k > B

which completes the proof.

153

We now show that any update event containing an r-update event in its primary infor-

mation will be delivered at replica r before that r-update event ceases to be a recent event

at r.

Lemma 119. Let eout be an r-update event in a B-concurrent trace T . Let eother be

some update event such that eout ∈ f(∂T (eother)). Let e be an r event such that eout 6∈
Recentrf,B(∂T (e)). Then, eother

vis−→ e.

Proof. We prove this by contradiction. Suppose eother 6
vis−→ e.

Let eprev be the latest r-event such that eout ∈ f(∂T (eprev)). Then, from lemma 118 we

know that there are atleast B + 1 r-update events between eprev and e.

Let ei be one such r-update. By definition,

eout 6∈ f(∂T (ei))

Now if ei
vis−→ eother , since eout 6∈ f(∂T (ei)) from the Property 4 of primary information,

would imply that eout 6∈ f(∂T (eother)) which is a contradiction. Hence,

ei 6
vis−→ eother

it cannot be the case that ei
vis−→ eother since that would mean that eout 6∈ f(∂T (eother)).

It cannot be the case that eother
vis−→ ei since by causal delivery that would imply that

eother
vis−→ e as ei

vis−→ e. Thus, we have

ei ‖ eother

However ei only one of the least B + 1 updates between eprev and e. Thus there are at

least B + 1 updates which are concurrent with eother , which contradicts the fact that T is

B-concurrent trace.

Hence our initial assumption that eother 6
vis−→ e is incorrect.

Hence, eother
vis−→ e.

We next show that this function satisfies all the requirements of a secondary information

function

Lemma 120. F(f,B) defined above is a secondary information function for B-concurrent

traces.

Proof. Note that by definition of recent events, for V = ∂T (e) for an r-event e, and any replica

r′, f(Vr′) ∩ Er
′

Updates ⊆ Recentr
′

f,B(V) ⊆ V ∩ Er′Updates. Since F(f,B)(r
′, V) = (Recentr

′

f,B(V),
r′−→)

contains Recentr
′

f,B(V), the first constraint for secondary information is satisfied.

154

As we have shown in the proposition 117, for any replica r′ 6= r, Recentr
′

f,B(V) =

Recentr
′

f,B(Vr′). Thus, F(f,B)(r
′, V) = F(f,B)(r

′, Vr′). Thus the second condition is satisfied.

We have shown through proposition 117 that the F(f,B)(r, V) is locally computable, thus

satisfying the third condition.

Suppose an r-event e′ 6∈ Recentrf,B(V). By definition, e′ 6∈ f(Vr) and since Vr ⊆ V ,

e′ 6∈ f(V). Since V = ∂T (e), for any event e′′ such that e
vis−→ e′′, by definition of the primary

information function, e′ 6∈ f(∂T (e′′)). Thus, the fourth condition of secondary information

function is satisfied.

Finally, suppose an r-event e′ 6∈ Recentrf,B(V). Let e′′ be the some update event at a

replica r′′ such that e′ ∈ f(∂T (e′′). By lemma 119, we know e′′
vis−→ e. Thus by causal

delivery, it follows that at any replica r′, we have ϕ−1
r′ (e′′)

r′−→ ϕ−1
r′ (e). Thus, the fifth condition

is satisfied.

Hence, F(f,B) is a well-defined secondary function.

Thus, we have shown that F(f,B) is a bounded secondary information function for an

M -bounded primary information f for an implementation B-concurrent traces. The bound

on F(f,B) is M +B. From this and Theorem 112), we can conclude the following.

Theorem 121. If f is a bounded primary function defined on a B-concurrent implementa-

tion, then, there there is a bounded solution for the generalized gossip problem for f .

5.3.2 Bounding CmRDTs using Generalized Gossip Problem

We recall the definition of the bounded specification from the previous chapter.

Definition 122 (Bounded Specification). A computable specification SpecD is said to be

a bounded specification if the associated function that extracts the relevant context always

produces a context of bounded size. Formally, SpecD is bounded specification iff

∃K ∈ N : ∀U ∈ Ctxtarb(D) : ∀q ∈ Queries : ∀args ∈ Univ∗ : |RelevantCtxt(U , q , args)| < K

Since we are interested in arbitration agnostic specification, we will look at U as a view

instead of a context. Thus, the RelevantCtxt function picks for every view, a bounded subview

that is sufficient to answer a query with some argument. Suppose the size of the universe

|Univ| is bounded. Then since there are finitely many queries, there are finitely many argu-

ments for the query, since every query has a fixed arity say m. Thus, the maximum number

of arguments is bounded by Univm. Thus, the total number of combinations of queries from

Queries and arguments from Univ∗ is bounded.

In any view, we define the set of events that feature in the relevant context of some query

for some argument as the set of Relevants Events. Formally

155

Definition 123 (Relevant Events). Given a replicated data type D over a bounded universe

Univ, and bounded specification SpecD, with RelevantCtxt being the relevant-context function

which is bounded, we define the set of relevant events in a view V of any trace of D, denoted

by, ERelSpecD
(V), as follows

ERelSpecD
(V) =

⋃
q∈Queries

⋃
args∈UnivArity(q)

Events(RelevantCtxt(V, q, args))

Now suppose V ′ is a subview of V , that is V ′ ⊆ V such that V ′ contains all the relevant

events of V with respect to SpecD. Thus ERelSpecD
(V) ⊆ Events(V ′). Thus, for any query q and

for any valid arguments to the query args, the relevant context RelevantCtxt(V, q, args) ⊆ V ′.

Thus we have

RelevantCtxt(V, q, args) ⊆ V ′ ⊆ V

From definition 101 in the previous chapter, the relevant context of for q and args in V ′

is the same as the relevant context for q and args in V . Thus,

RelevantCtxt(V ′, q, args) = RelevantCtxt(V, q, args)

Thus it is sufficient for replica with a view V to maintain the subview V ′ in order to

answer every query correctly. Suppose there exists a function fSpecD() which can extract

such a subview V ′ for a view V . We define such a function to be be a specification subview

function.

Definition 124 (Specification Subview function). Given a replicated data type D over a

bounded universe Univ, and bounded specification SpecD, with RelevantCtxt being the relevant-

context function which is bounded, we define the specification subview function of a view V ,

denoted by fSpecD(V), such that

• fSpecD(V) is a subview of V ,

fSpecD(V) ⊆ V

• fSpecD(V) contains all the relevant events in V with respect to the specification SpecD.

ERelSpecD
(V) ⊆ Events(fSpecD(V))

We now provide a sufficient condition for a CmRDT to have a bounded implementation.

Theorem 125. A CmRDT D = (Univ,Queries,Updates) has a bounded implementation

in a distributed system whose underlying network guarantees B-concurrent traces if there

exists a locally computable specification-subview function fSpecD that is a bounded primary

information function.

156

Proof. From Theorem 121, we know that the generalized gossip problem has a bounded

solution in a distributed system whose traces are B-concurrent. It is given that fSpecD()

is a bounded primary information function which has a solution to the generalized gossip

problem. Thus a replica r with a V would have the bounded primary information fSpecD(V).

Since fSpecD is also a specification-subview function for D, by definition, the information

maintained is sufficient to answer every query correctly as per the specification of SpecD.

Thus, whenever a replica gets an update request u(args) from the client, it is sufficient if it

annotates the new event e with u(args) and invokes the bounded solution to the generalized

gossip problem. Also, it is sufficient to implement each query operation q ∈ Q as per

the specification of SpecD(fSpecD(V), q, args). This provides a bounded implementation for

D.

We will now show that OR-Sets has a bounded implementation over a bounded universe

when the all its traces are B-Bounded.

Let us revisit the case of OR-Sets for which the universe Univ is bounded by an integer NUniv.

There is only one query, contains ∈ Queries. Further, Arity(contains) = 1. In a view V ,

let Vx denote the set of all add(x) and delete(x) events in V . Further, for a replica r, let

max rx(V) denote the set of maximal r-update event in Vx. Note that the size of this set is

either 0 or 1.

Definition 126 (Relevant Context for OR-Set). Let V be any view in a B-concurrent trace

T of OR-set. We define the relevant context as follows. Let x ∈ Univ, be some element of

the universe. We define the relevant context for contains(x) in V to be

RelevantCtxtORSet(V, contains, x) = max (Vx)

Since the max (Vx) can contain at most one event per replica and since the number of

replicas is bounded i.e |R| = N , for any x ∈ Univ, |RelevantCtxtORSet(V, contains, x)| ≤ N .

It can be seen that

1. For any view V , RelevantCtxtORSet(V, contains, x) = max (Vx) ⊆ V thus satisfying the

first condition of relevant context definition 101.

2. Suppose for any view V ′ such that RelevantCtxtORSet(V, contains, x) ⊆ V ′ ⊆ V , then

since RelevantCtxtORSet(V, contains, x) = max (Vx), by maximality of events we have

max (V ′x) = max (Vx).

But max (V ′x), by definition is the same as RelevantCtxtORSet(V
′, contains, x). Thus, we

have

RelevantCtxtORSet(V
′, contains, x) = RelevantCtxtORSet(V, contains, x)

thus satisfying the third requirement of a relevant context from definition 101.

157

Thus, the relevant context of OR-Set above is well-defined. We now define the relevant

events for OR-Set as follows

Definition 127. Let V be a view in some trace of OR-Set. We define the relevant events of

OR− Set in V , denoted by ERelSpecORSet
(V) to be the set

ERelSpecORSet
(V) =

⋃
x∈Univ

Events(RelevantCtxtORSet(V, contains, x)))

We now provide the bounded specification of OR-Set as follows.

Definition 128 (Bounded Specification for OR-Set). Suppose T is a trace of a run of the

OR-Set. Let V be a view in T . Let x ∈ Univ be some element in the universe. Then the

specification of OR-Set is as follows

SpecORSet(V, contains, x) = True ⇐⇒ ∃eRelevantCtxtORSet(V, contains, x) : Op(e) = add

Thus, the bounded specification for OR-Sets where the updates are causally delivered

searches for an add(x) from among the maximal x events in a view.

From this, we can define the specification subview function for OR-Sets.

Definition 129 (Specification Subview for OR-Sets). Let V be a view in some trace of

OR-Set. Let Emax (V) denote the set of events

Emax (V) =
⋃

r∈R,x∈Univ

max rx(V)

which contains the maximal x event for every replica r for every element x in the universe.

Then, we define the function fSpecORSet
() over the view V to be the subview of V defined

by Emax (V). Thus

fSpecORSet
(V) = V |Emax (V)

Note that for any event r-update event e that is a relevant event in V we have

e ∈ ERelSpecORSet
(V) ⇐⇒ Args(e) = x ∧ e ∈ RelevantCtxtORSet(V, containsx)

⇐⇒ e ∈ max (Vx)

=⇒ e ∈ max rx(V)

=⇒ e ∈ Emax (V)

=⇒ e ∈ Events(fSpecORSet
(V))

Thus, ERelSpecORSet
(V) ⊆ Events(fSpecORSet

(V)) thus making fSpecORSet
a specification subview

function.

158

Note that since the universe is bounded by NUniv, in any view V , |Emax (V)| ≤ N ×NUniv.

Thus, fSpecORSet
is a bounded function with a bound N ×NUniv.

If we show that fSpecORSet
is a primary information function that is locally computable, it

follows from Theorem 125 that OR-Sets have a bounded implementation where the under-

lying network permits only B-Concurrent runs, such that the bounded implemenatation is

correct with respect to SpecORSet .

Lemma 130. fSpecORSet
is a primary information function.

Proof. We need to show that fSpecORSet
satisfies the four conditions of the primary information

function.

1. In any view V , fSpecORSet
(V) is a finite (since V is finite) fragment of V containing only

the update events. Thus, the output of fSpecORSet
is an information graph G(V) of V .

2. In any trace T , if e is a Query or an usend event at a replica r, then by definition,

∂T (e) = ∂T (e′) where e′ = Pred rT (e). Thus, fSpecORSet
(∂T (e)) = fSpecORSet

(∂T (e′)).

3. Let e be an update event at replica r. Let V = ∂T (e). Let Args(e) = x. By definition,

e ∈ max rx(V). Thus, e ∈ Emax (V). Hence, e ∈ ERelSpecORSet
(V). Which by definition

implies e ∈ fSpecORSet
(V).

4. Suppose e′ ∈ PredT (e). And some event e′′ ∈ fSpecORSet
(∂T (e) ∩ ∂T (e′). Let e′′ be an r-

event with Args(e′′) = x. Then, by defintion, e′′ ∈ max rx(∂T (e)). Also since e′′ ∈ ∂T (e′),

it implies that e′′ ∈ max rx(∂T (e′)). Thus, by definition e′′ ∈ fSpecORSet
(∂T (e′)).

Thus, fSpecORSet
is a primary information function.

We now show that fSpecORSet
is locally computable.

Lemma 131. In any causally-delivered trace T of an OR-Set, for any event e, the primary

information fSpecORSet
(∂T (e)) is computable from e, and fSpecORSet

(∂T (e′)) where e′ ∈ PredT (e).

Proof. We shall prove this by the height of the event e. The base case for an empty trace T

is trivial since fSpecORSet
computes an empty view.

Assume that the result is true for all events of height smaller than n.

Now consider an event e of height n. Let Rep(e) = r. Let e′ = Pred rT (e). Let V = ∂T (e),

and V ′ = ∂T (e′).

e is a query or a usend event: In this case V = V ′ and by definition, fSpecORSet
(V) =

fSpecORSet
(V ′). Thus, in these cases, fSpecORSet

is locally computable.

159

e is an update operation: Let Args(e) = x.

Let fSpecORSet
(V ′) = (E ′, <′) and fSpecORSet

(V) = (E,<). Note that e ∈ max rx(V).

For any e′′ ∈ E ′, if Rep(e′′) = r′′ and Args(e′′) = x′′, then, e′′ = max r
′′

x′′(V
′). If

either r′′ 6= r or x′′ 6= x, then, max r
′′

x′′(V) = max r
′′

x′′(V
′). For r′′ = r and x′′ = x,

max r
′′

x′′(V) = max rx(V) = e. Thus, if Ein = {e′′ ∈ E ′ | Rep(e′′) 6= r ∨ Args(e′′) 6= x}
then, E = Ein ∪ {e}.

For any pair of events e′′, e′′′ ∈ Ein , we have the ordering between them via <′. Thus

we set < |Ein =<′ |Ein . For all e′′ ∈ Ein , e′′ < e. Thus, <=<′ |Ein ∪{(e′′, e) | e′′ ∈ Ein}.

Thus, in this case fSpecORSet
can be locally computed.

e is an ureceive operation: Let e′′ = ϕ(e). Let Rep(e′′) = r′′. Let Args(e′′) = x′′. Let

V ′′ = ∂T (e′′). Let fSpecORSet
(V ′) = (E ′, <′) and fSpecORSet

(V) = (E,<) and fSpecORSet
(V ′′) =

(E ′′, <′′).

Note that V ′′ \ {e′′} ⊆ V ′, since due to causal delivery, all the updates in V ′′ apart

from e′′ have already been delivered at r at or before e′. Hence they are in V ′.

Thus, for any replica r′ and an element x′, such that either r′ 6= r′′ or x′ 6= x′′,

max r
′

x′(V
′′)

vis−→ max r
′

x′(V
′). Thus, r′ 6= r′′ or x′ 6= x′′, max r

′

x′(V) = max r
′

x′(V
′).

We know that e′′ ∈ max r
′′

x′′(V). Thus, if Ein = {e′′′ ∈ E ′ | Rep(e′′′) 6= r′′ ∨Args(e′′′) 6=
x′′}, since the events in E are

⋃
x∈Univ

⋃
r∈R

max rx(V), we can write E = Ein ∪ {e′′}.

For events in Ein , <′ provides the ordering among the events.

Further, for any event e′′′ ∈ E ′ \ E ′′, if Rep(e′′′) = r′ 6= r′′ or Args(e′′′) = x′ 6= x′′,

e′′′ ∈ max r
′

x′(V
′). Thus, it is not the case that e′′′

vis−→ e′′ since otherwise it will imply

that e′′′
vis−→ max r

′

x′(V
′′) thereby contradicting the fact that max r

′

x′(V
′′)

vis−→ max r
′

x′(V
′).

Similarly it cannot be the case that e′′
vis−→ e′′′ since by causal delivery that would imply

e′′ ∈ E ′, which we know is not the case since the update e′′ became known to r through

the update-receive event e. Thus, for all events e′′′ ∈ E ′ \ E ′′, e′′′||e′.

For e′′′ ∈ Ein ∩ E ′′, the ordering between e′′′ and e′′ is given by <′′.

Thus <=<′ |Ein∪ <′′ |(Ein∪{e′′})∩E′′ .

Thus (E,<) can be computed locally. Hence fSpecORSet
can be computed locally in this

case as well.

Thus, we have shown that for every event, we can locally compute specification subview

fSpecORSet
from the event and the the specification subviews at its predecessors.

From Lemmas 130 and 131, along with Theorem 125, we can conclude the following.

160

Theorem 132. Over a finite universe Univ, there exists a bounded implementation of OR-

Sets whose runs are B-concurrent and which is correct as per the specification SpecORSet .

5.4 Summary

Borrowing ideas from Mazurkiewicz trace theory, in this chapter we have formulated a gen-

eralization of the gossip problem and shown that this can be used to derive bounded imple-

mentations for replicated data types, provided we have an additional guarantee of bounded

concurrency. Though bounded concurrency seems like a very strong property, it is automat-

ically achieved if we combine causal message delivery with bounded message delays. The

only complication that can arise is from a replica crashing. However, if we assume that

when a replica wakes up from a crash, it first processes all pending receive actions before

initiating any sends, we retain bounded concurrency. Note that causal delivery is also in-

feasible if we do not make similar assumptions about how a crashed process recovers. Our

main contribution in this chapter is a systematic approach to construct bounded reference

implementations for replicated data types. We will show in the next chapter that this kind

of implementation is useful for both verification and testing.

161

6

Bounded Reference implementations of

Replicated Data Types using Later

Appearance Records (LAR)

In the previous chapter, we had described a principled approach to constructing a bounded

reference implementation for replicated data type from its bounded declarative specification.

This construction produced a distributed reference implementation where each replica only

keeps a fragment of its local view of the overall run in the form of primary and secondary

information. This required an intricate distributed timestamping protocol [Mukund and

Sohoni, 1997; Mukund et al., 2003, 2015a] in order to safely reuse the timestamps so that

the state at every replica remains boudned. Moreover, it required strong assumptions about

B-Concurrent runs which had to be guaranteed by the underlying network have to be directly

incorporated into the reference implementation.

In this chapter, we propose a simple global reference implementation for replicated data

types with declarative specifications and simple conditions under which this is guaranteed

to be finite. Our implementation uses the technique of Later Appearance Record (LAR).

We note that the main aim of generating a reference implementation is to come up with an

effective verification procedure for a given CRDT implementations. The key observation of

this chapter is that a global reference implementation is sufficient for this purpose. In a global

reference implementation, we can directly keep track of the happened-before relation between

update events without exchanging additional information between replicas. In fact, we show

that we can maintain a local sequential history for each replica in terms of a later appearance

record (LAR) [Gurevich and Harrington, 1982], from which we can faithfully reconstruct the

causality relation. This greatly simplifies the construction. Furthermore, the LAR-based

construction does not require imposition of any bound over the concurrent update operations.

Towards the end of the chapter we also outline a methodology for effective verification of

CRDT implementations using CEGAR. This chapter is based on our work [Mukund et al.,

162

2015b].

6.1 Global Implementation of a Replicated Datatype

Recall that an abstract run is a pair (ρ, ϕ) where ρ is a sequence of operations of a replicated

data type D and ϕ is a function that identifies the update (at a remote replica) corresponding

to each receive operation in ρ. When we consider an implementation of a CRDT, its runs

will typically be just sequences of operations. The function ϕ is not provided along with the

run, but it is reasonable to assume that the implementation has enough extra information

to identify the update operation corresponding to each receive event. One way to model

this is to associate each operation with an identifier, which is typically a a natural number.

Further, we assign the same identifier for an update-receive operation and its matching update

operation. Since we are interested in finite-state CRDT implementations also, we would like

to use a bounded linearly ordered set ID of identifiers as timestamps. It is simplest to assume

that ID ⊆ N.

We call such operations annotated with identifiers as annotated operations. Let Σ(D, ID) =

Σ(D)× ID denote the set of annotated operations of the CRDT D.

Definition 133 (Annotated Operations). We denote by ID the set of identifiers. It is

simplest to assume that ID ⊆ N.

An annotated operation is an operation of a replicated data type annotated with an iden-

tifier from a set ID ⊆ N.

For an annotated operation o′ = (o, id) ∈ Σ(D)× ID, we define Id(o′) = id and ψ(o′) =

ψ(o) for ψ() ∈ {Rep(),Op(),Ret(),Args()}.

Thus, we can now define a annotated run to be a sequence of annotated operations.

However, it cannot be an arbitrary sequence, since we need to ensure that for every update-

receive operation, its identifier is the same as the identifier on the matching update operation.

We formally define a well-formed annotated run below.

Definition 134 (Well-formed Annotated Run). We say that an annotated run ρ′ ∈ (Σ(D)×
ID)∗ is well-formed if timestamps are assigned sensibly, as follows.

• For every update-send operation ρ′[j], the previous operation, Op(ρ′[j − 1]) ∈ Updates

and has the same identifier as the update-send

Id(ρ′[j]) = Id(ρ′[j − 1])

• For every update-receive operation ρ′[j], there is i < j such that Id(ρ′[i]) = Id(ρ′[j]),

and ρ′[i] is an update operation such that for all k ∈ [i+ 1..j − 1],

Op(ρ′[k]) = ureceive =⇒ Rep(ρ′[k]) 6= Rep(ρ′[j]) ∨ Id(ρ′[k]) 6= Id(ρ′[j]).

163

• For i < j, if ρ′[i] and ρ′[j] are update operations and Id(ρ′[i]) = Id(ρ′[j]), then for every

replica r 6= Rep(ρ′[i]), there is a k ∈ [i + 1..j − 1] such that Op(ρ′[k]) = ureceive,

Rep(ρ′[k]) = r and Id(ρ′[k]) = Id(ρ′[i]).

These constraints ensure that before the timestamp corresponding to an update operation

is reused later on in the run, the corresponding update-receive are delivered to the all the

other replicas in the run.

The first condition ensures that the timestamps match a send operation to the previous

update operation. The second condition captures the fact that timestamps unambiguously

match receive events to update operations. The third condition prevents a timestamp from

being reused before it has been received by all replicas.

Given a annotated run, we can define the appropriate abstract run as follows.

Definition 135 (Abstract Run associated with a Annotated Run). The run associated with

a well-formed annotated run ρ′ = ((o1, id1), (o2, id2), . . . , (om, idm)) is a pair (ρ, ϕ) such that

• ρ = o1o2 · · · om

• For any i ≤ |ρ′|, if oi is a ureceive-operation,

ϕ(i) = max{j < i | id j = id i and Op(oj) ∈ Updates}

In what follows, we consider only well-formed annotated runs.

Lemma 136. For every run (ρ, ϕ) of D, we can identify a set ID such that there is a

well-formed annotated run ρ′ ∈ (Σ(D)× ID)∗ whose associated run is (ρ, ϕ).

Proof. All query operations can be labelled with a fixed identifier (say 0, for concreteness).

Each update operation ρ[i] is labelled with the smallest identifier in ID that does not label

any undelivered update operation in ρ[1 : i − 1]. Every receive operation ρ[i] is labelled by

the same identifier that labels ρ[j], where ϕ(i) = j.

We recall the definition of an implementation of a replicated data type.

Definition 137 (Implementation of a replicated data type and its runs). An implementation

of a CRDT D is a tuple DI = (C, C⊥, ID ,→) where:

• C is set the configurations, where each configuration represents a the states of all the

replicas at a given time..

• C⊥ ∈ C is the initial configuration corresponding to the initial configuration.

• ID ⊆ N is the set of identifiers, which serve as identifiers.

164

• → ⊆ C × (Σ(D)× ID)× C is the transition relation.

A annotated run ρ′ = o′1 · · · o′n is accepted by DI if there exists a sequence of configurations

C0C1 · · ·Cn such that C0 = C⊥, and for every i ≤ n, Ci−1

o′i−→ Ci. (ρ, ϕ) is a run of DI if it

is the run associated with a well-formed annotated run ρ′ accepted by DI . We denote the set

of all runs of DI by Runs(DI).

The implementation is correct with respect to SpecD iff Runs(DI) ⊆ Runs(D, SpecD).

We now present a reference implementation of a replicated data type

D = (Univ,Updates,Queries,Ret)

with a declarative specification SpecD. The reference implementation, denoted Dref , satisfies

the property that Runs(Dref) = Runs(D, SpecD).

6.1.1 Reference Implementation

Before we describe the reference implementation, we present the ingredients needed. The aim

is to maintain as little information as possible to respond to each query. The key observation

is that the reference implementation is global—it can pool together information stored at all

the replicas without paying the cost of communication. If we have a declarative specification

SpecD of D that is computable via RelevantCtxt and ComputeRet, then each replica needs to

maintain
⋃
q,args RelevantCtxt(V, q, args), where V is the view of some replica r at any point

in time. The important ingredient in RelevantCtxt is the precedence relation between events,

and hence the reference implementation needs to store enough information to recover this.

The implementation also needs to intelligently discard information that will no longer prove

useful.

The most direct implementation would store (as part of the “state” of each replica) the

relevant suffix of the trace—the upward closure of the events in⋃
q,args

RelevantCtxt(V, q, args).

But we choose a more compact representation called Later Appearance Records (LARs),

from which the information needed to answer queries can be recovered. An LAR is a set of

sequences rather than a partial order, and hence easier to manipulate.

We now define the building blocks of the reference implementation.

Let L be a (potentially infinite) set of labels, equipped with a total order ≤. We use

labels to distinguish between multiple occurrences of the same update method at the same

replica with the same arguments. Update operations equipped with labels are called nodes.

165

Definition 138 (Node). A node is a tuple (u, r, args , l) ∈ Updates × R × Univ∗ × L. For

v = (u, r, args , l), we define Op(v) = u, Rep(v) = r, Args(v) = args and Label(v) = l. The

set of all nodes is denoted by N .

Definition 139 (Later Appearance Record). A Later Appearance Record

(LAR) is a sequence of distinct nodes. For a node v and an LAR L, we write v ∈ L

to denote that v appears in the sequence of nodes in L.

For nodes v1, v2 ∈ L, v1 ≤L v2 if v1 occurs earlier than v2 in L. If L is an LAR and W

is a set of nodes then L−W is the subsequence of L consisting of nodes not in W . The set

of all LARs is denoted by LARS.

Each replica uses the LAR to record the order in which it has seen updates, originating

locally as well as remotely. In an actual implementation, on an update request from the client,

the replicas generate auxiliary information which is then broadcast to the other replicas over

the network. The behaviour of the network is not under the control of the implementation.

The network might sometimes provide additional guarantees about message delivery (such as

causal delivery or FIFO delivery), and we can sometimes make use of these facts to simplify

the implementation. Here we present the general case, without any assumptions about the

network. In our reference implementation we would like to keep track of the delivery status

of the auxiliary information broadcast by an update to the other replicas in the system. We

model this information as a network node. Recall that a node is an update operation along

with an unique label. A network node attaches to a node the identifier associated with the

annotated update operation as well information about the state of replicas that have received

the update.

Definition 140 (Network node). A network node is a member of N×ID×2R. The set of all

network nodes is denoted by Nnet . For a network node vnet = (v, id , R) we define Node(vnet)

to mean v, Id(vnet) to mean id and define Rep(vnet), Id(vnet), Args(vnet) and Label(vnet) to

be the corresponding functions applied on v. We use Delivered(vnet) to denote R which is the

subset of the replicas which have received the broadcast corresponding to the update operation

associated the identifier id

A configuration of a reference implementation consists of the LAR of each replica along

with the network nodes pertaining to undelivered updates. In order to keep only the relevant

information, one of the aims of the reference implementation is to try to purge nodes from

LARs whenever possible. A consistent configuration is one where these purges have been

done safely. Specifically, replica r does not purge a node modelling a local update operation

as long as that node it is present in the LAR of some other replica. Also, if a local update

is yet to be delivered to some other replica, then r does not purge the corresponding node.

166

Definition 141 (Configuration). A configuration C is a member of LARS|R| × 2Nnet . For

any configuration C = ((L1, L2, . . . , LN), Vnet), we denote by C[r] the LAR Lr. We shall

denote by Cnet the set of network nodes Vnet .

We say that a configuration C is consistent iff

• ∀r, r′ if there exists v ∈ C[r] such that Rep(v) = r′ then v ∈ C[r′]. This ensures that

when a node is present in a remote LAR it is guaranteed to be present in the local

LAR. This is a crucial property for recovering the causality relation between update

operations modelled by the nodes in the LARs.

• ∀vnet ∈ Cnet if r ∈ Delivered(vnet) then Node(vnet) ∈ C[r]. This ensures that the

delivery status of a broadcast of an update matches the state of the replica where the

broadcast is delivered. Thus, if the network node, modelling the status of the broadcast

by the network, says that the broadcast of an update is delivered at some replica, then

the LAR of that replica should contain the node modelling that update operation.

The trivial configuration denoted by C⊥ is one where ∀r ∈ R : C⊥[r] is the empty LAR and

C0
net = ∅. We denote the set of all consistent configurations by Cref .

Using the LARs of all the replicas, we can reconstruct the happened before relation for

all events that are mentioned in a configuration. Suppose r sees two updates u′ and u′′

originating at r′ and r′′. Since updates are seen at the originating replica first before being

seen by others, the relation between u′ and u′′ can be determined by their relative order of

appearances in the LARs of r′ and r′′. Here we crucially use the fact that our implementation

is global.

Definition 142 (Precedence and Concurrency). Let C be a consistent configuration. Let r

be a replica and vi, vj ∈ C[r] with Rep(vi) = r′ and Rep(vj) = r′′. We say that vi precedes

vj in C, denoted by vi ≤C vj, if (vi ∈ C[r′′] ∧ vi ≤C[r′′] vj) ∧ (vj ∈ C[r′] =⇒ vi ≤C[r′] vj).

(In other words, both r′ and r′′ locally see vi before vj.)

If neither vi ≤C vj nor vj ≤C vi for any vi, vj ∈ C[r], then we say that vi and vj are

concurrent in C, denoted by vi ‖C vj.
For a consistent configuration C and replica r, the view of r in C, denoted by ∂C(r), and

can be represented by the acyclic graph (C[r],≤C).

If a node v in the LAR C[r] of a replica r in a configuration C is such that it is in the

relevant context of the view of that replica for some query q and argument args , then such a

node should not yet be purged from the LAR of the replica in order that ∂C(r) is consistent

with the view of the replica at that point. Otherwise the replica r would not be able to

correctly answer the query q(args) as per the specification. Hence such a node is termed to

be a relevant node.

167

Definition 143 (Relevant node). Let SpecD be a specification of D computable via RelevantCtxt

and ComputeRet. We say that a node v in a consistent configuration C is relevant with re-

spect to SpecD if there exists a replica r, query q ∈ Queries and args ∈ Univ∗, such that

v ∈ RelevantCtxt(∂r(C), q, args).

We shall now provide the details of the reference implementations and how the configu-

rations evolve along a run.

6.1.2 Details of the reference implementation

The reference implementation is formally presented below. In this implementation each

replica in the configuration maintains an LAR to which it appends information pertaining

to each local update. On receiving information about a remote update, it again appends

this to the LAR, and also seeks to purge from all LARs nodes that have ceased to become

relevant and have been seen by all replicas. This enables the reuse of labels. Since in any

view V of a replica in a trace T , the relevant nodes subsume all the subtraces of the form

RelevantCtxt(V, q, args), it follows that the implementation never purges information that is

needed to answer a query.

Let SpecD() be the declarative specification of a CRDT D computable via functions

RelevantCtxt() and ComputeRet(). The global reference implementation of the CRDT is

defined to be Dref = (Cref , C⊥, ID ,→ref) where ID = N and →ref is defined as follows.

Let C,C ′ ∈ C and let o be an operation from Σ(D) × ID with Rep(o) = r, Args(o) =

args, Id(o) = id . Then the transition relation due of the reference implementation for

the operation o, that transforms the configuration C into the configuration C ′, denoted by

C
o−→ref C

′, iff one of the following holds:

• Op(o) = q ∈ Queries and ret = ComputeRet(∂C(r), q, args) and C ′ = C.

• u = Op(o) ∈ Updates, ∀vnet ∈ Cnet : Id(vnet) 6= id , and C ′ is defined as follows:

– ∀r′ ∈ R : r′ 6= r =⇒ C ′[r′] = C[r′].

– C ′[r] = C[r].v, with v = (u, r, args , l) where l is a label such that ∀v′ ∈ C[r] :

Label(v′) 6= l.

– C ′net = Cnet ∪ {(v, id , {r})}.

• Op(o) = usend, and C ′ = C and there exists a node v such that (v, id , {r}) ∈ Cnet

• Op(o) = ureceive and there exists a node v and R ⊆ R such that (v, id , R) ∈ Cnet

and r 6∈ R, and C ′ is defined as follows:

Let C ′′ be an intermediate configuration defined as

168

– ∀r′ 6= r : C ′′[r′] = C[r′].

– C ′′[r] = C[r].v.

– C ′′net = Cnet ∪ {(v, id , R ∪ {r})} \ {(v, id , R)}.

If R ∪ {r} 6= R then C ′ = C ′′ else

– ∀r′ ∈ R : C ′[r′] = C ′′[r′]−W , where

W = {v′ ∈
⋂
r′∈R

C ′′[r′] | v′ is not relevant in C ′′}.

– C ′net = C ′′net \ {(v, id , R ∪ {r})}.

Thus the configuration C ′ is the same as the original configuration C ′ on a query oper-

ation and the return value of the query should be as per the return value provided by the

specification of the replicated data type when applied to the view of the replica r, where the

view is constructed from the LAR C[r] of the replica r

On an update operation at replica r, we append the LAR of the replica r in the configu-

ration C with the new node v corresponding to the new update operation. We also add this

node into the list of network nodes Vnet while marking that this node has been delivered at

replica r.

On an update-send operation at replica r, the configuration C ′ is the same as the original

configuration. Furthermore it is expected that the original configuration has a network node

in C.net corresponding to the update operation that would have occurred just before this

update-send. We identify this node by verifying the id of the network node and also the fact

that the set of replicas tracking the delivered update should only contain r.

Finally, on an update-receive operation at replica r, we append the LAR of the replica r

with the new node v. We also update the list of network nodes Vnet to mark that the update

v is delivered at replica r. Following this, we check if the update v has been delivered at

all the replicas. If so, it gives us an opportunity to compute whether due to the arrival of v

some other nodes in the configuration have ceased to become relevant. If that is the case,

we purge all those node v′ which have been delivered at all the replicas, and which are no

longer relevant at the replicas. Finally, we purge the network node corresponding to v from

the list of network nodes, since the update has been delivered at all the replicas.

We will now show the correctness of the global reference implementation.

6.1.3 Correctness of the reference implementation

Lemma 144. Every reachable configuration C of Dref is consistent.

169

Proof. The initial configuration is trivially consistent, and each transition purges only those

nodes that are no longer relevant and are delivered to every replica. This proves the lemma.

In the presentation below, we shall denote the trace of the run (ρ, ϕ) as T (ρ, ϕ). Further

suppose T = T (ρ, ϕ), and r is a replica and max r(T) denotes the maximal r-event in T ,

then we shall denote by ∂T (r) the view of the replica r in T which is ∂T (max r(T)).

Lemma 145. Suppose ρ′ ∈ (Σ(D)× ID)∗ is accepted by Dref and that C0
ρ′−→ref C. Let (ρ, ϕ)

be the run associated with ρ′ and T = T (ρ, ϕ). Then, for all r, q and args,

RelevantCtxt(∂T (r), q, args)

is isomorphic to

RelevantCtxt(∂C(r), q, args).

Proof. The proof is by induction on the length of ρ′. The case when ρ′ = I is trivial. So let

ρ′ = σ′.o. Let C ′ be a configuration such that C0
σ′−→ref C

′ o−→ref C. Let (σ, ϕ) be the run

corresponding to σ′ and let T ′ = T (σ, ϕ). We assume by the induction hypothesis that for

all r, q and args , RelevantCtxt(∂T ′(r), q, args) is isomorphic to RelevantCtxt(∂C′(r), q, args).

There are three cases to be considered.

o is a query operation: In this case C = C ′ and ∂T (r) = ∂T ′(r) since the update opera-

tions visible to r are the same in both the trace. So the lemma follows.

o is an update operation: Suppose Rep(o) = r. For r′ 6= r, it is clear from the transition

rules that C[r′] = C ′[r′]. It is also the case that ∂T (r′) = ∂T ′(r
′), so the result is true

holds for the relevant context of any query at replicas other than r.

On the other hand, C[r] = C ′[r].v where v is a node with a fresh label l, corresponding

to the operation o. Since v is the latest node in C[r] and v /∈ C[r′] for any other r′, it is

clear that v′ ≤C v iff v′ ∈ C[r]. But v′ ∈ C[r] iff v′ corresponds to an update received

by r or originating in r. Thus Events(∂C(r)) = Events(∂C′(r)) ∪ {v}, with v being the

maximal element in ∂C′(r). It is easy to see that the maximal r-event in the trace T is

greater than all other events in ∂T ′(r). Thus RelevantCtxt(∂C(r), q, args) is isomorphic

to RelevantCtxt(∂T (r), q, args).

o is a receive operation: Suppose Rep(o) = r. We add a node at the end of C[r], but

also purge all the LARs of some irrelevant nodes (those that are received by every

replica). Since irrelevant nodes do not feature in RelevantCtxt(∂T (r′), q, args) for any

r′ and q(args), all we need to show is that the order among relevant nodes is captured

correctly. But the order between update events does not change at the point of time

of a receive. It can be checked that ≤C = ≤C′ , and thus the lemma follows.

170

We next show that the runs of our global reference implementation are correct with

respect to the declarative specification of the replicated data type.

Lemma 146. Suppose a well-formed annotated run ρ′ ∈ (Σ(D)× ID)∗ is accepted by Dref .

Let (ρ, ϕ) be the run associated with ρ′. Then (ρ, ϕ) ∈ Runs(D, f).

Proof. Suppose C0
ρ′[1,...,i]−−−−→ref Ci. Let Ti = T (ρ[1, . . . , i], ϕ[1,...,i]). Since

RelevantCtxt(∂Ci(r), q, args) is isomorphic to RelevantCtxt(∂Ti(r), q, args) and since

ComputeRet returns the same values on isomorphic traces, it easily follows that for all query

operations ρ[i] of the form (q, r, args, ret), we have Ret(ρ[i]) = SpecD(∂Ti(r), q, args). Thus

(ρ, ϕ) ∈ Runs(D, SpecD).

We now show that every correct run of the replicated data type as per the specification

is accepted by our global reference implementation.

Lemma 147. Suppose (ρ, ϕ) ∈ Runs(D, f). Let ρ′ ∈ (Σ(D)× ID)∗ be a well-formed anno-

tated run whose associated run is (ρ, ϕ). Then ρ′ is accepted by Dref .

Proof. We prove the lemma for ρ′[1 : i], by induction on i. The base case, when i = 0 is

trivial. So let i > 0. Suppose ρ′[1 : i − 1] is accepted by Dref by an execution ending in

configuration C. Let (σ, ϕ) and (σ′, ϕ) be the abstract runs associated with ρ′[1 : i− 1] and

ρ′[1 : i] respectively. Let T = T (σ, ϕ) and T ′ = T (σ′, ϕ). Let o = ρ′[i] = ((m, r, args , ret), id).

There are three cases to consider.

m ∈ Queries or m = usend: In this case ∂T (r) = ∂T ′(r). We know that

ret = SpecD(∂T ′(r),m, args) = SpecD(∂T (r),m, args).

But we also know that RelevantCtxt(∂C(r),m, args) is isomorphic to

RelevantCtxt(∂r(t),m, args).

Thus it follows that ret = SpecD(∂C(r),m, args). Hence C
o−→ C ′ and ρ′[1 : i] is

accepted by Dref .

m ∈ Updates: Since ρ′[1 : i] is well-formed, it has to be the case that either id is not used in

ρ′[1 : i− 1], or if it is used in an update operation ρ′[j], every replica has received that

update in ρ′[j + 1 : i− 1]. Thus, there is no node vnet ∈ Cnet with Id(vnet) = id . So, o

is enabled at C and ρ[1 : i] is accepted by Dref .

171

m = mreceive: Since ρ′[1 : i] is well-formed, it has to be the case that there is an earlier

update at some other replica with the same identifier that has not yet been commu-

nicated to r. Thus there exists a node v and R ⊆ R such that (v, id , R) ∈ Cnet and

r 6∈ R. It follows that o is enabled at C and ρ′[1 : i] is accepted by Dref .

From the previous two lemmas we can conclude the following:

Theorem 148. Runs(Dref) = Runs(D, f)

Thus, the reference implementation for D thus provided covers all the runs that are valid

as per the specification SpecD

6.1.4 Bounding the reference implementation

For effective verification, we need to ensure that the set of traces of the replicated data type

has a finite representation. The reference implementation constructed in the previous section

is not necessarily finite-state. The unboundedness arises due to the following reasons.

• If the size of the universe is not bounded, the number of nodes, and hence the number

of configurations, will not be bounded.

• If there is no bound on the number of undelivered messages, then the number of network

states would be unbounded, and therefore the size of Cnet of any configuration C is

unbounded.

• If the specification of the replicated itself is not a bounded specification, then the

number of relevant nodes in the configuration is unbounded, even when the universe

Univ is finite.

With some reasonable assumptions, we can ensure that the reference implementation is

finite-state.

1. Universe Size: We assume that the size of the universe is bounded by a parameter

NUniv. This is a reasonable assumption since most replicated data-type implementations

treat the elements of the universe in a uniform manner. Hence for the purpose of

verification, it suffices to consider a universe whose size is bounded.

2. Delivery Constraints: We assume that the number of undelivered messages in the

network is bounded by the parameter B. Again, this is a reasonable assumption

since most practical implementations of strong eventual consistency also requires that

messages are reliably delivered to all the replicas. We can pick a sufficiently large B

that correctly characterizes the network guarantee of the actual implementation.

172

3. Bounded Specification: We assume that the specification function SpecD com-

putable via RelevantCtxt and ComputeRet comes with a bound M . Let k be the maxi-

mum arity of any q ∈ Queries. If the universe if bounded, the number of query instances

is bounded by |Queries| × Nk
Univ. Since the specification function has a bound M , the

size of the relevant nodes in a configuration is bounded by ` = M × |Queries| ×Nk
Univ.

For example, in case of OR-sets where the updates are causally delivered, to answer

the query contains(x) it is sufficient to keep track of the maximal x-events. Since the

number of replicas R is bounded by N the number of maximal x-events is bounded by

N . Hence if the universe is bounded by NUniv then the number of relevant nodes in a

configuration is no more than NUniv ×N .

We now prove that, with these assumptions, the size of the reference implementation

is bounded. Each configuration of Dref consists of an LAR for each replica, and a set of

network nodes. As is clear from the transition rules, the only network nodes we retain are

those that are still undelivered to some replicas. Thus, if there is a bound on the number

of undelivered messages, there is also a bound on the number of network nodes present in

each configuration. But the set of network nodes that occur in all configurations might still

be unbounded. To bound this, we need to bound the set of all nodes and the set ID . The

size of the set ID can be bounded by B, the number of undelivered messages, as explained

below.

Let C be a reachable configuration of Dref and o an update operation enabled at C. Now

it has to be the case that only if there are at most B − 1 network nodes in Cnet (otherwise,

there would be more than B undelivered messages in the run upto and including o). Thus as

long ID has B elements, the reference implementation can always attach a fresh timestamp

to o. (Formally this means that we can map any annotated run of Dref to an equivalent run

which uses at most B timestamps.)

We now turn to bounding the set of all nodes. The only unbounded component in this

is the set L of labels.

Lemma 149. If the number of undelivered messages is bounded by B and the number of

relevant events is bounded by K then it is sufficient to have a label set L of size B +K

Proof. Let ρ = ρ′.o be any run of the reference implementation such that the number of

undelivered messages in ρ is bounded by B. Let o be an update operation at replica r. Let

C ′ be the configuration of the reference implementation at the end of ρ′.

Note that the number of undelivered update operations in ρ′ is strictly less than B;

otherwise, ρ would have more than B undelivered messages. It follows that the number of

undelivered nodes in C ′ is at most B − 1. (A node v is undelivered in C ′ if (v,R) ∈ C ′net for

some R (R.) A node v is present in some LAR C ′[r′] if v is undelivered or v is relevant.

Thus the number of distinct nodes in C ′ is at most B +K − 1. Thus if |L| = B +K, there

173

is at least one free label in L to label the new node C[r] \C ′[r]. Thus, it is sufficient to have

a label set L of size B +K.

From the above, we can conclude that the number of nodes inN is bounded by |Updates|×
N ×Nk′

Univ × (B +K) (where, as before, k′ is the maximum arity of any u ∈ Updates).

Since the set ID is also bounded (by B, as already explained), the set of network nodes

is bounded (by |N | × |ID | × 2N).

From Lemma 149 it is clear that the number of distinct nodes in any configuration cannot

exceed B +K. Since the number of undelivered messages are bounded by B, the number of

network nodes is bounded by B. Thus, the set of all configurations C is bounded as follows:

|C| ≤ |N |(B+K) × |Nnet |B.

Theorem 150. If the number of undelivered messages and the size of the universe are

bounded and we have a bounded specification for the replicated data-type, then the reference

implementation is bounded.

6.2 Applications to verification

A bounded reference implementation of a replicated data type can be used for to formally

verify the correctness of a given implementation of replicated data type. It can also be used

to design effective test suites to uncover the bugs in a given implementation. We discuss this

in the current section.

6.2.1 Effective verification using Bounded Reference Implementa-

tion via CEGAR

Verifying implementations of replicated data types is a challenging task. For instance, con-

sider an implementation that uses a bounded set of timestamps as we have proposed, except

that the size of this set is too small. Under certain circumstances, a replica may be forced

to reuse a timestamp even when a previous update with the same timestamp has not been

delivered. To detect such an error, we have to explore a run that exceeds the bound in the

implementation. Unfortunately, we typically do not have access to the internal details of

the implementation, so this bound is not known in advance. This results in an unbounded

verification task.

Alternatively, we have seen that by making reasonable restrictions on the universe of the

datatype and the behaviour of the underlying messasge delivery system, we can generate a

bounded reference implementation. Once we have such a bounded reference implementation,

we can use Counter Example Guided Abstract Refinement (CEGAR) [Clarke et al., 2003] to

174

effectively verify a given CRDT implementation with respect to the assumptions made on

the environment.

Counterexample Guided Abstraction Refinement, or CEGAR, is an iterative technique

to verify reachability properties of software systems [Clarke et al., 2003]. In the CEGAR

approach, one uses abstraction techniques from program analysis and other domains to build

a finite-state abstraction of a given implementation. This abstraction is designed to over-

approximate the behaviour of the original system.

The finite-state approximation is run through a model-checker to verify if the safety

property is met. If no unsafe state is reachable, it means that the original system is safe

since the abstracted system over-approximates the actual behaviour. On the other hand, if

the model-checker asserts that an unsafe state is reachable, the counterexample generated

by the model-checker is executed on the original system. If the counterexample is valid, a

bug has been found. If the counterexample is infeasible, the abstraction was too coarse and

a refinement of the abstraction is calculated. This process is iterated until a safe abstraction

is reached or a valid bug is detected.

In the case of replicated data types, as we have noted above, a given implementation

would need to keep track of metadata about past operations in order to reconcile conflicts.

These are typically done using unbounded objects such as counters or vector clocks. To

apply CEGAR to such an implementation, we can derive a finite state abstraction and run

it synchronously with our bounded reference implementation. Thus our bounded reference

implementation acts as a model checker. We can characterize each reachable state of the

finite state abstraction of the given implementation as legal or illegal depending on whether

or not it is query equivalent to the reference implementation.

More formally, given a implementation of a replicated data type with bounded speci-

fication, let us assume suitable bounds on the size of the universe, NUniv, and the num-

ber of undelivered messages, B. We fix the bounded set of timestamps ID accordingly.

We assume the existence of an abstraction function that provides a finite state abstraction

DI = (CI , CI⊥, ID ,→I) of the implementation, whose runs are in (Σ(D)× ID)∗.

We then construct the synchronous product Msync =

((CI × Cref) ∪ {Cerr}, (CI,⊥, Cref⊥), ID ,→sync), where →sync is defined as follows:

• The action o ∈ Σ(D)× ID is enabled at the product state (CI , Cref) iff o is enabled at

CI in DI . If o is enabled then we define

– (CI , Cref)
o−→sync serr , if o is not enabled at Cref in Dref

– (CI , Cref)
o−→sync (C ′I , C

′
ref), if CI

o−→I C
′
I and Cref

o−→ref C
′
ref .

• ∀o ∈ ΣD : o is not enabled at serr

From this construction, we can conclude the following.

175

Lemma 151. If ρ is a run of Msync resulting in the state serr starting from the initial state

(CI⊥, Cref⊥), then ρ ∈ Runs(DI) \ Runs(D, SpecD).

Thus any run ρ leading to the state serr in the synchronous product is a potential counter

example. As usual, we can use the finite abstraction to try trace an actual run in original

implementation corresponding to ρ. If we succeed in finding such a run, we have found a bug

in the original implementation. If the abstract counterexample turns out to be infeasible,

then we refine our abstraction using the feedback obtained from our failure to construct a

valid run. We repeat this process until a bug is found or we are satisfied with the level of

abstraction to which we have verified the system.

6.2.2 Testing of distributed systems

While verification approaches such as CEGAR can be used in a white box setting where we

have access to internal details of the implemenation under test, in a black box scenario we

have to rely on testing.

Effective testing of distributed systems is a challenging task. The first problem is that we

cannot typically test the system globally, so we have to apply tests locally using notations

such as TTCN [Willcock et al., 2005]. Even when such a methodology is available, there are

two criteria that are difficult to establish for test suites: coverage and redundancy. In both

cases, the main source of complexity is the presence of concurrency. In a concurrent system,

it is very difficult to estimate if a test suite covers a reasonable set of reachable global states

because of many different linearizations possible. Secondly, it is not obvious to what extent

tests are overlapping, again because of reordering of independent events.

For the coverage problem, we can construct test suites that cover different portions of

the state space of the reference implementation. If this coverage is widespread, we can have

more confidence in the coverage of the implementation under test. For redundancy, once

again we can use the underlying independence relation to identify when two tests overlap

by checking how much the corresponding traces overlap as partial orders. In the replicated

data type scenario, we may in fact want to generate redundant test cases that differ only in

the order of concurrent events in order to validate strong eventual consistency.

6.3 Summary and Related Work

In this chapter, we have shown how to construct a reference implementation for a CRDT

that is described using a bounded declarative specification. By imposing reasonable con-

straints on the universe of the datatype and the underlying message delivery subsystem, the

reference implementation can be made finite-state. This can be exploited to verify any given

implementation using CEGAR.

176

The key observation in this chapter is that a global reference implementation suffices for

verification. This greatly simplifies the construction compared to the distributed reference

implementation from [Mukund et al., 2015a] described in the previous chapter, which requires

an intricate distributed timestamping procedure due to the local nature of the information

available at each replica.

The other interesting feature of our reference implementation is that the basic construc-

tion using LARs is independent of the assumptions that we make on the set of data values

and the nature of message delivery in order to bound the set of timestamps used. Thus, the

reference implementation relies only on the declarative specificaton of the replicated data

type. We can then separately reason about the size of this implementation under various

constraints on the operating environment.

We now look at some of the related work in the area of formal specification and verification

of Replicated Data Types. [Burkhardt et al., 2014] was the first work to propose a framework

for specifying replicated data types using relation over events. This framework if further

refined in the extended work by one of the authors [Burckhardt, 2014]. In this thesis we have

adopted a simplified version of this framework for providing the specifications of replicated

data types. The verification strategy followed in [Burkhardt et al., 2014] is replication-aware

simulations whose states can be unbounded. In constrast, our approach in this thesis has

been to synthesize distributed as well as global bounded reference implementations which

can be used to verify the correctness of replicated data types with the aid of CEGAR.

[Zeller et al., 2014] provide a formal framework for the analysis and verification of CRDTs.

They follow the specification framework from [Bouajjani et al., 2014a] and [Burkhardt et al.,

2014] by altering it for the purposes of specifying CRDTs. They encode this framework

using the Isabelle/HOL proof assistant and provide the proof of correctness for a number

of CRDT implementations. The verification strategy differs from our work in they use a

theorem proving approach while we rely on concepts from automata theoryto verify the

correctness of replicated data types.

Like [Zeller et al., 2014], [Gomes et al., 2017] focusses on verifying the correctness cor-

rectness of Conflict-free Replicated Data Types (CRDTs) through a modular framework in

Isabelle/HOL interactive proof assistants for verifying the correctness of CRDT algorithms.

They include the network model in our formalization, thereby having the ability to show the

correctness of the CRDT algorithms under various network behaviours. They provide ma-

chine checked proofs for the correctness of Replicated Growable Array, the Observed-Remove

Set, and the PN Counter.

A recent work by [Blau, 2020] describes how δ-state CRDTs retain the advantages of

both state-based CRDTs as well as operation-based CRDTs, while being equivalent with

the latter two. The paper formalizes the intuition through a pair of reductions between the

three kinds of CRDTs. They demonstrate how state based CRDTs satisfy strong eventual

consistency using the Isabelle/HOL interactive proof assistant. Furthermore they show that

177

even δ-CRDTs maintain SEC when only communicating δ-state fragments. This strategy is

targetted toward δ-state CRDTs which is beyond the scope of this thesis.

With this, we come to an end of our study of the behaviours of the replicated data types

from the perspective of the replicas. In the next chapter we focus our attention towards the

investigation of the behaviours of the replicated data stores as seen by the end-users or the

clients.

178

7

Formalizing and Checking Multilevel

Consistency

7.1 Motivation

In the earlier chapters, we have studied the behaviours of replicated implementations of

abstract data types using declarative specifications (Chapter 4) and bounded reference im-

plementations (Chapters 5 and 6). As mentioned in Chapter 1, the behaviours of the

replicated implementations are observed from the perspective of the communicating repli-

cas. These replicas maintain data and additional metadata in order to ensure that they

correctly model the abstract data type as per the specification and in order to satisfy the

strong eventual consistency criterion. Furthermore, they communicate with other replicas

by sharing suitable fragments of their data and metadata so that eventually all the replicas

converge to equivalent states. Since the behaviours explicitly encoded the communications

between replicas through update-send/receive and merge-send/receive operations, we could

derive the visibility relation (Definition 78 in Chapter 4) as a combination of the replica or-

der, the update-send/receive order and the merge order. This visibility relation allowed us to

determine the causal past of the replicas at any point in time, thereby allowing us to reason

about the state of the replicas, and thereby the query-responses. However, the users or the

clients interacting with these replicated data types are oblivious to implementation details

such as the number of replicas involved, the data and the metadata that they maintain,

the frequency at which they communicate and the constraints on message delivery. Thus,

the behaviours of the replicated data types as seen by the individual clients are sequences

of update and query method invocations and the corresponding responses provided by the

data type implementation. Since there can be multiple clients concurrently interacting with

the replicated data type, the update requests issued by some clients will influence the re-

sponses provided to the other clients. Thus, reasoning about the correctness of the query

responses for a client requires us to identify the update requests from other clients. Since

179

the behaviours observed by the clients do not reveal information as to these updates are

ordered by the backend replicated implementation, we need a different strategy to test the

correctness of these behaviours.

Furthermore, the strong eventual consistency criterion ensures that replicas that have

received the same set of update operations should be query-equivalent. The guarantees

provided by this consistency criterion is only meaningful from the perspective of the replicas

and not the clients, since since the clients are not aware of if they are interacting with a

pair of replicas that have received the same updates or not. Thus, the modern replicated

data stores often provide other consistency guarantees such as eventual consistency [Terry

et al., 1995] or causal consistency [Lamport, 1979], which can be reasoned about from the

behaviours observed at the client side. Despite them being around for a while, many of them

have been formalized only recently [Bouajjani et al., 2014b; Burkhardt et al., 2014; Perrin

et al., 2016; Bouajjani et al., 2017]. In this chapter we turn our attention towards modelling

and testing the correctness of the behaviours of replicated data stores, as observed by the

clients.

From the perspective of the clients, programming applications on top of weakly-consistent

data-stores is difficult. Some form of synchronization is often unavoidable to preserve correct-

ness. Therefore, popular data-stores such as Amazon DynamoDB and Apache’s Cassandra

provide different levels of consistencies, ranging from weaker forms to strong consistency.

Applications can tag queries to the data-store with a suitable level of consistency depending

on their needs.

Implementations of large-scale data-stores are difficult to build and test. For instance,

they must account for partial failures, where some components or the network can fail and

produce incomplete results. Ensuring fault-tolerance relies on intricate protocols which are

difficult to design and reason about. The black-box testing framework Jepsen1 found a

remarkably large number of subtle problems in many production distributed data-stores.

Testing a data-store raises two issues: (1) deriving a suitable set of testing scenarios, e.g.,

faults to inject into the system and the set of operations to be executed, and (2) efficient

algorithms for checking whether a given execution satisfies the considered consistency models.

The Jepsen framework shows that the first issue can be solved using randomization, e.g.,

introducing faults at random and choosing the operations randomly. The effectiveness of

this solution has been proved formally in recent work [Ozkan et al., 2018]. The second issue

is dependent on a suitable formalization of the consistency models.

In this chapter, we consider the problem of specifying data-stores which provide multiple

levels of consistency and derive algorithms to check whether a given execution adheres to

such a multilevel consistency specification.

We build on the specification framework in [Burkhardt et al., 2014], presented earlier in

1Available at http://jepsen.io

180

chapter 4, which formalizes consistency models using two auxiliary relations: (i) a visibility

relation, which specifies the set of operations observed by each operation, and (ii) an arbi-

tration order, which specifies the order in which concurrent operations should be viewed by

all replicas. An execution is said to satisfy a consistency criterion if there exists a visibility

relation and an arbitration order that obey an associated set of constraints [Burckhardt,

2014]. For the case of a data-store providing multiple levels of consistency, we consider mul-

tiple visibility relations and arbitration orders, one for each level of consistency. Then, we

consider a set of formulas which specifies each consistency level in isolation, and also, how

visibility relations and arbitration orders of different consistency levels are related.

Based on this formalization, we investigate the problem of checking whether a given

execution satisfies a certain multilevel consistency specification. In general, this problem

is known to be NP-COMPLETE [Bouajjani et al., 2017]. However, for a certain class of

data stores known as data-independent stores [Wolper, 1986] we show that this problem is

PTIME for many practically-interesting multilevel consistency specifications. Since practical

data-store implementations are data-independent, i.e., their behaviour doesn’t depend on the

concrete values read or written in the transactions, it suffices to consider executions where

each value is written at most once. This complexity result uses the idea of bad patterns

introduced in [Bouajjani et al., 2017] for the case of causal consistency. Intuitively, a bad

pattern is a set of operations occurring in a particular order corresponding to a consistency

violation. In this chapter, we provide a systematic methodology for deriving bad patterns

characterizing a wide range of consistency models and combinations thereof.

Our contributions form an effective algorithmic framework for the verification of modern

data-stores providing multiple levels of consistency. To the best of our knowledge, we are

the first to investigate the asymptotic complexity for such a wide class of consistency models

and their combinations, despite their prevalence in practice. This chapter is based on our

work [Bouajjani et al., 2020].

7.2 Multilevel consistency in the wild

In this section we present some real-world instances of multilevel consistency. We restrict

our attention to distributed read-write key-value data-stores (henceforth referred to as read-

write stores), consisting of unique memory locations addressed by keys or variables. We use

keys and variables interchangeably in this work. The contents of these memory locations

come from a domain, called values.

The read-write data-store provides two APIs to access and modify the contents of a

particular memory location. The API to read the content of a particular memory location is

typically named Read or Get, and the API to store a value into a particular memory location

is typically named Write or Put. In this chapter, we refer to these two methods as Read and

181

Write respectively. The Read method does not update the state of the data-store and only

reveals part of the state to the application session which invokes the method. The Write

method on the other hand modifies the state of the data-store.

Typically, an application reads a location of the data-store, performs some local com-

putation and writes a value back to the data-store to the same or some other location. A

sequence of related read and write operations performed by an application is called a session.

Applications expect some sort of consistency guarantee from the data-store in terms of

how fresh or stale the data value is that they read from the data-store. They also seek some

guarantees pertaining to monotonicity of the results that are presented to them. These guar-

antees provided by the data-store to the applications are called consistency criterion. Some

of the popular consistency criteria include Read-Your-Writes, Monotonic Reads, Monotonic

Writes, Causal Consistency, Sequential Consistency which were introduced with examples

in Chapter 1.

• Read-Your-Writes: The effects of prior operations in the session will be visible to

later operations in the same session.

• Monotonic Reads: Once the effect of an operation becomes visible within a session,

it remains visible to all subsequent operations in that session.

• Monotonic Writes: If the effect of a remote operation is visible in a session, then

the effects of all prior operations in the session of the remote operation are also visible.

• Causal consistency: Effects of prior operations in a session are always visible to later

operations. Further, if the effect of an operation is visible to another operation, then

every operation that has seen the effects of the latter would have seen the effects of

the former.

• Sequential Consistency: Effects of the operations can be explained from a single

sequential execution obtained by interleaving the reads and writes performed at indi-

vidual sessions.

Most of the existing literature on testing the behaviour of read-write stores focuses on

testing the correctness with respect to specific consistency criteria [Bouajjani et al., 2014b;

Furbach et al., 2014; Bouajjani et al., 2017]. However, there are cases where data-stores such

as DynamoDB and Cassandra offer to applications the choice of specifying the consistency

level per read-operation [Damien., 2018]. There are distributed data-store libraries that allow

consistency rationing [Kraska et al., 2009] and also allow incremental consistency guarantees

for the read operations [Guerraoui et al., 2016]. In each of these cases we need to reason

about the correctness of the behaviour of the data-store with respect to more than one

consistency criterion.

182

We now look at some examples of multilevel consistency in the real world. In this work,

we assume that the Read and the Write APIs are as follows.

Definition 152 (Read and Write APIs). Let x be a key/variable, val denote a value read-

from/written-to the data-store and level denote the consistency level.

• Write(x, val) : Updates the content of the memory location addressed by the key/variable

x with the value val .

• Read(x, val , level) : This says that the content of the memory location associated with

the variable x is val with respect to the consistency level level .

Read-Write Stores with strong and weak reads

Consider the case of the data-store Cassandra, which allows the application a more fine

grained choice of consistency levels, such as ANY, ONE, QUORUM, ALL. It achieves this by

ensuring that when the Read is executed with ANY, the return value is provided by consulting

any available replica of the data store. Similarly, if the Read operation is submitted with

ONE, the return value is provided by consulting a replica that is known to contain at least one

value for that key. On the other hand, if the Read is executed with QUORUM, the data-store

returns the value after consulting a majority of the replicas. Finally, if Read is executed

with ALL, then all the replicas are consulted before returning the response. Clearly, ANY is

the weakest consistency criterion while ALL is the strongest consistency criterion. In general,

a data-store offers responses pertaining to different consistency criteria by consulting the

required subset of replicas to answer the query.

Typically a read operation under the stronger consistency criterion will take more time,

since it might have to wait for all pending operations to become visible, or run a consensus

protocol before returning the result. In certain cases, applications may be satisfied with

Read operations that return values that are correct with respect to some weaker consistency

criterion. Consider a web-application that displays the available seats in a movie theater.

The application can choose to read the available seats based on a weaker consistency criterion,

since:

• The number of users attempting to book seats is usually more than the seats available.

Waiting for a consensus or a quorum can slow down the reads for everyone. So a

quicker response is desirable.

• There is a lag between the time the user gets to see available seats and the time when

the user decides to book particular seats. Since concurrent bookings are ongoing, the

data displayed can become stale by the time the user books the seat.

183

Session 1
A : Write(x, 5)

B : Read(x, 5, st)

C : Read(x, 4,wk)

D : Read(y, 3, st)

E : Read(x, 6, st)

F : Read(x, 4,wk)

so

so

so

so

so

Session 2
G : Write(x, 4)

H : Write(y, 3)
so

Session 3
I : Write(x, 6)

Figure 7.1: An example of a read-write store behaviour with strong and weak reads. The so

relation relates read and write operations from the same session in the order in which they

happened in that session.

• Users can change their minds before finally settling on a set of seats, and paying for

them.

Thus, the web-application can opt for a read satisfying a weaker consistency criterion

while allowing the user to pick a seat, and then perform a read satisfying a stronger consis-

tency criterion only when the user pays for it.

Consider the example in Figure 7.1 where all write requests are processed at the same

replica. For each session, there is a (potentially different) designated replica from which the

responses to the weak reads are returned.

In this scenario, the strong reads (corresponding to the consistency level ALL) satisfy

sequential consistency while the weak reads obey monotonic reads consistency. Hence, the

fragment consisting of all the writes and the weak reads should be correct with respect to

monotonic reads. Similarly, the fragment consisting of all the writes and the strong reads

should be correct with respect to sequential consistency.

The weak fragment corresponding to the example in Figure 7.1 can be seen in Fig-

ure 7.2(a). This fragment is correct with respect to monotonic reads; once the write G is

visible at session 1 to the read C, it remains visible throughout the session. The write I is

not visible to any of the other sessions yet.

The strong fragment is represented in Figure 7.2(b). This is correct with respect to

sequential consistency, where the order of the operations obtained by consensus is A −→ B −→
G −→ H −→ I −→ D −→ E.

However, since the strong reads correspond to the level ALL where all the replicas have

seen the prior writes and have agreed on the order of the concurrent writes, it behooves a

weak read following a strong read to take into consideration the effects seen by the earlier

184

Session 1
A : Write(x, 5)

C : Read(x, 4,wk)

F : Read(x, 4,wk)

so

so

Session 2
G : Write(x, 4)

H : Write(y, 3)
so

Session 3
I : Write(x, 6)

(a) Weak Fragment from Figure 7.1

Session 1
A : Write(x, 5)

B : Read(x, 5, st)

D : Read(y, 3, st)

E : Read(x, 6, st)

so

so

so

Session 2
G : Write(x, 4)

H : Write(y, 3)
so

Session 3
I : Write(x, 6)

(b) Strong Fragment from Figure 7.1

Figure 7.2: Strong and Weak fragments of the hybrid behaviour

strong read. Thus, the data-store imposes an additional constraint. Once a write is visible to

a strong read in a session, it is visible to all the subsequent weak reads in that session. This

ensures that the weaker reads do incorporate the prior results seen by the session. Similarly,

a write visible to a weak read is made from a replica which participates in the subsequent

strong reads corresponding to the level ALL. Thus, the effects visible to the prior weak reads

in a session are also visible to the subsequent strong reads.

With these additional constraints, we can no longer explain the read operation F , since

the effects of writes G and I are both visible at read F . The strong consistency criterion has

already guaranteed that write I has happened after write G, thereby effectively overwriting

the value 4 with the value 6. Hence this behaviour is incorrect in the multilevel setting.

Now consider the behaviour of Cassandra where writes are performed at one of the replicas

(corresponds to the level ONE), weak reads are performed at one of the replicas (corresponds

to the level ONE) and strong reads are performed at a quorum of replicas (corresponds to the

level QUORUM). In this situation, it is not necessary that the effects of writes visible to prior

weaker reads are visible at subsequent stronger reads, since the replica from which the weaker

read is performed may be missing from the quorum of replicas from which the stronger read

is made. Similarly, the effects of writes visible to prior stronger reads of a session need not

be visible to the subsequent weaker reads in the session, as the writes from the quorum may

not have reached the replica from which the weaker read is performed. Thus, the stronger

and weaker reads can be independent of each other.

Finally consider the case of Amazon DynamoDB Accelerator (DAX) [Documentation,

2019], which contains a write-through cache sitting between the application and the Dy-

namoDB backend. Every write made by the application is first submitted to the DynamoDB

backend and also updated at the cache. By default, the reads are eventually consistent, i.e.,

the reads are performed from the cache. If the item does not exist in the cache, then it is

185

fetched from the backend data-store and the cache is updated with the item before the value

is returned to the application. However, the application can also request strongly consistent

reads by invoking ConsistentRead. In this case, the value is read from the backend and

returned to the application, without caching the results. Any subsequent eventually consis-

tent reads made by the application may not reflect the value returned by the prior strongly

consistent read. In the case of DAX, it can be observed that the effects of the writes visible

to the weak eventually consistent reads are also visible to the subsequent strongly consis-

tent reads as those writes are also present in the DynamoDB backend. However, it is not

necessary that the effects of writes visible to the strongly consistent reads are visible to the

subsequent weak eventually consistent reads.

From these examples of multilevel consistency, we can see that the presence of another

consistency criterion can impose additional constraints on the choice of the visibility and

arbitration relations chosen to explain the correctness of the history. In the next section, we

provide a formal framework for modelling behaviours of read-write data-stores with multiple

consistency levels.

7.3 Formalizing Multilevel Consistency

We extend the formal framework provided in [Burckhardt, 2014] for modelling the behaviours

of read-write stores. Each operation submitted to the data-store by the application is either

a Read or a Write operation whose signature is given in Definition 152.

We denote the set of all variables in the read-write store by Vars and assume that each

value written to the read-write store is a natural number val ∈ N. We assume that all

variables are initially undefined, with value ⊥.

For simplicity, we assume only two consistency levels, weak and strong, denoted by

wk and st, respectively, where the consistency criterion corresponding to wk-level is strictly

weaker than then the consistency criterion corresponding to the st-level. Comparison between

consistency criteria is formally defined in Definition 158.

The behaviour of the read-write data-store as observed by an application is the sequence

of reads and writes that it performs on the stores. The sequence of related read and write

operations is termed a session. Thus, the behaviour of the read-write store seen by each

session is a total order of read/write operations performed in that session.

The behaviour of the read-write store is the collection of behaviours seen by all the

sessions. In Figure 7.1 we saw the behaviour of the data-store as observed by the three

sessions accessing the data-store. We call such a behaviour a hybrid history, formally defined

as follows:

Definition 153 (Hybrid History). A hybrid history of a read-write store is a pair H =

(O, so) where O is the set of read-write operations and so is a collection of total orders called

186

session orders.

For a history H, we define the following subsets of O.

• ORead is the set of read operations occurring in H.

• OWrite is the set of write operations occurring in H.

• Owk = OWrite ∪ {Read(x, val , level) ∈ ORead | level = wk} (the set of weak operations

occurring in H).

• Ost = OWrite ∪ {Read(x, val , level) ∈ ORead | level = st} (the set of strong operations

occurring in H).

The weak fragment of the history H is denoted Hwk and defined to be (Owk, so ∩ (Owk ×
Owk)). Similarly the strong fragment of the history H is denoted Hst and is defined to be

(Ost, so ∩ (Ost × Ost)). Note that we take the write operations to be part of both the strong

and weak fragments.

• For X ⊆ O ×O and ` ∈ {Read,Write,wk, st}, we denote by X �` the set X restricted

to O`. Thus,

X �`= X ∩ (O` ×O`)

• For X, Y ⊆ O×O, X;Y denotes composition of X and Y , i.e., {(x, y) | ∃z : (x, z) ∈
X and (z, y) ∈ Y }.

• For X ⊆ O ×O, total(X) is used to mean that X is a total order.

When a replica of the read-write store receives an operation from an application, it

decides how the effects of the older operations known to the replica (either received from

applications, or from other replicas of the data-store) should be made visible to the new

operation. A visibility relation over a history specifies the set of operations visible to an

operation. This is analogous to the visibility order over the events of the trace of a run that

we had defined in Chapter 4. However, in this chapter, the visibility relation is defined on

Read and Write operations of a hybrid history.

Definition 154 (Visibility Relation). A visibility relation vis over a history H = (O, so) is

an acyclic relation over O. For o, o′ ∈ O, we write o
vis−→ o′ to indicate that the effects of the

operation o are visible to the operation o′.

If a pair of operations o, o′ are not related by vis, we term them concurrent operations,

denoted by o ‖vis o′.
We define the view of an operation o with respect to a visibility relation vis, denoted

∂vis(o) to be the set of all the Write operations visible to it.

187

For the history in Figure 7.1, we can define a visibility relation to be

{A vis−→ B,G
vis−→ C,G

vis−→ D,H
vis−→ D,G

vis−→ E,H
vis−→ E, I

vis−→ E,G
vis−→ F}

When the replicas communicate with each other, they need to reconcile the effects of

concurrent write operations in order to converge to the same state eventually. In case of

convergent data-stores this is done using a rule such as Last Writer Wins which totally

orders all write operations. This is abstracted by an arbitration relation, which is a total

order over all write operations in the history. We will denote the arbitration relation by arb.

We assume that the arbitration relation is consistent with the visibility relation, in the sense

that for a pair of writes o and o′, if o is visible to o′ then o is before o′ in arb.

Definition 155 (Arbitration Relation). An arbitration relation arb over a hybrid history

H = (O, so) is a total order over OWrite. For oi, oj ∈ O, we say oi
arb−→ oj to indicate that

operation oi has been ordered before the operation operation oj.

For the history in Figure 7.1 the arbitration relation can be the total order

A
arb−→ G

arb−→ H
arb−→ I

We define the correctness of a hybrid history in terms of the functional specification of

read-write stores.

Let H be a hybrid history. Let vis and arb be visibility and arbitration relations over H.

We say that a write operation o′ is a related-write of a read operation o iff o′ is in the view

of o and both o and o′ operate on the same variable. The set of all related writes of o, denoted

as RelWritesvis(o) is defined to be {o′ ∈ ∂vis(o) | o and o′ operate on the same variable}.
MaxRelWritesvis(o), the set of maximal elements among these related writes with respect

to vis, is defined to be

{o′ ∈ RelWritesvis(o) | ∀o′′ ∈ RelWritesvis(o) : o′′
vis−→ o′ ∨ o′′ ‖vis o′}

The effective write of a read-operation o, denoted by EffWritearb
vis (o) is defined to be the

maximum write operation from the set of maximal related writes of o as per the arbitration

relation.

EffWritearb
vis (o) =

{
max (arb�MaxRelWritesvis(o)) if MaxRelWritesvis(o) 6= ∅
⊥ otherwise

Definition 156 (Functional Correctness for Read-Write Stores). Let H = (O, so) be a hybrid

history of a read-write data store with visibility relation vis and arbitration relation arb. We

say that (H, vis, arb) is functionally correct iff for every read operation o = Read(x, val , level),

the following conditions hold.

188

• EffWritearb
vis (o) = ⊥ iff val = ⊥ (i.e., there was no write operation on x when o hap-

pened).

• If o′ = EffWritearb
vis (o) then o′ wrote the value val .

Next, we formally define consistency criteria in terms of a set of formulas. Our definition is

adapted from the definitions of constraints in [Emmi and Enea, 2018].

Definition 157 (Consistency Criteria). A relation term τ is a composition of the form

t1; · · · ; tk (k ≥ 1), where each ti ∈ {so, vis}. A consistency criterion is a subset of

{τ ⊆ vis | τ is a relation term} ∪ {total(vis)}.

Thus, a consistency criterion is a possibly empty collection of visibility constraints and

an optional totality constraint. For simplicity of notation, we usually write a constraint as

a conjunction.

Note that so and vis are variables which are usually interpreted as restrictions of the so

and vis relations in a history. As we will see below, we always require an additional constraint

that vis�Write⊆ arb (and hence it is not explicitly included in the consistency criteria).

For a consistency criterion α, RelTerms(α) is the set of all relation terms occurring in α, and

VisBasic(α) is the collection of all visibility constraints in α excluding the totality constraint

total(vis)

Definition 158 (Consistency Criterion in a history). Let H = (O, so) be a hybrid history,

let vis and arb be a visibility and arbitration relation over H, and let α be a consistency

criterion. We say that H, vis |= α iff:

1. for every τ ⊆ vis in α, τ [so := so, vis := vis] ⊆ vis, and

2. if total(vis) ∈ α, then total(vis) holds.

Further we say that H, vis, arb |= α iff H, vis |= α and vis�Write⊆ arb.

Some well known consistency criteria are given in Table 7.1. Basic Eventual Consistency

requires that eventually, when no new Write operations are made, all the Read operations will

eventually converge to the same value. This is more of a liveness property which is satisfied

in the limit. Hence, there is no constraint on the visibility and the arbitration relation.

Read Your Writes requires that the effects of the Write operations made within a session

are visible to the subsequent Read operations within the same session. Hence the session-

order is contained within the visibility relation.

Monotonic Reads requires that once a remote Write becomes visible in a session, it remains

visible for the subsequent operations of that session. This is modelled by the constraint

189

vis ; sovar ⊆ vis . Thus, if o1
vis−→ o2 and o2

so−→ o3 then monotonic reads guarantees that

o1
vis−→ o3.

Monotonic Writes requires that once a remote Write becomes visible to some Read in a

session, all the Write operations prior to that Write are visible to the Read operation. This

is modelled by the constraint so; vis ⊆ vis . Thus, if o1
so−→ o2 and o2

vis−→ o3 then monotonic

writes guarantees that o1
vis−→ o3.

FIFO Consistency provides all the guarantees provided by Read Your Writes, Mono-

tonic Reads and Monotonic Writes. Hence, all the constraints that apply to each of these

consistency criteria should be simultaneously satisfied by a history which guarantees FIFO

consistency.

Causal Consistency requires that the transitive closure of the session order and the vis-

ibility relation is contained in the visibility relation, i.e (so ∪ vis)∗ ⊆ vis . We rewrite the

same constraints as so ⊆ vis along with vis ; vis ⊆ vis in order to satisfy the syntax of a

τ ⊆ vis .

Sequential Consistency requires that the visibility relation be a total order of over all

the operations where the total order is the interleaving of all the session orders. Thus, it is

stronger than Causal Consistency while requiring the visibility relation to be a total order.

Name Description

Basic Eventual Consistency (BEC) >
Read Your Writes (RYW) so ⊆ vis

Monotonic Reads (MR) vis ; so ⊆ vis

Monotonic Writes (MW) so; vis ⊆ vis

FIFO Consistency (FIFO) so ⊆ vis ∧ vis ; so ⊆ vis ∧ so; vis ⊆ vis

Causal Consistency (CC) so ⊆ vis ∧ vis ; vis ⊆ vis

Sequential Consistency (SEQ) so ⊆ vis ∧ vis ; vis ⊆ vis ∧ total(vis)

Table 7.1: Well known consistency criteria

We say that a consistency criterion α is at least as strong as another consistency crite-

rion α′ if for every history H, visibility relation vis, and arbitration relation arb over H, if

H, vis, arb |= α then H, vis, arb |= α′.

Suppose H = (O, so) is a hybrid history. Let αw and αs respectively be the wk and st

consistency criteria. We then want to choose wk and st visibility relations viswk, visst, respec-

tively, and an arbitration relations arb such that Hwk, viswk, arb |= αw and Hst, visst, arb |= αs .

As we had noted in the previous section, in a multilevel setting, it is not sufficient to

separately satisfy the constraints corresponding to the wk and st consistency criteria. We

now proceed to modelling multilevel consistency constraints.

190

Modelling Multilevel Consistency

Taking inspiration from DAX [Documentation, 2019] and the cache-hierarchy in modern pro-

cessors, we can model multilevel consistency as a series of data-stores arranged in increasing

order of the consistency they guarantee, such that the data-store offering the weakest level

of consistency is closest to the application, and the data-store offering the strongest level

of consistency is farthest away from the application. We shall further assume that these

data-stores use the same arbitration strategy to order concurrent write operations and ev-

ery weaker data-store has the capability to update its state to match that of a stronger

data-store.

For the purpose of this chapter, since we are restricting ourselves to only two levels,

namely wk and st, this will reduce to having just two data-stores, where the data-store

corresponding to the weaker consistency criterion sits as a cache between the application

and the data-store corresponding to the stronger consistency criterion.

All the wk-reads are performed from the wk data-store.

There are two possible ways in which the writes can be performed.

1. Write-Through: The write is first performed at the st-data-store and eventually will be

propagated to the wk-data-store.

2. Write-Back: The write is first performed at the wk-data-store and eventually will be

propagated to the st-data-store.

There are two possible ways in which st-reads can be performed.

(a) Read-Through: The result of the st-read performed at the st-data-store is directly sent

to the application bypassing the wk-data-store.

(b) Read-Back: The result of the st-read is updated at the wk-data-store before it is prop-

agated to the application.

Thus, the system picks one of two ways to perform the write, and one of the two ways

to perform the st-read.

Note that a system which picks the Write-Through strategy for performing the write will

ensure that any write visible at the wk data-store will also be visible to the st data-store, as

all the writes are first performed at the st data-store before they are propagated to the wk

one. Hence, the effects of write operations visible to a wk-read operation are also visible to

the subsequent st-operations in the session.

Similarly a system which picks the Read-Back strategy for performing the st-reads will

ensure that any write that is visible to a strong-read will also be visible at a subsequent

wk-read in the session as before returning the result of the st-read to the application, the

result is merged into the wk data-store.

191

However, the Write-Back and Read-Through strategies do not provide any guarantees

between the effects of writes visible to wk (resp. st) reads in relation to the subsequent st

(resp. wk) reads in that session.

We now define the guarantees provided by each of these four strategies in the form of a

constraint.

Definition 159 (Multilevel Constraints). We define the following formulas:

• ψwrite
thru := (viswk ; so)�st⊆ visst

• ψwrite
back := >

• ψread
thru := >

• ψread
back := (visst ; so)�wk⊆ viswk

A multilevel constraint ϕ is a conjunction ψread ∧ψwrite , where ψread ∈ {ψread
thru , ψ

read
back} and

ψwrite ∈ {ψwrite
thru , ψ

write
back }.

SupposeH = (O, so) is a history, and viswk and visst are two visibility relations respectively

over Owk and Ost. Let ϕ be a multilevel constraint. We say that H, viswk, visst |= ϕ iff

ϕ[so := so, viswk := viswk, visst := visst] is true.

The formula ψwrite
thru imposes the constraint that the strong operations see the effects seen

by the prior weak operations in the session. Similarly, the formula ψread
back imposes the con-

straint that the weak operations see the effects seen by the prior strong operations in the

session. These two guarantee that the effect seen by reads of one consistency level remain

monotonically visible to the subsequent reads of another consistency level.

Consider Cassandra’s multilevel consistency with writes performed at level ONE, weak-

reads at level ONE and strong-reads at level ALL which ensure that weaker reads see the effects

visible to prior stronger reads and vice-versa. This can be modelled using ψwrite
thru ∧ ψread

back .

On the other hand, Cassandra’s multilevel consistency with writes performed at level

ONE, weak-reads at level ONE and strong-reads at level QUORUM neither ensures that weaker

reads see the effects visible to prior stronger reads nor the converse. This can be modelled

using ψwrite
back ∧ ψread

thru .

The DynamoDB’s DAX case can be modelled using ψwrite
thru ∧ψread

thru which only allows for the

effects of prior weak reads to be visible to subsequent stronger reads, but not the converse.

We now formally define when a hybrid history is correct.

Definition 160 (Multilevel Correctness of a Hybrid History). A hybrid history H = (O, so)

of a read-write store is said to be multilevel correct with respect to a wk-consistency crite-

rion αw , st-consistency criterion αs and multilevel consistency constraint ϕ, iff there exists

visibility relations viswk and visst over Hwk and Hst respectively and arbitration relation arb

such that

192

• (Hwk, viswk, arb) and (Hst, visst, arb) are functionally correct,

• Hwk, viswk, arb |= αw ,

• Hst, visst, arb |= αs , and

• H, viswk, visst |= ϕ.

7.4 Testing Multilevel Correctness of a Hybrid History

Given a read-write hybrid history H = (O, so), we want to test it for multi-level correctness

with respect to weak and strong consistency criteria αw and αs and multilevel constraints

given by ϕ.

We note that for the history to be correct, for every read operation that returns a value

that is not ⊥, there should exist a write operation writing the same value to the variable

that was read. The reads-from relation associates a write operation to the read that reads

its effect. Our strategy for testing the multilevel correctness of H is to enumerate all such

reads-from relations rf, for each rf we find visibility relations viswk and visst, respectively,

containing rfwk and rfst, such that they satisfy the visibility constraints imposed by the

individual consistency criteria, as well as the multilevel constraints, i.e., Hwk, viswk |= αw ,

Hst, visst |= αs and H, viswk, visst |= ϕ. We then check for the presence of a finite number

of bad-patterns in these visibility relations. The presence of a bad-pattern implies that for

every arbitration relation arb, there is some level ` ∈ {wk, st} such that either the arbitration

constraint vis` �Write⊆ arb is not satisfied, or the history (H`, vis`, arb) is not functionally

correct.

If the history is multi-level correct, then we will find a witness consisting of a reads-

from relation rf and visibility relations viswk and visst extending rfwk and rfst such that all

the constraints are satisfied and there are no bad-patterns. If the history is not multi-level

correct, then for every pair of weak and strong visibility relation extending every reads-from

relation, either some constraint is not satisfied or there exists a bad-pattern.

We present the bad-pattern characterization for multilevel correctness of a hybrid history

in the next subsection. In the following subsection, we provide a procedure for computing

the minimal visibility relations viswk and visst for a given reads-from relation rf that satisfies

αw , αs and ϕ.

7.4.1 Bad Pattern characterization for multilevel correctness

We now characterize the correctness of hybrid histories based on the non-existence of cer-

tain bad patterns. This is a generalization of the bad-pattern characterization for causal

consistency in [Bouajjani et al., 2017].

193

Given a hybrid history, we can associate each Read with a unique write operation from

the history whose effect the Read operation reads from. We call this the reads-from relation.

Definition 161 (Reads-From). A reads-from relation rf over a history H = (O, so) is a

binary relation such that

1. (oi, oj) ∈ rf =⇒ oi is a Write, oj is a Read, both on the same variable, such that the

value returned by oj is the value written by oi.

2. (oi, oj) ∈ rf ∧ (ok, oj) ∈ rf =⇒ oi = ok.

3. For all oj = Read(x, val , level) ∈ ORead

[∃ o ∈ OWrite which writes val to x =⇒ ∃ oi ∈ OWrite : (oi, oj) ∈ rf.]

Condition 1 associates a read operation with a write operation only if they operate on

the same variable and that the return value of the read operation matches the argument of

the write operation.

Condition 2 ensures that a read operation is associated with at most one write operation.

Finally, Condition 3 insists that if a Read is not related to any Write via rf, it is only

because there is no matching Write in the hybrid history (i.e. a write of the same value to

the same variable).

Let rf be a reads-from relation on a hybrid history H = (O, so). For a Read operation

o ∈ O, if there exists a Write operation o′ such that (o′, o) ∈ rf , then we say that rf−1(o) = o′.

If no such o′ exists, we set rf−1(o) = ⊥.

Further, we denote by rfwk and rfst the reads-from relation restricted to Hwk and Hst

respectively.

Suppose rf` is a reads-from relation over H`. We say that a visiblity relation vis` over H`

extends rf` iff rf` ⊆ vis`. Suppose arb is an arbitration relation over H`. Then, we say that

(vis`, arb) realize rf` iff for all read operations o ∈ O`, rf−1
` (o) = EffWritearb

vis`
(o).

Given a reads-from relation rf` and a visibility relation vis` that extends it, we can define a

conflict relation that orders all the remaining maximal related writes in MaxRelWritesvis`(o)

of a read-operation o before the write-operation rf−1
` (o). The conflict relation captures the

essence of the arbitration relation for a given reads-from relation and a visibility relation

extending it.

Definition 162 (Conflict Relation). Let H` = (O`, so`) be a history. Let rf` be a reads-from

relation over H`. Let vis` ⊇ rf` be a visiblity relation over H`. We define the conflict relation

for rf` and vis`, denoted CF(rf`, vis`), as the set

{(o′′, o′) | ∃o ∈ O` �Read: o′′, o′ ∈ MaxRelWritesvis(o) ∧ o′ = rf−1
` (o)}.

194

We now define the bad patterns that characterize the correctness of the hybrid history.

Definition 163 (Bad Patterns for a hybrid history). Let H = (O, so) be a hybrid history

with weak and strong consistency criteria αw and αs respectively and multilevel constraints

ϕ. Let rf be a reads-from relation over H. For ` ∈ {wk, st}, let vis` be a relation over O`
with vis` ⊇ rf` such that Hwk, viswk |= αw , Hst, visst |= αs and H, viswk, visst |= ϕ. We define

the following bad patterns for (H, rf, viswk, visst). For some ` ∈ {wk, st}:

• BADVISIBILITY: Cyclic(vis`)

• THINAIR: ∃o ∈ ORead �`: o returns a value that is not ⊥, but rf−1
` (o) = ⊥

• BADINITREAD: ∃o ∈ ORead �`: o returns ⊥ but RelWritesvis`(o) 6= ∅

• BADREAD: ∃o ∈ ORead �`: rf
−1
` (o) 6∈ MaxRelWritesvis`(o)

• BADARB: Cyclic(
⋃

`∈{wk,st}
(CF(rf`, vis`) ∪ (vis`)Write))

BADVISIBILITY says that one of the visibility relations has a cycle.

THINAIR says that there exists a read in the history which reads a non-initial value which

is not written by any write operation in the hybrid history.

BADINITREAD says that there is a read operation on a variable which reads the initial

value despite having a non-initial write to that variable in its view.

BADREAD says that the write operation from which the read-operation reads is not a

maximal write, and there are other writes in the view of the read operation that would have

overwritten the value written by that write.

BADARB says that the union of the conflict relations along visibility relation restricted

to only the Write operations has a cycle indicating that there exists no total-order arb over

OWrite , such that (vis`, arb) realizes rf`.

Multi-level correctness of a hybrid history can be characterized in terms of non-existence

of these bad patterns. We prove this in the next section 7.5.

Theorem 164 (Bad patterns characterization). A hybrid history H = (O, so) is said to be

multilevel correct with respect to weak and strong consistency criteria αw , αs and multilevel

constraint ϕ iff there exists a reads-from relation rf, and relations viswk ⊇ rfwk and visst ⊇ rfst
respectively over Owk and Ost such that Hwk, viswk |= αw , Hst, visst |= αs and H, viswk, visst |= ϕ

and no bad pattern exists in (H, rf, viswk, visst).

7.5 Correctness of the Bad Patterns Charecterization

Lemma 165. If rf` is a reads-from relation over the history H` and (vis`, arb) realize rf`.

Then, CF(rf`, vis`) ⊆ arb.

195

Proof. Suppose (o′′, o′) ∈ CF(rf`, vis`). By definition, there exists a Read operation o such

that both o′, o′′ are in the maximal related writes of o and o′ = rf−1
` (o). Since rf` is realized

by (vis`, arb), by definition, rf−1
` (o) = EffWritearb

vis`
(o). Hence o′ is the effective write of o.

Now by the definition, the arbitration relation arb orders an effective write of a read

operation after all the other maximal related writes of that read operation. Thus, (o′′, o) ∈
arb.

We now prove the correctness of Theorem 164

Let H = (O, so) be a hybrid history and let αw and αs respectively be the weak and

strong consistency criteria. Let the multilevel constraints be defined by ϕ. We need to

show that H is multilevel correct with respect to αw , αs and ϕ iff there exists a reads-from

relation rf and visibility relations viswk and visst that extend rfwk and rfst respectively such

that Hwk, viswk |= αw , Hst, visst |= αs , H, viswk, visst |= ϕ and none of the bad patterns

{BADVISIBILITY,THINAIR,BADINITREAD,BADREAD,BADARB} exists in

(H, rf, viswk, visst).

In the proof below, and the ones that follow we shall use the following notation:

• For a read-operation o = Read(x, val , level) in O, we denote by Var(o) the variable x,

Ret(o) the return value val and Level(o) the level level .

• Similarly , for a write-operation o = Write(x, val) in O, we denote by Var(o) the

variable x, Args(o) the input value val .

Proof. (=⇒): Suppose hybrid history H is correct. Then, there exists visibilty relations

viswk, visst and arbitration relations arb such that (Hwk, viswk, arb) and (Hst, visst, arb) are func-

tionally correct, Hwk, viswk, arb |= αw , Hst, visst, arb |= αs and H, viswk, visst |= ϕ.

Thus, we have

• Hwk, viswk |= αw and viswk �Write⊆ arb

• Hst, visst |= αs and visst �Write⊆ arb

For ` ∈ {wk, st},we set rf` = {(EffWritearb
vis`

(o), o) | o ∈ ORead : Level(o) = `}. rf =

rfwk ∪ rfst. By definition viswk extends rfwk and visst extends rfst.

We will now show that none of the aforementioned bad patterns exists for the tuple

(H, rf, viswk, visst).

Since H is multilevel correct, viswk and visst by definitions are acyclic relations. So

BADVISIBILITY bad pattern doesn’t exist.

Further, due to functional correctness of (H`, vis`, arb), for any read operation o of

level `, EffWritearb
vis`

(o) = ⊥ iff Ret(o) = ⊥. Since for every read operation o, rf−1
` (o) =

EffWritearb
vis`

(o), it follows that rf−1
` = ⊥ iff Ret(o) = ⊥. Thus, the THINAIR bad pattern

doesn’t exist.

196

Since (H`, vis`, arb) is functionally correct, for any read operation o with level ` such

that Ret(o) = ⊥, EffWritearb
vis`

(o) = ⊥ which implies that RelWritesvis`(o) = ∅. Hence, the

BADINITREAD pattern doesn’t exist.

For a functionally correct history H`, for any read operation o with level `, if Ret(o) 6= ⊥,

then EffWritearb
vis`

(o) 6= ⊥. This implies that EffWritearb
vis`

(o) ∈ MaxRelWritesvis`(o). But we

have set rf−1
` (o) = EffWritearb

vis`
(o). Thus rf−1

` (o) ∈ EffWritearb
vis`

(o). Hence, the BADREAD

pattern doesn’t exist.

By construction, rf` is realized by (vis`, arb). Hence from lemma 165 for ` ∈ {wk, st},
CF(rf`, vis`) ⊆ arb. Due to functional correctness of (H`, vis`, arb), we have vis` �Write⊆ arb.

Hence
⋃

`∈{wk,st}
(CF(rf`, vis`) ∪ vis` �Write) ⊆ arb. By definition arb is a total order. Thus,

BADARB would imply a cycle in arb which is not true. Hence, the BADARB pattern doesn’t

exist.

This completes one side direction of the proof.

(⇐=): Suppose there exists a (rf, viswk, visst) such that viswk ⊇ rfwk, visst ⊇ rfst, H, viswk |=
αw and Hst, visst |= αs , H, viswk, visst |= ϕ and (H, rf, viswk, visst) does not have any bad-

patterns. To show that H is multi-level correct, we need to show that there exists an

arbitration relation arb such that vis` �Write⊆ arb and (H`, vis`, arb) is functionally correct for

` ∈ {wk, st}.
We first construct the arbitration relation arb. Since the BADARB bad pattern doesn’t

exist,
⋃

`∈{wk,st}
(CF(rf`, vis`)∪vis` �Write) is an acyclic relation. We set arb to be a topological sort

of this acyclic relation along with the Write operations from o, not appearing in this acyclic

relations. Thus, arb is a total order. By construction, vis` �Write⊆ arb for ` ∈ {wk, st}. From

this, and what is given we can conclude that Hwk, viswk, arb |= αw and Hst, visst, arb |= αs .

We now only need to show that for each ` ∈ {wk, st}, (H`, vis`, arb) is functionally correct.

Let o be a read operation with level `. Suppose MaxRelWritesvis`(o) = ∅. Then

EffWritearb
vis`

(o) = ⊥. Since rf` ⊆ vis`, rf−1
` (o) = ⊥. Since THINAIR bad pattern doesn’t

exist, it has to be the case that Ret(o) = ⊥. Thus, if EffWritearb
vis`

(o) = ⊥ then Ret(o) = ⊥.

Conversely, suppose Ret(o) = ⊥. Then, since BADINITREAD bad pattern doesn’t exist,

RelWritesvis`(o) = ∅. Thus, by definition, EffWritearb
vis`(o) = ⊥. Thus, we can conclude that

EffWritearb
vis`

(o) = ⊥ ⇐⇒ Ret(o) = ⊥.

Suppose MaxRelWritesvis`(o) 6= ∅. Since BADINITREAD bad pattern doesn’t exist,

Ret(o) 6= ⊥. Further, since THINAIR badpattern doesn’t exist, rf−1
` (o) 6= ⊥. Let rf−1

` (o) = o′.

Since BADREAD bad pattern doesn’t exist, rf−1
` (o) = o′ ∈ MaxRelWritesvis`(o). For any

o′′ ∈ MaxRelWritesvis`(o) we have (o′′, o′) ∈ CF(rf`, vis`). Now, by construction of arb, we

have CF(rf`, vis`) ⊆ arb.

Thus, for any o′′ ∈ MaxRelWritesvis`(o), o
′′ arb−→ o′. Thus, by definition, EffWritearb

vis`
(o) =

o′. However, since o′ = rf−1
` (o), by definition of a reads-from relation, Ret(o) = Args(o′).

Thus, o′ = EffWritearb
vis`

(o) wrote the value read by o.

197

Since o is an arbitrary Read operation with level ` in H, what we have shown holds

for all Read operation with level `. Hence (H`, vis`, arb) is functionally correct. Hence H is

multi-level correct.

7.5.1 Constructing Minimal Visibility Relations

Suppose H = (O, so) is a hybrid history. Let αw and αs be the formulas defining the weak

and strong consistency criteria, and let ϕ be the formula defining the multilevel constraints.

Let α′w = VisBasic(αw) and α′s = VisBasic(αs).

We provide a procedure that iterates over all the possible reads-from relations and con-

structs a minimal visibility relation extending the reads-from relation such that it satisfies

αw , αs and ϕ. The pseudo-code for the procedure is presented in Algorithm 7 and 8.

Algorithm 7 Constructing minimal visibility relations

1 MinVisOne(O`, so`, vis`, α`):

2 Let viso := vis`;

3

4 while (True):

5 Let visp := viso;

6 for τ ∈ RelTerms(α`)):

7 visn := visp ∪ τ [so`, visp];
8 visp := visn;

9 if (visn == viso)

10 return visn
11 viso := visn
12

13

14 ComputeVisSet(O`, so`, vis`, α`)

15 if total(vis) is a subformula in α`:

16 visSet` := {totvis|totvis
is a

total order over

O` such that

vis` ⊆ totvis}
17 else :

18 visSet` := {vis`}
19

20 return visSet`

21 MinVisMulti(O, so, viswk, visst, ψ)
22 if ψ ∈ {ψwrite

back , ψ
read
thru }:

23 return (viswk, visst)

24 else if ψ ∈ {ψwrite
thru }:

25 Let ` = st, `′ = wk;

26 else if ψ ∈ {ψread
back}:

27 Let ` = wk, `′ = st;

28

29 Let viso` := vis`;

30 Let viso`′ := vis`′ ;

31

32 if ψ ∈ {ψwrite
thru , ψ

read
back}:

33 Let visn` := viso` ∪ (viso`′ ; so)�`;
34 Let visn`′ := viso`′ ;

35

36 if ψ ∈ {ψread
back}:

37 return (visn` , vis
n
`′)

38 else if ψ ∈ {ψwrite
thru }:

39 return (visn`′ , vis
n
`)

40

41

42

In Lines 1-12 we have a method MinVisOne that takes as input a visiblity relation vis` for

the history (O`, so`) and constructs an extension visn that satisfies the formula VisBasic(α`).

We achieve this by iterating over the RelTerms appearing in RelTerms(α`) (Line 6) and

198

extending the previous visibility relation visp with the evaluation of the term (Line 7). We

do this until we obtain a relation visn which we can no longer extend (Line 9). This final

visibility relation visn extends vis` and satisfies the formula VisBasic(α`).

In Lines 21-40, we have the procedure MinVisMulti which takes as inputs the hybrid

history (O, so), visibility relations viswk and visst and an individual conjunct ψ appearing in

the multilevel constraint ϕ. Since every visibility relation trivially satisfies ψwrite
back or ψread

thru ,

for these multilevel constraint, we simply return without modifying viswk or visst (Lines 22-

23). In the remaining cases, when the multi-level constraint is either ψwrite
back or ψread

thru , for

`, `′ ∈ {wk, st}, the multilevel constraints relates the write operations visible to the operations

of level ` in terms of the writes seen by operations of level `′ that have occured previously in

the session. Depending on the conjunct ψ, we set ` and `′ appropriately(Lines 24-27). We

then extend the visibility relation for level ` by relating each `-operation to the Writes that

have been seen by any of the `′-operations prior to the `-operation in its session (Line 33).

The visibility relation for level `′ remains unchanged in this case (Line 34).

We return these extended visibility relations as a pair, where the wk visibility extension

is followed by st visiblity extension (Lines 36-39).

In the algorithm titled Testing multilevel correctness of hybrid history on Page 198, in

Lines 1-19 we have the procedure ComputeStableExt which takes history (O, so) a pair of

visibility relations viswk and visst and extends it to visnwk and visnst such that they individually

satisfy VisBasic(αw) (Line 7) and VisBasic(αs) (Line 9) respectively and jointly satisfy ϕ

(Lines 11-14). We repeat this till we can extend these relations no longer, which implies that

they have satisfied all the constraints (Lines 16-17).

The procedure TestMultiCorrect in Lines 20-35 takes as input a hybrid history H = (O, so)

whose multilevel correctness we want to check with respect to formulas αw , αs and ϕ.

We first enumerate the set of possible reads-from relations on the history (line 21). We

then iterate through each of the reads-from relations rf to see whether it can be extended

to construct a minimal visibility relation satisfying all the constraints and having no bad-

patterns (Lines 22-33). For each rf, we construct minimal visibility relations vismin
wk and

vismin
st extending rfwk and rfst respectively and satisfying the subformulas VisBasic(αw) and

VisBasic(αs) respectively (Lines 23,26).

If αw (resp. αs) contains the subformula total(vis), we enumerate the set of all the total

orders extending vismin
wk (resp. vismin

st) in the set visSetwk (resp. visSetst) in Line 24 (resp.

Line 27). If αw (resp. αs) does not contain the subformula total(vis), then, visSetwk (resp.

visSetst) will contain the only minimum visibility relation extending rfwk (resp. rfst), i.e.,

vismin
wk (resp. vismin

st .).

For each pair of visibility relations from visSetwk and visSetst we compute their stable

extensions visstbwk and visstbst which individually satisfy αw and αs , respectively, and jointly

satisfy ϕ (line 30). We then check if this computed extension has a bad pattern (Line 32).

If no bad patterns are found, we return the (rf, viswk, visst) as the witness.

199

Algorithm 8 Testing multilevel correctness of a hybrid history

1 ComputeStableExt(O, so, viswk, visst, αw , αs , ϕ):

2 Let visowk := viswk,

visost := visst
3

4 while (True):

5 Let vispwk := visowk,

vispst := visost
6

7 Let visnwk :=

MinVisOne(Owk, sowk, vis
p
wk, αw);

8

9 Let visnst :=

MinVisOne(Ost, sost, vis
p
st, αs);

10

11 for each subformula ψi

in the conjunction ϕ:

12 vispwk := visnwk, vis
p
st := visnst

13

14 (visnwk, vis
n
st) =

MinVisMulti(O, so, vispwk, vis
p
st, ψi)

15

16 if visnwk = visowk and visnst = visost:

17 return (visnwk, vis
n
st)

18

19 visowk := visnwk, vis
o
st := visnst

20 TestMultiCorrect(O, so, αw , αs , ϕ):

21 Let rfSet := {rf|rf is a reads-from

relation over (O, so)}
22 for rf ∈ rfSet:

23 Let vismin
wk :=

MinVisOne(Owk, sowk, rfwk, αw);

24 Let visSetwk =

ComputeVisSet(Owk, sowk, vis
min
wk , αw);

25

26 Let vismin
st :=

MinVisOne(Owk, sost, rfst, αs);

27 Let visSetst :=

ComputeVisSet(Ost, sost, vis
min
st , αs);

28

29 for viswk ∈ visSetwk, visst ∈ visSetst:

30 Let (visstbwk , vis
stb
st) :=

ComputeStableExt(O, so, viswk,
visst, αw , αs , ϕ);

31

32 if BadPatterns(O, so, rf,
visstbwk , vis

stb
st) ==

NoBadPatterns:

33 return (rf, visstbwk , vis
stb
st)

34

35 return BadHistory

200

If none of the rf can be extended to obtain the required visibility relation, we declare

that the history is a bad history. We formally prove the correctness of TestMultiCorrect in

the next section 7.6.

Theorem 166 (Correctness of TestMultiCorrect procedure). For a hybrid read-write history

H = (O, so) with weak and strong consistency criteria αw and αs respectively and multilevel

constraints given by ϕ, the procedure TestMultiCorrect returns a witness (rf, viswk, visst) over

H iff H is multi-level correct with respect to αw , αs and ϕ.

7.6 Correctness of the testing procedure

We will first prove a set of lemmas with respect to the termination and the correctness of

the helper procedures.

Lemma 167 (Termination of Helper functions). For a given hybrid history, and a given vis-

ibility relations over the history, the methods MinVisOne, MinVisMulti and ComputeStableExt

terminate.

Proof. We first observe that MinVisMulti terminates since it doesn’t have any loops. The

visibility relations it outputs is a superset of the input visibility relations.

We will now show the termination of MinVisOne. Let visi,jn denote the value of visn at the

end of the jth iteration of the inner for-loop within the ith iteration of the outer while-loop.

Let visin denote the value of visn at the end of the ith iteration of the outer while-loop.

We note that for j > 0, visi,jn ⊇ visi,j−1
n since we only keep extending visn inside the inner

for-loop by adding to it the result of evaluation of the RelTerms in α`. visi,0n = visi−1
n . If

|RelTerms(α`)| = k, then, visin = visi,kn . Since visi,kn ⊇ visi,0n , it follows that visin ⊇ visi−1
n .

At the end of the outer-while loop we check if visn = viso which is equivalent to checking

visin = visi−1
n . If true, the function returns. Since visn ⊆ O × O, and since O is a finite set,

it will be the case that visn = viso after a finite number of iterations. Hence the procedure

terminates.

In case of ComputeStableExt , we note that it obtains the new values for visnwk and visnst
individually by invoking the procedure MinVisOne, which returns a relation that is a superset

of the input visibility relation. Similarly, in the inner for-loop, we obtain the new values

for the pair (visnwk, vis
n
st) by calling MinVisMulti, which returns visibility relations that are

supersets of the corresponding input relations. Thus, at the end of each iteration of while-

loop, either the values of visnwk and visnst are the same as their values at the end of the

previous iteration of the while-loop, or they are a superset of their values at the end of

the the previous generation. Since both visnwk and visnwk are binary relations over Owk and

Ost, their maximal size is bound by |O|2. Thus, the iterations of the outer while loop are

bounded by O(|O|2) iterations. Hence ComputeStableExt terminates.

201

Theorem 168 (Termination of Testing Procedure). For any given hybrid-history H, and

consistency criteria αw , αs and multilevel constraints ϕ, the procedure TestMultiCorrect ter-

minates.

Proof. Since H is a finite history, the number of reads-from relations that can be defined over

it are finite. Further, for each rf from the set of reads-from relations, the extensions vismin
wk

and vismin
st are finite. In the worst case when both αw as well as αs contain the subsformula

total(vis), the sizes of visSetwk and visSetst is finite. Since the procedures called within

the inner for-loop, i.e. ComputeStableExt and BadPatterns, terminate, the inner for-loop

(Lines 29-33) will iterate only for a finite number of times.

Thus, the procedure will terminate when either it has found a witness rf, visstbwk and visstbst

for the correctness of the hybrid history, or when it has iterated over all the finitely many

reads-from relation.

Lemma 169 (Correctness of MinVisOne). Let vis` be a visiblity relation over the history

H`. Let α` be a consistency criteria. Let vis := MinVisOne(H`, vis`, α`). Then H`, vis |=
VisBasic(α`).

Proof. We will denote the value of visn at the end of the ith iteration of the outer while-loop

as visin. We shall denote the value of visn at the end of the the jth iteration in the ith iteration

of the inner for loop as visi,jn .

Let vis be the value returned by MinVisOne at the end of the kth iteration of the outer

while-loop. Then, vis = viskn.

Note that viso is the value of visn at the end of the previous iteration of while loop. Thus

visko = visk−1
n . Further since viso = visn for the function to return, we have viskn = visko = visk−1

n .

Let visk,0n denote the value of visn at the beginning of the inner for-loop. Then visk,0n = visk−1
n .

Suppose RelTerms(α) has N terms where the nth term is denoted by τn, then, we can

see that for j ∈ [1, . . . , N], visk,jn = visk,j−1
n ∪ τj[so`, visk,j−1

n]. Thus, we can conclude that

τj[so`, vis
k,j−1
n] ⊆ visk,jn .

Also, we can note that visk−1
n = visk,0n ⊆ visk,1n ⊆ · · · ⊆ visk,Nn = viskn. Since, visk−1

n = visin,

this implies that for each j ∈ [0, . . . , N], visk,jn = viskn = vis.

Thus, for each j ∈ [1, . . . , N], we have τj[so`, vis] ⊆ vis. Hence,

so`, vis |=
∧

τj∈RelTerms(α`)

(τj ⊆ vis). But by definition,∧
τj∈RelTerms(α`)

(τj ⊆ vis) = VisBasic(α). Hence so`, vis |= VisBasic(α) which implies that

H`, vis |= VisBasic(α).

Lemma 170 (Monotonicity of RelTerms). Let H = (O, so) be a history and let vis and vis′

be two visibility relation over H such that vis ⊆ vis′. Then for any term τ ∈ RelTerms,

τ [so := so, vis := vis] ⊆ τ [so := so, vis := vis′].

202

Proof. We shall write τ [so, vis] to mean τ [so := so, vis := vis] and τ [so, vis′] to mean τ [so :=

so, vis := vis′].

We will prove this by induction over the number of compositions in the term τ . The base

case is when there are no compositions. We have two cases τ = so and τ = vis .

In the former case, the result trivially follows. In the latter case, the result follows since

it is given that vis ⊆ vis′.

Suppose the result holds for all τ with fewer than n compositions. We now consider

a τ = τ ′; τ ′′ where both τ ′ and τ ′′ have at most n − 1 compositions. Now τ [so, vis] =

τ ′[so, vis]; τ ′′[so, vis]. By induction hypothesis, τ ′[so, vis] ⊆ τ ′[so, vis′] and τ ′′[so, vis] ⊆ τ ′′[so, vis′].

Since A ⊆ A′ and B ⊆ B′ implies A;B ⊆ A′;B′ we can conclude that τ ′[so, vis]; τ ′′[so, vis] ⊆
τ ′[so, vis′]; τ ′′[so, vis′] = τ [so, vis′]. Thus the result is true for a τ with n compositions.

Hence, the result is true for all τ ∈ RelTerms

Lemma 171 (Minimality of MinVisOne). Let vis` be a visibility relation over the history H`.

Let α` be axioms defining the consistency criteria. Let vis′ be a visibility relation over H`

such that vis` ⊆ vis′ and H`, vis
′ |= VisBasic(α`).

Then if, vis := MinVisOne(H`, vis`, α`), we have vis ⊆ vis′.

Proof. As before, we will denote the value at the end of the ith iteration of the outer while-

loop as visin. We shall denote the value of visn at the end of the the jth iteration in the ith

iteration of the inner for loop as visi,jn . We set vis0
n = vis0,0

n = vis`.

Let |RelTerms(α)| = n and let τj denote the jth member of RelTerms(α).

We will first show that for j ∈ [1, . . . , n], If visi,j−1
n ⊆ vis′ then visi,jn ⊆ vis′. Note that

visi,jn = visi,j−1
n ∪τj[so`, visi,j−1

n]. By assumption, visi,j−1
n ⊆ vis′. By lemma 170, τj[so`, vis

i,j−1
n] ⊆

τj[so`, vis
′]. Thus, we can conclude that visi,jn ⊆ vis′.

Since for any i, visi,0n ⊆ visi,1n ⊆ · · · ⊆ visi,nn = visin, we can conclude that if visi,0n ⊆ vis′ then,

visin ⊆ vis′. Finally note that visin = visi+1,0
n . Thus, if visin ⊆ vis′ then visi+1

n ⊆ vis′. Finally we

note that vis0,0
n = vis` ⊆ vis′. Thus for all i > 0, visin ⊆ vis′. Since the value vis returned by

MinVisOne is the value of visn at the end of some iteration i, it follows that vis ⊆ vis′.

Lemma 172 (Correctness of MinVisMulti). Let H = (O, so) be a hybrid history and let viswk
and visst respectively be visibility relations over Hwk and Hst. Let ψ be a subformula in ϕ.

Let (visRetwk , vis
Ret
st) = MinVisMulti(O, so, viswk, visst, ψ).

Then, viswk ⊆ visRetwk , visst ⊆ visRetst and H, visRetwk , vis
Ret
st |= ψ.

Proof. Note that if ψ ∈ {ψwrite
back , ψ

read
thru}, we set visRetwk = viswk and visRetst = visst. Since in this

case ψ = >, since trivially H, visRetwk , vis
Ret
st |= >, the lemma is proved for these cases.

We now prove the result for the cases when ψ = ψwrite
thru .

For ψ = ψwrite
thru , we note that ` = st and `′ = wk and visost = visst and visowk = viswk.

Now visnst = visost ∪ (visowk; so) �st and visnwk = visowk. Thus, we can rewrite this as visnst =

visost∪(visnwk; so)�st. Thus, (visnwk; so)�st⊆ visnst. Hence, we can write that so, visnwk, vis
n
st |= ψwrite

thru .

203

The case where ψ = ψread
back is proved with similar reasoning by interchanging wk and st.

Lemma 173 (Minimality of MinVisMulti). Let H = (O, so) be a hybrid history and let viswk
and visst be visibility relations over histories Hwk and Hst. Let ψ be a subformula in the

hybrid constraint ϕ.

Suppose there exists vis′wk and vis′st over Hwk and Hst respectively such that

• viswk ⊆ vis′wk

• visst ⊆ vis′st

• H, vis′wk, vis
′
st |= ψ.

Then, if (visRetwk , vis
Ret
st) = MinVisMulti(O, so, viswk, visst, ψ), it is the case that visRetwk ⊆ vis′wk

and visRetst ⊆ vis′st

Proof. When ψ ∈ {ψwrite
back , ψ

read
thru}, since visRetwk = viswk and visRetst = visst, it follows that visRetwk ⊆

vis′wk and visRetst ⊆ vis′st.

We will now prove the result for the case when ψ = ψwrite
thru .

Suppose ψ is ψwrite
thru . We have visowk = viswk ⊆ vis′wk and visost = visst ⊆ vis′st

Since visowk ⊆ vis′wk, we have visowk; so ⊆ vis′wk; so. From this, we have (visowk; so) �st⊆
(vis′wk; so) �st. This implies visost ∪ (visowk; so) �st⊆ vis′st ∪ (vis′wk; so) �st since visost ⊆ vis′st. Since

H, vis′wk, vis
′
st |= ψwrite

thru implies (vis′wk; so)�st⊆ vis′st we can conclude that

visost ∪ (visowk; so) �st⊆ vis′st. However visost ∪ (visowk; so) �st= visnst. Thus visnst ⊆ vis′st. Since

visRetst = visnst and visRetwk = viswk, it follows that visRetst ⊆ vis′st and visRetwk ⊆ vis′wk. Hence this case

is proved.

The proof for the case ψ = ψread
back follows via similar reasoning by interchanging wk and

st.

Lemma 174 (Correctness of ComputeStableExt). Let H be a hybrid history and let viswk and

visst respectively be a visibility relations over Hwk and Hst. Let αw and αs respectively be the

weak and strong consistency criteria and let ϕ be the multilevel constraints. Let

(visstbwk , vis
stb
st) be the return value obtained from

ComputeStableExt(O, so, viswk, visst, αw , αs , ϕ). Then

• Hwk, vis
stb
wk |= VisBasic(αw)

• Hst, vis
stb
st |= VisBasic(αs)

• H, visstbwk , vis
stb
st |= ϕ

204

Proof. We note that the value returned by ComputeStableExt (visstbwk , vis
stb
st) are respectively

the values of variables visnwk and visnst at the end of the outer while loop, when they respectively

match the values visowk and visost. Furthermore, visowk, vis
o
st were the values of visnwk and visnst at

the end of the previous iteration of the outer while-loop.

We will replay the iteration of the outer-while loop which returned the value. Here, we

note that vispwk = visowk and vispst = visost.

Let the value computed in line 7 by invoking the method MinVisOne be denoted as vis1
wk.

Now vis1
wk ⊆ vispwk = visowk. Further, by Lemma 169 Hwk, vis

1
wk |= VisBasic(αw).

Let the value computed in line 9 by invoking the method MinVisOne be denoted as vis1
st.

Now vis1
st ⊆ vispst = visost. Further, Hst, vis

1
st |= VisBasic(αs).

Let ϕ = ψ2 ∧ ψ3

We let (visiwk, vis
i
st) = MinVisMulti(O, so, visi−1

wk , vis
i−1
st , ψi) for i ∈ [2, 3]

By lemma 172, for i ∈ [2, 3], we have

• visi−1
wk ⊆ visiwk

• visi−1
st ⊆ visist

• H, visiwk, vis
i
st |= ψi

And vis3
wk = visnwk, vis

3
st = visnst

Thus, for ` ∈ {wk, st} we have viso` ⊆ vis1
` ⊆ vis2

` ⊆ . . . visn` = viso` .

From this we can conclude that visi` = visn` = visstb` for i ∈ [1, 2, 3].

Since

• Hwk, vis
1
wk |= VisBasic(αw).

• Hst, vis
1
st |= VisBasic(αs).

• H, vis2
wk, vis

2
st |= ψ2

• H, vis3
wk, vis

3
st |= ψ3

we can conclude that

• Hwk, vis
stb
wk |= VisBasic(αw).

• Hst, vis
stb
st |= VisBasic(αs).

• H, visstbwk , vis
stb
st |= ψ2 ∧ ψ3 = ϕ

This proves the result.

205

Lemma 175 (Minimality of ComputeStableExt). Let H be a hybrid history and let viswk and

visst respectively be a visibility relations over Hwk and Hst. Let αw , αs be weak and strong

consistency criteria and let ϕ be multilevel constraints.Let

(visstbwk , vis
stb
st) := ComputeStableExt(O, so, viswk, visst, αw , αs , ϕ). If there exists visibility rela-

tions vis′wk and vis′st over Hwk and Hst respectively such that

• viswk ⊆ vis′wk

• visst ⊆ vis′st

• Hwk, vis
′
wk |= VisBasic(αw)

• Hst, vis
′
st |= VisBasic(αs)

• H, vis′wk, vis
′
st |= ϕ

Then visstbwk ⊆ vis′wk and visstbst ⊆ vis′st

Proof. The proof for this follows the line of argument showing the minimality of MinVisOne.

We note that at each step we compute extensions of the weak and strong visibility relations

via invoking MinVisOne and MinVisMulti.

From Lemmas 171 and 173, the output produced by these procedures visRetwk and visRetst

from inputs viswk and visst respectively will satisfy visRetwk ⊆ vis′wk and visRetst ⊆ vis′st whenever

it is the case that viswk ⊆ vis′wk and visst ⊆ vis′st.

Thus, even the final output (visstbwk , vis
stb
st) will satisfy the containment.

We shall prove another interesting result pertaining to the conflict relations of two visibil-

ity relations extending the same reads-from relations, with one visibility relation contained

inside another.

Lemma 176. Let rf` be a reads-from relation over the history H` and let vis` and vis′` be

two visibility relations over H`, both extending rf` such that vis` ⊆ vis′`. Then, CF(rf`, vis`) ⊆
(CF(rf`, vis

′
`) ∪ (vis′` �Write)

+

Proof. Suppose (o′′, o′) ∈ CF(rf`, vis`). That implies that there exists a read operation o such

that o′′, o′ ∈ MaxRelWritesvis`(o) and o′ = rf−1
` (o).

Since vis` ⊆ vis′`, it implies that o′′, o′ ∈ RelWritesvis′`
(o).

We consider two cases.

Suppose o′′ ∈ MaxRelWritesvis′`
(o), then by definition, (o′′, o′) ∈ CF(rf`, vis

′
`). Therefore,

in this case (o′′, o′) ∈ (CF(rf`, vis
′
`) ∪ (vis′` �Write)

+.

Suppose o′′ 6∈ MaxRelWritesvis′`
(o). Then, this implies that o′′ is not a maximal write in

the vis′` view of o restricted to its related writes. Thus, either o′′
vis′�̀Write−−−−→ o′ or there exists

206

a path from o′′
vis′�̀Write−−−−→ o1

vis′�̀Write−−−−→ . . .
vis′�̀Write−−−−→ ok

vis′�̀Write−−−−→ o′′′ where o′′′ ∈ MaxRelWritesvis′`
(o)

and each of

o1, . . . , ok ∈ RelWritesvis′`
(o). In this case too, either o′′′ = o′ or (o′′′, o′) ∈ CF(rf`, vis

′
`). Thus

even in this case (o′′, o′) ∈ (CF(rf`, vis
′
`) ∪ vis′` �Write)

+.

With this we can now prove the correctness of Theorem 166. We need to prove the

following:

For a hybrid read-write history H = (O, so), weak and strong consistency criteria αw , αs

and multilevel constraints ϕ, the procedure

TestMultiCorrect returns a witness (rf, viswk, visst) over H iff H is multi-level correct with

respect to αw , αs and ϕ.

Proof. Suppose the hybrid history H is multi-level correct with respect to the consistency

criteria αw , αs , and multilevel constraints ϕ. Then, by theorem 164, there exists a reads-

from relation rf and visibility relations vis′wk and vis′st over Hwk and Hst extending rfwk and

rfst respectively such that

• Hwk, vis
′
wk |= αw

• Hst, vis
′
st |= αs

• H, vis′wk, vis
′
st |= ϕ

Since the procedure, iterates through all possible reads-from relation, if it returns before

encountering the rf mentioned earlier, then we have nothing to prove. Suppose it does not

return. Then, we will consider the iteration with the reads-from relation being rf.

Note that since vismin
wk and vismin

st are extensions of rfwk and rfst via the procedure MinVisOne,

by Lemma 171, we have vismin
wk ⊆ vis′wk and vismin

st ⊆ vis′st.

Now, suppose for total(vis) is a subformula in αw . Then vis′wk is a total order. Similarly

if total(vis) is a subformula in αs , then vis′st is a total order.

For ` ∈ {wk, st},since we iterate through all the total orders extending vismin
` , if the

procedure returns before the iteration reaches vis′`, then, there is nothing to prove. Suppose,

the procedure returns with none of the prior total orders extending vismin
` . Then we consider

the case where the iterating variable vis` is the total order vis′`.

On the other hand, if total(vis) is not a subformula in αw or αs , then we would set the

corresponding vis` to vismin
` . In both these cases, we can notice that vis` ⊆ vis′`.

Now, we obtain (visstbwk , vis
stb
st) by invoking ComputeStableExt with viswk and visst. By

Lemma 174, Hwk, vis
stb
wk |= VisBasic(αw) Hst, vis

stb
st |= VisBasic(αs) and H, visstbwk , vis

stb
st |= ϕ.

Further, by Lemma 175, for ` ∈ {wk, st}, visstb` ⊆ vis′`. Which implies that if total(vis) is

a subformula in the `-consistency criteria then, visstb` is a total order as vis′` is.

From this, we can conclude that

207

• Hwk, vis
stb
wk |= αw ,

• Hst, vis
stb
st |= αs

• H, visstbwk , vis
stb
st |= ϕ.

Now we check H, rf, visstbwk , vis
stb
st for bad patterns.

Note that, (H, rf, visstbwk , vis
stb
st) cannot have BADVISIBILITY, THINAIR,

BADINITREAD or BADREAD bad patterns, since that would imply the existence of those

bad patterns in (H, rf, vis′wk, vis
′) since visstb` is contained within vis′` for ` ∈ {wk, st}.

We will show by contradiction that BADARB bad pattern doesn’t exist for (H, rf, visstbwk , vis
stb
st)

doesn’t exist. Suppose this bad pattern did exist. Then, there is a cycle C = o1
σ1−→ o2

σ2−→
. . .

σn−→ o1 where each σi is one of CF(rf`, vis
stb
`) or visstb` �Write for ` ∈ {wk, st}

Note that since visstb` ⊆ vis′` we have visstb` �Write⊆ vis′` �Write. Hence in the Cycle C above,

we can rewrite the edge oi
visstb` �Write−−−−−→ oi+1 by oi

vis′�̀Write−−−−→ oi+1.

Further from Lemma 176, we have CF(rf`, vis
stb
`) ⊆ (CF(rf`, vis

′
`) ∪ (vis′` �Write)

+. Which

means that the any edge oi
CF(rf`,vis

stb
`)

−−−−−−−→ oi+1 in the cycle C can be replaced by a path oi
σ′1−→

. . .
σ′
n′−−→ oi+1 where each σ′k is either CF(rf`, vis

′
`) or vis′` �Write. Thus, we get a cycle C ′ from

C whose edges comprise of CF(rf`, vis
′
`) and vis′` �Write for ` ∈ {wk, st}. Thus, BADARB bad

pattern exists for (H, rf, vis′wk, vis
′
st), which is a contradiction. Thus, if H is correct, then we

have proved that the procedure TestMultiCorrect produces a satisfying witness.

Conversely we will show that if TestMultiCorrect produces a satisfying witness (rf, visstbwk , vis
stb
st)

then the hybrid history H is multi-level correct.

Suppose (rf, visstbwk , vis
stb
st) is the witness. Then, visstbwk and visstbst are the visibility relations

returned by the procedure ComputeStableExt. Further, none of the bad patterns exist for

(H, rf, visstbwk , vis
stb
st).

By lemma174, we know that

• Hwk, vis
stb
wk |= VisBasic(αw)

• Hst, vis
stb
st |= VisBasic(αs)

• H, visstbwk , vis
stb
st |= ϕ.

For ` ∈ {wk, st}, in order to show that H`, vis` |= α`, we need to show that if total(vis) is

a subformula of α`, then, visstb` is a total order

Note that if total(vis) is a subformula of α`, then the iterating variable vis` would have

been a total order (line 71). By lemma 174, we know that vis` ⊆ visstb` . Suppose vis` (visstb` ,

it implies that visstb` has at least one additional edges between the operations of O` over what

is present in vis`. However, since vis` is a total order, it implies that any additional edges

introduce a cycle in visstb` . But this is not the case since that would imply BADVISIBILITY for

208

visstb` . Hence it has to be the case that visstb` = vis`. Thus, visstb` is a total order. This proves

that if total is a subformula in the consistency criteria for level `, then, H`, vis
stb
` |= total(vis).

Hence H`, vis
stb
` |= α`.

Thus, we can conclude that there exists a reads-from relation rf and weak and strong vis-

ibility relations visstbwk and visstbst extending rfwk and rfst respectively such that Hwk, vis
stb
wk |= αw ,

Hst, vis
stb
st |= αs , H, vis

stb
wk , vis

stb
st |= ϕ, and none of the bad patterns exist for (H, rf, visstbwk , vis

stb
st).

By theorem 164, this implies that the hybrid history H is multi-level correct with respect to

αw , αs , ϕ.

7.6.1 Complexity

Suppose H = (O, so) is history with |O| = N .

We note that in the procedure ComputeStableExt, at the end of every iteration of the

outer while-loop, the values of visnwk and visnst monotonically increase from the end of the

previous iteration. Since they are binary relations over finite history H = (O, so) their size

is upper bounded by O(N2). The time taken to evaluate each term in RelTerms(α`) is again

polynomial in N . Hence, the time-complexity of ComputeStableExt is polynomial in N , say

f(N).

We can observe from the procedure TestMultiCorrect that the main part that adds to the

complexity is iterating through all the reads-from relation, as well as the total orders if αw

or αs contain the subformula total(vis). Suppose the number of read operations are k. Then

the number of write operations is N − k, and there are O((N − k)k) reads-from relations.

Since k = O(N), this can be bound by O(2N logN). Furthermore, for a given rf, if any of

the levels ` ∈ {wk, st} require that the visibility relation be a total order, then we iterate

over all the total-orders containing the minimal visibility relation extending rf. Iterating

through this requires time bounded by O(2N logN). Thus the worst case time complexity of

the procedure is O(f(N).2N logN).

In general, the problem of testing the correctness of a hybrid history is in NP. We

need to guess the reads-from relation, and then, extend it to obtain the minimal visibility

relations satisfying the visibility constraints of the wk and the st consistency criteria. If

the visibility relation is required to be a total order, we can guess the order. Extending

this to derive fixed-point minimal visibility relations that satisfy all the visibility constraints

via ComputeStableExt requires polynomial time. Subsequently checking for each of the bad-

patterns requires polynomial time.

Note that we can reduce the testing of the correctness of a regular history (that contains

only a single level of Read and Write operations) with respect to consistency criterion α to

this procedure by defining the level of all the read operations to st. We set αs to α, αw to

>, and ϕ to ψwrite
back ∧ ψread

thru . For any reads-from relation rf, rfwk = ∅. Thus viswk = ∅, trivially

satisfying αw as well as ϕ. Thus, the lower bound for testing the correctness of the hybrid

209

history H is the complexity of testing the correctness of the Hwk and Hst with respect to their

respective consistency criteria. It has been shown in [Furbach et al., 2014] that testing the

correctness of a read-write history with respect to sequential consistency is NP-COMPLETE.

In [Bouajjani et al., 2017], the authors use the same reduction to show that testing the

correctness with respect to causal consistency is NP-COMPLETE. However, it can be shown

that the reduction works for any consistency criterion stronger than FIFO consistency, and

checking correctness with respect to such a consistency criterion is NP-COMPLETE. Thus, in

general, though testing the multi-level correctness of a hybrid history is a hard problem, the

hardness is not due to the multilevel constraints but due to the constraints of the individual

consistency criteria and the read-write specification.

In [Bouajjani et al., 2017], the authors identify the class of read-write data-stores known as

data-independent data-stores whose behaviour is not dependent on the exact values written

to the keys. Thus, for such stores, if there is a bad history, there is an equivalent bad

differentiated history where a particular value is written to a particular memory location at

most once. Thus, we can restrict our testing to only the correctness of differentiated histories.

The authors show that the problem of testing the correctness of differentiated-histories with

respect to causal consistency is solvable in polynomial time.

Note that for differentiated histories, there is exactly one reads-from relation which asso-

ciates every Read operation with at most one Write operation which has written that value

to the memory location read by the Read operation. Thus, if neither of αw or αs contain the

subformula total(vis), the procedure TestMultiCorrect terminates in polynomial time. Thus,

our procedure generalizes the result from [Bouajjani et al., 2017] to all the consistency criteria

defined in terms of the set of formulas involving only visibility, but not totality constraints.

Our procedure checks the multi-level correctness of hybrid histories where the individual

consistency levels do not require the visibility relation to be a total order, in polynomial

time.

On the other hand, if one of αw or αs contains total(vis), then the worst case complexity

remains O(2N logN). Once again, this does not come as a surprise, since the problem of

testing the correctness of a differentiated history w.r.t. sequential consistency is not known

to have a polynomial time solution.

7.7 Related Work

There is prior work that illustrates the need for multiple levels of consistency provided by the

distributed data-stores to provide a trade off between consistency and availability or latency

[Guerraoui et al., 2016; Kraska et al., 2009; Bailis et al., 2013; Li et al., 2012].

The work by Kraska et al. [Kraska et al., 2009] provides a transactional paradigm that

allows applications to define the consistency level on data instead of transactions, and also

210

allows the application to switch consistency guarantees at runtime. In the work by Guerraoui

et al. [Guerraoui et al., 2016], the authors provide a generic library that allows applications

to request multiple responses to the same query, where the response that comes later in time

is more-correct than the prior responses. Thus, later responses are supposed to have more

knowledge of the state of the system compared to earlier responses. In our work, we have

defined multilevel constraints, which can model the requirement of incremental consistency

guarantees by requiring that subsequent strong responses see the effects observed by prior

weak responses.

Burckhardt [Burckhardt, 2014] provides a generic methodology for formalizing the spec-

ification of distributed data-stores in terms of histories, visibility and arbitration orders and

provides an axiomatic characterization for consistency criteria. In our work, we have de-

rived the specification for read-write stores based on this formalism. We have adapted this

characterization to define consistency criteria as a conjunction of individual formulas. Our

work extends [Burckhardt, 2014] in terms of the definition of hybrid histories and provides

a definition of multi-level correctness for read-write stores.

There is prior work on verifying the correctness of a behaviour with respect to indi-

vidual consistency criteria. Examples include [Bouajjani et al., 2014b], which deals with

verifying the correctness with respect to eventual consistency, [Bouajjani and Emmi, 2013],

which investigates the feasibility of checking a concurrent implementation with respect to

a consistency criterion that has a sequential specification, including sequential consistency,

linearizability and conflict-serializability and [Bouajjani et al., 2017], which focusses on cor-

rectness with respect to causal consistency. Our work provides a generic procedure for

checking the correctness of read-write histories for all these individual consistency criteria.

Further, [Bouajjani et al., 2017] show that verification of correctness of a history with re-

spect to causal consistency is NP-COMPLETE. However, for differentiated histories, the

problem is solvable in polynomial time. In our work, we generalize the technique of com-

puting the minimal visibility relation and checking for the absence of bad patterns for all

the consistency criteria defined using our syntax. In [Dongol and Hierons, 2016], the au-

thors models quiescent consistency using Mazurkiewicz Trace Theory to model the notion

of independence between the events prior to the quiescent point. They work shows that the

testing problem (which they call the membership problem) for a history is NP-COMPLETE.

We cannot model quiescent consistency in our framework since we cannot model quiescent

point. In [Furbach et al., 2014], the authors present a detailed complexity analysis of the

problem of testing the correctness of a history with respect to various consistency criteria.

Our findings are consistent with the results from [Furbach et al., 2014] with respect to hard-

ness of testing consistency criteria that require the visiblity relation to be a total order. In

a recent work [Emmi and Enea, 2018], the authors provide a technique for testing the cor-

rectness of a history of a data-store with respect to a weak consistency criterion. That work

also characterizes correctness in terms of minimal visibility relation extending the session

211

order (called program-order there) and the happened-before relation (called returns-before

relation in [Burckhardt, 2014]). Our work applies this concept to read-write stores, where we

observe that correctness with respect to visibility constraints can be satisfied by constructing

a minimal visibility relation while the correctness with respect to read-write specifications

and arbitration constraints can be reduced to checking for absence of certain bad patterns.

In particular, our characterization of the arbitration relation in terms of the conflict relation

saves the step of searching through all possible arbitration relations which is used in [Emmi

and Enea, 2018].

[Gotsman et al., 2016] deals with verification of red-blue consistency where, in a history,

a subset of operations are labelled red while the remaining are labelled blue. The blue

operations are expected to satisfy a weaker consistency criterion, while the red operations

are supposed to satisfy a stronger consistency criterion. The effects of the strong operations

and weak operations are visible to each other. We can model this by setting ϕ = ψwrite
thru ∧ψread

back .

Our work should also be contrasted with [Biswas et al., 2019], which addresses the prob-

lem of checking the consistency of CRDTs against their specifications, and covers a wide

range of CRDTs including replicated sets, flags, counters, registers, etc. The relevant data

structure in our case is registers, where the results are comparable (checking w.r.t. the

weaker consistency criterion is tractable). However, we also consider registers with multiple

consistency criteria in this chapter, which is not considered there.

Another related work is [Biswas and Enea, 2019], which uses the reads-from relation

(called the write-read relation there) to show that testing the correctness of an execution

(containing transactions) with respect to various consistency criteria like Read Commit-

ted (RC), Read Atomic (RA), Causal Consistency (CC), Prefix Consistency, and Snapshot

Isolation. The key difference in the current work is that we consider histories having mul-

tiple consistency levels simultaneously while [Biswas and Enea, 2019] considers executions

consisting of transactions, under a single consistency criterion.

212

8

Summary, Future Work and Conclusion

8.1 Summary

We started this thesis with an introduction to the widely studied class of distributed data

types namely the Conflict-free Replicated Data Types (CRDTs). We introduced the termi-

nology and provided new rigorous proofs for the sufficient conditions for these data types to

satisfy Strong Eventual Consistency (SEC) in Chapter 1.

We then studied a particular replicated data type, namely the Observed Remove Set (OR

Set) where we presented two existing implementations and our novel optimization implemen-

tation that retained the best properties of the existing implementations in Chapter 3. We

also provided a precise formal specification for the OR-Set which would capture its essence

without relying on the network guarantees on delivery of updates. In this chapter, we intro-

duced a novel object named Interval Version Vector which can be used to succinctly keep

track of concurrent updates in a network where updates can be delivered out of order.

In the next chapter, we described a framework for providing declarative specifications

of replicated data types using the concepts from labelled partial orders introduced origi-

nally in [Mazurkiewicz, 1987] on Theory of Traces. Using this framework, we provided the

declarative specification for many well known CRDTs. We also showed a principled ap-

proach towards constructing a reference implementation for any replicated data type given

its declarative specification. We then explored bounded reference implementations which

can be used to formally verify the correctness of a given implementation. We showed two

novel bounded reference implementations.

The first was was a distributed reference implementation, which can be constructed

for replicated data types with bounded specifications. To achieve this, we generalize the

gossip problem from [Mukund and Sohoni, 1997; Mukund et al., 2003]. We showed that

the generalized gossip problem has a bounded solution when the runs B-Concurrent. At

the heart of the bounded distributed reference implementation of a replicated data type

213

lies the bounded solution to the generalized gossip problem. The second bounded reference

implementation was a global reference implementation where the state of every replica is

represented as a Later Appearance Record, a concept introduced in [Gurevich and Harrington,

1982]. We show that for replicated data types with bounded specifications, when the runs are

guaranteed to be B-Bounded by the underlying network, this global reference implementation

is a bounded implementation.

In the last part of the thesis, we studied read-write data stores which provide the option

for the users to tag Read operations with a particular consistency criteria, thus, allowing

behaviours where multiple consistency criteria co-exist. We showed how such behaviours

can be modelled, and we defined a correctness criteria for such behaviours with multiple

consistency levels. Following that, we provided a bad-pattern characterization for read-

write stores, which is a generalization of the bad-pattern characterization first introduced

in [Bouajjani et al., 2017]. We also provide an algorithm to derive the minimal visibility

relation extending a reads-from relation, which satisfy all the constraints of the consistency

criteria offered by the data stores and also the multilevel constraint. This algorithm then

decides whether a given behaviour of such data stores is correct with respect to the individual

consistency criteria as well as the multilevel constraint.

8.2 Future Work

In the process of addressing some of the challenges mentioned in this thesis, we have come

across new open problems which can be explored further as a part of the future work. We

define three interesting problems below.

8.2.1 Bounded Interval Version Vectors

Our robust optimized implementation of the OR-Set uses interval version vectors to keep

track of the elements that have already been seen. It is known that regular version vectors

have a bounded representation when the replicas communicate using pairwise synchroniza-

tion [Almeida et al., 2004]. An alternative proof of this in [Mukund et al., 2020] is based

on the solution to the gossip problem for synchronous communication [Mukund and Sohoni,

1997], which has also been generalized to message-passing systems [Mukund et al., 2003].

In the case of regular version vectors, their purpose was to understand, if one replica had a

more up-to-date information compared to another. Thus given a version vector of Vr and Vr′

for replicas r and r′, we say that r is more up-to-date than r′ if for every other replica r′′,

Vr[i] ≥ Vr′ [i]

Since this was the only question of interest, it did not matter what the exact values of

214

Vr[i] and Vr′ [i] were, but merely how are they related to each other. Hence, it was possible

to reuse the labels and provide a bounded representation.

In the case of interval version vectors there are two questions that we are interested in.

Given an interval version vector V at replica r, we want to know if r has seen an update

associated with the integer c from replica r′′. This is equivalent to checking if c ∈ V [r′′]. The

other question is, given a pair of interval version vectors V and V ′, if one of them is more

up-to-date than the other. We say V is more up-to-date than V ′ iff

∀r′′ : V ′[r′′] ⊆ V [r′′]

.

In the first case, it is difficult to imagine a bounded representation, since the integer c

whose membership we want to check in V [r′′] itself could be arbitrarily large. However, in

the second case, since we are not interested in the individual values but only the relative

state of interval sequences from two interval version vectors, there is a possibility of explor-

ing a bounded implementation. Even in this case, we recognize that since the number of

undelivered updates could be unbounded in an arbitrarily long run, the number of intervals

in each Interval sequence V [r′′] could be unbounded as well. However, if the underlying

network guarantees that there won’t be more than B undelivered messages in the network

at any point in time, the number of intervals in the interval sequence V [r′′] are guaranteed

to be bounded by B + 1. Thus in this scenario, it would be interesting to see if the ideas of

reusing the timestamps using some form of generalized gossip can be applied to arrive at a

bounded implementation of interval version vectors.

8.2.2 Complexity of testing the correctness of differentiated his-

tories

In Chapter 7, we discussed the problem of testing the correctness of a history of a read-

write Data store with respect to a given consistency criteria. In general this is a hard

problem. It has been formally proven that testing the correctness a history with respect to

causal consistency and sequential consistency is NP-COMPLETE. However, there is a class of

histories known as the differentiated history, where a particular value is written to a variable

x at most once. In our work we have shown that the problem of testing the correctness

of a differentiated history is in PTIME if the visibility relation is not required to be a total

order. However, the exact complexity of testing the correctness of such differentiated histories

against stronger consistency criteria, such as sequential consistency or linearizability is not

yet known. We believe that it cannot be done in PTIME but we do not know if this problem

is NP-COMPLETE. The reason for this is that all prior known reductions, which reduce the

SAT problem to the problem of testing the correctness of the read-write History, rely on the

fact that the same value is written to the variable my multiple sessions. This property is not

215

available in the case of differentiated histories. Thus, in this problem is NP-COMPLETE, we

need a novel reduction of some well known problem to the problem of testing the correctness

of a differentiated history where the visibility relation is a total order. To our knowledge, no

straightforward reduction exists as of now.

8.2.3 Generalizing Bad-Patterns and minimum visibility relation

to other data types

In Chapter 7, we have provided a systematic methodology for deriving bad patterns char-

acterizing a wide range of consistency criteria. However, except for the BADVISIBILITY

pattern, which flags out visibility relations which have a cycle, the other four of the five

bad patterns are specific to read-write data stores. In some sense these four bad patterns

capture all the possible violations of the specification of the read-write stores. It would be

worthwhile to explore if a similar finite bad-pattern characterization would be available for

other replicated data type such as counters, sets and graphs.

Furthermore, in case of the read-write stores, we defined the reads-from relation, which

is in some sense the smallest visibility relation over the read-write history, such that the

history is correct as per the specification in the absence of any constraints imposed by the

required consistency criteria. We then applied some fixed point computation to inflate this

minimal visibility relation so that it would satisfy the constraints of the individual consistency

criteria and their combinations via the multilevel constraints. It was on this inflated visibility

relation, which we proved was a minimal visibility relation satisfying all the constraints, that

we tested for the absence of bad patterns. It would be an interesting exercise to explore the

existence of minimal visibility relations akin to the reads-from relation for other data types.

For example in the case of OR-Sets, if contains(x) operation in the history returns True, then

we know that there has to be an add(x) operation from the history which should be visible to

that contains(x). On the other hand, if contains(x) returns False, then there are two options

: Either no add(x) or delete(x) operation is visible to that contains(x), or only a delete(x)

is visible to contains(x). On such a minimal visibility relation, we perform the fixed point

computation to inflate it into a visibility relation that would satisfy all the constraints of the

consistency criteria. On this inflated minimal visibility relation, we check for the presence

of bad patterns corresponding to the specification of OR-Sets.

8.3 Conclusion

As mentioned in Chapter 1, one of the themes in this thesis has been to explore the applica-

bility of concepts and tools from traditional trace theory and automata theory, and wherever

required, adapt them and extend them in the study and analysis of relatively modern repli-

216

cated data types such as the CRDTs. We believe we have been successful in this effort.

Some of the novel contributions in this thesis include

• Interval Version Vectors, which allow us to robustly keep track of concurrent updates

in the absence of causal delivery. We use these to provide an optimized implementation

of OR-set in the absence of causal-delivery.

• Formulation of a generalization of the Gossip Problem [Mukund and Sohoni, 1997;

Mukund et al., 2003] and a bounded solution to this Generalized Gossip Problem that

provides a principled approach towards synthesizing distributed reference implementa-

tions of CRDTs from their specifications.

• A technique for synthesizing a simple global reference implementation of CRDTs from

their specification using the concept of Later Appearance Records (LAR) introduced

in [McNaughton, 1965].

• A formal framework for defining the correctness of behaviours of read-write data-stores

which provide multiple consistency levels.

• A systematic methodology for deriving bad patterns characterizing a wide range of

consistency models and combinations thereof.

• An effective algorithmic framework for testing the behaviours of modern data-stores

that providing multiple levels of consistency.

217

References

Almeida, J. B., Almeida, P. S., and Baquero, C. (2004). Bounded version vectors. In DISC,

pages 102–116.

Almeida, P. S., Shoker, A., and Baquero, C. (2015). Efficient state-based crdts by delta-

mutation. ArXiv, abs/1410.2803.

Attiya, H., Burckhardt, S., Gotsman, A., Morrison, A., Yang, H., and Zawirski, M. (2016).

Specification and complexity of collaborative text editing. In ACM Symposium on Prin-

ciples of Distributed Computing, PODC 2016, pages 259–268. ACM.

Auvolat, A. and Täıani, F. (2019). Merkle search trees: Efficient state-based crdts in open

networks. In 2019 38th Symposium on Reliable Distributed Systems (SRDS), pages 221–

22109.

Bailis, P., Ghodsi, A., Hellerstein, J. M., and Stoica, I. (2013). Bolt-on causal consistency.

In Proceedings of the 2013 ACM SIGMOD International Conference on Management of

Data, SIGMOD ’13, pages 761–772, New York, NY, USA. ACM.

Bieniusa, A., Zawirski, M., Preguiça, N. M., Shapiro, M., Baquero, C., Balegas, V., and

Duarte, S. (2012). An optimized conflict-free replicated set. CoRR, abs/1210.3368.

Biswas, R., Emmi, M., and Enea, C. (2019). On the complexity of checking consistency for

replicated data types. In Dillig, I. and Tasiran, S., editors, Computer Aided Verification,

pages 324–343, Cham. Springer International Publishing.

Biswas, R. and Enea, C. (2019). On the complexity of checking transactional consistency.

Proc. ACM Program. Lang., 3(OOPSLA):165:1–165:28.

Blau, T. (2020). Verifying strong eventual consistency in δ-crdts. CoRR, abs/2006.09823.

Bouajjani, A. and Emmi, M. (2013). Analysis of recursively parallel programs. ACM Trans.

Program. Lang. Syst., 35(3):10:1–10:49.

218

Bouajjani, A., Enea, C., Guerraoui, R., and Hamza, J. (2017). On verifying causal consis-

tency. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Program-

ming Languages, POPL 2017, pages 626–638, New York, NY, USA. ACM.

Bouajjani, A., Enea, C., and Hamza, J. (2014a). Verifying eventual consistency of optimistic

replication systems. SIGPLAN Not., 49(1):285–296.

Bouajjani, A., Enea, C., and Hamza, J. (2014b). Verifying eventual consistency of optimistic

replication systems. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Princi-

ples of Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014,

pages 285–296.

Bouajjani, A., Enea, C., Mukund, M., R., G. S., and Suresh, S. P. (2020). Formalizing and

checking multilevel consistency. In Beyer, D. and Zufferey, D., editors, Verification, Model

Checking, and Abstract Interpretation - 21st International Conference, VMCAI 2020, New

Orleans, LA, USA, January 16-21, 2020, Proceedings, volume 11990 of Lecture Notes in

Computer Science, pages 379–400. Springer.

Brewer, E. A. (2000). Towards robust distributed systems. In Symposium on Principles of

Distributed Computing (PODC).

Briot, L., Urso, P., and Shapiro, M. (2016). High responsiveness for group editing CRDTs.

In 19th International Conference on Supporting Group Work, GROUP 2016, pages 51–60.

ACM.

Brocco, A. (2021). Delta-state JSON CRDT: Putting collaboration on solid ground. In 23rd

International Symposium on Stabilization, Safety, and Security of Distributed Systems,

SSS 2021, pages 474–478. Springer LNCS volume 13046.

Burckhardt, S. (2014). Principles of eventual consistency. Foundations and Trends in Pro-

gramming Languages, 1(1-2):1–150.

Burkhardt, S., Gotsman, A., Yang, H., and Zawirski, M. (2014). Replicated data types: spec-

ification, verification, optimality. In The 41st Annual ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January

20-21, 2014, pages 271–284.

Clarke, E. M., Grumberg, O., Jha, S., Lu, Y., and Veith, H. (2003). Counterexample-guided

abstraction refinement for symbolic model checking. J. ACM, 50(5):752–794.

CS551 (2001). 551: Distributed operating systems. http://www.cs.colostate.edu/

~cs551/CourseNotes/Consistency/TypesConsistency.html. Accessed: 2018-03-31.

219

Damien. (2017 (Accessed Nov 16, 2018)). DynamoDB vs Cassandra.

De Porre, K., Myter, F., Scholliers, C., and Gonzalez Boix, E. (2020). CScript: A distributed

programming language for building mixed-consistency applications. Journal of Parallel

and Distributed Computing volume 144, pages 109–123.

Documentation, A. (2018 (Accessed Sep 26, 2019)). DAX and DynamoDB consistency Mod-

els.

Dongol, B. and Hierons, R. M. (2016). Decidability and complexity for quiescent consistency.

In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science,

LICS ’16, pages 116–125, New York, NY, USA. ACM.

Emmi, M. and Enea, C. (2018). Monitoring weak consistency. In Computer Aided Verifi-

cation - 30th International Conference, CAV 2018, Held as Part of the Federated Logic

Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I, pages 487–506.

Enes, V., Almeida, P. S., Baquero, C., and Leitão, J. (2019). Efficient synchronization

of state-based crdts. In 2019 IEEE 35th International Conference on Data Engineering

(ICDE), pages 148–159.

Furbach, F., Meyer, R., Schneider, K., and Senftleben, M. (2014). Memory model-aware

testing - A unified complexity analysis. In 14th International Conference on Application

of Concurrency to System Design, ACSD 2014, Tunis La Marsa, Tunisia, June 23-27,

2014, pages 92–101.

Gilbert, S. and Lynch, N. A. (2002). Brewer’s conjecture and the feasibility of consistent,

available, partition-tolerant web services. SIGACT News, 33(2):51–59.

Gomes, V. B. F., Kleppmann, M., Mulligan, D. P., and Beresford, A. R. (2017). Verifying

strong eventual consistency in distributed systems. Proc. ACM Program. Lang., 1(OOP-

SLA).

Gotsman, A., Yang, H., Ferreira, C., Najafzadeh, M., and Shapiro, M. (2016). ’cause i’m

strong enough: reasoning about consistency choices in distributed systems. In Proceedings

of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages 371–384.

Grishchenko, V. and Patrakeev, M. (2020). Chronofold: A data structure for versioned text.

In 7th Workshop on Principles and Practice of Consistency for Distributed Data, PaPoC

2020. ACM.

Grosch, P., Krafft, R., Wölki, M., and Bieniusa, A. (2020). AutoCouch: A JSON CRDT

Framework. Association for Computing Machinery, New York, NY, USA.

220

Guerraoui, R., Pavlovic, M., and Seredinschi, D.-A. (2016). Incremental consistency guar-

antees for replicated objects. In Proceedings of the 12th USENIX Conference on Oper-

ating Systems Design and Implementation, OSDI’16, pages 169–184, Berkeley, CA, USA.

USENIX Association.

Gurevich, Y. and Harrington, L. (1982). Trees, automata, and games. In Proceedings of the

Fourteenth Annual ACM Symposium on Theory of Computing, STOC ’82, pages 60–65,

New York, NY, USA. ACM.

Herlihy, M. (2008). Linearizability, pages 450–453. Springer US, Boston, MA.

Herlihy, M. P. and Wing, J. M. (1990). Linearizability: a correctness condition for concurrent

objects. ACM Transactions on Programming Languages and Systems, 12:463–492.

Kleppmann, M. and Beresford, A. R. (2017). A conflict-free replicated json datatype. IEEE

Transactions on Parallel and Distributed Systems, 28(10):2733–2746.

Kraska, T., Hentschel, M., Alonso, G., and Kossmann, D. (2009). Consistency rationing in

the cloud: Pay only when it matters. PVLDB, 2(1):253–264.

Lamport, L. (1979). How to make a multiprocessor computer that correctly executes multi-

process programs. IEEE Trans. Comput., 28(9):690–691.

Li, C., Porto, D., Clement, A., Gehrke, J., Preguiça, N., and Rodrigues, R. (2012). Making

geo-replicated systems fast as possible, consistent when necessary. In Proceedings of the

10th USENIX Conference on Operating Systems Design and Implementation, OSDI’12,

pages 265–278, Berkeley, CA, USA. USENIX Association.

Malkhi, D. and Terry, D. B. (2007). Concise version vectors in WinFS. Distributed Comput-

ing, 20(3):209–219.

Mazurkiewicz, A. (1987). Trace theory. In Petri Nets: Applications and Relationships to

Other Models of Concurrency, pages 278–324. Springer.

McNaughton, R. (1965). Finite-state infinite games. Project MAC Rep.

Meiklejohn, C. and Van Roy, P. (2015). Lasp: A language for distributed, coordination-

free programming. In Proceedings of the 17th International Symposium on Principles and

Practice of Declarative Programming, PPDP ’15, page 184–195, New York, NY, USA.

Association for Computing Machinery.

Mukund, M., Narayan Kumar, K., and Sohoni, M. A. (2003). Bounded time-stamping in

message-passing systems. Theor. Comput. Sci., 290(1):221–239.

221

Mukund, M., Shenoy, G. R., and Suresh, S. P. (2014). Optimized or-sets without ordering

constraints. In Chatterjee, M., Cao, J.-N., Kothapalli, K., and Rajsbaum, S., editors,

ICDCN, volume 8314 of Lecture Notes in Computer Science, pages 227–241. Springer.

Mukund, M., Shenoy R, G., and Suresh, S. P. (2015a). Bounded implementations of repli-

cated data types. In Proceedings of VMCAI 2015, volume 8931 of LNCS, pages 355–372.

Mukund, M., Shenoy R., G., and Suresh, S. P. (2015b). Effective verification of replicated

data types using later appearance records (LAR). In Automated Technology for Verification

and Analysis - 13th International Symposium, ATVA 2015, Shanghai, China, October 12-

15, 2015, Proceedings, pages 293–308.

Mukund, M., Shenoy R., G., and Suresh, S. P. (2020). Bounded version vectors using

mazurkiewicz traces. In Chaki, R., Cortesi, A., Saeed, K., and Chaki, N., editors, Ad-

vanced Computing and Systems for Security - Volume Eleven, 7th International Doctoral

Symposium on Applied Computation and Security Systems, ACSS 2020, Kolkata, India,

February 28-29, 2020, volume 1178 of Advances in Intelligent Systems and Computing,

pages 31–42. Springer.

Mukund, M. and Sohoni, M. A. (1997). Keeping track of the latest gossip in a distributed

system. Distributed Computing, 10(3):137–148.

Nicolas, M., Oster, G., and Perrin, O. (2020). Efficient renaming in sequence CRDTs. In 7th

Workshop on Principles and Practice of Consistency for Distributed Data, PaPoC 2020.

ACM.

Owen, M. (2015). Using erlang, riak and the orswot crdt at bet365 for scala-

bility and performance. https://www.erlang-factory.com/static/upload/media/

1434558446558020erlanguserconference2015bet365michaelowen.pdf. Accessed :

2022-03-06.

Ozkan, B. K., Majumdar, R., Niksic, F., Befrouei, M. T., and Weissenbacher, G. (2018).

Randomized testing of distributed systems with probabilistic guarantees. PACMPL,

2(OOPSLA):160:1–160:28.

Perrin, M., Mostefaoui, A., and Jard, C. (2016). Causal consistency: Beyond memory. In

Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPoPP ’16, pages 26:1–26:12, New York, NY, USA. ACM.

Pratt, V. (1986). Modeling concurrency with partial orders. International Journal of Parallel

Programming, 15(1):33–71.

222

Redis (2020). Diving into crdts. https://redis.com/blog/diving-into-crdts/. Accessed

: 2022-03-06.

Riak (2015). Riak concept data types. https://docs.riak.com/riak/kv/2.2.3/learn/

concepts/crdts/index.html. Accessed : 2022-03-06.

Saito, Y. and Shapiro, M. (2005). Optimistic replication. ACM Comput. Surv., 37(1):42–81.

Shapiro, M. and Kemme, B. (2009). Eventual consistency. In Encyclopedia of Database

Systems, pages 1071–1072.

Shapiro, M., Preguiça, N., Baquero, C., and Zawirski, M. (2011a). A comprehensive study

of Convergent and Commutative Replicated Data Types. Rapport de recherche RR-7506,

INRIA. http://hal.inria.fr/inria-00555588/PDF/techreport.pdf.

Shapiro, M., Preguiça, N. M., Baquero, C., and Zawirski, M. (2011b). Conflict-free replicated

data types. In SSS, pages 386–400.

Terry, D. B., Demers, A. J., Petersen, K., Spreitzer, M., Theimer, M., and Welch, B. B.

(1994). Session guarantees for weakly consistent replicated data. In Proceedings of the

Third International Conference on Parallel and Distributed Information Systems (PDIS

94), Austin, Texas, USA, September 28-30, 1994, pages 140–149. IEEE Computer Society.

Terry, D. B., Theimer, M., Petersen, K., Demers, A. J., Spreitzer, M., and Hauser, C.

(1995). Managing update conflicts in bayou, a weakly connected replicated storage system.

In Proceedings of the Fifteenth ACM Symposium on Operating System Principles, SOSP

1995, Copper Mountain Resort, Colorado, USA, December 3-6, 1995, pages 172–183.

Vogels, W. (2008). Eventually consistent. ACM Queue, 6(6):14–19.

Weidner, M., Miller, H., and Meiklejohn, C. (2020). Composing and decomposing op-based

crdts with semidirect products. Proc. ACM Program. Lang., 4(ICFP).

Willcock, C., Deiß, T., Tobies, S., Keil, S., Engler, F., and Schulz, S. (2005). An Introduction

to TTCN-3. Wiley.

Wolper, P. (1986). Expressing interesting properties of programs in propositional temporal

logic. In Conference Record of the Thirteenth Annual ACM Symposium on Principles

of Programming Languages, St. Petersburg Beach, Florida, USA, January 1986, pages

184–193.

Yu, W., Elvinger, V., and Ignat, C.-L. (2020). A Generic Undo Support for State-Based

CRDTs. In Felber, P., Friedman, R., Gilbert, S., and Miller, A., editors, 23rd International

223

Conference on Principles of Distributed Systems (OPODIS 2019), volume 153 of Leibniz

International Proceedings in Informatics (LIPIcs), pages 14:1–14:17, Dagstuhl, Germany.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

Zeller, P., Bieniusa, A., and Poetzsch-Heffter, A. (2014). Formal specification and verification

of CRDTs. In 34th IFIP International Conference on Formal Techniques for Distributed

Objects, Components and Systems, FORTE 2014, pages 33–48. Springer LNCS volume

8461.

224

