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Titre : Réduction d’ordre partiel pour les systèmes temporisés

Résumé : Dans cette thèse, nous étudions le problème d’accessibilité dans
les réseaux d’automates temporisés. Nous nous concentrons sur la question
de l’explosion de l’espace d’états causée par les entrelacements d’actions dans
les exécutions de ces réseaux. Nous proposons deux solutions différentes
pour atténuer l’effet de cette explosion combinatoire. La première est un
algorithme d’accessibilité basé sur une sémantique temporelle locale pour les
réseaux d’automates temporisés. La seconde est un cadre pour les méthodes
de réduction d’ordre partiel pour ces mêmes réseaux.

L’approche standard pour résoudre le problème d’accessibilité d’un auto-
mate temporisé implique l’exploration d’un graphe dirigé, connu sous le nom
de graphe de zone de cet automate. Dans notre travail, nous considérons
une sémantique alternative pour les réseaux d’automates temporisés, ap-
pelée sémantique temporelle locale, qui a été introduite par Bengtsson et
al [BJLY98], ainsi que la notion correspondante de graphes de zone locale.
Cette nouvelle approche consiste à considérer une échelle de temps locale
à chaque processus, et à ne synchroniser ces temps locaux que lorsque les
processus exécutent une action commune. Le principal défi ici est que les
graphes de zones locales sont infinis en général. Nous surmontons ce défi en
concevant un nouvel algorithme qui vérifie l’accessibilité dans un réseau en
calculant une troncature finie de son graphe de zone locale. Nous montrons
que plusieurs nœuds dans le graphe de zone standard, qui correspondent
à différents entrelacements des mêmes actions, sont remplacés par un seul
nœud dans le graphe de zone locale. L’évaluation expérimentale de notre al-
gorithme montre le gain d’un ordre de grandeur par rapport aux algorithmes
de référence sur plusieurs exemples standards.

Dans la deuxième partie de cette thèse, nous nous concentrons sur
l’application des techniques de réduction d’ordre partiel à l’exploration
des graphes de zones locales. La réduction d’ordre partiel est une tech-
nique largement utilisée pour combattre l’explosion combinatoire de l’espace
d’états. Elle consiste à identifier une petite partie de l’espace d’états dont
l’exploration est suffisante pour vérifier le système. Nous décrivons pourquoi
ceci est difficile à réaliser dans un cadre temporisé. Nous identifions en-
suite une sous-classe de réseaux d’automates temporisés, que nous appelons
systèmes à désynchronisation bornée, pour lesquels nous développons des
algorithmes de réduction d’ordre partiel. Nous présentons plusieurs exem-
ples pour cette sous-classe, motivés par des benchmarks standards. Nous
fournissons également une évaluation d’un prototype de l’implémentation de
ces méthodes en utilisant l’outil TChecker [HP19].

Mots-clés : Automates temporisés, Vérification, Réduction d’ordre partiel,
Explosion de l’espace d’état



Title: Partial order reduction for timed systems

Abstract: In this thesis, we study the reachability problem for networks
of timed automata. We focus on the issue of state-space explosion due
to interleavings in these networks, and provide two different solutions for
alleviating the effects of this explosion. The first is a reachability algorithm
based on a local time semantics for networks of timed automata, and the
second is a framework for partial order reduction methods for networks of
timed automata.

The standard approach for solving the reachability problem for a timed
automaton involves exploring a directed graph, known as the zone graph
of the timed automaton. In our work, we consider an alternate semantics
for networks of timed automata, called local time semantics, which was
introduced by Bengtsson et al. [BJLY98], and the related notion of local
zone graphs. The approach in local time semantics is to make time local to
each process, and synchronize the local times of processes when they execute
a common action. The main challenge here is that local zone graphs are
infinite in general. We overcome this challenge by designing a new algorithm
that checks reachability in a network by computing a finite truncation of
the local zone graph of the network. We show that multiple nodes in the
standard zone graph that correspond to different interleavings of the same
sequence are replaced by a single node in the local zone graph. Experimental
evaluation of our algorithm shows an order of magnitude gain with respect
to state of the art algorithms on several standard benchmark examples.

In the second part of this thesis, we shift our focus to applying partial
order reduction techniques to the exploration of local zone graphs. Partial
order reduction is a widely used technique that combats the combinatorial
explosion of search space by identifying a small part of the state space whose
exploration is sufficient to verify the system. We describe why this is difficult
to achieve in the timed setting. We then identify a subclass of networks of
timed automata which we call bounded spread systems for which we develop
partial order reduction algorithms. We exhibit several examples motivated
by standard benchmark models that belong to this subclass. We also provide
an evaluation of a prototype of the implementation of these methods using
the tool TChecker [HP19].

Keywords: Timed automata, Verification, Partial order reduction, State-
space explosion, Local time semantics
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Résumé de la thèse

Les systèmes cyber-physiques sont largement utilisés dans divers domaines
tels que l’industrie automobile, la santé, l’avionique et l’industrie manufac-
turière. Des contrôleurs industriels aux stimulateurs cardiaques, en passant
par les systèmes automobiles autonomes, ils sont omniprésents dans la société
actuelle et jouent un rôle central dans l’assistance et l’amélioration de di-
vers aspects de notre vie quotidienne. Ces systèmes ont généralement des
spécifications, exprimées sous forme de contraintes sur leur comportement.
Très souvent, ces systèmes sont essentiels à la sécurité ; même une chance
infime de comportement erroné entrâınerait une perte de vie ou de biens.
Il est donc crucial de s’assurer que ces systèmes répondent toujours à leurs
spécifications.

La vérification formelle est un domaine de recherche consacré à l’élaboration
de procédures permettant de résoudre ce problème. La vérification des
systèmes cyber-physiques consiste à modéliser les composants du système
en tant qu’objets mathématiques abstraits, et à concevoir des algorithmes
permettant de vérifier que le comportement de ces systèmes est conforme
aux attentes. Les automates temporisés sont un formalisme pratique, utilisé
lorsque les systèmes à modéliser sont associés à des contraintes temporelles.
Il est souvent plus naturel de modéliser ces systèmes par un réseau d’auto-
mates temporisés qui fonctionnent simultanément et se synchronisent sur des
actions communes.

L’explosion de l’espace d’états est un défi important dans la conception de
procédures de vérification pour les réseaux d’automates. Cette explosion fait
référence à la croissance exponentielle de la taille de l’espace d’états du réseau
lorsque la taille du réseau augmente. Nous montrons que si l’explosion de
l’espace d’états est déjà un défi pour les réseaux d’automates non temporisés,
cela empire dans le cas des automates temporisés, car chaque entrelacement
stocke l’information temporelle et conduit à un état temporisé potentiellement
différent.

Les réductions d’ordre partiel sont une famille de techniques employées
pour résoudre le problème de l’explosion combinatoire en réduisant l’espace
d’états à parcourir par un algorithme de vérification. Son application aux
réseaux de systèmes non temporisés est bien étudiée [Val89, God90, Pel93,
AAJS17], mais son transfert à des systèmes temporisés reste un défi [BJLY98,
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DGKK98, HLL+14].
Cette thèse vise à développer les fondements des méthodes d’ordre partiel

pour les réseaux d’automates temporisés, afin d’obtenir des solutions algo-
rithmiques évolutives et des outils pour leur vérification. Nous considérons
la sémantique temporelle locale [BJLY98] pour les réseaux d’automates tem-
porisés et travaillons avec le graphe de zones locales, le graphe de zones dans
cette sémantique. L’obstacle majeur lorsque l’on travaille avec des graphes de
zones locales est qu’ils sont infinis en général. Nous proposons des techniques
pour obtenir des troncatures finies de ces graphes de zones locales. Grâce à
ces techniques, nous sommes en mesure de développer un cadre qui permet
l’application de techniques d’ordre partiel à l’exploration du graphe de zone
local de ces réseaux. Nous identifions ensuite certaines classes de réseaux
d’automates temporisés et proposons un algorithme de réduction d’ordre
partiel pour les réseaux appartenant à ces classes. Nous fournissons également
une évaluation d’un prototype de l’algorithme de réduction d’ordre partiel
sur quelques exemples en utilisant l’outil TChecker [HP19].

Problème d’accessibilité pour les automates tempo-
risés

Nos principaux objets d’intérêt sont les réseaux d’automates temporisés. Un
automate temporisé [AD90, AD94] est un automate fini dont les états sont
équipés d’un ensemble de variables non négatives à valeurs réelles appelées
horloges. Les horloges sont initialement fixées à zéro et augmentent à la même
vitesse. Les transitions de l’automate sont associées à une conjonction de
contraintes d’horloge, appelées gardes, où chaque clause de la conjonction
implique la comparaison d’une horloge avec un nombre naturel. D’un point
de vue opérationnel, cela signifie que la transition ne peut être prise que si
les valeurs des horloges satisfont la garde associée à la transition. De plus,
certaines horloges peuvent être remises à zéro lors de la prise d’une transition.
De plus, un automate temporisé possède également un état initial et un
ensemble d’états acceptants. Le comportement erroné du système est modélisé
comme l’atteinte d’un état acceptant de l’automate temporisé. Le problème
d’accessibilité d’un automate temporisé demande s’il existe une exécution de
l’automate d’un état initial à un état acceptant. Par conséquent, vérifier si le
système a une exécution erronée se traduit par le problème d’accessibilité de
l’automate temporisé qui modélise le système. Les algorithmes de vérification
pour les automates temporisés ont été largement étudiés et sont à la base de
nombreux outils de vérification tels que TChecker [HP19], UPPAAL [LPY97,
BDL+06], KRONOS [BDM+98], HYTECH [HHW97], LTSmin [KLM+15],
CMC [LL98], PAT [SLDP09] and Theta [THV+17].

L’un des principaux défis rencontrés dans l’étude du problème de l’acces-

https://github.com/fredher/tchecker
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sibilité provient du fait que l’espace des valuations d’un automate temporisé
est de taille infinie indénombrable. L’approche standard pour vérifier l’ac-
cessibilité des automates temporisés est basée sur l’exploration d’un graphe
dirigé appelé graphe de zone de l’automate temporisé [DT98] dont les nœuds
sont des paires (état, zone) constituées d’un état de l’automate et d’une
zone [BY03]. Une zone est un ensemble de valeurs qui être représentée
efficacement en utilisant des contraintes de différence entre horloges. Il a
été démontré [DT98] qu’un automate temporisé A possède une exécution
acceptante si et seulement s’il existe un chemin dans le graphe de zones de
A vers un nœud avec un état acceptant. Ainsi, le problème d’accessibilité de
l’automate temporisé se résume maintenant à la recherche d’un nœud avec
un état acceptant dans le graphe de zone de A.

Cependant, cette approche comporte un piège : le graphe de zones peut
être infini et, par conséquent, un algorithme explorant le graphe de zones peut
ne pas terminer. Diverses techniques d’abstraction permettant de calculer
des troncatures finies des graphes de zones, qui préservent les exécutions de
l’automate, ont été étudiées [DT98, BBLP06, HSW12, GMS19].

L’approche du graphe de zone fonctionne bien pour les réseaux d’auto-
mates temporisés contenant un petit nombre de composantes. Cependant,
lorsque le nombre de composantes augmentent, nous sommes confrontés au
problème de l’explosion de l’espace d’états. Nous soulignons que si l’explosion
de l’espace d’état est déjà un défi pour les réseaux d’automates non tempo-
risés, elle l’est encore plus pour les réseaux d’automates temporisés. Dans
un réseau de processus (non temporisés), les différents entrelacements d’un
même ensemble d’actions indépendantes conduisent au même état. Ce n’est
pas le cas dans les graphes de zones des réseaux d’automates temporisés,
car les informations de temporisation (telles que l’ordre de remise à zéro des
horloges) sont stockées dans ces zones. En conséquence, pour un ensemble
d’actions donné, chaque entrelacement conduit à un nœud potentiellement
différent du graphe de zones. Par conséquent, l’algorithme d’exploration du
graphe de zones ne s’adapte pas bien lorsque le nombre de composantes du
réseau augmente.

Notre travail

Dans cette thèse, nous considérons le problème de l’explosion de l’espace
d’états dû aux entrelacements dans les réseaux d’automates temporisés, et
la thèse contribue aux fondements des méthodes d’ordre partiel pour ces
réseaux. Dans notre travail, nous considérons la sémantique temporelle locale
pour les réseaux d’automates temporisés, qui est une sémantique alternative
pour ces réseaux introduite par Bengtsson et al. [BJLY98]. La sémantique
temporelle locale est basée sur une idée nouvelle et élégante : faire progresser
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le temps dans chaque processus de manière indépendante, et synchroniser les
temps locaux des processus lorsqu’ils doivent effectuer une action commune.
Dans la sémantique standard, puisque l’écoulement du temps est toujours
synchronisé entre tous les processus du réseau, il existe une notion de temps
global. En revanche, dans la sémantique temporelle locale, chaque processus a
sa propre horloge de référence qui suit son temps local. Nous travaillons avec
des valuations locales, des zones locales et des graphes de zones locales, qui
sont analogues aux valuations standard, aux zones standard et aux graphes
de zones standard, respectivement. Dans le cadre de notre travail, nous
proposons deux solutions différentes pour relever le défi de l’explosion de
l’espace d’états pour les réseaux d’automates temporisés.

Sémantique temporelle locale et test d’accessibilité efficace
pour les réseaux d’automates temporisés

Dans la première partie de la thèse, nous montrons quelques propriétés des
graphes de zones locales. En utilisant ces propriétés, l’exploration du graphe
de zones locales d’un réseau s’avère être une alternative plus attrayante que
l’exploration du graphe de zones standard. Cependant, cette approche est
entravée par l’absence d’un mécanisme permettant de garantir la finitude du
graphe de zones locales. Cela crée le besoin d’une technique d’abstraction
(similaire aux techniques d’abstraction pour les zones standard) pour les
zones locales afin de rendre le graphe des zones locales fini.

Bengtsson et al. [BJLY98] et Minea [Min99a] ont proposé des techniques
d’abstraction pour les zones locales. Nous montrons que chacune des solutions
proposées présente certains défauts qui limitent leur applicabilité. Ainsi, il
n’existait pas de moyen efficace d’utiliser la sémantique temporelle locale.
Nous résolvons ce problème en introduisant une abstraction pour les zones
locales, appelée sync-subsumption. Grâce à cette abstraction, nous sommes en
mesure de calculer un système de transition fini appelé le graphe local sync qui
est en général plus petit que le graphe de zone standard qui est exploré dans
l’algorithme d’accessibilité standard. Nous proposons un nouvel algorithme
d’accessibilité pour les réseaux d’automates temporisés qui est basé sur
l’exploration du ”graphe local sync” du réseau. Nous présentons également les
résultats expérimentaux de l’application de l’algorithme à quelques exemples
en utilisant un prototype implémenté dans l’outil TChecker [HP19]. Notre
algorithme est étonnamment performant sur certains exemples, et sur aucun
exemple, il n’est pire que l’algorithme standard utilisant le graphe de zone.

Fondements de la réduction de l’ordre partiel pour les réseaux
d’automates temporisés

Dans la deuxième partie de cette thèse, nous proposons un algorithme de
réduction d’ordre partiel pour le problème d’accessibilité d’une sous-classe de

https://github.com/fredher/tchecker
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réseaux d’automates temporisés. Nous discutons d’abord l’application d’une
méthode existante de réduction d’ordre partiel au ”graphe local sync” et
expliquons pourquoi cela n’est pas correct. Par conséquent, si nous voulons
appliquer la réduction de l’ordre partiel à l’exploration des graphes de zones
locales des réseaux d’automates temporisés, nous avons besoin d’une autre
version finie des graphes de zones locales qui répondent aux exigences de la
réduction de l’ordre partiel.

À cette fin, nous proposons une nouvelle abstraction pour les zones locales,
nommée a∗M , qui est basée sur une relation de simulation pour les valeurs
locales. En appliquant l’abstraction a∗M aux graphes de zones locales, nous
obtenons un graphe qui se prête à une réduction d’ordre partielle. Cependant,
nous montrons que l’abstraction a∗M n’est pas finie en général. Nous observons
que la difficulté critique pour obtenir des abstractions finies de graphes de
zones locales réside dans la divergence arbitraire entre les horloges de référence
de différents processus. Garder la trace des différences arbitrairement grandes
entre les horloges de référence constituent une difficulté majeure inhérente
au travail avec des zones locales. Pour préciser cette idée, nous introduisons
le concept de spread d’une valuation, qui est défini comme la différence
maximale entre deux horloges de référence dans la valuation. Nous limiterons
notre attention à une sous-classe de réseaux d’automates temporisés, que
nous appellerons les systèmes à désynchronisation bornée, c’est-à-dire les
réseaux pour lesquels, étant donné toute séquence d’actions réalisable dans
son graphe local, il est possible de trouver une exécution où la différence entre
les horloges de référence est bornée à tout moment. Nous proposons également
quelques conditions pour vérifier si un réseau d’automates temporisés est à
désynchronisation bornée.

Nous considérons une abstraction modifiée, nommée aDM , et qui correspond
à l’abstraction a∗M paramétrée par une constante D. Nous montrons que si
un réseau est à désynchronisation bornée par une borne D, l’application
de l’abstraction aDM tout en explorant le graphe de zone locale produit un
graphe fini qui est correct pour l’accessibilité, et qui se prête à une réduction
d’ordre partielle.

Nous identifions ensuite deux classes de réseaux d’automates temporisés,
que nous appelons respectivement systèmes global-local et systèmes client-
serveur, et nous proposons des procédures spécialisées de réduction d’ordre
partiel pour les réseaux à limites étendues appartenant à ces catégories. Enfin,
nous fournissons une évaluation d’un prototype sur quelques exemples en
utilisant l’outil TChecker [HP19].

https://github.com/fredher/tchecker
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Chapter 1

Introduction

Cyber-physical systems are used extensively in various fields such as auto-
motive industries, healthcare, avionics, and manufacturing. From industrial
controllers to pacemakers and autonomous automobile systems, they are
ubiquitous in today’s society and have central roles in assisting and improving
various aspects of our daily life.

Cyber-physical systems are usually associated with some constraints, and
the requirements to satisfy these constraints are often very strict. In many
cases, the restrictions on the behaviour of these systems are expressed in
terms of time constraints. In other words, these systems may be expected
to perform actions respecting certain time deadlines. Consider the example
of a pacemaker. A pacemaker monitors the timing signals that it receives
from sensors planted in the heart. If the pacemaker detects a timing pattern
symptomatic of arrhythmia at any point of time, it is expected to generate
electrical impulses. These signals are to be delivered by electrodes to the heart
muscles, which causes them to contract and thereby pump blood. It is crucial
that whenever a bad pattern in signals is detected, the pacemaker acts on it
within a specified time window. Even a remote chance of erroneous behaviour
or malfunctioning incurs a loss of human life and property. Therefore, it
is vital to have some mechanism to ensure the correct behaviour of these
systems at all times, so much so that this is tantamount to ensuring the
smooth functioning of our society.

Formal verification is a research area that attempts to ensure the correct
behaviour of systems by providing automated algorithmic solutions. Specif-
ically, cyber-physical systems are modelled using abstract mathematical
objects and algorithms are designed to verify that the behaviour of such
systems is as desired. Timed automata are a convenient formalism used in
situations where the systems we want to model have associated temporal
constraints. It is often more natural to model these systems as a network of
timed automata that operate concurrently and synchronize on joint actions.

State-space explosion is a significant challenge in designing verification
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2 1. Introduction

algorithms for complex systems modelled by networks containing a large
number of components. In fact, in practice, a lot of popular cyber-physical
systems are modelled using large networks. Hence, the scalability of algo-
rithmic solutions is as critical as their correctness and efficiency.

Partial order reduction refers to a family of techniques employed to
address the issue of state-space explosion by reducing the state space to be
searched by a verification algorithm. Its application to networks of untimed
systems is well studied [Val89, God90, Pel93, AAJS17], but their transfer to
timed setting [BJLY98, DGKK98, HLL+14] remains a challenge.

The partial order techniques crucially depend on an effective way to
compute the independence relation between actions. While this is relatively
easy to compute for untimed systems, in timed systems, since there is always
an implicit synchronization between the components of the network because
of time, it is not easy to compute the independence relation between actions
of networks of timed automata. This constitutes the principal difficulty in
extending partial order reduction techniques to networks of timed automata.

This thesis aims to develop foundations for partial order methods for
networks of timed automata, so as to obtain scalable algorithmic solutions and
tools for their verification. We consider the local time semantics [BJLY98]
for networks of timed automata and work with the local zone graph, the zone
graph in this semantics. The major obstacle while working with local zone
graphs is that they are infinite in general. We propose techniques to obtain
finite truncations of these local zone graphs. Thanks to these techniques,
we are able to develop a framework that allows the application of partial
order techniques to the exploration of the local zone graph of these networks.
We then identify some classes of networks of timed automata and propose
a partial order reduction algorithm for networks belonging to these classes.
We also provide an evaluation of a prototype of the partial order reduction
algorithm on some examples using the tool TChecker [HP19].

1.1. Reachability problem for timed automata

The primary objects of our interest are networks of timed automata. A timed
automaton [AD90, AD94] is a finite state automaton equipped with a set
of non-negative real-valued variables called clocks. The clocks are initially
set to zero and increase at the same rate. The transitions of the automaton
are associated with a conjunction of clock constraints, referred to as guards,
where each clause in the conjunction involves the comparison of a clock with
a natural number. Operationally, this means that the transition can be
taken only if the value of the clocks satisfies the guard associated with the
transition. In addition, some clocks can be reset (i.e., their values can be
set to 0) on taking a transition. Moreover, a timed automaton also has an

https://github.com/fredher/tchecker
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p q r
a

b

c

x ≤ 4

y ≥ 5

x ≤ 2

{x}

{y}

Figure 1.1: A timed automaton A. The guard associated with a transition is
given under the transition. We write {x} under the transition b to denote
that the clock x is reset by b.

initial state and a set of accepting states. Figure 1.1 gives an example of a
timed automaton with clocks {x, y}, with initial state p and accepting state
r, over the alphabet {a, b, c}.

The clock variables allow us to measure the timing information associated
to executions of the timed automaton and restrict and control its behaviour.
For instance, we can measure the time elapsed between the execution of two
transitions, or enforce that a transition is executed only after a specified
amount of time.

A fundamental problem arising in the study of timed automata is the
reachability problem. The reachability problem for a timed automaton asks
if there exists a run of the automaton from an initial state to an accepting
state. As mentioned earlier, timed automata are used to model cyber-
physical systems. The erroneous behaviour of such a system can be modelled
as reaching a special “bad” state of the timed automaton modelling it.
Therefore, checking whether the system has an erroneous execution translates
to checking the reachability of the timed automaton. Verification algorithms
for timed automata have been widely studied and are the basis for a number
of verification tools such as TChecker [HP19], UPPAAL [LPY97, BDL+06],
KRONOS [BDM+98], HYTECH [HHW97], LTSmin [KLM+15], CMC [LL98],
PAT [SLDP09] and Theta [THV+17].

One of the main challenges encountered in the study of the reachability
problem stems from the fact that the space of valuations of a timed automaton
is uncountably infinite. Recall that a timed automaton is a deterministic finite
state automaton (DFA) whose transitions are associated with guards involving
clock variables. For any fixed sequence of transitions in the underlying DFA,
we have uncountably many executions of the timed automaton, where each
execution differs from the other in the assignment to the clock variables
(valuations) in at least one of the steps of the execution. We illustrate this in
Figure 1.2, where we show some runs of the timed automaton from Figure 1.1
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for the sequence ab · · · .

p
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q
x = 0
y = 0

q
x = 2
y = 2

q
x = 4
y = 4

r
x = 0
y = 5

r
x = 0
y = 10

r
x = 0
y = 6

r
x = 0
y = 11

r
x = 0
y = 8

r
x = 0
y = 20

δ = 0
a

δ = 2
a

δ = 4
a

δ = 5

b

δ = 10

b

δ = 4
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b
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δ = 16

b

· · · · · ·

· · · · · · · · ·

Figure 1.2: Uncountably infinite space of executions of the timed automaton
A. δ = 2 in an execution denotes a time elapse of 2 time units in the
respective state, after which a transition is taken. Observe that the state r is
associated with an uncountably infinite set of valuations. As a consequence,
we have an uncountably infinite set of executions of A.

To tackle this problem, we first need a way to handle this uncountably
infinite set of valuations effectively. The standard approach to overcome this
involves using a symbolic representation to analyse timed automata.

One of the earliest solutions to deal with the uncountably infinite set of
valuations was proposed by Alur and Dill, presented in [AD94]. Their idea is
to partition the set of valuations into a finite number of sets, called regions.
Regions are essentially sets of valuations that are indistinguishable by any
timed automaton. This means that if a run is feasible from a valuation in a
region, then it is also feasible from any valuation in the region. Equipped
with this notion of regions, Alur and Dill propose a transition system called
the region graph of the timed automaton. Exploring the region graph of a
timed automaton is a valid way to solve the reachability problem; however,
in practice, it turns out that the region graphs are too large to be of use for
efficiently checking the reachability of timed automata.

The most widely used approach for checking reachability in timed au-
tomata is based on the notion of zones [BY03], which are sets of valuations
that can be represented efficiently using difference constraints between clocks.
Consider a timed automaton A with initial state q0 and initial valuation v0.
If we consider the execution of a specific sequence of transitions from (q0, v0),
we end up with a state whose associated set of valuations is uncountably
infinite. It turns out that for any sequence of transitions, this set of valuations
can be expressed as a zone. In particular, we can associate a state and a
zone to each sequence of transitions. This idea is used to construct a zone
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graph of the timed automaton [DT98] whose nodes are (state, zone) pairs
consisting of a state of the automaton and a zone representing a set of clock
valuations [Dil89]. Figure 1.3 gives a timed automaton and its zone graph.
It was also shown [DT98] that a timed automaton A has an accepting run if

p q r
a

b

c

x ≤ 4

y ≥ 5

x ≤ 2

{x}

{y}

(a) A timed automaton A

p

x ≥ 0 y ≥ 0
x = y

q

x ≥ 0 y ≥ 0
x = y

r

x ≥ 0 y ≥ 5

y − x ≥ 5

q

x ≥ 0 y ≥ 0

0 ≤ x− y ≤ 2

a

b

c b

(b) Zone graph of A

Figure 1.3: A timed automaton and its zone graph

and only if there is a path in the zone graph of A to a node with an accepting
state. Thus, the reachability problem of the timed automaton now amounts
to a search for a node with an accepting state in the zone graph.

However, this approach has a catch - the zone graph could be infinite,
and therefore, an algorithm exploring the zone graph might not terminate.
Various sound and complete abstraction techniques that allow us to compute
finite truncations of zone graphs have been widely studied, and this area still
witnesses active research [DT98, BBLP06, HSW12, GMS19]. One way to get
an abstraction is to make use of a subsumption relation on zones. Roughly,
what this means is that if a zone Z is subsumed by another zone Z ′, then
every sequence of actions that is feasible from (q, Z) is also feasible from
(q, Z ′). Hence, an algorithm exploring the zone graph does not need to explore
paths from (q, Z), and only needs to explore from (q, Z ′). Termination is
guaranteed if the subsumption relation induces a finite number of maximal
zones.

The zone graph approach works well for networks of timed automata
containing a small number of components. However, as the number of
participating components increases, we are faced with the problem of state-
space explosion, which we discuss next.
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1.2. State-space explosion

State-space explosion refers to the exponential growth in the size of the
transition system describing the semantics of a network of processes due to
multiple interleavings of the same set of transitions. We will now illustrate
this phenomenon with the help of an example. Consider a network of n
processes, each having k states. The size of the resultant product automaton
grows exponentially with respect to n. In particular, if the network is such
that there are no synchronizations between the participating components,
then the resultant product automaton has kn states. Further, if we consider
a sequence of n actions, each belonging to a different process, then there are
n! different interleavings of this sequence, one per each possible ordering of
these actions. We give an example of a network of three (untimed) processes
and its product automaton in Figure 1.4. Note that 3! paths go from the
initial state (p0, q0, r0) to the state (p1, q1, r1). These paths correspond to
the transitions a1, b1 and c1 executed in different orders.

A1 A2 A3

p0

p1

p2

q0

q1

q2

r0

r1

r2

a1 b1

d d

c1

d

p0, q0, r0

p1, q0, r0 p0, q1, r0 p0, q0, r1

p1, q1, r0 p0, q1, r1 p1, q0, r1

p1, q1, r1

p2, q2, r2

a1 b1 c1

b1

c1

a1 c1 b1 a1

c1
a1

b1

d

A1 ×A2 ×A3

Figure 1.4: A network of three (untimed) processes

In the product automaton of a network of (untimed) processes, different
interleavings of the same sequence lead to the same state. Unfortunately,
this is not the case in zone graphs of networks of timed automata as timing
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information (such as the order of reset of clocks) is stored in these zones.
Consider a simple network of timed automata as given in Figure 1.5.

Variables x, y are clocks, and {x} denotes the reset of clock x. As mentioned
earlier, the zone graph maintains the resultant (state, zone) pairs for each
sequence of transitions. Hence, the zone reached after executing the sequence
ab contains configurations where x is reset before y, while the zone reached on
executing ba contains configurations where y is reset before x. This implies
that the valuations of the former zone satisfy the constraint x ≤ y, while
the valuations of the latter zone satisfy the constraint y ≤ x. Thus, the
sequences ab and ba lead to different zones. Note that in an untimed version
of this network, we would have only one instance of the state (p1, q1) in the
product automaton. On the other hand, in the zone graph, we have two
nodes with the state (p1, q1), one per each possible ordering of clocks {x, y}.
This indicates that the problem of state-space explosion is much more severe
for networks of timed automata. The number of different interleavings of

A = A1 ‖ A2

A1 A2

p0

p1

q0

q1

a

{x}
b
{y}

(p0, q0)

x = y

(p1, q0)

x ≤ y
(p0, q1)

y ≤ x

(p1, q1)

y ≤ x
(p1, q1)

x ≤ y

a b

b a

Standard zone graph

Figure 1.5: A network A and its zone graph

sequences of independent transitions increases exponentially with the number
of components in the network. Consequently, the zone graph exploration
algorithm does not scale well when the number of components of the network
increases.

1.3. Partial order reduction

Partial order reduction (POR) is a term used to describe the broad class of
techniques used for reducing the state-space of the transition system to be
explored by a verification procedure [CGMP99, Val89, Pel93, God96, FG05,
AAJS17]. It is one of the standard approaches used to tackle the problem of
state-space explosion for systems consisting of several components operating
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in parallel. Partial order reduction has proven quite useful in improving
the performance, both in terms of running time as well as the memory
requirement of verification procedures for such systems [GPS96, KLM+98].
Partial order reduction has also been implemented in the model checking
tool SPIN [God96, HP94].

The general principle of partial order reduction techniques is the following:
classify executions of a system into equivalence classes and explore only one
representative from each equivalence class. Specifically, two executions that
are interleavings of concurrent independent transitions are deemed to belong
to the same equivalence class. This idea of grouping runs into equivalence
classes on the basis of commuting pairs of adjacent independent transitions
has its roots in the work of Mazurkiewicz [Maz86].

Consider the network of untimed automata given in Figure 1.4. Observe
that if we are only interested in the reachability of the tuple (p2, q2, r2), we do
not need to explore the complete product transition system. In this regard,
all paths from (p0, q0, r0) to (p2, q2, r2) are equivalent. So, it is sufficient to
explore a smaller transition system, referred to as a reduced transition system.
The part of the transition system AN given by the red edges in Figure 1.4 is
an example of a reduced transition system.

Next, we discuss how such a reduced transition system can be constructed.
From the example in Figure 1.4, we can see that we are avoiding the explo-
ration of multiple interleavings of actions a1, b1 and c1, as all the interleavings
lead to the same state - in other words, the order in which they are executed
is irrelevant. We need to identify sets of actions such that the order of
execution of these actions is irrelevant. We now formalize this notion.

Given a transition system T , we say that an action a is enabled from a
state s in T , if there exists a transition s

a−→ s′ in T . We say that two actions
a and b are independent in a state s of T [KP92], if they satisfy the following
conditions:

Forward diamond property If a and b are enabled from s, and s
a−→ s1

and s
b−→ s2 are the respective transitions from s, then b is enabled

from s1 and a is enabled from s2.

Diamond property If either ab or ba is feasible from s, then both ab and
ba are feasible from s and moreover, both ab and ba result in the same
state. The diamond property is pictorially represented by the diamond
structure given in Figure 1.6.

We say that two actions a and b are independent, if they are independent in
each state s of T . From the definition above, we can see that if two actions
a and b are independent in a state s, then both the sequences ab and ba are
feasible from s, and both lead to the same state. As illustrated in Figure 1.6,
if we are only interested in the reachability of state s′, it is sufficient to
explore only the action a from the state s. Since a and b are independent,
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s

s1 s2

a b

s

s1

s′

s2

a b

b a

Figure 1.6: Diamond property

it is guaranteed that b will be enabled from the state s1 reached on the
execution of a from s. Effectively, we are postponing the execution of the
action b, as we are sure that it will be enabled later.

Suppose that we have a method to check the independence of actions
from a state. Then, from each state of the transition system, we can identify
a subset of the set of enabled actions, such that it is sufficient to explore this
set of actions. In other words, the requirement is that each action that is not
explored is guaranteed to be enabled later. It is possible now to consider a
reduced transition system that includes only those states that are reachable
from the initial state via only those actions picked in the aforementioned
subset of enabled actions from each state.

Clearly, this reduced transition system is sound, i.e., if there is an accept-
ing run in the reduced transition system, then it is also a run in the original
transition system. A crucial requirement is that this reduced transition
system is also complete. In other words, if there is an accepting run in the
original transition system, then there should also be an accepting run in
the reduced transition system. One could easily compute such a reduced
transition system after computing the full transition system and then looking
at equivalent paths, but this defeats the whole purpose of partial order
reduction. Consequently, the reduced transition system should be computed
on the fly. An important condition here is that we must only use information,
that is either readily available from a state or that we already know from
the exploration of the system so far, to choose the subset of actions to be
explored from that state.

To summarize, we want to compute a function that maps each state of
the transition system to a subset of enabled actions such that

• the resultant reduced transition system is complete.

• this function is computed on the fly, using only local information from
each state.

Observe that the trivial function that returns the set of all enabled actions
for each state produces a transition system that satisfies the requirements
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above. However, there is no reduction in terms of state-space or the number
of transitions in the reduced transition system, and therefore, this function
is useless. Hence, it is imperative to require that the function maps a state
to a small subset of enabled actions from that state; the smaller this set is,
the better the reduction observed.

1.4. Our work

This thesis contributes to the foundations of partial order methods for
networks of timed automata. In our work, we consider the local time
semantics for networks of timed automata from [BJLY98] and work with
local valuations, local zones, and local zone graphs. These are analogous to
standard valuations, standard zones, and standard zone graphs, respectively.
As a part of our work, we propose two different solutions to tackle the
challenge of state-space explosion for networks of timed automata.

In the first part of the thesis, we show some properties of local zone
graphs. By making use of these properties, the exploration of the local zone
graph of a network turns out to be a more appealing alternative than the
exploration of the standard zone graph. However, this approach is hampered
by the absence of a mechanism to ensure the finiteness of the local zone
graph. We solve this problem by introducing a subsumption relation for
local zones, referred to as sync-subsumption. Thanks to this subsumption,
we are able to compute a finite transition system called the local sync graph
which is in general smaller than the zone graph that is explored in the
standard reachability algorithm. We propose a new reachability algorithm
for networks of timed automata that is based on the exploration of the local
sync graph of the network. We also present the experimental results of
applying the algorithm to some examples using a prototype implemented in
the tool TChecker [HP19]. This results of this part of the thesis appear in
the paper [GHSW19].

The natural next step to further optimize the aforementioned algorithm
is to apply a partial order reduction method while exploring the local sync
graph. Unfortunately, we do not have an effective procedure to compute
the independence relation of actions in local sync graphs. Therefore, if
we are to apply partial order reduction to the exploration of local zone
graphs of networks of timed automata, we need an alternate finite version of
local zone graphs, for which we have an effective procedure to compute the
independence relation.

To this end, we propose a new abstraction for local zones, aDM abstraction,
that is based on a simulation relation for local valuations. We also introduce
the notion of spread of a network of timed automata and specify when a
network of timed automata is spread-bounded. We show that if a network

https://github.com/fredher/tchecker
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is spread-bounded (with a bound D), applying the aDM abstraction while
exploring the local zone graph yields a finite transition system, called LZGD

M,
that is sound and complete with respect to reachability. Moreover, we show
that it is easy to compute an approximation of the independence relation
between the actions of the LZGD

M of a network of spread D.
We then identify two classes of networks of timed automata, which we

refer to as global-local systems and client-server systems respectively, and
propose specialized partial order reduction procedures for spread-bounded
networks belonging to these categories. Finally, we provide an evaluation of
a prototype on some examples using the tool TChecker [HP19].

1.4.1 Local time semantics and efficient reachability testing
for networks of timed automata

For applying partial order reduction to a network of processes, it is crucial to
have an effective way to compute the independence relation (see conditions
given in page 8) between the actions of the network. For networks of
untimed processes, independence of actions can be tested using a simple
syntactic check: if two actions of the network have no common process
participating in them, then they are independent. We refer to the set of
processes participating in an action as the domain of the action. Further, we
say that two actions have disjoint domains if they have no common process
participating in them. Then, the check boils down to the following: if two
actions have disjoint domains, then they are independent. Additionally, we
say that two sequences of actions are equivalent if one can be obtained from
the other by permuting adjacent actions with disjoint domains.

Observe that in the standard semantics for networks of timed automata,
two actions having disjoint domains do not necessarily satisfy the conditions
for independence. Consider the example of a network with two processes, as
shown in Figure 1.7. In the network of timed automata A, although a and b
are actions local to their respective processes, there is an intrinsic dependence
between the two processes, which arises due to implicit constraints imposed
by time. Observe that network A can execute the sequence ab (sequence ab is
feasible), while the sequence ba is not feasible. We do not know of any effective
way to compute independence between actions in the standard semantics of
networks of timed automata. There have been some attempts to come up with
effectively checkable sufficient conditions for independence between actions in
the standard semantics for networks of timed automata [DGKK98, HLL+14].
The global nature of time elapse in a network of timed automata induces
implicit dependencies between actions of different processes. This seems to be
the major obstacle to getting effectively checkable conditions for independence
between actions in networks of timed automata.

Local time semantics is an alternate semantics for networks of timed
automata that addresses this very problem. Introduced by Bengtsson et

https://github.com/fredher/tchecker
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Figure 1.7: A network of timed automata and some runs in the standard
semantics

al. [BJLY98], local time semantics is based on a novel and elegant idea: make
time in each process progress independently, and synchronize local times
of processes when they need to perform a common action. In the standard
semantics, since time elapse is always synchronized across all processes of the
network, there is a notion of global time. In contrast, in local time semantics,
each process has its own reference clock that tracks its local time. Thus, for
each process, we have a variable tp which tracks the local time of the process:
essentially tp is a clock that is never reset. In local time semantics, instead
of working with standard clocks, we work with an offset representation of
clocks. For each clock x, we consider an offset variable x̃ that stores the
time-stamp at which x was last reset.

Observe that in the network from Figure 1.5, depending on the local time
in processes A1 and A2, the sequence ab may result, on a global time scale,
in a occurring before b, as well as b occurring before a. As a result, the set
of valuations reached after the local run ab does not remember the order in
which a and b occurred. Thus, sequences ab and ba lead to the same set of
configurations: those obtained after doing a and b concurrently, as shown
in Figure 1.8. It turns out that in local time semantics, two actions with
disjoint domains satisfy the conditions for independence between actions (see
conditions given in page 8). Further, we show that the local time semantics
and the standard semantics are equivalent if we consider reachability with
local valuations in which all the reference clocks are equal, referred to as
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(p1, q1)

t1 = 2, x̃ = 0

t2 = 2, ỹ = 0
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Figure 1.8: Runs in local time semantics. Here, x̃ and ỹ represent the offset
clock variables corresponding to clocks x and y, respectively. The variables
t1 and t2 denote the reference clocks of processes A1 and A2, respectively.
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synchronized valuations. In other words, there is a run in the local time
semantics to a state with a synchronized valuation if and only if there is a
run in the global semantics to this state. Together, these facts make local
time semantics a more apt setting to apply partial order reduction than the
standard semantics.

Analogous to standard zones and zone graphs, in the setting of local
time semantics, we have the notions of local zones and local zone graphs,
whose nodes are pairs of the form (state, local zone). In local zone graphs,
two actions with disjoint domains satisfy the conditions for independence
between actions (see conditions given in page 8). We remark that two actions
with disjoint domains satisfy only the diamond property and not the forward
diamond property (see conditions given in page 8). Thus, we have a relaxed
version of the condition for independence, which we show is still sufficient
for applying partial order reduction. Further, it can be shown that the local
zone graph of a network is sound and complete with respect to reachability.
This means that instead of exploring the standard zone graph (which is the
procedure used in the standard test for reachability) one could explore the
local zone graph. Moreover, it can be shown that the local zone graph has
the following very useful property: if a sequence of actions σ from a node
(q,Z) of the local zone graph reaches the node (q′,Z′), then all the sequences
equivalent to σ are feasible from (q,Z); furthermore, they all lead to the
same node (q′,Z′).

Equivalent sequences of actions in a network of timed automata behave
quite differently in the standard zone graph and the local zone graph, as
shown in Figure 1.9. Recall that two sequences of actions are equivalent
if one can be obtained from the other by permuting adjacent actions with
disjoint domains. Let σ be a sequence of actions from the initial node (q0, Z0)
of the standard zone graph. Let {σ1, σ2, · · · , σl} be the set of all sequences
equivalent to σ. Observe that not all of these sequences are feasible in the
standard zone graph; for instance, in Figure 1.9, the sequences σ2 and σl−2

are not feasible in the standard zone graph. Even if they are feasible, these
sequences lead to potentially different nodes in the standard zone graph. On
the contrary, in the local zone graph, all the sequences equivalent to σ are
feasible from (q0,Z0) and they all lead to the same node.

This ensures that if a sequence of actions σ is feasible in the local zone
graph of a network, then all execution sequences equivalent to σ are also
feasible. Local zone graphs are therefore ideal for handling interleavings.

Further, we show that this observation ties in neatly with a surprising
property for standard zone graphs shown by Salah et al. [SBM06]: for any
sequence of actions σ, the union of zones reached by the interleavings of σ is
also a zone. For instance, in Figure 1.9,

⋃l
i=1Zi is a zone. We refer to this

zone as the aggregated zone of the sequence σ. Salah et al. [SBM06] argue that
for a given sequence, one can write a zone-like constraint defining all the runs
of the interleavings of the sequence. Then the aggregated zone is obtained
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Figure 1.9: Comparison of behaviour of equivalent sequences in the standard
zone graph and the local zone graph

simply by projecting this big constraint on relevant components. Salah et
al. use this observation in an algorithm where, when all the interleavings
of a sequence σ have been explored, the resulting zones are aggregated to a
single zone and further exploration is restricted to this aggregated zone.

We point out there are some obstacles in the approach by Salah et al.
using aggregated zones to get efficient algorithms to check reachability. First,
their approach requires one to work with sets of constraints whose size grows
with the length of a sequence. This is both inefficient and limited to finite
sequences. Secondly, this approach requires detecting from time to time
whether aggregation can happen. Finally, another limitation of this approach
is that it works only for acyclic automata.

We show that the aggregated zone of a sequence σ can be obtained by
restricting the local zone Z reached on σ to synchronized valuations. We
refer to the restriction of a local zone Z to only synchronized valuations as
the synchronized zone of Z, denoted as sync(Z). Thus, we provide a way
to automate this periodic detection of the completion of the exploration of
all the interleavings of a sequence σ and the aggregation of the resulting
zones. Therefore, an algorithm that answers the question of reachability by
exploring the local zone graph appears to be a better solution.

However, we are faced with a major roadblock in this approach: local
zone graphs are not finite in general, and therefore, an algorithm exploring a
local zone graph may not terminate. This creates the need for an abstraction
technique (similar to the abstraction techniques for standard zones) for local
zones to make the local zone graph finite. Bengtsson et al. [BJLY98] and
Minea [Min99a] have proposed abstraction techniques for local zones. We
show that each of the proposed solutions has some flaws that restrict their
applicability. In the paper that introduced local time semantics, Bengtsson et
al. [BJLY98] defined a subsumption relation between local zones but did not
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provide an algorithm to compute it. This meant that there was no effective
way to use local time semantics. Later Minea [Min99a] proposed a widening
operator on local zones to construct finite local zone graphs. We show that
the solution in [Min99a] contains a bug, and it is not clear whether this
approach can be fixed. In summary, up until now, there is no known way to
compute finite local zone graphs.

We propose a new subsumption operator between local zones, referred to
as sync-subsumption, denoted vaLU

sync , that ensures termination of exploration
of the local zone graph. We show that given a local zone Z, sync(Z) can
be expressed as a standard zone. In sync-subsumption, we consider the
containment of local zones with respect to synchronized valuations. It allows
us to define the local sync graph, which is the local zone graph reduced
by applying the sync-subsumption operation. We show that the local sync
graph can be used to answer the reachability problem for networks of timed
automata. This gives a new reachability algorithm for networks of timed
automata that works with local zones but uses abstractions over standard
zones. Recall that given a local zone Z, sync(Z) can be expressed as a
standard zone. Consequently, the abstractions used in our algorithm are, in
fact, abstractions over standard zones. This allows us to take advantage of
the numerous improvements to abstraction operators over standard zones,
developed over the years [DT98, BBLP06, HSW12, GMS19].

Thus, computing the local zone graph gives a more direct and efficient
algorithm than Salah et al. to compute aggregated zones. Moreover, our
algorithm is not restricted to acyclic timed automata.

To summarize,

• We adopt the local time semantics introduced by Bengtsson et al. [BJLY98]
and develop a series of basic results about local valuations, local regions,
and local zones.

• We point out a flaw in the abstraction procedure proposed by Minea [Min99a]
to get a finite local zone graph.

• We propose a new subsumption technique called sync-subsumption,
denoted as vaLU

sync , to get a finite local zone graph. This gives a new
reachability algorithm for networks of timed automata that works with
local zones. To the best of our knowledge, this is the only reachability
algorithm based on the exploration of the local zone graph. We observe
that our new subsumption is much more aggressive than the standard
a4LU subsumption. Further, we show that this new way of computing
the local zone graph gives a more direct and efficient algorithm than
that of Salah et al. [SBM06] to compute aggregated zones.

• We report on experiments performed with a prototype implementation
of the algorithm. The algorithm performs surprisingly well on some
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examples, and on no example, it is worse than the standard zone graph
algorithm.

1.4.2 Foundations for partial order reduction for networks
of timed automata

In the second part of this thesis, we propose a partial order reduction
algorithm for the reachability problem for networks of timed automata.
As already discussed in Section 1.3, developing partial order methods for
networks of untimed systems is well studied and has proven quite successful
in optimizing the running time and memory consumption of verification
procedures for these systems. Despite this huge success, their extension to
networks of timed systems has largely remained a challenge.

Our first attempt to develop a partial order reduction algorithm for
networks of timed automata involves applying an existing partial order
reduction method to the algorithm based on the exploration of local zone
graphs, which is introduced in the first part of the thesis. Recall that local
zone graphs are not finite in general, and hence, we worked with local
sync graphs, obtained by applying sync-subsumption to local zone graphs.
However, we do not know how to compute the independence relation between
the actions of a local sync graph. In particular, disjointness of domains,
which was a sufficient condition for the independence of actions in local zone
graphs, does not imply independence in local sync graphs. This seems to
be a direct consequence of the sync-subsumption. Thus, there is no hope
for applying partial order reduction to the exploration of the local sync
graph. So, if we are to develop a partial order reduction procedure based
on the exploration of local zone graphs, we need to first develop a different
subsumption relation that renders a finite local zone graph for which the
independence relation between actions is easy to compute.

We observe that the critical difficulty in obtaining finite abstractions of
local zone graphs lies in the arbitrary divergence between reference clocks
of different processes. Keeping track of arbitrarily large differences between
reference clocks is a major inherent difficulty when working with local zones.
To avoid this problem, we will restrict our attention to those networks for
which, given any feasible sequence of actions in its local zone graph, it is
possible to find a run where the difference between reference clocks is bounded
at all times. To make this idea precise, we introduce the concept of spread
of a valuation, which is defined as the maximum difference between two
reference clocks in the valuation. We say that a run is D-spread-bounded if
the spread of all valuations in the run are bounded by a non-negative integer
D. A network is D-spread-bounded if every local run has an equivalent run
that is D-spread-bounded. If a network is D-spread-bounded for some D, we
say the network is spread-bounded. Equipped with this notion, we restrict
our attention to spread-bounded networks. A large number of models in
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examples in the literature are in fact spread-bounded, and hence, we focus
on designing efficient verification procedures for these systems.

We show that when computing a covering relation between two nodes
of the local zone graph of a D-spread-bounded network, it is sufficient
to consider containment with respect to the behaviour of valuations of
spread D. We define a subsumption relation for local zone graphs that
does precisely this. Thanks to this subsumption, we can obtain a finite
transition system, for which we show that disjointness of domains allows us
to compute independence of actions. This sets the stage for applying partial
order reduction to the exploration of the local zone graphs of such networks.

We now give a brief overview of our new subsumption relation and
the resultant transition system. We first propose a simulation relation for
valuations in the local time semantics. Based on this simulation relation,
we define an abstraction operator a∗M and a subsumption relation based
on this abstraction that we refer to as a∗M subsumption. We show that a∗M
subsumption is not finite in general. We consider a modified subsumption
relation, which we refer to as aDM subsumption, that is parameterized by
a constant D. Rather than checking if a local zone Z is a∗M -subsumed by
another local zone Z′, we check if spreadD(Z) is a∗M -subsumed by spreadD(Z′),
where spreadD(Z) is the set containing only the local valuations of spread D
in Z. We denote this as Z vDM Z′. This is enough as for a D-spread-bounded
network, we need to focus only on valuations of spread D. We refer to the
transition system obtained by applying aDM subsumption to the local zone
graph of a network as the LZGD

M of the network. We prove that if a network
is D-spread-bounded, then exploring the LZGD

M of this network yields the
correct answer for the reachability problem of the network. Essentially, the
subsumption operation vDM is a generalization of the vaLU

sync operation (see

Definition 5.5). While the vaLU
sync operator compares only the synchronized

valuations in two zones, the vDM operator compares all valuations of spread
at most D.

We show that actions with disjoint domains in the LZGD
M of a D-spread-

bounded network satisfies the diamond property (see conditions given in
page 8). We remark that, just as in the case of LZG’s, actions with disjoint
domains do not satisfy the forward diamond property in LZGD

M’s.
We identify two classes of networks of timed automata, which we refer to

as global-local systems and client-server systems. After giving some sufficient
conditions for a network to have bounded spread, we propose two respective
variants of the implementation - global-local POR and client-server POR. We
remark that the global-local POR method is quite general in its applicability
- it can be applied to any spread-bounded network, albeit with varying
results depending on the nature of synchronizations. On the other hand, the
client-server POR is focussed on networks where there is a centralized server
process interacting with several client processes.
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We also provide an evaluation of a prototype on some examples using the
tool TChecker [HP19]. We first describe how our procedure works on some
toy examples and then explain how we get gains for these systems. Further,
we discuss the result of applying our procedure on some classical benchmarks
for timed automata and discuss the performance on these models.

To summarize:

• We point out that we do not have an effective way to compute the
independence relation between actions of a local sync graph. Conse-
quently, we do not know how to apply partial order reduction directly
on a local sync graph.

• This shows the need to develop a different subsumption relation for local
zone graphs, one that renders a finite local zone graph that is amenable
to partial order reduction. We define an alternate subsumption relation,
denoted as a∗M , that is based on a simulation relation between local
valuations. However, a∗M subsumption is not finite in general.

• We introduce the notion of spread of a network of timed automata
and give some sufficient conditions implying when a network is spread-
bounded.

• We define a new subsumption relation, referred to as vDM subsumption
whose application to the local zone graph of a network results in a
finite transition system called LZGD

M of the network. We prove that
if a network is D-spread-bounded, then exploring the LZGD

M of this
network yields the correct answer for the reachability problem.

• We identify two classes of networks of timed automata, which we
refer to as global-local systems and client-server systems, and propose
specialized partial order reduction algorithms based on the exploration
of LZGD

M, for spread-bounded networks belonging to these classes.

• We provide an evaluation of a prototype on some examples using the
tool TChecker [HP19]. Our algorithm generates zone graphs that are
an order of magnitude smaller than that produced by the standard
reachability algorithm on some examples, while on some other examples,
the size of the zone graph generated by our algorithm is larger than
that of the standard zone graph. Here, we consider the number of
nodes of the zone graph as a measure of the size of the zone graph.

1.5. Related work

In this section, we briefly overview work that is broadly focussed on alleviating
the challenge posed by state-space explosion to the verification of concurrent

https://github.com/fredher/tchecker
https://github.com/fredher/tchecker
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systems. We first discuss some of the landmarks in the development of
partial order reduction techniques for networks of untimed systems. We then
proceed to discuss some of the works that attempt to develop partial order
reduction methods for concurrent timed systems.

State-space explosion

The challenge posed by state-space explosion to the verification of concurrent
systems has been a subject of intensive research, and over the years, various
solutions have been proposed to overcome this challenge (for an excellent
survey, see [CKNZ11]). Techniques that use symbolic representations store
sets of states and sets of transitions as opposed to explicitly representing
each state/transition separately. Using symbolic representations can result
in much smaller transition systems. For instance, in symbolic model check-
ing with binary decision diagrams (BDDs) [CG18], a data structure called
BDD is used to represent the sets of states and the transition relation of
a transition system. This technique is observed to yield several orders of
magnitude decrease in state space. Alternately, methods based on com-
positional reasoning [OG76, Lam77] analyse individual components of the
network rather than the product transition system. Counterexample-Guided
Abstraction Refinement (CEGAR) [CGJ+03] uses the information obtained
from the detection of counterexamples during the exploration to suitably
tailor further exploration to a smaller state space. Model Checking with SAT
solvers [BCC+99] reduces the model checking problem to the satisfiability
problem and uses the power of SAT-solvers (a widely studied class of tools)
to answer the problem.

Partial order reduction is another such technique [Val89, Pel93, God90,
AAJS17] and the development of foundations for partial order reductions for
networks of timed automata is the central focus of this thesis. An alternate,
but similar well-studied approach to combat state-space explosion is based on
the idea of unfoldings [McM95, ERV02]. While the partial order reduction
methods aim to explore only one representative from the set of all equivalent
executions, the unfoldings based methods represent the set of all equivalent
executions as a single partial order.

Partial order reduction for untimed systems

The study of developing partial order reduction methods for concurrent
systems has been a topic of extensive research, and there is a large body of
published studies devoted to the topic. Some of the widely used partial order
reduction techniques are Stubborn sets by Valmari [Val90, Val89], Ample sets
by Peled [Pel93, Pel96], and Persistent sets by Godefroid [God90, God96].
These techniques, which were developed independently, are similar in spirit
but differ in the actual choice of the subsets that are computed. They have
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been hugely successful in making the verification of concurrent systems more
efficient.

The idea of dynamic partial order reduction was introduced by Flanagan et
al. [FG05], where the independence relation between actions of the network is
computed dynamically. This technique is observed to yield a greater reduction
in state space than the static partial order reduction methods mentioned
above. Sleep sets is an orthogonal approach introduced by Godefroid [God90]
that focuses on reducing the number of transitions rather than the state space.
Sleep sets can be used in conjunction with the ample/stubborn/persistent
sets.

The development of partial order methods is still a very active area of
research to this day, as evidenced by the recent development of source sets
by Abdulla et al. [AAJS17]. In their work, the authors present source sets
as a basis for optimal dynamic partial order reduction.

Local time semantics and issues of finiteness

The work that constitutes the primary basis for our work is by Bengtsson et
al. [BJLY98], in which the authors introduce ideas of local time semantics and
local zone graphs. While the local zone graph has several useful properties
related to the independence of actions, it was not clear how to compute a
finite local zone graph.

To this end, Minea [Min99b, Min99a] proposed a subsumption operation
on local zones and designed a partial order reduction algorithm using this
operation. Unfortunately, as we already mentioned, we demonstrate that
this subsumption operation has a flaw that is not evident to repair. As a
consequence, the partial order reduction procedure proposed in [Min99a] is
not sound. As discussed in Section 1.4.1, we propose an alternate subsumption
relation for local zone graphs, that proceeds via computation of aggregated
zones.

Recall that coming to the same state with different zones inflicts a consid-
erable blowup in the zone graph, since the same paths are explored indepen-
dently from each of these zones. This has also been observed in the context
of multi-threaded program verification by Sousa et al. [SRDK17]. Solving
this problem in the context of program analysis requires over-approximation
of the aggregated state. Fortunately, in the context of timed automata, the
result of aggregating these zones is still a zone, as observed by Salah et
al. [SBM06]. Our contribution towards efficient computation of aggregated
zones is thus an important advance in timed automata verification.

Lugiez et al. [LNZ05] develop a partial-order semantics for networks
of timed automata, which is similar in spirit to the local time semantics.
However, the approach uses a different framework that is referred to as event
zones. To obtain finiteness, an abstraction based on the maximal lower and
upper bounds is employed. An exact correspondence between the work of
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Lugiez et al. and our work on local zone graphs with sync-subsumption
remains to be explored.

Partial order reduction for networks of timed automata

We have so far discussed works where the authors considered the local time
semantics to obtain more commutativity between actions. Another approach
to developing partial order reduction based procedures for timed systems
involves detecting semi-commutations in the standard semantics. The idea
of this approach can be summarized as follows: if a sequence of actions
ab is guaranteed to produce a zone that is always contained in the zone
produced by the sequence ba, then it is enough to explore only ba. Dams et
al. [DGKK98] propose heuristics that statically find some pairs of actions
like this. Since these are quite rare, Hansen et al. [HLL+14], have developed
a kind of CEGAR algorithm for dynamically finding such pairs. They have
obtained significant gains on some examples.

An alternative approach to decrease the effect of state-space explosion
for networks of timed automata, based on unfoldings introduced by Bouyer
et al. [BHR06] and Cassez et al. [CCJ06, CJ06, CJ13]. In their works, the
authors propose a verification algorithm that extends the unfolding based
method to networks of timed automata. Here, they define a timed unfolding
for a network of timed automata and propose an algorithm that computes a
finite prefix of this timed unfolding. This finite prefix can be used to answer
questions such as reachability for the network.

Partial order reduction procedures have also been proposed for other
formalisms used to model real-time distributed systems, such as Time Petri
Nets (TPN). Recently, in [BJL+18], the authors have proposed an algorithm
that applies stubborn set reduction to verification of timed-arc Petri nets
with urgent behaviour.



Chapter 2

Preliminaries

In this chapter, we formally introduce the concepts, notations and definitions
essential to understand this thesis. In the first part of this chapter, we
introduce the notion of timed automata and discuss the standard approaches
in the literature to solve the reachability problem for timed automata. In
the latter part of this chapter, we introduce partial order reduction methods
and discuss the basic principles of these techniques.

2.1. Timed automata

A clock is a variable that ranges over non-negative real numbers. We denote
the set of clocks by X. Given a set of clocks X, let Φ(X) denote a set of
clock constraints, where each clock constraint is a conjunction of comparisons
of clocks with constants. Formally, Φ(X) is given by the grammar

φ := x ∼ c | φ ∧ φ

where x ∈ X, c ∈ N, and ∼ ∈ {<,≤,=,≥, >}.

Definition 2.1 (Timed automaton [AD94]). A timed automaton A is given
by a tuple (Q,Σ, X, T, q0, F ), where Q is a finite set of states, X is the set of
clocks, Σ is a finite alphabet of actions, q0 ∈ Q is the initial state, F ⊆ Q is
the set of accepting states and T ⊆ Q× Σ× Φ(X)× 2X ×Q is a transition
relation. T contains transitions of the form (q, a, g, R, q′), where q is the
source state, q′ is the target state, a is the action triggering the transition,
R is the set of clocks that are reset on the transition, and g is a guard, i.e., a
clock constraint that needs to be satisfied for the transition to execute.

Remark. We do not consider constraints of the form x− y ∼ c for guards
in our timed automata. Constraints of the form x− y ∼ c are called diagonal
constraints, and timed automata that allow diagonal constraints are typically
harder to work with. It is known that diagonal constraints do not add any
expressive power to timed automata and can be eliminated [AD94, BPDG98].

23
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Figure 2.1: An example of a simple timed automaton A

Definition 2.2 (Standard valuation). A standard valuation v is a function
which maps every clock to a non-negative real value, i.e., v : X → R≥0.

We now define some basic operations on valuations, namely, guard satis-
faction, reset, and time elapse. We say that a valuation v satisfies a constraint
φ, denoted v |= φ, when each constraint in φ is satisfied when the variable
x in the constraint is replaced by v(x). Let R be a subset of the set of
clocks X. We write [R]v to denote the operation of resetting clocks in R; in
other words, [R]v is the valuation where clock x is 0 if x ∈ R, and it is v(x)
otherwise.

We denote by v + δ the valuation obtained by increasing the value of all
clocks from the valuation v by δ ∈ R≥0. It is the valuation obtained after
a time elapse of δ time units from v. An example of a timed automaton
is given in Figure 2.1. The timed automaton A has three states p, q and r
and has two clocks, x and y. State p is the initial state, and r is the only
accepting state of A. We can interpret the timing information associated
with A as follows. The transition a from p to q has to be taken within 4
time units after the start of the run. Likewise, the transition b can only be
taken 5 time units after the start. Note that the transition b resets the clock
x. Since the next transition c has guard x ≤ 2, c has to be taken within 2
time units of taking the transition b. The next b must occur at least 5 time
units after c, and so on.

Definition 2.3. The semantics of a timed automaton A as in Definition 2.1,
is given by an infinite-state transition system TS(A). The nodes of TS(A)
are of the form (q, v), where q is a state of A and v is a standard valuation
of the clocks of A. There are two kinds of transitions:

• delay transitions: (q, v)
δ−→ (q, v + δ),

• action transitions: (q, v)
a−→ (q′, v′), if (q, a, g, R, q′) ∈ T , v |= g and

v′ = [R]v.
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The transition relation → is a union of all delay and action transitions. The
initial state of TS(A) is the node (q0,0), where q0 is the initial state and 0
is the valuation mapping all the clocks to 0. The accepting states are of the
form (q, v), where q ∈ F and v is an arbitrary valuation.

Definition 2.4 (Run of a timed automaton). A run of a timed automaton
is a sequence of transitions from the initial state of TS(A).

An example of a run of the timed automaton A from Figure 2.1 is

(p, x = 0, y = 0)
δ=3−−→ a−→ (q, x = 3, y = 3)

δ=2−−→ b−→ (r, x = 0, y = 5)

δ=2−−→ c−→ (q, x = 2, y = 0) · · ·

A run is accepting if the final state of the run is accepting.
We are interested in the reachability problem of a timed automaton, which

is defined formally as follows.

Definition 2.5 (Reachability problem). The reachability problem for a
timed automaton A is to decide if there is a run of A from an initial state to
an accepting state.

As we already discussed in the introduction, in practice, a network
of timed automata is often used rather than a single timed automaton. A
network of timed automata is a set of timed automata operating concurrently.

Definition 2.6 (Network of timed automata). Let Σ1, . . . ,Σk be finite
alphabets, not necessarily mutually disjoint. Let X1, . . . , Xk be mutually
disjoint sets of clocks (Xi ∩Xj = ∅ for all pairs i 6= j). A network of timed
automata is a tuple 〈A1, . . . , Ak〉, where each Ai := (Qi,Σi, Xi, Ti, q

i
0, Fi) is

a timed automaton. The timed automata A1, . . . , Ak are called processes.
We write Proc to denote the set of all processes.

Figure 2.2 gives an example of a network of timed automata that consists
of two processes A1 and A2.

Note that the set of actions Σi of a network are not necessarily disjoint.
Given an action a, if a ∈ Σi, we say that Ai participates in a. We make this
notion precise by defining the domain of an action.

Definition 2.7 (Domain of an action). We define the domain of an action
a ∈ Σ, denoted as dom(a), as the set of timed processes participating in the
action a. Formally, dom(a) = {i | a ∈ Σi}.

For instance, in the network of timed automata given in Figure 2.2, we
have dom(a) = {1}, dom(b) = {2} and dom(d) = {1, 2}.
Definition 2.8. A transition whose domain contains more than one element
is called a synchronization transition. A synchronization action could have
guards and resets in each participating component. If the guard of a syn-
chronization transition in a component of the network is satisfied, we say
that the transition is locally enabled in that component.
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A1 A2

p0

p1

p2

q0

q1

q2

a x ≤ 3 b y ≥ 2

d x ≤ 5 d y ≥ 4

Figure 2.2: A network of timed automata

In the network given in Figure 2.2, observe that the action d is a synchro-
nization transition. Given a standard valuation v, we see that d is locally
enabled in A1 if v(x) ≤ 5, and locally enabled in A2 if v(y) ≥ 4.

Next, we define the semantics of a network of timed automata.

Definition 2.9 (Semantics of a network of timed automata). The semantics
of a network N := 〈A1, . . . , Ak〉 is given by a timed automaton AN =
(Q×,Σ×, X×, T×, q

0
×, F×), where

• Q× = Q1 ×Q2 × · · · ×Qk

• Σ× =
⋃i=k
i=1 Σi

• X× =
⋃i=k
i=1 Xi

• q0
× = (q0

1, q
0
2, . . . , q

0
k)

• F× = { (q1, q2, . . . , qk) | qi ∈ Fi for all i }

• there is a transition of the form (q1, q2, . . . , qk)
a,g−−→
R

(q′1, q
′
2, . . . , q

′
k) in

T× when

– (qi, a, gi, Ri, q
′
i) in Ti for all i ∈ dom(a), g :=

∧
i gi and R :=

⋃
iRi,

– q′i = qi for all i 6∈ dom(a),

The semantics of N is the transition system TS(AN ) of the automaton AN .
We denote it TS(N ) for short.

From the semantics of the network of timed automata, we can see that
a synchronization transition can only be executed if it is locally enabled in
all its participating components. Consider the network of timed automata
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given in Figure 2.2. Here, d can only be executed from a standard valuation
v that satisfies v(x) ≤ 5 and v(y) ≥ 4. Observe that all the components
participating in a synchronization action are affected by (a possible) change
of state, whereas those which do not participate remain in their current
states.

2.2. Offset valuations

As discussed in the introduction, in this thesis, we consider two different
semantics for networks of timed automata - the standard semantics (which
we call global semantics) and the local time semantics. We would like to
maintain a uniform representation for valuations in both semantics. To
this end, rather than using the standard valuations, we choose to represent
valuations of clocks using their offsets from the total time elapsed by the
timed automaton. We discuss the offset representation of valuations (in
the global semantics, and in later sections, the local time semantics) in
detail. Since the offset representation of valuations in global semantics is
non-standard, we present a translation between valuations in the standard
representation and the offset representation.

For each clock x ∈ X, we introduce an offset clock variable x̃, henceforth
simply referred to as an offset clock. Let X̃ = {x̃ | x ∈ X} be the set of all
offset clocks. The value of x̃ is the time-stamp at which x was last reset. We
also introduce a variable t that tracks the global time: technically, t is a clock
that is never reset. We refer to this clock as the reference clock. The idea is
that the value of clock x is encoded as the difference t − x̃. At the initial
valuation, all the offset clocks and the reference clock have the same value.
As time progresses, the offset clocks do not increase while the reference clock
does, thereby increasing the difference between the reference clock and the
offset clocks. Whenever a clock is reset, its offset clock is set to the value of
the reference clock at the time of the reset.

Definition 2.10 (Offset valuations). An offset valuation v is a function
v : X̃ ∪ {t} 7→ R≥0 such that v(x̃) ≤ v(t) for all offset clocks x̃ ∈ X̃.

Observe that in the offset representation, each variable x̃ ∈ X̃ stores the
time of last reset of x. Following this intuition, the time-stamp at which
a clock is reset can never be greater than the total time elapsed, hence we
have the constraint v(x̃) ≤ v(t), for all offset valuations v.

An initial offset valuation is any valuation in which all the offset clocks
have the same value as the reference clock, i.e., v0(t) = v0(x̃) for all offset
clocks x̃ ∈ X̃. Note that the actual value of the reference clock does not
matter - what is important is that all the offset clocks and the reference
clock have the same value.
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Translations between offset and standard valuations

We introduce the operation std, which is a translation from offset valuations
to standard valuations. Note that we use v to represent standard valuations,
and v for offset valuations.

Definition 2.11 (std). For a given offset valuation v, we can obtain a
standard valuation std(v):

std(v)(x) = v(t)− v(x̃), for all x ∈ X.

Conversely, given a standard valuation v, there are many offset valuations
corresponding to it. One such offset valuation can be obtained by the
following transformation:

v(t) = max{v(x) : x ∈ X}

v(z̃) =v(t)− v(z) for all z̃ ∈ X̃.

Note that this is just one of the many offset valuations v such that std(v) = v.
We illustrate this as follows: Let v be an offset valuation such that std(v) = v.
Consider an offset valuation v′ such that v′(t) = v(t)+δ, and v′(x̃) = v(x̃)+δ
for all offset clocks x̃ ∈ X̃. It is easy to see that std(v′) = v too.

Operations on offset valuations

As we have seen, to give a semantics of a timed automaton we need some
operations on clock valuations, namely, delay, reset, and guard satisfaction
operations. In this section we discuss these operations for offset valuations.

• Delay: An offset variable x̃ stores the time-stamp at which the clock x
was last reset. Following this intuition, a delay operation increases the
value of the reference clock t and leaves the offset clocks unchanged.
Formally, for δ ∈ R≥0, we denote by v + δ, the offset valuation defined
by:

(v + δ)(t) = v(t) + δ

(v + δ)(x̃) = v(x̃) for all x̃ ∈ X̃

• Reset: Resetting the clocks in R ⊆ X, yields an offset valuation [R]v
obtained by setting the value of clocks that are reset to the value of
the reference clock:

([R]v)(t) = v(t)

([R]v)(x̃) =

{
v(t) if x ∈ R,
v(x̃) otherwise
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• Guard satisfaction: Given an offset valuation v and a clock constraint
g, we say that v satisfies the guard g, written as v |= g, if the standard
valuation std(v) from Definition 2.11 satisfies g.

We now state Lemma 2.1 that relates the operations on offset valuations
to the operations on standard valuations.

Lemma 2.1. We have the following:

• If v |= g, then std(v) |= g.

• If v′ = [R]v, then std(v′) = [R](std(v)).

• If v′ = v + δ, then std(v′) = std(v) + δ for δ ∈ R≥0.

Proof. The first item follows from the definition of guard satisfaction
for offset valuations.

For the second item, we know that v′(t) = v(t), and v′(x̃) = v(x̃), if
x 6∈ R and v′(x̃) = v′(t) otherwise.

Let v = std(v) and v′ = std(v′). Then, we observe that if x ∈ R,
v′(x) = v′(t)−v′(x̃) = v′(t)−v′(t) = 0. If x 6∈ R, v′(x) = v′(t)−v′(x̃) =
v(t)− v(x̃) = v(x). Thus, v′ = [R]v.

For the third item, we know that v′(t) = v(t) + δ, and v′(x̃) = v(x̃)
for all x̃ ∈ R. Let v = std(v) and v′ = std(v′). Then, it follows that
v′(x) = v′(t)− v′(x̃) = v(t) + δ − v(x̃) = (v(t)− v(x̃)) + δ = v(x) + δ.
Thus, v′ = v + δ.

Standard approaches to solve the reachability problem. We now
discuss some standard approaches to solving the reachability problem of
timed automata. One of the main challenges associated with studying
problems pertaining to timed automata stems from the fact that the space of
valuations of the timed automata is uncountably infinite. To work with timed
automata we first need a way to handle this uncountable set of valuations
effectively. There have been numerous attempts at doing this using different
techniques [Bou09]. We discuss some of these approaches in the subsequent
sections. The approaches we discuss employ the idea of using some symbolic
representation to analyse these systems.

2.3. Regions

The earliest solution to deal with the uncountably infinite set of valuations
was proposed by Alur et al. in [AD94]. Their approach involved partitioning
the set of valuations into a finite number of sets, called regions. In this
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section, we discuss their original approach and present a similar notion for
the setting of offset valuations.

First, we present the definition of the classical region equivalence as stated
in Alur et al. [AD94]. We proceed to propose a region equivalence for offset
valuations, which leads to the notion of offset regions. We then prove that
there is a bijection between the region equivalence in the standard setting
(as introduced in [AD94]) and the region equivalence for offset valuations
that we introduce here. Further, using this notion of regions, we introduce
a transition system called the offset region graph of a timed automaton,
which captures all the behaviours of the timed automaton. We show that
the offset region graph gives us a way to solve the reachability problem, but
this method turns out to be inefficient in practice.

For x ∈ R, we write bxc and {x} to denote the integral part and fractional
part of x, respectively. In other words, bxc denotes the greatest integer smaller
than or equal to x. For example, b7.3c = 7 and b−2.1c = −3. The fractional
part of x, written as {x} is defined as x − bxc. Thus, {7.3} = 0.3 and
b−2.1c = 0.9. Note that {x} ≥ 0 for all x ∈ R.

Region equivalence for standard valuations

Definition 2.12 (Neighbourhood of a standard valuation (nbd(v))). A
standard valuation v′ is defined to be in the neighbourhood of v, written as
v′ ∼ v, if for all clocks x, y ∈ X, we have:

• bv(x)c = bv′(x)c,

• {v(x)} = 0 iff {v′(x)} = 0,

• {v(x)} ≤ {v(y)} iff {v′(x)} ≤ {v′(y)}.

We denote by nbd(v) the set of all standard valuations in the neighbourhood
of v.

Definition 2.13 (Classical region equivalence (∼M )). Let M ∈ N ∪ {−∞}
be a constant. For a standard valuation v, we define BoundedM (v) =

⋃
{x ∈

X | v(x) ≤ M}. Two standard valuations are said to be region equivalent
w.r.t. M , written as v ∼M v′ if

• BoundedM (v) = BoundedM (v′), and

• v B ∼ v′ B where v B and v′ B denote the standard valuations restricted
to the variables in B = BoundedM (v).

Given an automaton A, the bound M is obtained by choosing the maxi-
mum constant appearing in a guard of A. If there are no guards in A, then
M is set to −∞.
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Observe that the notions of region and neighbourhood are closely related.
If all clocks are bounded (which corresponds to having M = ∞) then the
region of a standard valuation is the same as its neighbourhood.

Definition 2.14 (Region). Let M ∈ N∪{−∞} be a constant. An M -region
is an equivalence class of ∼M . We simply say region instead of M -region,
when M is clear from the context.

Figure 2.3 gives the regions for two clocks x and y with M = 2.

x

y

0 1 2

1

2

Figure 2.3: Regions of a timed automaton with two clocks x and y with
M = 2. The set of regions consist of 9 corner points, 22 open line segments
and 13 open regions [AD90].

Alternate representation of regions

Given a constant M ∈ N ∪ {−∞}, each M -region can be uniquely identified
by specifying the following information [AD94]:

1. for each x ∈ X, one constraint from the set:

{x = c | c = 0, · · · ,M} ∪ {c− 1 < x < c | c = 1, · · · ,M} ∪ {x > M}

2. for each pair of clocks x, y ∈ X which satisfy the constraints of the
form c− 1 < x < c and d− 1 < y < d, whether {x} < {y}, {x} = {y}
or {x} > {y}.
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Counting all the possible combinations of the constraints, it can be
shown [AD94] that number of distinct M -regions is bounded by the function
|X|! · 2|X| ·Πx∈X(2M + 2).

Region equivalence for offset valuations

We now introduce the notions of neighborhood and region equivalence in the
context of offset valuations.

Definition 2.15 (Neighbourhood of an offset valuation). For offset valua-
tions v and v′, we say v is in the neighbourhood of v′, written as v ≈ v′, if for
all offset clocks x, y ∈ X̃ ∪ {t}, we have bv(x)− v(y)c = bv′(x)− v′(y)c. The
set of all offset valuations in the neighbourhood of v is denoted by nbd(v).

Definition 2.16 (Region equivalence for offset valuations (≡M )). Let M ∈
N∪{−∞} be a constant. For an offset valuation v, we define BoundedM (v) =⋃
{x̃ ∈ X̃ | v(t)− v(x̃) ≤M}. We write v ≡M v′ if

• BoundedM (v) = BoundedM (v′)

• v B ≈ v′ B where v B and v′ B denote the offset valuations restricted
to the set of variables B = BoundedM (v).

Definition 2.17 (Offset region). Let M ∈ N ∪ {−∞} be a constant. An
offset region is an equivalence class of ≡M . We write [v]M for the offset
region of v.

We will now show that the notion of regions in the standard setting
and offset setting are closely connected. But first, we prove a few technical
lemmas which will be useful to prove this result.

Lemma 2.2. For x ∈ R, {x} = 0 iff bxc = −b−xc.

Proof. {x} = 0⇔ x = bxc. Similarly, we have {x} = 0⇔ −x = b−xc. Since
we know that x = −(−x), we have {x} = 0⇔ bxc = −b−xc.

Lemma 2.3. For x, y, z ∈ R, {z−x} ≤ {z− y} iff bx− yc = bx− zc+ bz−
yc+ 1.

Proof.

x− y = x− z + z − y
= bx− zc+ bz − yc+ {x− z}+ {z − y}
= bx− zc+ bz − yc+ 1− {z − x}+ {z − y}

This gives the statement of the lemma.
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Lemma 2.4. Let v ≈ v′. Then, for the reference clock t and offset clocks
x̃, ỹ ∈ X̃, we have {v(t) − v(x̃)} ≤ {v(t) − v(ỹ)} iff {v′(t) − v′(x̃)} ≤
{v′(t)− v′(ỹ)}.

Proof. Consider two offset clocks x̃ and ỹ. From Lemma 2.3, we have the
following conditions on v(x̃)− v(ỹ) and v′(x̃)− v′(ỹ):

bv′(x̃)− v′(ỹ)c = bv′(x̃)− v′(t)c+ bv′(t)− v′(ỹ)c+ 1 iff {v′(t)− v′(x̃)} ≤ {v′(t)− v′(ỹ)}
bv(x̃)− v(ỹ)c = bv(x̃)− v(t)c+ bv(t)− v(ỹ)c+ 1 iff {v(t)− v(x̃)} ≤ {v(t)− v(ỹ)}

Since v ≈ v′, we know that

bv(x̃)− v(ỹ)c = bv′(x̃)− v′(ỹ)c

bv′(x̃)− v′(t)c = bv(x̃)− v(t)c

bv′(t)− v′(ỹ)c = bv(t)− v(ỹ)c

From the above conditions, it is easy to see that {v′(t)−v′(x̃)} ≤ {v′(t)−v′(ỹ)}
iff {v(t)− v(x̃)} ≤ {v(t)− v(ỹ)}.

Lemma 2.5. Suppose that v ≈ v′. Then, for all offset clocks x̃, ỹ ∈ X̃, we
have

1. bv(t)− v(x̃)c = bv′(t)− v′(x̃)c

2. {v(t)− v(x̃)} = 0 iff {v′(t)− v′(x̃)} = 0

3. {v(t)− v(x̃)} ≤ {v(t)− v(ỹ)} iff {v′(t)− v′(x̃)} ≤ {v′(t)− v′(ỹ)}

Proof. 1. Follows from the definition of ≈.

2. Let {v(t)−v(x̃)} = 0. Then, we know by Lemma 2.2 that bv(t)−v(x̃)c =
−bv(x̃)− v(t)c. Since v ≈ v′, we know that

bv′(t)− v′(x̃)c = bv(t)− v(x̃)c

bv′(x̃)− v′(t)c = bv(x̃)− v(t)c

As a consequence, we have bv′(t) − v′(x̃)c = −bv′(x̃) − v′(t)c. By
Lemma 2.2, this implies that {v′(t)− v′(x̃)} = 0.

3. Follows from Lemma 2.4.

Lemma 2.6. Suppose that v ≈ v′. Then, std(v) ∼ std(v′).

Proof. Follows from Lemma 2.5 and the definition of the operation std.

Lemma 2.7. Suppose that v ∼ v′. Then, v ≈ v′, for arbitrary offset
valuations v and v′ such that std(v) = v and std(v′) = v′.
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Proof. Since v ∼ v′, we know that bv(x)c = bv′(x)c. This implies that for
all x̃ ∈ X̃, we have bv(t − x̃)c = bv′(t − x̃)c. From the definition of ∼
for standard valuations, we also know that {v(x)} ≤ {v(y)} if and only if
{v′(x)} ≤ {v′(y)}. This implies that {v(t) − v(x̃)} ≤ {v(t) − v(ỹ)} if and
only if {v′(t)− v′(x̃)} ≤ {v′(t)− v′(ỹ)}. But we know that

v(x̃− ỹ) = bv(x̃− t)c+ bv(t− ỹ)c+ 1− {v(t− x̃)}+ {v(t− ỹ)} .

Since bv′(t − ỹ)c = bv(t − ỹ)c and bv′(x̃ − t)c = bv(x̃ − t)c (as seen in the
first part of the proof), using Lemma 2.3, it can be seen that bv′(x̃− ỹ)c =
bv(x̃− ỹ)c.

Lemma 2.8. v ≈ v′ iff std(v) ∼ std(v′).

Proof. The proof follows from Lemmas 2.6 and 2.7.

Lemma 2.9. v ≡M v′ iff std(v) ∼M std(v′).

Proof. Let v ≡M v′. From the definition of ≡M , we have Bounded(v) =
Bounded(v′). This means that v(t) − v(x̃) > M if and only if v′(t) −
v′(x̃) > M for an offset clock x̃. As a consequence, std(v)(x) > M if
and only if std(v′)(x) > M . It immediately follows that Bounded(std(v)) =
Bounded(std(v′)). Further, since v ≡M v′, v B ≈ v′ B. From Lemma 2.6, we
have std(v) B ∼ std(v′) B.

In the converse direction, consider two standard valuations v and v′ such
that v ∼M v′. Let v and v′ be offset valuations such that std(v) = v and
std(v′) = v′. We know that if v(x) > M , then v′(x) > M . By the definition
of std operation, this implies that if v(t)− v(x̃) > M , then v′(t)− v′(x̃) > M .
As a consequence, Bounded(v) = Bounded(v′). Moreover, from Lemma 2.7
and the fact that v B ∼ v′ B, we have v B ≈ v′ B.

We will now state Lemma 2.10 that shows that given a maximal constant
M , the number of offset regions is finite.

Lemma 2.10. The number of regions as well as offset regions (Defini-
tion 2.17) is bounded by O(|X|! · 4|X| · (M + 1)|X|).

Proof. By Lemma 2.9, we know that there is a bijection between the standard
regions and offset regions.

Recall the alternate definition of standard regions given in Section 2.3.
From this definition, we know that number of distinct regions is bounded by
the function |X|! · 2|X| ·Πx∈X(2M + 2). Simplifying this expression, we get
the bound O(|X|! · 4|X| · (M + 1)|X|). From the bijection between standard
regions and offset regions given by Lemma 2.9, it follows that the number of
offset regions is also bounded by the same function.

This implies the statement of the lemma.
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Time-abstract simulation

Since there are uncountably many valuations, we need some way to group
valuations. Region equivalence is one such method. Here we consider a more
general approach of grouping valuations that are not distinguishable with
respect to the reachability of states.

We formalize this idea by defining a time-abstract simulation relation
[TAKB96] between offset valuations.

Definition 2.18 (Time-abstract simulations). Given a timed automaton
A := (Q,Σ, X, T, q0, F ), a time-abstract simulation for A is a relation �A
between the (state, offset valuation) pairs of A, such that, if (q, v) �A (q′, v′),
then

• q′ = q;

• for every action a, delay δ ∈ R≥0, and a transition of A of the form

(q, v)
δ−→ a−→ (q1, v1), there exists δ′ ∈ R≥0 such that (q′, v′)

δ′−→ a−→ (q′1, v
′
1)

and (q1, v1) �A (q′1, v
′
1).

An offset valuation v is �A-simulated by v′, in symbols v �A v′, if
(q, v) �A (q, v′) for all states q ∈ Q of A.

We will now show that the ≡M relation between offset valuations is a
time-abstract simulation relation for every timed automaton in which the
maximum constant appearing in a guard is at most M .

Lemma 2.11. Let v ≡M v′. For every delay δ, there exists a δ′ such that
v + δ ≡M v′ + δ′.

Proof. Consider differences w.r.t. offset clocks in v + δ and v′ + δ′. A delay
of δ increases the value of differences of the form t− x̃ by δ and decreases
the differences of the form x̃− t by δ. Note that all the other differences of
the form x̃− ỹ are not altered by a delay transition.

We fix bδ′c = bδc. It can be observed that v + bδc ≡M v′ + bδ′c. Now,
we need to fix {δ′} such that v + δ ≡M v′ + δ′. Elapsing {δ} from v + bδc
may either keep the difference v(t− x̃) in the same integer or move it up to
the next integer, depending on the value of {v(t− x̃)}.

Consider an ordering ≤fr of offset clocks such that x̃ ≤fr ỹ if {v(t− x̃)} ≤
{v(t− ỹ)}. Let the ordering ≤fr be of the form : x̃1 ≤fr x̃2 ≤fr · · · ≤fr x̃k.
Let x̃i be such that {v(t− x̃i)}+ {δ} < 1 and {v(t− x̃i+1)}+ {δ} ≥ 1. If no
such x̃i exists, it means that {δ} from v+bδc keeps all the differences v(t− x̃)
in the same integer interval. In this case, we can choose δ′ = δ. Otherwise,
we choose {δ′} such that 1 − {v′(t − x̃i)} > {δ′} > 1 − {v′(t − x̃i+1)}. By
denseness of reals, such a δ′ exists.

It remains to verify that v+δ ≡M v′+δ′. It is easy to see that if (v+δ)(t−
x̃) > M , then (v′+δ′)(t− x̃) > M . Hence, Bounded(v+δ) = Bounded(v′+δ′).
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Next, consider the differences of the form t− x̃ (where x̃ ∈ Bounded(v + δ)).
We have shown above that b(v′+δ′)(t−x̃)c = b(v+δ)(t−x̃)c. By symmetry, we
also have that b(v′+δ′)(x̃− t)c = b(v+δ)(x̃− t)c. Lastly, consider differences
of the form x̃− ỹ ( x̃, ỹ ∈ Bounded(v + δ).) Since the delay transition leaves
these differences unaltered and integral values of such differences were equal
in v′ and v, they continue to remain equal in v′ + δ′ and v + δ.

We define (q, v) ≡M (q, v′) when v ≡M v′.

Lemma 2.12. ≡M is a time-abstract simulation for A if the maximum
constant used in a guard in A is at most M .

Proof. Consider a delay transition of δ from (q, v). Lemma 2.11 states that

if (q, v)
δ−→ (q, v1) there is a delay (q, v′)

δ′−→ (q, v′1) such that v1 ≡M v′1.
Next, consider an action transition a from (q, v). Let a with the guard

g reset the set of clocks R. Since v ≡M v′, v(t− x̃) > M iff v′(t− x̃) > M
for all x̃ ∈ X̃. Further, if x̃ ∈ Bounded(v), then bv(t − x̃)c = bv′(t − x̃)c
and bv(x̃− t)c = bv′(x̃− t)c. This implies that v satisfies g iff v′ satisfies g.
Therefore, (q, v) can execute a iff (q, v′) can execute a. Let (q, v)

a−→ (q′, v1)
and (q, v′)

a−→ (q′, v′1).
Next, we consider the reset operation. If x is reset, the differences t− x̃

and x̃ − t are set to 0 in the resultant offset valuation. This implies that
for each clock x ∈ R, t− x̃ and x̃− t are set to 0 in both v1 and v′1. Since
resets leave the differences of the form t − x̃ unchanged for x 6∈ R, the
conditions w.r.t. these differences are satisfied. Next, consider the differences
of the form x̃− ỹ, where x, y ∈ Bounded(v1). If x, y ∈ R, we know that this
difference is equal to 0 in both v1 and v′1. If x ∈ R and y 6∈ R, we know
that v1(x̃ − ỹ) = v(t − ỹ). Similarly, we have v′1(x̃ − ỹ) = v′(t − ỹ). Since
v ≡M v′, we have bv1(x̃− ỹ)c = bv′1(x̃− ỹ)c and bv1(ỹ − x̃)c = bv′1(ỹ − x̃)c.
Finally, if x, y 6∈ R, we know that the difference x̃− ỹ are preserved from v
to v1 (similarly for v′ to v′1). Since v ≡M v′, the conditions w.r.t. differences
of this form follows. Therefore, we have v1 ≡M v′1.

2.4. Offset region graph

In Section 2.3, we introduced the notion of offset regions. We showed that
offset valuations that belong to the same offset region are equivalent with
respect to reachability. In other words, for two offset valuations v, v′ belonging
to the same region, there is a run to a state q′ from (q, v) iff there is a run
to q′ from (q, v′). Finally, we also showed that the number of distinct offset
regions is bounded.

Equipped with the notion of offset regions, we now introduce a transition
system that can be used to answer the reachability problem for timed
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automata. We introduce the notion of offset region graph, a transition
system whose nodes are (state, offset region) pairs.

Definition 2.19 (Offset region graph). The offset region graph of a timed
automaton A, denoted by RG(A), is a transition system whose nodes are
of the form (q,R), where q is a state of A and R is an offset region w.r.t.
the equivalence ≡MA

, where MA is the maximum constant used in a guard
in A. The initial node of the offset region graph is (q0, R0), where R0 is
the offset region containing all the initial valuations. A node (q,R) of the
offset region graph is said to be accepting if q is an accepting state of A.

(q,R)
t−→RG (q′, R′) is a transition of the offset region graph if there are

offset valuations v, v′ and a delay δ ∈ R≥0 such that v ∈ R, v′ ∈ R′ and

(q, v)
δ−→ t−→ (q′, v′).

Next, we show that transitions in the offset region graph faithfully
represent transitions of the automaton. This feature of the offset region
graph is known as the pre-stability property of offset regions.

Lemma 2.13. Let (q,R)
t−→RG (q′, R′) be a transition of the offset region

graph. For every v ∈ R, there is a delay δ′ ∈ R≥0 and v′ ∈ R′ such that

(q, v)
δ−→ t−→ (q′, v′).

Proof. Since (q,R)
t−→RG (q′, R′) is a transition of RG(A), there exist offset

valuations v ∈ R, v′ ∈ R′ and a delay δ ∈ R≥0 such that (q, v)
δ−→ t−→ (q′, v′).

Pick any offset valuation v1 from R. We know that v1 ≡M v. By

Lemma 2.12, we know that (q, v1)
δ′−→ t−→ (q, v′1) such that v′1 ≡M v′. Since

v′1 ≡M v′, we have v′1 ∈ R′.

Lemma 2.14. A has a run (q, v)
σ−→ (q′, v′) iff there is a path (q,R)

σ−→ (q′, R′)
in RG(A) such that v ∈ R and v′ ∈ R′.

Proof. Consider a run of A of the form

(q0, v0)
δ1−→ a1−→ (q1, v1)

δ2−→ a2−→ (q2, v2) · · · an−→ (qn, vn).

By definition of RG(A), there exists a path in RG(A) of the form

(q0, R0)
a1−→ (q1, R1)

a2−→ (q2, R2) · · · an−→ (qn, Rn)

such that vi ∈ Ri for i ∈ {0, 1, 2, · · · , n}.
In the converse direction, consider a path of RG(A) of the form

(q0, R0)
a1−→ (q1, R1)

a2−→ (q2, R2) · · · an−1−−−→ (qn−1, Rn−1)
an−→ (qn, Rn)

We show here that there is a run of A of the form

(q0, v0)
δ1−→ a1−→ (q1, v1)

δ2−→ a2−→ (q2, v2) · · · an−1−−−→ (qn−1, vn−1)
an−→ (qn, vn)
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such that vi ∈ Ri for all i ∈ {0, 1, 2, · · · , n}. The proof follows by induction
on the length of the path in RG(A). The base case is straightforward. For
the induction step, consider the transition (qn−1, Rn−1)

an−→ (qn, Rn). By
induction hypothesis, we know that there is a run

(q0, v0)
δ1−→ a1−→ (q1, v1)

δ2−→ a2−→ (q2, v2) · · · an−1−−−→ (qn−1, vn−1)

such that vi ∈ Ri for i ∈ {0, 1, 2, · · · , n − 1}. In particular, we know that
vn−1 ∈ Rn−1. Using Lemma 2.13, we know that there is a delay δn ∈ R≥0

such that (qn−1, vn−1)
δn−→ an−→ (qn, vn) such that vn ∈ Rn.

Corollary 2.1. A has an accepting run iff there is a path in RG(A) from
an initial node to an accepting node.

The offset region graph gives us a way to solve the reachability problem of
timed automata by exploring the offset region graph of the timed automaton.
However, in practice, offset region graphs are too large to check for reachability
in timed automata efficiently. In the next section, we discuss more efficient
ways to solve the reachability problem.

2.5. Zones

The most widely used approach for checking reachability in a timed automa-
ton is based on reachability in a graph called the zone graph of a timed
automaton. In this section, we will discuss this approach in detail. We will
introduce zones [BY03], which are sets of valuations that can be represented
efficiently using difference constraints between clocks.

As discussed already, one of the main challenges encountered in the study
of timed automata arises from the uncountably infinite space of its valuations.
To overcome this problem, we use a symbolic representation to analyze these
systems. Regions, that we introduced in Section 2.3, was one instance of such
a symbolic representation of valuations. Building on the concept of regions,
the idea of a region graph was introduced by Alur [AD94]. We presented a
variant of the region graph in the offset setting, called offset region graph
in Section 2.4. Intuitively, in the region graph of a timed automaton A, for
each run in A, we have a path passing through all the regions of valuations
in this run (the proof is similar to the proof of Lemma 2.14). However, from
Lemma 2.10, we know that the number of regions grows exponentially with
the number of clocks in the timed automaton. As a consequence, in practice,
the region graph turns out to be too large to construct it efficiently. Zones
are another way of grouping valuations. Although in principle, their number
can also grow exponentially with the number of clocks, in most cases, the
approach through zones is much more efficient than through regions.
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Consider a sequence of actions of the timed automaton A. There are
uncountably many runs of A with the same underlying action sequence -
each one different from the others in the assignment to the clock variables in
at least one step of the run. Since the timing information associated to these
runs could be different, each run ends with a potentially different valuation.
In other words, we end up with a set of valuations associated to this action
sequence. For each sequence of actions, it turns out that a simple set of
constraints can describe this associated set of valuations. In this section, we
discuss this symbolic representation.

We first define a transition relation between sets of valuations. It will be
very useful in the subsequent discussions.

Definition 2.20 (Symbolic transition). Let A be a timed automaton and
W be an arbitrary set of valuations of A. Given a transition t of A, we define

(q,W )
t−→ (q′,W ′) if W ′ = {v′ | ∃v ∈ W, ∃δ ∈ R≥0 s.t. (q, v)

t−→ δ−→ (q′, v′)} is
non-empty.

The symbolic transition computes the set W ′ by taking each valuation
v ∈W that can execute the transition t, computing the valuation obtained
after executing t from v and considering the set of all valuations that can
reached by a time-elapse from the resulting valuation.

Next, we define some special sets of valuations, that can be defined using
some simple constraints between the clocks. Let X = {x1, x2 · · · , xk} be a
set of clocks. We introduce a new clock x0 that stands for the constant 0.
We can then define an augmented set of clocks X ′ = X ∪ {x0}.

Definition 2.21 (Standard zones). A standard zone is a set of valuations
defined by a conjunction of constraints of the form x−y lc, where x, y ∈ X ′
are clocks, c ∈ Z is a constant, and l ∈ {<,≤} stands for a strict, or
non-strict inequality.

In the rest of this section, we will refer to standard zones simply as zones. A
simple example of a zone over the set of clocks {x, y} is:

(x0 − x ≤ 0) ∧ (x− x0 ≤ 2) ∧ (x0 − y ≤ −1) ∧ (x− y ≤ 4) .

Note that another, shorter, representation of this zone is as follows

(x ≥ 0) ∧ (x ≤ 2) ∧ (y ≥ 1) ∧ (x− y ≤ 4) .

We will be using an analogous simplified representation for standard zones
in the rest of this thesis. This zone is represented pictorially by the area
shaded in red in Figure 2.4.

Bengtsson and Yi [BY03] show that if one starts with a set of valuations
W that is a zone, then the set of valuations W ′ obtained on execution of a
symbolic transition from W is also a zone. Further, let W0 be the set of all
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Figure 2.4: An example of a zone

valuations reachable by time-elapse from the initial valuation 0. The set of
valuations W0 can be described by a set of difference constraints between
clocks, in the following way:

W0 :=
∧
x∈X

(x ≥ 0) ∧
∧

x,y∈X
(x− y = 0)

The constraint says that the values of all clocks are the same and at least 0.
Clearly, W0 is a zone.

Extending the above argument to a sequence of symbolic transitions, it
follows that any set of valuations W that is reachable from (q0,W0) by a
sequence of symbolic transitions is a zone. In other words, starting from
(q0,W0), any sequence of symbolic transitions yields a node (q,W ), where
W is a zone. Using this idea, we build a transition system called the zone
graph, which is discussed in detail in Section 2.7

Consider the zone given in Figure 2.4. Observe that the constraint
x− y ≤ 4 does not actually contribute to the definition of the zone. Even if
we were to remove this constraint, or change this constraint to x− y ≤ 3, the
zone does not change. In such situations, we say that the constraint is not
tight and that the zone is not canonical. We will now explain these concepts
formally.

Before formalizing the notion of tightness of a constraint, we first define
an order between the constraints used in the definitions of zones. Observe
that in Definition 2.21, we consider constraints of the form (l, c) with c ∈ Z.
From now on, we also consider the constraint (<,∞), whose meaning will
be explained at the time of its use.
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Definition 2.22 (Ordering between constraints). We have (l1, c1) b (l2, c2)
when

• either c1 < c2

• or c1 = c2, and l1 is < while l2 is ≤.

The intuition is that if we have x− y l1 c1 and x− y l2 c2, then the
first constraint is more restrictive than the second.

Definition 2.23 (Tight constraints). Let Φ be a set of constraints, and
φ : x− yl1 c1 be a constraint in Φ. We say that φ is tight in Φ if replacing φ
in Φ by any another constraint φ′ : x− y l2 c2 such that (l2, c2) b (l1, c1)
results in a different set of valuations. We say simply that φ is tight, when
Φ is clear from the context.

Equipped with this definition, we can now formally define when a zone is
canonical.

Definition 2.24 (Canonical form of a zone). A zone Z is in canonical form
if each constraint defining Z is tight.

Note that in the zone from Figure 2.4, if we change the constraint,
x − y ≤ 4 to x − y ≤ 2, then the constraint is tight. This is because if we
further tighten this constraint, then the set of valuations that satisfy this set
of constraints is different from the original zone.

Representation of zones

Zones are commonly represented using difference bound matrices and distance
graphs. In this section, we define these data structures and explain how they
are used to represent zones.

Recall that X ′ is the original set of clocks X augmented with an addi-
tional clock x0 representing the constant 0, and the ordering b between the
constraints (see Definition 2.22). We now introduce some notation that will
be useful in presenting both of these data structures.

Definition 2.25. For a zone Z and clocks xi, xj ∈ X ′, we define Zxixj as the
b-smallest constraint (l, c) such that all valuations in Z satisfy xi − xj l c.

Observe that Zxixj is always defined when Z is non-empty, since all valuations
satisfy xi − xj l∞.

Difference bound matrices (DBMs)[Dil89, Ben02]

A difference bound matrix (DBM) is a data structure that is widely used to
represent zones. First introduced in [BM83], DBMs were reintroduced in the
context of timed automata by Dill [Dil89].
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Definition 2.26 (Difference bound matrix representation of a standard
zone [Dil89]). Given a zone over a set of clocks X = {x1, x2, · · · , xn}, the
difference bound matrix representation of Z is given by a (n+ 1)× (n+ 1)
matrix M , where each entry of M is of the form (l, c), where c ∈ Z and
l ∈ {≤, <} or (<,∞). In particular, given a zone Z, the (i, j)th entry of the
DBM of Z is Mij = (l, c), if there is a constraint xi − xj l c in the set of
constraints defining Z. If there is no constraint of the form xi − xj l c, then
Mij = (<,∞). If there are multiple constraints of the form xi − xj l c, we
choose (l, c) which is minimal w.r.t. the ordering b (see Definition 2.22.)

Given a difference bound matrix M , the zone defined by M is given by
the set of valuations satisfying the conjunction of constraints of the form
xi − xj lij cij , where Mij = (lij , cij). In these constraints, the variable x0

stands for the constant 0.

Distance graphs

We now discuss a graphical representation of zones, referred to as distance
graphs. A distance graph is a representation of a zone as a weighted graph,
whose vertex set is the augmented set of clocks X ′ = X∪{x0}, and the weight
of the edge between a pair of vertices represents the constraint between the
clocks that are its end-points. More precisely, between any two vertices,
there is an edge with a weight (l, c), where c ∈ Z ∪ {∞} and l ∈ {≤, <}.
An edge x

(l,c)−−−→ y in the distance graph is interpreted as the constraint
y − x l c. Given a distance graph G, we use Gxy to denote the weight of
the edge from x to y in G.

Definition 2.27 (Distance graph of a standard zone). Given a zone Z over
a set of clocks X, the distance graph of Z, denoted by GZ , is given by the
graph whose vertices are clocks from X ′ and edges x −→ y between each pair
of vertices x, y of GZ are such that the weight of the edge is (l, c), if there
is a constraint y − xl c in the set of constraints defining Z. If there is no
constraint of the form y − xl c, then the edge from x to y is labeled (<,∞)
in GZ . If there are multiple constraints of the form y − xl c, we choose the
weight of the x→ y edge to be (l, c) that is minimal w.r.t. the ordering b
(see Definition 2.22.)

Given a distance graph G = (V,E), the zone defined by G, referred to as
ZG, is the set of valuations over the clocks V (G), satisfying the conjunction
of constraints of the form y − x l cxy, for every edge in E(G) of the form

x
(l,cxy)−−−−→ y. For a distance graph G, we write [[G]] for the set of solutions to

the constraints given by G.

The distance graph of the zone Z from Figure 2.4 is as depicted in Figure 2.5.
Observe that we can define the notion of a canonical distance graph,

where the weight of each edge x → y in the distance graph GZ is given
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Figure 2.5: Distance graph of the zone given in Figure 2.4. All the edges
that are not displayed have weight (<,∞).

by Zyx is as defined in Definition 2.25. We now discuss how a zone can
be converted into its canonical form. We present this using the distance
graph representation of the zone. From the discussion on distance graphs
and difference bound matrices, it is clear that one representation of a zone
can be easily obtained from the other.

Canonicalization of a zone

Recall the definition of b ordering on constraints (Definition 2.22): (l1, c1) b
(l2, c2). We define the operation of addition of constrains that permits us
to formulate an important notion of negative cycle.

Definition 2.28 (Negative cycle in a distance graph). We define an operation
of addition on constraints:

(l1, c1) + (l2, c2) = (<,∞) if c1 =∞ or c2 =∞
= (≤, c1 + c2) if l1 =≤ and l2 =≤
= (<, c1 + c2) otherwise

A cycle in a distance graph is negative if the sum of the edge weights along
the cycle is strictly less in b ordering than (≤, 0).

Equipped with these definitions, we can now define when a distance graph
is said to be in canonical form.

Definition 2.29. A distance graph G is said to be in canonical form if it
has no negative cycle and for each pair of vertices x, y of G, the weight of
the edge from x to y is not greater than the sum of the weights along any
path from x to y.

For instance, consider the distance graph in Figure 2.5. The edge y −→ x
has weight (≤, 4). However, the sum of the weights of the edges y −→ x0 and
x0 −→ x is (≤, 1), which is smaller than the y −→ x edge weight. Thus, the
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distance graph is not in canonical form. The distance graph G in canonical
form can be obtained by changing the edge weight y −→ x to (≤, 1).

Given a distance graph, we can compute the canonical form of the distance
graph by running an all pairs shortest path algorithm, such as the Floyd-
Warshall algorithm [BY03] on the distance graph. This algorithm has a
running time of O(n3), where n is the number of vertices in the graph. Since
the distance graph of a zone over the set of clocks X has |X|+ 1 vertices,
the canonical form of zone can be computed in O(|X|3) time.

Next, we state a folklore result [Sho81] connecting the emptiness of a
zone with a property of its distance graph.

Proposition 2.1. [Sho81] Let Z be a zone and let GZ be its distance graph.
Then, Z is empty if and only if GZ has a negative cycle.

This result implies that emptiness of a zone can be checked by looking
for a negative cycle in its distance graph.

Intersection of distance graphs: Given two distance graphs G1 and G2

over the same set of vertices, the intersection of G1 and G2, denoted as
G1 ∩ G2, is given by the distance graph, where the weight of each edge is
equal to the minimum w.r.t. b ordering, of the corresponding weights in
G1 and G2. Note that, for any two clocks, G1 ∩G2 contains the tighter of
the constraints between those in G1 and those in G2. So, each valuation in
the zone defined by G1 ∩G2 satisfies the constraints from both G1 and G2.
Thus, given two zones Z1 and Z2, the intersection of Z1 and Z2 is given by
computing G1 ∩G2, where G1 and G2 are the distance graphs of Z1 and Z2,
respectively.

2.6. Offset zones

In this section, we discuss offset zones, which are zones over valuations in
the offset representation. We show their correspondence with zones over
standard valuations defined in Section 2.5. In order to avoid confusion, we
shall use Z to denote offset zones, while the standard zones will be denoted
by Z.

Definition 2.30 (Offset zones). An offset zone is a set of offset valuations
determined by a conjunction of constraints of the form x̃1 − x̃2 l c, where
x̃1, x̃2 ∈ X̃ ∪ {t}, l ∈ {<,≤} and c ∈ Z.

From the definition of an offset valuation, for any offset valuation v, we
have v(x̃) ≤ v(t) for each offset variable x̃ ∈ X̃. If each valuation in a zone
Z satisfies a constraint φ, then we say that Z satisfies φ. Then, Lemma 2.15
follows.
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Lemma 2.15. An offset zone satisfies x̃ ≤ t for each x̃ ∈ X̃.

This implies that the set of constraints defining an offset zone will always
include constraints of the form x̃ ≤ t for each offset clock x̃ ∈ X̃.

An example of an offset zone over the set of clocks x, y is:

(x̃− t ≤ 0) ∧ (t− x̃ ≤ 2) ∧ (ỹ − t ≤ −1) ∧ (ỹ − x̃ ≤ 4) .

Offset distance graphs

In this section, we discuss the distance graph representation for offset zones.
The idea is quite similar to the distance graph representation of standard
zones with only a few differences in details.

We introduce variables Zx̃ỹ for zone Z and offset clocks x̃, ỹ ∈ X̃ ∪ {t}.
For defining Zx̃ỹ, we use the b ordering between constraints as introduced
in Definition 2.22.

Definition 2.31. For an offset zone Z and xi, xj ∈ X̃ ∪ {t}, we define
Zxixj as the b-smallest constraint (l, c) such that all valuations in Z satisfy
xi − xj l c.

Note that Zxixj is always defined since all offset valuations satisfy xi −
xj l∞.

Definition 2.32 (Distance graph of offset zones). Given a zone Z over a
set of clocks X̃, the distance graph of Z, denoted by GZ , is given by the
graph whose vertices are clocks from X̃ ∪ {t} and edges x̃ −→ ỹ between each
pair of vertices x̃, ỹ of GZ are such that the weight of the edge is (l, cỹx̃), if
there is a constraint ỹ − x̃l cỹx̃ in the set of constraints defining Z. If there
is no constraint of the form ỹ − x̃l c, then the edge from x̃ to ỹ in GZ is
labeled (<,∞). If there are multiple constraints of the form ỹ − x̃l c, we
choose the weight of the x→ y edge to be (l, c) that is minimal w.r.t. the
ordering b (see Definition 2.22.) We will write Gx̃ỹ to denote the weight of
the edge x̃→ ỹ in the distance graph G.

Given a distance graph G = (V,E), the zone defined by G, referred to as
ZG, is the set of valuations over clocks V (G), satisfying the conjunction of

constraints of the form x̃− ỹl c, for every edge in E(G) of the form ỹ
cx̃ỹ−−→ x̃,

where the weight of the edge cx̃ỹ is (l, c).

The distance graph of the offset zone from page 45 is depicted in Fig-
ure 2.6.

Remark (Comparison with a distance graphs of standard zones). Note that
vertices of the distance graph of an offset zone Z, are offset clocks x̃ from X̃
with an additional vertex for the reference clock t. This is because offset clocks
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Figure 2.6: Distance graph of the offset zone given in page 45. All the edges
that are not displayed have weight (<,∞).

are compared with t, in contrast with the standard setting, where clocks are
compared with 0, represented by the clock x0. This explains why in standard
zones we have a vertex x0, while in offset zones the role of x0 is played by t.

Translation between offset zones and standard zones

We define an operation std which takes an offset zone and returns a standard
zone.

Definition 2.33 (Standard zone from an offset zone). Given an offset zone
Z, std(Z) is the zone given by the distance graph which is obtained by

• reversing the direction of all the edges in the distance graph of Z,

• replacing the reference clock in the distance graph of Z by clock x0,
and

• replacing every offset clock x̃ by the standard clock x.

We now provide an intuition for the transformation defined above. We
use the relations between standard and offset zones described in Section 2.2.
In particular we will use function std converting an offset valuation to a
standard one. Let v be an offset valuation and v = std(v). Then, we know
that

v(x̃)− v(ỹ) = v(t)− v(ỹ)− (v(t)− v(x̃))

= v(y)− v(x)

Similarly,

v(t)− v(x̃) = v(x)− 0

v(x̃)− v(t) = 0− v(x)

From the above observations, it is clear that if v satisfies a constraint
x̃− ỹ ≤ c, then v satisfies the constraint y − x ≤ c. Similarly, if v satisfies a
constraint x̃− t ≤ d, then v satisfies the constraint 0− x ≤ d.
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Lemmas 2.16 and 2.17 below state that for every offset valuation v in Z,
std(v) ∈ std(Z), and for every standard valuation v in std(Z), if an offset
valuation v satisfies std(v) = v, then v in Z.

Lemma 2.16. Let Z be an offset zone. For every valuation v ∈ Z, we have
std(v) ∈ std(Z).

Proof. Let Z = std(Z). Recall that in the distance graph of Z, GZ , the
weight of an edge is the weight of the reverse edge in the distance graph of
Z, GZ , with the modification that the reference clock t is replaced by the 0
clock and the offset clocks are replaced by the standard clocks.

Consider an offset valuation v ∈ Z. Let v = std(v). We know that
v(x) = v(t) − v(x̃) for all clocks x ∈ X. Hence, we have v(x) − 0 =
v(t)−v(x̃) for all clocks x ∈ X. Consequently, since v satisfies the constraints
v(t) − v(x̃) ≤ GZx̃t, we have v(x) − 0 ≤ GZ0x (since GZx̃t = GZ0x) and since
v satisfies v(x̃) − v(t) ≤ GZtx̃, we have v satisfies 0 − v(x) ≤ GZx0 (since
GZtx̃ = GZx0). Additionally, the value of differences between offset clocks
also undergo a similar transformation on translation from the offset to the
standard setting: i.e., v(x)− v(y) = v(ỹ)− v(x̃) for all clocks x, y ∈ X. As
a result, v satisfies all constraints of the form v(x) − v(y) ≤ GZyx, since v

satisfies the constraint v(ỹ)− v(x̃) ≤ GZx̃ỹ. This means that v satisfies all the
constraints of Z and hence, we have v ∈ Z.

Therefore, for any offset valuation v in the offset zone Z, the standard
valuation std(v) ∈ std(Z).

Lemma 2.17. Let Z be an offset zone. For every v ∈ std(Z), and every
offset valuation v such that std(v) = v, we have v ∈ Z.

Proof. Let Z = std(Z) and v ∈ Z. Consider an arbitrary offset valuation v,
such that std(v) = v. We show below that v ∈ Z. Recall that in the distance
graph of Z, GZ , the weight of an edge is the weight of the reverse edge in
the distance graph of Z, GZ , with the reference clock t replaced by the 0
clock and the offset clocks replaced by the standard clocks.

We know that v(x) = v(t) − v(x̃) for all clocks x ∈ X. This implies
that, we have v(x) − 0 = v(t) − v(x̃) for all x ∈ X. But we know that v
satisfies the constraints 0 − v(x) ≤ GZx0 and v(x) − 0 ≤ GZ0x for all clocks
x ∈ X. Consequently, v will also satisfy the constraint v(x̃)− v(t) ≤ GZtx̃ and

v(t)− v(x̃) ≤ GZx̃t, respectively, for all offset clocks x̃ ∈ X̃. Additionally, the
value of difference between clocks also undergo the following transformation
on translation from the offset to the standard setting: i.e., v(x̃) − v(ỹ) =
v(y)− v(x) for all clocks x, y ∈ X. Therefore, since v satisfies the constraint
v(y) − v(x) ≤ GZxy, v will satisfy the constraint v(x̃) − v(ỹ) ≤ GZỹx̃ for all

offset clocks x̃, ỹ ∈ X̃.
This means that v satisfies all the constraints in Z. Therefore, it follows

that v ∈ Z.
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Operations on offset zones

Let g be a guard and R a set of clocks. We define the following operations
on zones:

Zg := {v ∈ Z | v |= g}
[R]Z := {[R]v | v ∈ Z}
−→
Z := {v | ∃ v′ ∈ Z, ∃δ ∈ R≥0 s. t. v = v′ + δ}

We say that a zone is time-elapsed if Z =
−→
Z .

Lemma 2.18. Let Z be an offset zone. Then, Zg, [R]Z and
−→
Z are offset

zones.

Proof. We will show that the sets of valuations obtained on applying these
operations continue to be an offset zone. Let GZ be the canonical distance
graph of Z. Note that we use the term removing an edge x → y from a
distance graph to say that the value of this edge is assigned to (<,∞). We
say a path is lighter than another to indicate that the weight of the former
path is less than the weight of the latter path. In the same spirit, we use the
term lightest path from x to y to refer to the path with the minimum weight
from x to y.

Guard intersection: The set of constraints defining the offset zone Zg is
obtained by extending the set of constraints of Z with constraints t− x̃ ∼ c,
for each constraint of the form x ∼ c in g. This follows from the definition
of when an offset valuation satisfies a guard, as given in Section 2.2.

Reset: Let G′1 be the distance graph obtained by removing from GZ all

edges involving x̃ and adding the edges x̃
(≤,0)−−−→ t and t

(≤,0)−−−→ x̃, for each clock
x ∈ R. Let G1 be the distance graph obtained by canonicalizing G′1. We will
show that the set of valuations defined by G1 is [R]Z, i.e., [[G1]] = [R]Z.

Consider edges of the form ỹ −→ z̃ in G1, where y, z 6∈ R. We now show
that the weight of such edges does not change from GZ to G1. First, observe
that the first step in this transformation, i.e., removal of edges, cannot lead
to lighter paths in distance graphs. Next, we inspect whether the newly
added edges of weight (≤, 0) between x̃ and t (from x̃ to t and t to x̃) where
x ∈ R can contribute to a lighter path from ỹ to z̃ in G′1. Suppose that there
was a lighter path from ỹ to z̃ using such a newly added edge between x̃ and
t. Consider the shortest and the lightest path.

• Suppose that the new lighter path used the x̃
(≤,0)−−−→ t edge. Since there

are no other incoming edges to x̃, the path cannot reach x̃ without first
going to t. However, this would imply that this lighter path is of the
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form ỹ → · · · ũ → t
(≤,0)−−−→ x̃

(≤,0)−−−→ t → s̃ → · · · z̃. Removing the part

t
(≤,0)−−−→ x̃

(≤,0)−−−→ t of weight 0 yields a path ỹ → · · · ũ → s̃ → · · · z̃ in
GZ whose weight is the same. But this is a contradiction, as we have
taken the shortest path.

• Suppose that the new lighter path is of the form ỹ → · · · t −→ x̃ −→
ũ −→ · · · −→ z̃. Recall that the only outgoing edge from x̃ in G′1 is to t.
As a consequence, if there is an edge x̃ to ũ in G1, it is because of a

path x̃
(≤,0)−−−→ t −→ ũ. But this implies that our path can be rewritten

as ỹ −→ · · · t (≤,0)−−−→ x̃
(≤,0)−−−→ t −→ ũ −→ · · · −→ z̃. The same argument as in

the previous case applies.

Once again, we can remove the smaller cycle t
(≤,0)−−−→ x̃

(≤,0)−−−→ t of weight
0 to obtain the path ỹ → · · · ũ → s̃ → · · · z̃ in GZ , whose weight is
lesser than the weight of the edge ỹ −→ z̃. As in the first case, this leads
to a contradiction.

This shows that the weight of an edge ỹ −→ z̃ such that y, z 6∈ R does not
change from GZ to G1.
We will now show that [[G1]] = [R]Z

[R]Z ⊆ [[G1]]: Pick v′ ∈ [R]Z. We know that v′ = [R]v for some v ∈ Z.
We have v′(t) = v(t), v′(t)−v′(x̃) = v(t)−v(x̃) if x /∈ R and v′(t)−v′(x̃) = 0
if x ∈ R. It follows that v′ satisfies all the constraints of G1. Hence,
[R]Z ⊆ [[G1]].

[[G1]] ⊆ [R]Z: Consider a valuation v ∈ [[G1]]. We construct a new
distance graph G′ whose edges are as follows:

• For clocks x 6∈ R, G′ has the edges t
(≤,v(x̃)−v(t))−−−−−−−−→ x̃ and x̃

(≤,v(t)−v(x̃))−−−−−−−−→
t.

• For clocks x, y 6∈ R, G′ has the edge x̃
(≤,v(ỹ−x̃))−−−−−−−→ ỹ.

• For clocks x ∈ R, there are no edges involving x̃ in G′. This signifies
that the weight of such an edge is (<,∞).

Notice that v ∈ [[G′]]. Also, observe that G′ is a canonical zone.
Observe that a solution to GZ ∩G′ gives a valuation v′ such that

• v′ satisfies all the constraints of GZ .

• v and v′ agree on all the constraints involving clocks that are not reset.

• since v ∈ [[G1]], for all clocks x ∈ R, we have v(x̃) = v(t).
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It is easy to see that v′ ∈ Z and v is obtained by a reset from v′. Therefore,
we have v ∈ [R]Z.

Now, we need to show that GZ ∩G′ is non-empty. Suppose that there is
a negative cycle in GZ ∩G′. Since there were no negative cycles in GZ or G′,
the new negative cycle should contain edges from both GZ and G′. Further,
since both GZ and G′ are canonical, the negative cycle should alternate
between edges of GZ and G′.

Consider an edge x̃ −→ ỹ, where x, y 6∈ R. Recall that the weight of such
edges does not change from GZ to G1. Since v ∈ [[G1]], we know that

v(ỹ)− v(x̃) ≤ c, (2.1)

where (≤, c) is the weight of the edge x̃ −→ ỹ in GZ . Further, observe that
the weight of the edge x̃ −→ ỹ in G′ has weight v(ỹ) − v(x̃). From 2.1, we
can see that this edge in GZ ∩ G′ has to be from G′. Thus, all edges in
GZ ∩G′ of the form x̃ −→ ỹ where x, y 6∈ R come from G′. This implies that
the negative cycle cannot be limited to the offset clocks that were not reset.

Also, observe that since there are no edges in G′ involving clocks x̃ where
x ∈ R, any edges involving these clocks must come from GZ . Suppose our
negative cycle contained a clock x̃ such that x ∈ R. By our criterion for
the negative cycle, either the incoming or the outgoing edge associated to x̃
should come from G′, which we know is not possible as there are no edges
associated to s in G′. Consequently, this implies that the negative cycle
cannot involve clocks that are reset.

Thus, from the above observations, it is clear that the negative cycle
cannot be restricted to just offset clocks - it should pass through t.

Let the negative cycle be of the form

x̃ −→ · · · −→ ỹ −→ t −→ z̃ −→ ũ −→ · · · −→ x̃

Suppose that the edge t −→ z̃ comes from G′. Then, the edge z̃ −→ ũ should
come from GZ . However, since u /∈ R, we know that the edge z̃ −→ ũ in
GZ ∩G′ comes from G′, which is contrary to our requirement. Thus, the edge
t −→ z̃ comes from GZ . As a consequence, the incoming edge to t, namely,
ỹ −→ t, should be from G′.

We have already seen that all the edges of the form x̃ −→ ỹ such that
x, y 6∈ R can only be from G′. Since G′ is canonical we can replace all these
edges by a single edge to get the negative cycle

x̃ −→ t −→ z̃ −→ x̃

Further, since x̃ −→ t and z̃ −→ x̃ are both from G′, we can replace it by a
single edge. Thus, the situation boils down to a negative cycle of just 2 edges
of the form

z̃
(l,k1)−−−−→ t

(l,k2)−−−−→ z̃
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where the edge z̃
(l1,k1)−−−−→ t is from G′ and the edge t

(l2,k2)−−−−→ z̃ is from GZ .
From our assumption, since this is a negative cycle, we have (l1, k1) +

(l2, k2) < (≤, 0). Since we know that k1 = v(t)− v(z̃), this implies

v(t)− v(z̃) + k2 < 0

We know that the edge t→ z̃ in G1 is unchanged from GZ , since z 6∈ R.
Further, since we know that v ∈ [[G1]], we have v(z̃) − v(t) ≤ k2, which
implies

v(t)− v(z̃) + k2 ≥ 0

This is a contradiction. Thus, our assumption that there was a negative
cycle was wrong.

Time-elapse: Let G1 be the distance graph obtained by removing from
GZ , the edges of the form x̃ → t for each x ∈ X. We will show that

[[G1]] =
−→
Z .

First observe that G1 is canonical. We know that GZ is canonical - so,
the lightest path between any two clocks x̃ and ỹ is the weight of the edge
between the two clocks. The transformation from GZ to G1 only involves
the removal of some edges which cannot lead to lighter paths.−→
Z ⊆ [[G1]]: Let v′ ∈

−→
Z . We know that v′ = v + δ for some v ∈ Z. This

means that v′ is obtained by increasing the value of the reference clock t
from v, while keeping the values of the offset clocks unchanged. This gives
v′(x̃)− v′(ỹ) = v(x̃)− v(ỹ) and v′(t)− v′(x̃) ≥ v(t)− v(x̃) for all offset clocks
x̃, ỹ. Since v ∈ Z and hence satisfies the constraints in [[G1]], it follows that
v′ satisfies them as well.

[[G1]] ⊆
−→
Z : Consider v ∈ [[G1]].

We construct a new distance graph G′ with the following edge information:

• For all clocks x̃ ∈ X̃, we have the edges x̃
(≤,v(t)−v(x̃))−−−−−−−−→ t.

• We do not have edges of the form t −→ x̃.

• For clocks x̃, ỹ ∈ X̃, we have edges x̃
(≤,v(ỹ)−v(x̃))−−−−−−−−−→ ỹ.

Observe that G′ is canonical. We remark that a valuation that satisfies the
constraints in G′ need not satisfy x̃ ≤ t, and consequently, need not be an
offset valuation. Further, note that [[G′]] is non-empty as v ∈ [[G′]]. Thus, G′

does not have a negative cycle.
A solution to GZ ∩ G′ gives a valuation v′ such that v′ ∈ Z and v is

obtained by a time elapse elapse from v′, and hence will imply v ∈
−→
Z . We

will now show that GZ ∩G′ is non-empty. Suppose that there is a negative
cycle in GZ ∩G′. Since there was no negative cycle in GZ or G′, the new
negative cycle should contain edges from both the distance graphs. Further,
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since both GZ and G′ are canonical, the negative cycle should alternate
between edges of GZ and G′.

Recall that the edges between offset clocks, say x̃ and ỹ, do not change
from GZ to G1. Since v ∈ [[G1]], it follows that v(x̃)− v(ỹ) ≤ c, where (≤, c)
is the weight of the edge x̃ −→ ỹ in GZ . In other words, for each edge of the
form x̃ −→ ỹ, the weight of this edge in G′ is smaller than the weight of the
edge in GZ . As a consequence, we know that all edges of the form x̃ −→ ỹ in
GZ ∩G′ come from G′.

From the above observations, it is clear that the negative cycle should pass
through t. Let the negative cycle be of the form z̃ −→ · · · x̃ −→ t −→ ỹ −→ · · · −→ z̃.
Since the edge t −→ ỹ has weight (<,∞) in G′, we know that this edge should
come from GZ . Further, since the edges should alternate between GZ and
G′, the x̃ −→ t edge should come from G′.

Consider the segment x̃ −→ t −→ ỹ of this negative cycle - let this segment
have weight (l, k). Clearly, (l, k) is less than the weight of the edge
x̃ −→ ỹ in G′ (which is equal to (≤, v(ỹ − x̃))), or we would have used this
edge for the negative cycle. Thus, (≤, v(ỹ − x̃)) > (l, k) which implies
(≤, v(x̃ − ỹ)) + (l, k) < (≤, 0). This implies that x̃ −→ t −→ ỹ −→ x̃ is a
negative cycle. Since both x̃ −→ t and ỹ −→ x̃ edges come from G′ and G′ is
canonical, we can replace these two edges by a single edge. We now have
the negative cycle ỹ −→ t −→ ỹ, where ỹ −→ t edge comes from G′ with weight
(≤, v(t− ỹ)), and t −→ ỹ edge with weight (l, k) comes from GZ .

Recall that v ∈ [[G1]], and G1 has the same incoming edges to t as in GZ .
This implies that v(ỹ − t) l k. In other words, we have

(≤, v(ỹ − t)) ≤ (l, k) (2.2)

We know that ỹ
(≤,v(t−ỹ))−−−−−−→ t

(l,k)−−−→ ỹ is a negative cycle. From 2.2, we know
that if we replace the weight of the t −→ ỹ edge by (≤, v(ỹ − t)), which is the
weight of the t −→ ỹ edge in G′, we should still have a negative cycle. But
this is a contradiction, as we know that G′ does not have negative cycles.
Thus, our assumption that GZ ∩G′ has a negative cycle was wrong. As a
consequence, we know that Z ∩ [[G′]] is not empty.

2.7. Offset zone graph

As already discussed in Section 2.5, if we start with (q,W ), where W is a
standard zone, then the set of valuations W ′ in (q′,W ′) obtained after an
execution of a symbolic transition (see Definition 2.20) is also a standard
zone [BY03]. Further, the set of all valuations reachable by time-elapse from
the initial valuation v0 is also a zone. It follows that if we start from (q0,W0),
any sequence of symbolic transitions yields a node (q,W ), where W is a
zone.
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This observation allows to construct a transition system called the zone
graph, whose nodes are (state, zone) pairs [BY03]. We have already discussed
offset zones and have established the correspondence between standard zones
and offset zones in Section 2.6. In this section, we build on these ideas and
propose the notion of a transition system called offset zone graph, whose
nodes are (state, offset zone) pairs. This graph may be viewed as the analogue
of the standard zone graph in the offset setting.

Definition 2.34 (Offset zone graph). The offset zone graph OZG(A) of a
timed automaton A := (Q,Σ, X, T, q0, F ) is a transition system whose

• nodes are of the form (q,Z), where q ∈ Q and Z is a time-elapsed
offset zone.

• transition relation is defined as follows:

(q,Z)
a−−→ (q′,Z ′) if

q
a,g−−→
R

q′ is a transition in T and Z ′ =
−−−−−−−→
[R](Z ∧ g) is non-empty.

• initial state is of the form (q0,Z0), where Z0 is the initial zone, which is
the set of valuations obtained by time-elapse from an initial valuation
v0, i.e., Z0 = {v0 + δ | δ ∈ R≥0}.

• accepting state is of the form (q,Z), where q ∈ F .

Figure 2.7 gives a timed automaton and its offset zone graph.
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(a) A timed automaton A
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t− x̃ ≥ 0 t− ỹ ≥ 0
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(b) Offset zone graph of A

Figure 2.7: A timed automaton and its offset zone graph

We state below the Pre and Post properties of runs on offset zones.
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Lemma 2.19 (Pre and Post properties of offset zones). Let A be a timed
automaton and OZG(A) be the offset zone graph of A. Let σ be a sequence
of actions.

• Suppose that (q, v)
σ−→ (q′, v′) is a run of A and (q,Z) is a node of

OZG(A) with v ∈ Z. Then, there is a path (q,Z)
σ−→ (q′,Z ′) in OZG(A)

such that v′ ∈ Z ′.

• Suppose that (q,Z)
σ−→ (q′,Z ′) is a path in OZG(A) and v′ ∈ Z ′. Then,

there is a run of A of the form (q, v)
σ−→ (q′, v′) such that v ∈ Z.

2.8. Making zone graphs finite

The reachability problem for timed automata is reduced to the reachability in
the offset zone graph of timed automata (see Definition 2.34). However, the
zone graph of a timed automaton may not be finite. Therefore, an algorithm
that decides the reachability problem for a timed automaton by exploring
its zone graph is not guaranteed to terminate. To ensure termination of this
algorithm, some finite truncation of this zone graph is needed.

We define an abstraction operator, which is a function mapping sets of
valuations to sets of valuations [BBLP06, DT98, HSW12, GMS19, BBFL03].

Definition 2.35 (Abstraction operator [BBFL03]). An abstraction operator

a : P(RX̃′≥0) → P(RX̃′≥0), where X̃ ′ = X̃ ∪ {t}, is a function from sets of
offset valuations to sets of offset valuations such that W ⊆ a(W ) and
a(a(W )) = a(W ), where W is a set of offset valuations. An abstraction
operator is finite, if its range is finite.

Remark. Abstraction operators, as found in the standard literature on
timed automata [BBFL03, DT98, HSW12], are normally defined for standard
valuations. However, since our work mainly deals with offset valuations, we
adapt the definitions to the offset setting.

An abstraction operator a defines an abstract semantics, referred to as
the simulation graph of the automaton based on a, whose definition follows.

Definition 2.36 (Simulation graph based on an abstraction). Given a timed
automaton A, and an abstraction operator a, the simulation graph of A
based on a, denoted by SGa(A), is a transition system whose

• states are of the form (q,W ), where q is a state of A and W is a set of
offset valuations.

• initial state is of the form (q0,W0), where W0 = a(Z0), where Z0 is
the initial zone, i.e., Z0 = {v0 + δ | δ ∈ R≥0}, where v0 is an initial
valuation.
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• transition relation is:

(q,W )
t−→a (q′, a(W ′))

if W = a(W ) and W ′ = {v′ | ∃ v ∈ W, ∃ δ ∈ R≥0 s.t. (q, v)
t−→ δ−→

(q′, v′)} is non-empty.

We now define when SGa(A) is said to be sound and complete for a timed
automaton A and an abstraction operator a.

Soundness: SGa(A) is said to be sound if for every path (q0,W0)
ρ−→a

(q,W ) in SGa(A) where W0 = a(Z0) is the abstraction of the initial zone,

there are valuations v0 ∈ Z0 and v ∈W such that (q0, v0)
ρ−→ (q, v).

Completeness: SGa(A) is said to be complete if for every run of A of
the form (q0, v0)

σ−→ (q, v), there is a path in SGa(A) of the form (q0,W0)
σ−→a

(q,W ), such that v ∈W .
From the definitions of soundness and completeness of SGa(A), it is clear

that if we can compute an abstraction operator a such that SGa(A) is sound,
complete and finite, then it is sufficient to explore SGa(A) to decide the
reachability problem for A. In the next section, we discuss ways to design
such abstraction operators which give rise to sound, complete and finite
simulation graphs.

Abstractions from simulations

A convenient way to construct abstraction operators is using simulation
relations between valuations. We formalize this notion by using the idea of a
time-abstract simulation (see Definition 2.18).

An abstraction a based on �A is defined as

a(W ) = {v | ∃v′ ∈W with v �A v′}

Next, in Lemmas 2.20 and 2.21, we show some properties of the transitions
of the simulation graph of a timed automaton. We then use these properties
in Lemma 2.23 to prove that the simulation graph of a timed automaton is
sound and complete.

Lemma 2.20. Let W be an arbitrary set of valuations. If (q,W )
b−→ (q1,W1)

and (q, a(W ))
b−→a (q1,W

′
1), then W ′1 = a(W1).

Proof. Recall that (q, a(W ))
b−→a (q1,W

′
1) stands for (q, a(W ))

b−→ (q1,W
′′
1 )

and W ′1 = a(W ′′1 ).
To show a(W1) ⊆ W ′1 we observe that W ⊆ a(W ) by the definition of

the abstraction. Then, W1 ⊆W ′′1 by the definition of the transition. Finally,
a(W1) ⊆ a(W ′′1 ) = W ′1 by the monotonicity of the abstraction.

To show that W ′1 ⊆ a(W1), consider v′1 ∈ W ′1 = a(W ′′1 ). By definition,
there is v′′1 ∈ W ′′1 such that v′1 �A v′′1. From the definition of transition
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(q, a(W ))
b−→ (q1,W

′′
1 ), we get a valuation v′ ∈ a(W ) such that (q, v′)

δ−→ b−→
(q′, v′′1) for some δ, Since v′ ∈ a(W ), there is v ∈ W with v′ �A v and a

transition (q, v)
δ′−→ b−→ (q′, v′′′1 ), for some δ′ and some v′′′1 with v′′1 �A v′′′1 . We

have v′′′1 ∈W1 by the definition of W1. Moreover, v′1 �A v′′1 �A v′′′1 , showing
that v′1 ∈ a(W1).

Using the property given in Lemma 2.20 and the definition of the simula-
tion graph, we now show that there is a path σ in the offset zone graph to a
node (q,Z) if and only if there is a path σ to (q, a(Z)).

Lemma 2.21. Let (q0,Z0)
σ−→ (qn,Zn) be a path in OZG(A). Then, there

exists a path (q0,W0)
σ−→a (qn,Wn) in SGa(A), such that Wn = a(Zn).

Proof. Let the path σ = b · σ′ be as follows: (q0,Z0)
b−→ (q1,Z1)

σ′−→ (qn,Zn).

Take W0 = a(Z0). Consider (q0,W0)
b−→a (q1,W1). By Lemma 2.20, it

follows that W1 = a(Z1). Repeating the same argument with W1 and Z1, we
eventually get a path (q0,W0)

σ−→a (qn,Wn) in SGa(A) with Wn = a(Zn).

Lemma 2.22. Let (q0,W0)
σ−→a (q,W ) be a path in SGa(A). There exists a

run in A of the form (q0, v0)
σ−→ (q, v), where v0 ∈W0 and v ∈W .

Proof. Using Lemma 2.20, we know that there is a path (q0,Z0)
σ−→ (q,Z)

with W0 = a(Z0) and W = a(Z). For every v ∈ Z, by the pre property
of offset zones, there is a run of A of the form (q0, v0)

σ−→ (q, v) for some
v0 ∈W0.

Lemma 2.23. If a is based on a time-abstract simulation for A, then SGa(A)
is sound and complete.

Proof. The soundness of SGa(A) follows from Lemma 2.22.
For completeness, consider a run of A of the form (q0, v0)

σ−→ (q, v). By
Lemma 2.19, we know that there is a run in OZG(A) of the form (q0,Z0)

σ−→
(q,Z), such that v ∈ Z. By Lemma 2.21 we get (q0,W0)

σ−→ (q,W ) in SGa(A)
such that Z ⊆W . Thus, we have the completeness of SGa(A).

Lemma 2.23 suggests that one can use the abstraction based on the
coarsest simulation relation for a given automaton. However, it is known
that computing the coarsest simulation relation for a given timed automaton
is Exptime-hard [LS00]. Therefore, in the next section we explore if it is
actually possible to compute some (not necessarily the coarsest) finite-time
abstract simulation for a timed automaton.
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Abstractions from the structure of the timed automaton

Instead of computing the coarsest relation for a given timed automaton, we
look at some easily computable parameters and base the simulation relation
on them. These parameters will be the maximal constants used in guards of
the automaton. We then introduce a relation between offset valuations that
is a time-abstract simulation for all automata whose guards are within the
constants used to define the relation. This relation turns out to be easier
to compute than the coarsest time-abstract simulation relation for a timed
automaton [HSW12].

Behrmann et al. [BBLP06] introduced a preorder relation �LU between
standard valuations. Here, L and U are functions bounding the constants that
can be used in guards. We adapt this to the offset setting to define a preorder
relation �LU between offset valuations. We then show that this preorder
relation is actually a time-abstract simulation for every timed automaton
with constants in guards bounded by L and U . The definition of �LU directly
gives efficiently computable conditions to decide if two valuations are related
by �LU .

To help us to define �LU , we now introduce the notion of LU bounds for
a timed automaton. Consider two functions L,U : X → N∪{−∞} assigning
to each clock a bound that is a natural number or −∞. Intuitively, −∞
means that the clock is not used. We say that a guard g conforms to L and
U if

• for every upper bound constraint in g of the form x < c or x ≤ c, we
have c ≤ U(x).

• for every lower bound constraint in g of the form x > c or x ≥ c, we
have c ≤ L(x).

Observe that if L is not bigger than L′ in the pointwise ordering, meaning
that L(x) ≤ L′(x) for every clock x, then, when g conforms to L, it also
conforms to L′. Similarly for U .

Definition 2.37 (LU bounds for an automaton). Given a timed automaton
A, the LU bounds for A are the smallest functions L and U , such that all
the guards on all the transitions of A conform to L and U .

We recall the definition of LU-preorder between standard valuations, as
given in [BBLP06].

Definition 2.38 (LU-preorder). Given two standard valuations v and v′,
we say v �LU v′ if for all clocks x ∈ X :

• either v(x) = v′(x),

• or L(x) < v′(x) ≤ v(x),
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• or U(x) < v(x) ≤ v′(x).

We now define LU-preorder between offset valuations by adapting Defini-
tion 2.38 to the offset setting,using the translation from offset valuations to
standard valuations.

Definition 2.39 (LU-preorder for offset valuations). Let v and v′ be offset
valuations. v �LU v′ if and only if for all x ∈ X

• either v(t)− v(x̃) = v′(t)− v′(x̃)

• or Lx < v′(t)− v′(x̃) ≤ v(t)− v(x̃)

• or Ux < v(t)− v(x̃) ≤ v′(t)− v′(x̃)

Lemma 2.24. v �LU v′ iff std(v) �LU std(v′).

Proof. The proof follows from Definition 2.11 and Definition 2.38.

Lemma 2.25. If A is a timed automaton whose guards conform to LU , then
the relation �LU is a time-abstract simulation for A.

Proof. Let v �LU v′. Consider a delay of δ from the valuation v. It is easy
to see that v + δ �LU v′ + δ, since the differences of the form t− x̃ increase
by the same value in both v + δ and v′ + δ.

Next, consider an action transition a from the state (q, v) with guard g
and reset R. We show that if v |= g, then v′ |= g. Let g be of the form x ≤ c.
For an offset clock, there are three possibilities for the difference t− x̃.

• v(t− x̃) = v′(t− x̃). It is clear that v |= g iff v′ |= g.

• Lx < v′(t − x̃) ≤ v(t − x̃). Let v |= g. This means that v(t − x̃) ≤ c.
But since v′(t − x̃) ≤ v(t − x̃), it follows that v′(t − x̃) ≤ c. Hence,
v′ |= g.

• Ux < v(t−x̃) ≤ v′(t−x̃). Since c ≤ Ux, we have c < v(t−x̃). Therefore,
v |= g is never true.

Suppose that g is of the form x ≥ c. Again, there are three possibilities
for the difference t− x̃.

• v(t− x̃) = v′(t− x̃). It is clear that v |= g iff v′ |= g.

• Lx < v′(t − x̃) ≤ v(t − x̃). It may be observed that v′ |= g is always
true, since v′(t− x̃) > Lx ≥ c.

• Ux < v(t − x̃) ≤ v′(t − x̃). v |= g implies that v(t − x̃) ≥ c. Since
v′(t− x̃) ≥ v(t− x̃), we can observe that v′(t− x̃) ≥ c and therefore
v′ |= g.
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Since v′ |= g is true whenever v |= g is true, it is clear that (q, v′)
can execute the action a if (q, v) can execute a. Let (q, v)

a−→ (q′, v1) and
(q, v′)

a−→ (q′, v′1). If a clock x is reset, then the differences t − x̃ and x̃ − t
get set to 0 in the resultant valuation. This implies that t− x̃ and x̃− t get
set to 0 in v1 and v′1. Since resets leave the other differences unaltered, it is
clear that v1 �LU v′1.

In the following we will use a4LU , the abstraction operator based on the
time-abstract simulation relation �LU . For the sake of completeness, we
formally define it below.

Definition 2.40 (a4LU abstraction). Given bounds L and U for a network
of timed automata, for a set of valuations W we define:

a4LU(W ) = {v | ∃v′ ∈W s.t. v �LU v′}

Next, we define when a zone is a4LU -simulated by another zone.

Definition 2.41 (a4LU simulation for zones). Given zones Z and Z ′, we say
Z is a4LU simulated by Z ′ if Z ⊆ a4LU(Z ′).

We now proceed to show that this abstraction operator has finite range
when applied over zones. This is done using the notions of region and
neighbourhood introduced earlier in Definitions 2.15 and 2.16.

Lemma 2.26. Let M be the maximal value of L and U functions. If v �LU v′
and v1 ∈ [v]M , then there is a valuation v′1 ∈ nbd(v′) such that v1 �LU v′1.
In particular v′1 ∈ [v′]M .

Proof. For simplicity we prove the lemma for standard valuations. The proof
for offset valuations follows the same lines, but needs to talk about differences
between v(t) and v(x) which complicates the writing.

We partition the set of clocks into three subsets:

• big clocks: are clocks x such that v(x) > M ;

• fixed clocks: are clocks z such that v(z) < min(L(x), U(x));

• flexible clocks: are clocks y that are none of the above.

Consider a valuation v1 ∈ [v]M . We need to find a valuation v′1 ∈ nbd(v′).
For big clocks, we set v′1(x) = v′(x). Similarly, for fixed clocks, v′1(z) = v′(z).
For the flexible clocks, we need to work bit more. The integer part of flexible
clocks is determined: requirement v′1 ∈ nbd(v′) implies that the integer part
of v′1(y) must be the same as the integer part of v′(y) for every clock.

We need to define the values of the fractional parts of flexible clocks.
For this, we list the flexible clocks in an arbitrary order, say y1, . . . , yl
and find the fractional part of the v′ value of one flexible clock after the
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other. Observe that the order of fractional parts of fixed and flexible clocks
is the same in v and v1, because of v1 ∈ [v]M . Moreover the order of
fractional parts of fixed clocks in v′ is by definition the same as in v. So, the
order of fractional parts of v(z1), . . . , v(zk), v(y1), . . . , v(yl) is the same as of
v1(z1), . . . , v1(zk), v1(y1), . . . , v1(yl).

We proceed by induction on i = 0, . . . , l. Suppose that the order of
fractional parts of v(z1), . . . , v(zk), v(y1), . . . , v(yi), v

′(y1), . . . , v′(yi) is the
same as that of v1(z1), . . . , v1(zk), v1(y1), . . . , v1(yi), v

′
1(y1), . . . , v′1(yi). The

base case of i = 0 is true by the above paragraph. We find the value of the
fractional part of v′1(yi+1) that would make this statement true also for yi+1.
This is quite direct. Suppose that v′(yi+1) is between v(za) and v′(yb) for
b ≤ i. Then, we choose for v′(yi+1) the fractional value that will put it in
between v(za) and v′(yb). This is always possible as real numbers are dense.
There is a special case when v′(yi+1) is equal to some of the other values,
say v(za), but in that case, we just put v′1(yi+1) = v(za).

Thus, we have constructed a valuation v′1 ∈ nbd(v′) such that the order
of the fractional parts in v(z1), . . . , v(zk), v(y1), . . . , v(yl), v

′(y1), . . . , v′(yl) is
the same as in v(z1), . . . , v(zk), v1(y1), . . . , v1(yl), v

′
1(y1), . . . , v′1(yl).

We claim that v′ �LU v′1. For this, we look at the definition of the �LU
preorder (Definition 2.38). We observe that from v′ ∈ [v]M , we can infer that
if v(x) > L(x), then v1(x) > L(x); and analogously for U(x).

If x is a big clock, then v(x) > L(x), U(x). This means that v′(x) > L(x).
By the observation from the previous paragraph v1(x) > L(x), U(x). Since
v′1 ∈ nbd(v′), we have v′1 > L(x), and we are done.

If z is a fixed clock, then v(z) = v′(z), and v1(z) = v′1(z); so we are done
also in this case.

If y is a flexible clock, then we have two cases. If v(y) > L(y), then
L(y) ≤ v′(y) ≤ v(y). From v′ ∈ [v]M , we deduce that the integer parts of
v′(y) and v(y) are the same. From v′1 ∈ nbd(v′), we deduce that the integer
parts of v′1(y) and v′(y) are the same. Thus, we have L(y) ≤ v1(y), v′1(y).
If the integer parts of v′(y) and v(y) are different, then we get as desired
v1(y) ≤ v′1(y). If they are the same, then we get v1(y) ≤ v′1(y) because we
have taken care of the order of fractional parts when constructing v′1. The
argument when v(y) > U(x) is analogous.

Lemma 2.9 which gives a bijection between standard regions and offset
regions and Lemma 2.24 which gives the relation between �LU equivalence
for standard valuations and offset valuations allow us to state Lemma 2.26
for offset valuations also.

Corollary 2.2. Let M be the maximal value of L and U functions. If
v �LU v′ and v1 ∈ [v]M , then there is a valuation v′1 ∈ nbd(v′) such that
v1 �LU v′1. In particular v′1 ∈ [v′]M .
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Lemma 2.27. If W is closed under region equivalence relation ≡M , for M
the maximum of L and U functions, then so is a4LU(W ).

Proof. We show that for arbitrary W as in assumption of the lemma, if
a valuation v ∈ a4LU(W ), and v1 ∈ [v]M , then v1 ∈ a4LU(W ) (see Defini-
tion 2.15).

As v ∈ a4LU(W ), there is v′ ∈W such that v �LU v′. By Corollary 2.2,
we know that there exists a valuation v′1 ∈ nbd(v′) such that v1 �LU v′1. Since
W is neighborhood closed, v′1 ∈W , and in consequence v1 ∈ a4LU(W ).

From the discussion above it is clear that a4LU(W ) is a union of M -
regions, for every zone W . From Lemma 2.10, we know that the number of
M -regions is finite. This implies that the number of distinct sets a4LU(W )
is finite. Thus, a4LU(W ) has finite range.

Lemma 2.28. SGa4LU(A) is finite, sound and complete.

Proof. The soundness and completeness of SGa4LU(A) follows from Lemma
2.23. The finiteness of SGa4LU(A) follows from Lemma 2.27, which says that
a4LU .

Since SGa4LU(A) is an abstraction of the zone graph of A which is sound,
complete and finite, checking the reachability of a state of the timed automa-
ton A can be done by exploration of SGa(A).

2.9. Standard reachability algorithm

In this section, we present the standard reachability algorithm for timed
automata using the ideas introduced in this chapter. The algorithm takes as
input a timed automaton A := (Q,Σ, X, T, q0, F ), computes its LU bounds
(Definition 2.37), and constructs a simulation graph SGa(A) as in Defini-
tion 2.36 using the abstraction a4LU from Definition 2.40.

Thanks to Lemma 2.20, the algorithm can store pairs (q,Z) and not
(q, a4LU(Z)). This is important as a4LU(Z) may not be a zone, so we do not
have an efficient way to store a4LU(Z). What we need instead is an efficient
method to test a4LU(Z) ⊆ a4LU(Z ′). Observe that by monotonicity, this
is equivalent to a test Z ⊆ a4LU(Z ′). We prefer a more compact notation
Z va

LU Z ′ instead of Z ⊆ a4LU(Z ′).
Algorithm 1 starts the exploration from the initial node (q0,Z0). It keeps

a list Visited of all the nodes constructed by the algorithm, and a list Waiting
of nodes that have been constructed but whose successors have not been
computed yet. In the beginning, both lists contain the initial node (q0,Z0).
In each iteration, the algorithm removes a node from Waiting and adds to
Waiting all its successors. There are two exceptions to this behavior. First,
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if an accepting state is reached, then the algorithm terminates. Second, if
a node to be inserted to Waiting is va

LU smaller than some already visited
node, then there is no point in adding it to Waiting.

We also optimize the algorithm further, by adding the following step:
whenever a node (q,Z) is added to Waiting and Visited, we remove any node
(q,Z ′′) in Waiting and Visited such that Z ′′ va

LU Z. We will show that this
does not affect the correctness of the algorithm.

Algorithm 1 Reachability algorithm for a timed automaton

Input : Timed automaton A := (Q,Σ, X, T, q0, F ).
Output : true iff A has a run reaching an accepting state.

1: Set Waiting = Visited := {(q0,Z0)}
2: if q0 is accepting then return true

3: while Waiting 6= ∅ do
4: remove some (q,Z) from Waiting
5: for all (q′,Z ′) s.t. (q,Z)

a−→ (q′,Z ′) for some a do
6: if q′ is accepting then
7: return true
8: else if ∃ (q′,Z ′′) ∈ Visited s.t. Z ′ va

LU Z ′′ then
9: Skip

10: else
11: for (q′,Z ′′) ∈ Visited do
12: if Z ′′ va

LU Z ′ then
13: Remove (q′,Z ′′) from Visited and Waiting

14: Add (q′,Z ′) to Waiting and Visited

15: return false

Correctness of the algorithm

We will now prove that Algorithm 1 is correct. The soundness of the algorithm
is given by Lemma 2.30, while the completeness follows from Lemma 2.33.

Lemma 2.29. If a node (q,Z) is in the list Waiting of Algorithm 1, then A
has a run (q0, v0) to (q, v), for some valuation v ∈ Z.

Proof. Directly from the algorithm, we see that if (q,Z) is in Waiting, then
there is a sequence of actions σ such that (q0,Z0)

σ−→ (q,Z). The claim of
the lemma follows from Lemma 2.22.

Lemma 2.30. (Soundness) If Algorithm 1 returns true, then A has an
accepting run.

Proof. Algorithm 1 can return true by either executing line 2 or line 7.
Line 2 is only executed in the special case when the initial state q0 of A
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is an accepting state - we know that in this case, the claim is vacuously
true. Next, consider the case when line 7 is executed. We can infer from the
algorithm that this happens only when a node (q,Z) has just been removed
from Waiting, and (q,Z)

a−→ (q′,Z ′) is such that q′ is an accepting state. By
Lemmas 2.29 and 2.22, we know that A has an accepting run.

Lemma 2.31. If a node (q,Z) is added to Visited at some step of Algorithm 1,
then at each step afterwards there is a node (q,Z ′) in Visited such that
Z va

LU Z ′.

Proof. Suppose that a node (q,Z) was added to Visited at some stage of
Algorithm 1. If (q,Z) is in Visited until the termination of the algorithm,
then we are done. Suppose not. We can see that line 13 is the only step of
the algorithm that removes a node (q,Z) from Visited. But in this case, we
can observe that another node (q,Z ′) is added to Visited such that Z va

LU Z ′.
Again, if (q,Z ′) is removed at a later point in the algorithm, then by the
same argument, we know that another state (q,Z ′′) such that Z ′ va

LU Z ′′ is
added to Visited.

Lemma 2.32. Let σ be path in OZG(A):

(q0,Z0)
a1−→ (q1,Z1)

a2−→ · · · (qn−1,Zn−1)
an−→ (qn,Zn).

If Algorithm 1 does not return true at the termination, then for every 0 ≤
i ≤ n there exists a state (qi,Z ′i) in the set Visited such that Zi va

LU Z ′i.

Proof. Suppose that Algorithm 1 does not return true. We will give a proof
by induction on the number of transitions in σ.

Base case: The node (q0,Z0) is added to Visited in Line 1 of the
algorithm. By Lemma 2.31, until the end of the execution of the algorithm,
there is some node (q0,Z ′) ∈ Visited such that Z0 va

LU Z ′.
Induction step: By induction hypothesis, there exists a node (qi,Z ′i)

in Visited, such that Zi va
LU Z ′i. Assume w.l.o.g. that (qi,Z ′i) is a maximal

node in Visited with respect to va
LU ordering. Since (qi,Z ′i) is in Visited, we

know that it must have also been in Waiting at some stage of the algorithm.
Further, since we know that the algorithm terminated when Waiting is empty,
at some stage of the algorithm, this node (qi,Z ′i) must have been removed
from Waiting.

From the run σ, we know that (qi,Zi)
ai+1−−−→ (qi+1,Zi+1). From Lemma 2.25,

we know that va
LU is a simulation relation. So, (qi,Z ′i)

ai+1−−−→ (qi+1,Z ′i+1), for
some Z ′i+1 such that Zi+1 va

LU Z ′i+1. If this node is added to Visited, then
by Lemma 2.31, we know that until the end of the execution of the algorithm,
there is some node (qi+1,Z ′′i+1) ∈ Visited such that Zi+1 va

LU Z ′′i+1. In this
case, we are done.

Now, suppose that (qi+1,Z ′i+1) is not added to Visited. This could happen
due to two reasons:
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• (qi+1,Z ′i+1) is an accepting node. In this case, Algorithm 1 would have
terminated by returning true. But by our assumption, this is not the
case.

• There exists (qi+1,Z ′′i+1) in Visited such that Z ′i+1 va
LU Z ′′i+1. Since

Zi+1 va
LU Z ′i+1, by transitivity of va

LU , we can also conclude in this
case.

Lemma 2.33. (Completeness) If OZG(A) has a reachable accepting node,
then Algorithm 1 returns true.

Proof. Suppose that Algorithm 1 terminated by returning false. Then, by
Lemma 2.32, if there is a run to an accepting node (q,Z) of OZG(A), it
follows that (q,Z) is in Visited when the algorithm terminates. But this is
not possible as the accepting state is never added to Visited.

From Lemma 2.30 and Lemma 2.33, we can infer that Algorithm 1 is
correct. The termination of the algorithm is guaranteed by the finiteness of
a4LU , given by Lemma 2.27.

2.10. Partial order reduction

Concurrent systems, such as a network of processes, have several components
operating in parallel. We first set up some basic definitions and notation
before motivating the key ideas of partial order reduction techniques.

Definition 2.42 (Process). A process is a tuple 〈S,Σ, s0,−→, F 〉, where S
is a set of states, Σ is a finite alphabet of actions, −→ ⊆ S × Σ × S is a
transition relation between states, s0 ∈ S is an initial state and F ⊆ S is a
set of accepting states. We write s

a−→ s′ to denote that (s, a, s′) ∈ −→. We
sometimes refer to −→ as the successor relation of the process.

Given a process Ap and a state s of Ap, we say that action a is enabled

in state s if there exists a transition s
a−→ s′.

Definition 2.43 (Run of the process). A run of the process Ap from a state

s is a sequence of transitions starting in s: s
a1−→ s1

a2−→ s2 · · ·
an−→ sn. We

denote it by s
σ−→ sn where σ = a1 · a2 · · · an is a sequence of actions. We say

that a run is accepting if the final state of the run is an accepting state.

Definition 2.44 (Network of processes). Let Σ1,Σ2, . . . ,Σk be a collection
of finite alphabets, not necessarily disjoint. A network of processes is a tuple
〈A1, A2, . . . , Ak〉 where each Ai is a process given by (Si,Σi, s

0
i ,→i, Fi).
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For each action a ∈ Σ, we define the domain of the action a as the set of
processes participating in that action. Formally, dom(a) = {p | a ∈ Σp}.

We refer to the actions whose domain contains more than one process as
synchronization actions. All other actions are referred to as local actions.

Definition 2.45 (Semantics of a network). The semantics of a network of
processes N is given by a transition system TN = (S×,

⋃i=k
i=1 Σi, s

0
×,=⇒, F×)

where

• the set of states S× = S1 × S2 × · · · × Sk,

• the initial state s0
× = (s0

1, s
0
2, . . . , s

0
k),

• the set of final states F× = { (s1, s2, . . . , sk) | si ∈ Fi for all i },

• there is a transition (s1, s2, . . . , sk)
a

=⇒ (s′1, s
′
2, . . . , s

′
k) if

– for all i ∈ dom(a), action a is enabled in si

– si
a−→i s

′
i for all i ∈ dom(a), and s′i = si for all i 6∈ dom(a).

For each state s of TN , let Act(s) denote the set of transitions enabled
in s. Likewise, let Acti(s) denote the set of transitions enabled from s in
process Ai.

Verification of a network N is usually carried out by the exploration of
the transition system TN modelling the semantics of the network. A state
of the transition system TN is a tuple containing a state of each component
of N . This implies that the size of the state space of TN is the product of
the sizes of the state spaces of the components of N . As a consequence, the
size of the transition system modelling the semantics of the network grows
exponentially with respect to the number of components of the network.
This dramatic increase in state space is commonly referred to as state-space
explosion.

State-space explosion means that verification of a network by exhaustive
exploration of a transition system modelling the network is not a scalable
solution [CKNZ11]. Various solutions have been proposed to overcome the
challenge posed by state-space explosion [CG18, CGJ+03]. Partial order
reduction is one such technique that tries to reduce the size of the state space
of the transition system that needs to be explored in order to carry out the
verification of a system.

We now examine the underlying reasons for state-space explosion in
networks of processes. Consider the network of processes N1 depicted in
Figure 2.8. In this case, the transition system that is used to study N1 is
the product automaton of the network, denoted as AN1 . Observe that the
product automata of a network contains all possible orderings of concurrent
actions in the network. For example, in AN1 shown in Figure 2.8, there
are 3! paths that go from the initial state (p0, q0, r0) to the state (p1, q1, r1).



66 2. Preliminaries

A1 A2 A3

N1

p0

p1

p2

q0

q1

q2

r0

r1

r2

a1 b1

d d

c1

d

p0, q0, r0

p1, q0, r0 p0, q1, r0 p0, q0, r1

p1, q1, r0 p0, q1, r1 p1, q0, r1

p1, q1, r1

p2, q2, r2

a1 b1 c1

b1

c1

a1 c1 b1 a1

c1
a1

b1

d

AN1 = A1 ×A2 ×A3

Figure 2.8: A network of processes

These paths are essentially different interleavings of the actions a1, b1 and
c1 - in other words, they are actions a1, b1 and c1, executed in different
orders. In general, if we consider a sequence of n concurrent actions each
belonging to a different process, then there are n! different interleavings
of this sequence, one per each possible ordering of these actions. Thus, to
summarize, the fundamental reason for state-space explosion is that all the
orderings of concurrent actions in the network are feasible in the transition
system modelling the network.

However, the exploration of all the interleavings of concurrent actions may
not be necessary for the verification of a property. For instance, consider the
transition system T1 given in Figure 2.9. In T1, if we are only interested in the
reachability of the accepting state (p2, q2, r2), and do not care about the path
via which we reach this accepting state, we do not need to completely explore
T1. In this regard, all paths from (p0, q0, r0) to (p2, q2, r2) are equivalent.
Therefore, it suffices to explore only one of these paths; for instance, the
path given by red edges. We can consider a smaller transition system T r1
that is restricted to the states in T1 reachable via the red edges from its
initial state.

This is the idea behind partial order reduction: partial order reduction
techniques work by identifying a small part of the state space (referred to as
the reduced transition system), whose exploration is sufficient to carry out
the verification of the relevant property. The development of various partial
order methods [Val89, God90, Pel93] have proven quite useful in improving
the performance of verification procedures for concurrent systems, both in
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terms of their running time and memory consumption.

p0, q0, r0

p1, q0, r0 p0, q1, r0 p0, q0, r1

p1, q1, r0 p0, q1, r1 p1, q0, r1

p1, q1, r1

p2, q2, r2

a1 b1 c1

b1
c1a1 c1

b1
a1

c1 a1 b1

d

T1

p0, q0, r0

p1, q0, r0

p1, q1, r0

p1, q1, r1

p2, q2, r2

a1

b1

c1

d

T r1

Figure 2.9: A transition system and a reduced transition system

Consider a network of n processes with k states each. If the network is
such that each action of a process is completely independent of the actions of
any other process of the network (in the sense that no action in the network
requires participation of more than one process), then the resultant product
automaton has kn states. While applying partial order reduction, the idea
is that the state space of the original transition system grows exponentially
w.r.t. the number of components in the network, while that of the reduced
transition system is expected to grow at a lower rate. Indeed, in the example
of network given in Figure 2.8, if we increase the number of processes, the
size of the reduced transition system only grows linearly w.r.t. the number
of components in the network. In general, the magnitude of the reduction
depends on the extent of independence between actions in the network.
Nevertheless, even if we do not always observe a massive reduction in state
space, the reduction obtained by partial order methods is crucial to design
efficient verification procedures for networks containing several components.

In the next section, we introduce some basic principles of partial order
reduction methods.



68 2. Preliminaries

Principles of partial order reduction

The goal of this section is to explain the fundamental principles of partial
order reduction methods.

We are interested in the reachability problem for a network of processes,
defined as follows.

Input: a network of processes N
Output: Yes, if there is a path from an initial state of TN to a final state;

No, otherwise

A standard solution to this problem is by an on-the-fly exploration of TN
starting from the initial state. As mentioned in the introduction of this
chapter, this solution is not scalable and partial order reduction is one of the
standard ways to alleviate the issue of scalability. The goal of partial order
reduction is to identify a small part of TN , whose exploration is sufficient to
verify the system. The idea is that executions of TN can be classified into
equivalence classes based on the property to be verified, and it is sufficient to
consider only a representative from each equivalence class. For example, in
the network from Figure 2.9, all the executions of T1 that go from (p0, q0, r0)
to (p2, q2, r2) are equivalent w.r.t. reachability. So, to answer the reachability
problem for this network, it is sufficient to explore only one of these executions.
This means that it is sufficient to restrict the exploration of T to the part
reachable via red edges. We refer to this smaller transition system Tr whose
exploration is sufficient as the reduced transition system.

We formalize these notions in the following definitions.

Definition 2.46 (Reduced Transition System). Let T = 〈S,Σ, s0,−→, F 〉 be
a transition system and let −→r ⊆ −→ be a subset of the successor relation of T .
We then define the reduced transition system induced by −→r, denoted by Tr,
as the restriction of T to the states reachable from s0 using only transitions
in −→r. Formally, Tr is given by the tuple 〈Sr,Σ, s0,−→r, Fr〉, where Sr is the
smallest set such that s0 ∈ Sr, and if s ∈ Sr and s

a−→r s
′ for some a ∈ Σ,

then s′ ∈ Sr. The set of accepting states of Tr is given by Fr = Sr ∩ F . We
refer to the transition relation −→r that generates Tr as the reduced set of
actions.

Next, we specify the conditions that should be satisfied by the reduced
set of actions −→r for the reduced transition system to be useful. Since we
are interested in computing a reduced set that preserves the status of the
reachability of the original transition system, we refer to our reduced sets as
reachability-complete sets.

Definition 2.47 (Reachability-complete set). Consider a transition system
T = 〈S,Σ, s0,−→, F 〉, a transition relation −→r ⊆ −→ and the reduced transition
system Tr induced by −→r. We say that −→r is reachability-complete for T ,
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if Tr contains an accepting state whenever an accepting state is reachable
from s0 in T .

Observe that if no accepting state is reachable in T , then the above
definition puts no restrictions on Tr. Otherwise we require that at least one
of the reachable accepting states is present in Tr.

Corollary 2.3. Suppose that T = 〈S,Σ, s0,−→, F 〉 is a transition system, and
−→r ⊆ −→ that is reachability-complete for T . For Tr the reduced transition
system induced by −→r: Tr has an accepting run if and only if T has an
accepting run.

Next, we address the question of how such a reachability-complete set
can be computed. Before doing this, it is necessary to formalize a few notions
whose understanding is crucial for the design of a reachability-complete set.

Independence of actions: We say that two actions are independent in a
state of a transition system, if both the orders of execution of these actions
are feasible from that state, and irrespective of the order in which they are
executed, the same state is reached. Recall that if an action a is feasible from
a state s, then we say that a is enabled from s. We formalize this notion as
follows.

Definition 2.48 (Independence of actions [KP92]). Let T be a transition
system. Two actions a and b are said to be independent in T if they satisfy
the following conditions for every state s of T :

Forward diamond property If a and b are enabled from s, and s
a−→ s1

and s
b−→ s2 are the respective transitions from s, then b is enabled

from s1 and a is enabled from s2.

Diamond property If either ab or ba is feasible from s, then both ab and
ba are feasible from s and moreover, both ab and ba result in the same
state. The diamond property is pictorially represented by the diamond
structure given in Figure 2.10.

From the definitions, it should be clear that if two actions are independent,
then they commute; in other words, the order in which they are executed
does not matter. This leads us to our next definition.

Definition 2.49. [Equivalent sequences [Maz86]] We say that two sequences
u and w are equivalent modulo independence, denoted u ∼ w if w can be
obtained form u by repeatedly permuting pairs of adjacent independent
actions.
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s

s1

s′

s2

a b

b a

Figure 2.10: Diamond due to interleaving of actions a and b

From the definition of independence, it is clear that if two sequences
are equivalent modulo independence, both of them result in the same state.
Thanks to this equivalence, if we are only interested in reachability, then we
do not need to consider all the sequences; rather, it is enough to consider a
representative from each equivalence class.

Let T be a transition system, and let −→r be the subset of its transitions.
Consider a reduced transition system Tr restricted to states that are reachable
from the initial state via −→r edges. If we have the guarantee that for each
execution sequence of T , there is an equivalent execution sequence in Tr, then
we know that Tr has an accepting run if and only if T has an accepting run.
This implies that −→r is reachability-complete and therefore, it suffices to
explore the reduced transition system Tr to answer the reachability problem
for T . The various partial order reduction methods, such as Stubborn sets by
Valmari [Val90, Val89], Ample sets by Peled [Pel93, Pel96] and Persistent
sets by Godefroid [God90, God96], give ways to compute such −→r.



Chapter 3

Local time semantics

As discussed in Chapter 2, the most widely used approach to solve the
reachability problem for networks of timed automata is by the computation
and exploration of a finite truncation of the offset zone graph of the network.
We point out that this approach suffers severely from state-space explosion -
as the number of components in the network increases, the number of nodes
in the offset zone graph of the network grows exponentially. As a result, for
large networks of timed automata which contain several components, this
standard approach to check reachability is not effective. In this chapter, we
first analyze this explosion of state space for offset zone graphs of networks of
timed automata. We show that the state-space explosion, which was already
severe for untimed networks, is compounded by the timing information of
clocks that is stored in the states of timed automata. As a consequence, the
magnitude of explosion for timed networks is worse than that for untimed
networks.

To tackle the challenge posed by state-space explosion, application of
partial order reduction techniques to the offset zone graph of networks
of timed automata seems to be an appealing proposition. An effective
method to compute the independence relation (see Definition 2.48) between
actions of the network is a crucial precondition for developing partial order
reduction techniques for the verification of the network. For networks of
untimed automata, disjointedness of domain gives such an effective check for
independence that is easily computable. Unfortunately, we show that this
idea does not work for networks of timed automata. We mention that we do
not know of any effective way to compute the independence relation between
actions of a network of timed automata.

As a workaround, we consider an alternate semantics for networks of
timed automata, namely the local time semantics. The goal of this chapter
is to introduce local time semantics for networks of timed automata. We
will present the basic operations of local time semantics and show some
basic properties of these operations. We will also discuss some properties
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of runs in this semantics, using which we highlight the differences between
local time semantics and the standard semantics. We will show that these
properties make local time semantics a more apt setting to apply partial
order reduction. Finally, we will show that as far as reachability of a state of
the network is concerned, local time semantics is equivalent to the standard
semantics. In later chapters, we will use local time semantics to develop an
alternate, more scalable procedure for the reachability problem of networks
of timed automata.

Remark. In order to clearly distinguish between local time semantics and the
standard semantics, we refer to the standard semantics as global semantics.
Extending this convention, we sometimes refer to offset valuations, offset
zones and offset zone graph as global valuations, global zones and global zone
graph, respectively.

3.1. State-space explosion for networks of timed au-
tomata

Recall that we had discussed the challenge posed by state-space explosion to
the verification of networks of (untimed) processes in Section 2.10. Observe
that in the product automaton of a network of untimed processes, different
interleavings of the same sequence lead to the same state. For example, in the
transition system T1 from Figure 2.9, from the state (p0, q0, r0), the sequences
abc, bca and cab all lead to the same state (p2, q2, r2). Unfortunately, this is
not the case in global zone graphs of networks of timed automata as various
timing information, such as the order of reset of clocks, is stored in the zones.
We now illustrate this using an example.

p0

p1

q0

q1

r0

r1

a {x} b {y} c {z}

A1 A2 A3

Figure 3.1: Network A×

Consider the network of timed automata given in Figure 3.1 and the
global zone graph of this network given in Figure 3.2. Note that in the
network a, b and c are actions local to timed automata A1, A2 and A3
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(p0, q0, r0)

x̃ = ỹ = z̃
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b

c

a

b

a

Figure 3.2: Zone graph of A× given in Figure 3.1

respectively. Observe that the zone reached on executing an ordering of
these actions is different from the zone reached on executing a different
ordering. For instance, the run abc resets clocks in the order x before y
before z, while the run cab resets clocks in the order z before x before y.
This implies that the valuations of the offset zone reached via the sequence
abc satisfy the constraint x̃ ≤ ỹ ≤ z̃, while the valuations of the offset zone
reached by the sequence cab satisfy the constraint z̃ ≤ x̃ ≤ ỹ. In this way,
each execution of a different ordering of actions a, b, c leads to a different
zone, as can be observed from Figure 3.2. Note that in an untimed version
of this network, we would have only one instance of the state (p1, q1, r1) in
the product automaton. (see Figure 1.4.) On the other hand, in the global
zone graph from Figure 3.2, we have six nodes with state (p1, q1, r1), one per
each possible ordering of clocks {x, y, z}. This illustrates that the problem of
state-space explosion is much more severe for networks of timed automata.

3.2. Why local time semantics?

From the discussion in Section 3.1, it is clear that to have effective verification
procedures for large networks of timed automata, we need to have a strategy
to combat the blow-up of state space. As we have seen in Section 2.10,
partial order reduction is one such technique. An effective way to compute
the independence relation between actions is crucial to apply partial order
reduction to the transition system.

For networks of untimed systems we have a syntactic check that gives
an over-approximation of the independence relation between actions in
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the network. Recall that we say that two actions a and b have disjoint
domains if the set of processes participating in actions are disjoint, i.e.,
dom(a) ∩ dom(b) = ∅. The following lemma shows that disjointness of
domain can be used as an approximation of the independence relation. The
proof follows by definitions.

Lemma 3.1. For every pair of actions a, b of a network of processes, if a
and b have disjoint domains, then a and b are independent.

It is tempting to see if the aforementioned simple syntactic check gives
us a sufficient condition for independence of actions in networks of timed
automata as well. Unfortunately, it turns out that this check cannot be
extended to the networks of timed automata. We illustrate this using the
example of a network A which contains two timed automata, A1 and A2, as
given in Figure 3.3. The action a is a local action of A1 and b is a local action
of A2. Observe that while the sequence ab is feasible in A, the sequence ba is
not feasible. Thus, even if two actions belong to different components, they
are not independent in networks of timed automata.

p0

p1

q0

q1

A1 A2

A = A1 ×A2

a x ≤ 1 b y ≥ 2

(p0, q0)

x = 0, y = 0

(p1, q0)

x = 0, y = 0

(p0, q1)

x = 2, y = 2

(p1, q1)

x = 2, y = 2

δ = 0
a

δ = 2
b

δ = 2

b

x ≤ 1
a

X

Figure 3.3: Actions with disjoint domains are not independent in A.

The reason for this difference can be interpreted as follows. Recall that an
action transition only changes the state and clock values of the components
participating in it. Since we do not permit shared clocks in our networks of
timed automata, the value of a clock of a component cannot be modified
by an action of another component. Thus, in a network of timed automata,
the independence relation involving only action transitions is similar to
the untimed case, i.e., two action transitions are independent if the set of
automata participating in these transitions are disjoint. The independence
relation involving only delay transitions is also quite natural. Since a delay



3.2. Why local time semantics? 75

transition changes the value of all the clocks in the network by the same
rate, any two delay transitions are mutually independent. However, when we
consider the independence relation between an action transition and a delay
transition, things get more complicated. Both the action transition and the
delay transition could potentially alter the value of a clock of an automaton
participating in the action. Therefore, there is a dependency between delay
transitions and action transitions.

We will now formalize the ideas that are discussed above. We first
state when two executions of a network of timed automata are considered
equivalent.

Definition 3.1. We say that two sequences of actions u and w are equivalent,
written u ∼ w, if u can be obtained from w by repeatedly permuting adjacent
actions with disjoint domains.

The following lemma shows that if two equivalent sequences are enabled
in a network of timed automata, they lead to the same state.

Lemma 3.2. For two equivalent sequences u ∼ w: if there are two runs
(q, v)

u−→ (qu, vu), and (q, v)
w−→ (qw, vw), then qu = qw.

Proof. Consider the basic case when there are two actions a and b with
disjoint domains and u = ab, w = ba. Since a and b are on disjoint processes,
executing ab or ba (whenever possible) leads to the same (discrete) state by
definition.

Consider a general u. Sequence w is obtained by repeatedly permuting
adjacent actions. From the basic case of the lemma, each permutation
preserves the source and target (discrete) states, if it is feasible.

Observe that in the statement of Lemma 3.2, we cannot assert that
vu = vw. Even further, the existence of the run (q, v)

u
==⇒ (qu, vu) does not

imply that a run from (q, v) on w is feasible. As already discussed, this
happens due to global time delays, i.e., delays that involve all the processes.
For example, consider a network of timed automata A as given in Figure 3.3.
The network has actions a having guard x ≤ 1 and b having guard y ≥ 2 in
process A1 and A2, respectively. Observe that from the initial valuation one
can execute ab but not ba. This illustrates that, unlike for untimed networks,
disjointness of domain does not imply independence in networks of timed
automata.

To summarize, since the elapse of time in each process is synchronized at
all points of time, there are implicit dependencies between actions of different
processes, induced by the global nature of time. If the elapse of time is
decoupled, then we may be able to recover commutativity between actions
with disjoint domains.

We consider local time semantics as an alternate semantics for networks
of timed automata that satisfies this requirement. Introduced by Bengtsson
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et al. in 1998 [BJLY98], in this semantics, time elapses independently in
each process. Whenever a set of processes execute a synchronized action (see
Definition 2.8) the reference times of all these processes are synchronized.
This way, two actions with disjoint domains become commutative.

Consider the example of the network from Figure 3.3. Recall that the
run ba was not feasible in the standard semantics of the network. Observe
that in local time semantics, while the process A2 executing b elapses 2 time
units, A1 is allowed to not elapse time at all. As a consequence, the run ba
becomes feasible. The local runs are as shown in Figure 3.4.

p0

p1

q0

q1

A1 A2

A = A1 ×A2

a x ≤ 1 b y ≥ 2

(p0, q0)

x = 0, y = 0

(p1, q0)

x = 0, y = 0

(p0, q1)

x = 0, y = 2

(p1, q1)

x = 0, y = 2

δ1 = 0
a

δ2 = 2

b

δ2 = 2

b

δ1 = 0
a

Figure 3.4: Local runs of the network A.

3.3. Local valuations

Recall the definition of offset valuations in Definition 2.10. As in the case
of offset valuations, we choose an offset representation for local valuations,
the reasons for which we will discuss later. Thus, for each clock x, we have
an offset variable x̃ that stores the time-stamp at which x was last reset.
We replace the reference clock t which was tracking the global time, with
individual reference clocks tp for each process Ap which track the local time

of each process. We set X̃ ′p = X̃p ∪ {tp} and X̃ ′ =
⋃
p X̃
′
p.

Definition 3.2. A local valuation v is a valuation over the set of clocks X̃ ′

such that v(x̃) ≤ v(tp) for all processes p ∈ Proc and all clocks x̃ ∈ X̃p.

This restriction captures the intuition that tp is a reference clock for
process p, and it is never reset. In this setting, the value v(tp)− v(x̃) of clock
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x is defined relative to the reference clock tp of process p such that x ∈ Xp.
We will use the notation v for local valuations to distinguish from standard
valuations v and offset valuations v. We will sometimes write v(x − y) to
denote v(x)− v(y).

We formally define the operations in local time semantics below.

• Local-time elapse: For a process p ∈ Proc and δ ∈ R≥0, the operation
v +p δ increments v(tp), the value of the reference clock tp of process p
by δ, and leaves all the other variables unchanged. Formally,

(v +p δ)(tp) = v(tp) + δ

(v +p δ)(x) = v(x) for all x ∈ X̃ ′ \ {tp}

• Reset: We denote by [R]v the valuation obtained after resetting the
clocks in R ⊆ X and defined by:

([R]v)(tp) = v(tp) for all reference clocks tp

([R]v)(x̃) = v(tp) if x ∈ R and x ∈ Xp

= v(x̃) otherwise

Consider a local valuation v of a network of two timed automata A1

and A2, such that x is the clock of A1 and y is the clock of A2.

v : t1 = 4, x̃ = 0, t2 = 4, ỹ = 2

The valuation v′ obtained on reset of clock x is as given below.

v′ : t1 = 4, x̃ = 4, t2 = 4, ỹ = 2

• Guard satisfaction: A local valuation v satisfies a clock constraint g,
denoted v |= g if each constraint in g holds upon replacing x by value
v(tp)− v(x̃) where p is the process such that x ∈ Xp.

Next, we define the notion of a synchronized local valuation, sometimes
simply referred to as synchronized valuation.

Definition 3.3. A local valuation v is synchronized if for every pair of
processes p1, p2, the values of their reference clocks are equal: v(tp1) = v(tp2).

For a synchronized local valuation v, let global(v) be the offset valuation v
such that v(x̃) = v(x̃) for all offset clocks x̃ ∈ X̃ and v(t) = v(t1) = · · · = v(tk).
Conversely, to every offset valuation v, we associate the synchronized local
valuation local(v) = v where v(x̃) = v(x̃) and v(tp) = v(t) for every reference
clock tp.

We now state Lemma 3.3 that relates the operations on synchronized
local valuations to operations on offset valuations.
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Lemma 3.3. Suppose v is a synchronized local valuation and v = global(v).
Then, we have the following:

• v |= g iff v |= g.

• Let v′ = [R]v and v′ = [R](v). Then, v′ = global(v′).

• Let v′ = v + δ, and v′ = v +p δ, for all processes p ∈ Proc. Then,
v′ = global(v′).

Proof. The first item follows from the definitions of guard satisfaction
for local valuations and offset valuations.

For the second item, we know that v′(t) = v(t), and v′(x̃) = v(x̃) if
x 6∈ R and v′(x̃) = v′(t) otherwise. We also have v′(tp) = v(tp), for all
reference clocks tp and v′(x̃) = v(x̃), if x 6∈ R and v′(x̃) = v′(tp), where
x ∈ Xp, otherwise. Then, we observe that if x 6∈ R, v′(x̃) = v(x̃) = v′(x̃).
If x ∈ R, v′(x) = v′(tp) = v(tp) = v(t) = v′(t). Thus, we have
v′ = global(v′).

For the third item, we know that v′(t) = v(t) + δ, and v′(x̃) = v(x̃)
for all offset clocks x̃. About v′, we know v′(tp) = v(tp) + δ, for all
reference clocks tp. Since v was synchronized, we know that v′ is too,
and since v = global(v), we have global(v′)(t) = v(t) + δ. Further,
v′(x̃) = v(x̃) = v(x̃) = v′(x̃) for all offset clocks x̃. Thus, we have
v′ = global(v′).

We now define the local step of a network of timed automata.

Definition 3.4 (Local steps of a network of timed automata). There are
two kinds of local steps in a network N : local delay, and local action. A local

delay δ ∈ R≥0 in process p ∈ Proc is a step (q, v)
p,δ−−→st (q, v +p δ). For an

action b, we have a step (q, v)
b−−→st (q′, v′) if for each p ∈ dom(b) the unique

b transition of p is Tp(b) = (q(p), gp, Rp, q
′(p)), and the following hold:

• start times are synchronized: v(tp1) = v(tp2), for each p1, p2 ∈ dom(b);

• guards are satisfied: v � gp, for each p ∈ dom(b);

• resets are performed: v′ = [
⋃
p∈dom(b)Rp]v;

• other processes do not move: q(p) = q′(p), for each p 6∈ dom(b).

The main difference between local time semantics and global semantics is
the presence of local delay. As a result, each process can be in a different local
time as emphasized by the reference clocks in each process. In consequence,
in local action steps we require that, when processes execute a common
action, their local times should be the same. We will now give some examples
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of local steps. Consider the network A given in Figure 3.5. Consider the
following run σ of A,

(s0, r0, v0)
p1,δ1−−−→ (s0, r0, v1)

a−→ (s0, r1, v2)

In this run, (s0, r0, v0)
p1,δ1−−−→ (s0, r0, v1) is a local delay step and (s0, r0, v1)

a−→
(s0, r1, v2) is a local action step.

Observe that a standard delay δ on all processes can be simulated by a

sequence of local delays on every process separately, as
1,δ−−→st · · ·

k,δ−−→st. For a

sequence of local delays ∆ = (p1, δ1) . . . (pn, δn) we will write (q, v)
∆−−→st (q, v′)

to mean (q, v)
p1,δ1−−−→st (q, v1)

p2,δ2−−−→st · · ·
(pn,δn)−−−−→st (q, v′).

Definition 3.5 (Local run). A local run from a configuration (q0, v0) is a
sequence of local steps. For a sequence of actions u = b1 . . . bn, we write
(q0, v0)

u−−→ (qn, v
′
n) if for some sequences of local delays ∆0, . . . ,∆n there is

a local run

(q0, v0)
∆0−−→st (q0, v

′
0)

b1−−→st (q1, v1)
∆1−−→st · · ·

bn−−→st (qn, vn)
∆n−−→st (qn, v

′
n)

Observe that a run may start and end with a sequence of delays.

3.4. Independence in local time semantics

In this section, we will discuss some properties of runs in local time semantics.
We will compare and contrast local runs and global runs, and show that local
runs have a key independence property that is not true for global runs. First,
we will show that, in contrast to global semantics, in local time semantics,
two actions with disjoint domains satisfy the conditions for independence
between actions.

Lemma 3.4 (Independence). Suppose that dom(a)∩dom(b) = ∅. If (q, v)
ab−−→

(q′, v′), then (q, v)
ba−−→ (q′, v′). If (q, v)

a−−→ (qa, va) and (q, v)
b−−→ (qb, vb),

then (q, v)
ab−−→ (qab, vab) for some qab and vab.

Proof. Take a run (q, v)
∆a−−→ (q, va)

a−−→ (qa, v
′
a)

∆b−−→ (qa, vb)
b−−→ (q′, v′b)

∆−−→
(q′, v′). Let ∆′b be the sequence of delays from ∆a or ∆b involving processes
in dom(b), i.e., pairs (p, δp) from ∆a or ∆b such that p ∈ dom(b). Let ∆′a
be a sequence of delays in ∆a involving processes in dom(a); and finally
let ∆′ be the delays in ∆a ∪∆b ∪∆ which were not counted in ∆′a or ∆′b.
Since dom(a) ∩ dom(b) = ∅ we get that the following sequence is a run:

(q, v)
∆′b−−→ (q, v′′b )

b−−→ (qb, v
′′′
b )

∆′a−−→ (q′, v′′a)
a−−→ (q′, v′′′a )

∆′−−→ (q′, v′).
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For the second part, suppose that we have the sequences (q, v)
∆a−−→ a−−→ ∆′a−−→

(qa, va) and (q, v)
∆b−−→ b−−→

∆′b−−→ (qb, vb). Let ∆1 be the delays involving pro-
cesses in dom(a) in ∆a, and ∆2 the delays of processes in dom(b) in ∆b. As

dom(a) ∩ dom(b) = ∅, (q, v)
∆1−−→ a−−→ ∆2−−→ b−−→ (qab, vab) is a local run.

We illustrate the independence of actions with disjoint domains using
an example, given in Figure 3.5. Observe that the network is the same as
that in Figure 3.3. From the runs shown, it can be seen that in local time
semantics, both ab and ba are feasible. This is in contrast with the global
semantics where the sequence ba is not feasible.

s0

s1

r0

r1

a x ≤ 1 b y ≥ 2

p1 p2

A = p1 × p2

(s0, r0)

t1 = 0, x̃ = 0

t2 = 0, ỹ = 0

(s1, r0)

t1 = 1, x̃ = 0

t2 = 0, ỹ = 0

(s0, r1)

t1 = 0, x̃ = 0

t2 = 2, ỹ = 0

(s1, r1)

t1 = 1, x̃ = 0

t2 = 2, ỹ = 0

δ1 = 1
a

δ2 = 2
b

δ2 = 2
b

δ1 = 1
a

Local run of A with local valuations

Figure 3.5: Independence in local time semantics

Recall that two sequences of actions are equivalent, written u ∼ w if one
can be obtained from the other by repeatedly permuting adjacent actions
with disjoint domains (see Definition 3.1). Directly from Lemma 3.4, we
obtain

Lemma 3.5. If (q0, v0)
u−−→ (qn, vn) and u ∼ w, then (q0, v0)

w−−→ (qn, vn).

Proof. Since u ∼ w, we know that w can be obtained from u by repeatedly
permuting adjacent actions with disjoint domains.

Let the local run u be of the form

(q0, v0)
b1−−→ (q1, v1)

b2−−→ · · · (qi−1, vi−1)
bi−−→ (qi, vi)

bi+1−−−→ (qi+1, vi+1) · · · bn−−→ (qn, v
′
n)
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Suppose that bi+1 is the first action of w. We know from the definition
of ∼ that for 0 ≤ k ≤ i, bk and bi+1 have disjoint domains. By repeatedly
applying Lemma 3.4, we can commute bi+1 with bi, bi−1 and so on up to b1.
After doing this, we obtain a local run of the following form:

(q0, v0)
bi+1−−−→ (q′1, v

′
1)

b1−−→ · · · (q′i−1, v
′
i−1)

bi−1−−−→ (q′i, v
′
i)

bi−−→ (qi+1, vi+1) · · · bn−−→ (qn, v
′
n)

Since u ∼ bi+1u
′ and w = bi+1w

′, we can use induction for the pair
u′ ∼ w′ to obtain a run on w′ from (q′1, v

′
1) to (qn, vn).

Thus, in local time semantics, if a run u exists from (q0, v0) and u ∼
w, then w is guaranteed to exist. Recall that w need not be feasible in
global semantics. Further, the two equivalent sequences not only reach the
same state qn, but also the same local valuation vn (again in contrast with
Lemma 3.2 for global-time semantics).

3.5. Equivalence of local and global runs

We show below that, despite local runs having much more freedom than
global runs (as time can elapse independently in every process), with respect
to state reachability, the two concepts turn out to be equivalent.

Remark. In order to distinguish between steps in global semantics and local
time semantics, we denote transitions in local time semantics by −−→, while
transitions in global semantics are denoted by ==⇒.

Before we prove the equivalence between global and local runs, we develop
some intermediate observations.

Every action step in a local run:

(q0, v0)
∆0−−→st (q0, v

′
0)

b1−−→st (q1, v1) . . .
∆n−1−−−−→st (qn−1, v

′
n−1)

bn−−→st (qn, vn)
∆n−−→st (qn, v

′
n)

has its execution time; namely the step (qi−1, v
′
i−1)

bi−−→st (qi, vi) has the
execution time v′i−1(tp) = vi(tp) for p ∈ dom(bi). Observe that by definition
of a step, the choice of p does not matter, as long as p is in the domain of bi.

We will say that a local run is soon if for every i, the execution time of
bi is not bigger than the execution time of bi+1.

Lemma 3.6. If (q0, v0)
u−−→ (qn, vn) is a local run, then there is w ∼ u such

that (q0, v0)
w−−→ (qn, vn) is a soon local run.

Proof. Consider a sequence u = b1 . . . bn and a run (q0, v0)
∆0−−→st (q0, v

′
0)

b1−−→st

(q1, v1) · · · ∆n−1−−−−→st (qn−1, v
′
n−1)

bn−−→st (qn, vn)
∆n−−→st (qn, v

′
n). Suppose that

the order of execution times of bi and bi+1 is reversed. Then, dom(bi) ∩
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dom(bi+1) = ∅ by the definition of a run. So we can take u′ = b1 . . . bi+1bi . . . bn
where the order of bi and bi+1 is reversed. Since u ∼ u′, by Lemma 3.5 we

have a run (q0, v0)
u′−−→ (qn, vn). We can, if necessary, repeat this operation

from u′ till we get the desired w.

Lemma 3.7. If (q, v)
u−−→ (q′, v′) is a local run where v and v′ are synchro-

nized valuations, then there is w ∼ u and a global run (q, global(v))
w

==⇒
(q′, global(v′)).

Proof. Let (q, v) = (q0, v0) and (q′, v′) = (qn, v
′
n). We take a local run, and

assume that it is soon thanks to Lemma 3.6:

(q0, v0)
∆0−−→st (q0, v

′
0)

b1−−→st (q1, v1)
∆1−−→st · · ·

· · · (qn−1, vn−1)
∆n−1−−−−→st (qn−1, v

′
n−1)

bn−−→st (qn, vn)
∆n−−→st (qn, v

′
n) .

Let θi be the execution time of action bi. For convenience, we set
θ0 = v0(tp) and θn+1 = v′n(tp), for some process p. Since v0 and v′n are
synchronized, the choice of p is irrelevant. We claim that there is a global
run

(q0, v0)
δ1==⇒st

b1==⇒st (q1, v1)
δ2==⇒st

b2==⇒st · · ·
δi==⇒st

bi==⇒st (qi, vi)

with

• v0 = global(v0)

• δi = θi − θi−1 for i = 1, . . . , n

• vi(t) = vi(tp) for some p ∈ dom(bi) and

• vi(x̃) = vi(x̃) for all other clocks x

This statement is proved by induction on i. For i = n, this statement
gives an offset valuation vn such that vn(t) = vn(tp) where p ∈ dom(bn) and
for all other clocks vn(x̃) = vn(x̃). Note that valuations vn and v′n differ only
in the values of the reference clocks. Moreover, in v′n, all reference clocks are
at θn+1. A global delay of δn+1 = θn+1 − θn from (qn, vn) gives (qn, v

′
n) such

that v′n = global(v′n).

Lemma 3.8. If (q, v)
u

==⇒ (q′, v′) is a global run, then there is a local run
(q, local(v))

u−−→ (q′, local(v′)).

Proof. A global run can be directly converted to a local run by changing a
global delay to a sequence of local delays.

From Lemma 3.7 and Lemma 3.8, we get the following lemma.
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Lemma 3.9. If (q, v)
u−−→ (q′, v′) is a local run where v and v′ are synchro-

nized local valuations, there exists a global run (q, global(v))
w

==⇒ (q′, global(v′))
for some w ∼ u. Conversely, if (q, v)

u
==⇒ (q′, v′) is a global run, then there

is a local run (q, local(v))
u−−→ (q′, local(v′)).

The reachability problem with respect to local time semantics is defined
as before: q is reachable if there is a local run (q0, v0)

u−−→ (q, v) for some v
where v0 = local(v0). Note that here, q0 and v0 denote the initial state and
the initial (local) valuation respectively. By adding some local delays at the
end of the run we can always assume that v is synchronized. Lemma 3.9 thus
implies that the reachability problem in local time semantics is equivalent to
the standard one in global semantics.
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Chapter 4

Local zone graph

In Chapter 3, we introduced the local time semantics for networks of timed
automata. The goal of this chapter is to introduce concepts analogous to
global zones (Definition 2.30) and global zone graphs (Definition 2.34) for
the setting of local time semantics.

We first show that it is not possible to represent sets of valuations obtained
via runs in the local time semantics using the standard representation of
zones. This is because the standard representation of zones is not compatible
with the operations of local time semantics (specifically, the local time elapse
operation) as illustrated in Lemma 4.1. This means that we need a different
representation of zones to represent sets of local valuations. To this end, we
introduce the notion of local zones, which uses difference constraints involving
offset clocks and reference clocks. We show that local zones are closed under
the operations of local time semantics.

We then introduce the concept of local zone graph as the analogue of the
global zone graph for the setting of local time semantics. Two sequences are
said to be equivalent if one can be obtained from the other by commuting
adjacent actions with disjoint domains. We show that in the local zone
graph, actions that have disjoint domains satisfy the diamond property (see
Definition 2.48.) Extending this observation, we show that local zone graphs
satisfy the following very useful property: if a sequence of actions is feasible
from a node of the local zone graph, then all sequences equivalent to this
sequence are feasible from that node, and moreover, they all lead to the same
node. This suggests that as in the case of untimed networks, in local zone
graphs, disjoint domains can be used as a condition for independence between
actions. Since our goal is to apply partial-order reduction to networks of
timed automata, the aforementioned property gives us incentive to use local
zone graphs over global zone graphs to answer the reachability problem.
However, we point out that the local zone graph may be infinite and so
cannot be used directly to check reachability of networks of timed automata.

The results in this chapter appeared in [GHSW19].

85
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4.1. Why local zones?

The goal of this section is to introduce local zones, a concept similar to zones,
but for local time semantics. The specificity of local time semantics is local
time elapse. So a natural first attempt to do this is to use the representation
which was used for standard zones (see Section 2.5), and implement local time
elapse as an operation on zones. A zone in such a standard representation is
defined by constraints y1− y2 l c where c ∈ Z and y1, y2 ∈ X ∪{t1, . . . tk}. A
prerequisite for being able to use a representation of zones for the symbolic
reachability checking algorithm based on local time semantics is that it should
be closed under the operations of local time semantics that were discussed
in Chapter 3, namely guard intersection, reset and local time elapse. In
Lemma 4.1, we show that the standard representation of zones is not closed
under local time elapse operation.

Lemma 4.1. In the standard representation of sets of local valuations, there
is a zone Z such that the set of all valuations reachable by local time elapse
from Z is not a zone.

Proof. Consider a set of clocks X = {x1, t1, x2, t2}, and a zone Z defined by
the following constraints:

t1 = t2, x1 = x2, x1 ≤ t1, x2 ≤ t2

The last two constraints ensure that Z contains only local valuations. Note
that there is a network of timed automata where Z can indeed be reached
from the initial valuation.

Consider the set D of local valuations obtained after a local delay from
some valuation in Z. It is easy to see that each valuation in D satisfies
the constraint t1 − x1 = t2 − x2 since Z satisfies this constraint, and the
constraint is invariant under local time elapse. We cannot use this constraint
directly to define a zone, since it is not of the form y1 − y2 l c.

Suppose that D is a zone. We consider the constraints of the form
y1 − y2 l c that are satisfied in D.

• No constraint of the form y − 0 l c can be true for all valuations in D,
since Z contains valuations with arbitrary big values for each variable
y ∈ X.

• A constraint of the form 0− y l c can be true only if c ≥ 0. Indeed,
this constraint translates to −c l y, and D could have a valuation
with arbitrary small values of y. As a consequence, D satisfies a trivial
constraint y ≥ 0.

• Constraints ti − xi l c cannot hold in D, as the value of ti can be
arbitrarily bigger than the value of xi.
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• A constraint xi − ti l c holds in D only if c ≥ 0, since the difference
between xi and ti can be arbitrarily small in Z.

• All the remaining constraints are of the form yj−yilc with yi ∈ {xi, ti},
yj ∈ {xj , tj}, and i 6= j. None of them can hold because local time
elapse can make this difference arbitrarily big.

This implies that the only zone constraints satisfied by D are xi ≤ ti.
However, these constraints do not imply t1−x1 = t2−x2. As a consequence,
D cannot be a zone.

Thus, it is not possible to use the standard representation of zones to
represent local time transitions.

4.2. Local zones

In this section, we will introduce local zones to represent sets of local valua-
tions. As demonstrated using Lemma 4.1, the standard method of storing
difference constraints between clocks is not sufficient to capture all the oper-
ations of local time semantics. So, we will adopt an offset representation of
clock valuations to store sets of local valuations, where for each clock x, we
have an offset clock x̃ that stores the time-stamp at which x was last reset.
Local zones are defined by difference constraints involving offset clocks and
reference clocks.

Remark. Local zones can be viewed as the offset representation of standard
zones extended to the setting of local time semantics. The main difference
is that since the progress of time is synchronized in global semantics, offset
zones uses only one reference clock t. Since the progress of time is decoupled
in local time semantics local zones use a reference clock tp for each process
Ap in the network.

We now formally define local zones. Recall that X̃p = {x̃ | x ∈ Xp},
X̃ ′p = X̃p ∪ {tp} and X̃ ′ =

⋃
p X̃
′
p.

Definition 4.1. A local zone is a zone over local valuations: a set of local
valuations defined by constraints y1 − y2 l c where y1, y2 ∈ X̃ ′.

Recall that a local valuation v satisfies v(x̃) ≤ v(tp) for each process p

and each x̃ ∈ X̃p. We denote local zones using the notation Z along with
subscripts or superscripts, to distinguish from standard zones and offset
zones. We say that a local valuation v belongs to Z, written as v ∈ Z, if
v(y1)− v(y2) l c for each constraint y1 − y2 l c of Z. We say that a zone Z
is said to be in canonical form if each constraint defining Z is tight.
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We say that two local valuations v1 and v2 are same up-to time shift,
denoted as v1 ∼ts v2, if v1(x− y) = v2(x− y) for all x, y ∈ X̃ ′. The following
lemma establishes that local zones are closed under time shift.

Lemma 4.2. For each local zone Z, and local valuations v1 ∼ts v2 which are
same up-to time shift, v1 ∈ Z iff v2 ∈ Z.

Proof. Since v1(x−y) = v2(x−y) for all pairs of clocks, valuation v1 satisfies
a constraint x− y l c iff v2 satisfies it.

Recall the distance graph representation for offset zones discussed in
Definition 2.32. We have similar notions of distance graph for local zones
also. Recall that a distance graph is said to be in canonical form if for each
pair of variables y1, y2, the shortest path from y2 to y1 is given by the weight
of the edge y2 → y1. Sometimes, we use the term removing an edge y2 → y1

from G to mean that the value of this edge is assigned as (<,∞). Given two
distance graphs G1, G2, we write min(G1, G2) for the graph where each edge
weight is the minimum of the corresponding weights from G1 and G2. For
a distance graph G, we write [[G]] for the set of solutions to the constraints
given by G. We have [[min(G1, G2)]] = [[G1]] ∩ [[G2]].

Operations on local zones

We now define the following operations on local zones, corresponding to the
basic operations of local time semantics namely local time elapse, intersection
with a guard, and reset of clocks:

• local-elapse(Z) = {v +p δp : v ∈ Z, δp ∈ R≥0} where delay is applied for
each process p,

• Zg = {v | v � g},

• [R]Z = {[R]v | v ∈ Z} for every R ⊆ X.

We will show that local zones are closed under all these operations.

Lemma 4.3. For a local zone Z, the set local-elapse(Z) is a local zone.

Proof. We define the following operation on distance graphs: local-elapse(G)
is a distance graph obtained from distance graph G by removing all edges
y → tp where y ∈ X̃ ′ and tp is a reference clock. Note that these edges are
the incoming edges to reference clocks.

Let GZ be the canonical distance graph of Z. We will prove that the
distance graph local-elapse(GZ) is the canonical distance graph representing
local-elapse(Z).

For notational convenience we will consider an operation of time elapse
for one process, say Ap. Then, the time-elapse operation local-elapse is a
composition of time elapse for all processes Ap.
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We consider the set

Z+ = {v +p δp : v ∈ Z, δp ∈ R≥0}

and the distance graph G+ obtained from GZ by removing all incoming edges
to tp.

First observe that G+ is canonical. This means that the value of each
edge x→ y in G+ is the minimum over the paths from x to y. If y is not a
reference clock, then this is straightforward, as all paths from x to y in G+

exist also in GZ and GZ is canonical. If y is a reference clock (say tp), then
there are no paths arriving at tp, so indeed the value of the shortest path
from x to tp is ∞.

The inclusion Z+ ⊆ [[G+]] is direct. Each valuation in Z+ satisfies all the
constraints given by the edges of GZ except for the edges x→ tp.

It remains to prove [[G+]] ⊆ Z+. Consider a v+ in Z+. Consider two
quantities:

d1 = max{v+(tp)− v+(x)− cxtp : x
≤cxtp−−−−→ y is a edge in G}

d2 = max{v+(tp)− v+(x)− cxtp : x
<cxtp−−−−→ y is a edge in G}

Notice that quantity d1 is considered over edges x
≤cxtp−−−−→ y with a weak

inequality and d2 over edges x
<cxtp−−−−→ y with a strict inequality.

If d1 ≤ 0 and d2 < 0, then v+ satisfies all the constraints of GZ, so
v+ ∈ Z. Otherwise, either d1 = max(d1, d2) and d1 > 0 or d2 = max(d1, d2)
and d2 ≥ 0. In the former case, set d := d1. In the latter case, set d := d2 + ε
where ε > 0 is chosen based on a criterion given later in the proof.

Consider v that is identical to v+ on all clocks but for tp, for which we set
v(tp) = v+(tp)− d. In other words v+ = v +p d. We find it convenient to use
the notation v = v+ −p d. It suffices to show that v ∈ Z, as this will imply
v+ ∈ Z+. Our choice of d ensures v(tp−x)lxtp cxtp for all constraints coming

from edges x
lxtpcxtp−−−−−→ tp of GZ, and v(x− y) lyx cyx corresponding to edges

y
lyxcyx−−−−→ x for all x, y ∈ X ′ \{tp}. The problem is to show v(x− tp)ltpx ctpx

for each x ∈ X ′ \ {tp}. Equivalently we want

to show: (≤, v(tp − x)) + (ltpx, ctpx) ≥ (≤, 0) (4.1)

Let w be the variable which corresponds to the chosen d: that is, either
d = d1 = v+(tp −w)− cwtp and lwtp =≤, or d = d2 = v+(tp −w)− cwtp + ε
and lwtp =<. By our choice of v, we have:

v(tp − w) =

{
cwtp if lwtp is ≤
cwtp − ε if lwtp is <

(4.2)
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Rewriting (4.1) in terms of w, we want to show:

(≤, v(tp − w)) + (≤, v(w − x)) + (ltpx, ctpx) ≥ (≤, 0) (4.3)

We have already seen that v(x−w)lwx cwx. Moreover, due to the canonicity
of GZ, the weight (lwx, cwx) of the edge w → x is smaller than or equal to
the weight (lwtp , cwtp) + (ltpx, ctpx) of the path w → tp → x. This gives
(≤, v(x − w)) ≤ (lwtp , cwtp) + (ltpx, ctpx). Adding (≤, v(w − x)) to both
sides of this inequality results in:

(≤, 0) ≤ (≤, v(w − x)) + (lwtp , cwtp) + (ltpx, ctpx) (4.4)

Substitute the value of v(tp − w) from (4.2) to the left hand side of (4.3).
When lwtp is ≤, this substitution gives the right hand side of (4.3) and
hence we can conclude the inequality (4.3).

We are left with the case when lwtp is <. In this case, the left hand side
of (4.3) becomes (≤, cwtp−ε)+(≤, v(w−x))+(ltpx, ctpx). Here is where the
choice of ε > 0 matters. Since lwtp is <, (4.4) entails v(x−w)+cwtp+ctpx > 0

for every x ∈ X̃ ′ \ {tp}. Choose ε := 1
2 min{v(x − w) + cwtp + ctpx | x ∈

X̃ ′ \ {tp}}. With this choice, we have cwtp − ε+ v(w − x) + ctpx > 0 thereby
allowing us to conclude (4.3) also for this case.

Lemma 4.4. For each guard g, the set of local valuations satisfying g is a
local zone.

Proof. The set of constraints defining the offset zone Zg is obtained by
extending the set of constraints of Z with constraints tp − x̃ ∼ c, for every

constraint of the form x ∼ c in g, where x̃ ∈ X̃p.

Lemma 4.5. For a set of clocks R, and a local zone Z, the set [R]Z is a
local zone.

Proof. We will show that the set of local valuations obtained on applying the
reset operation to a local zone continues to be a local zone. Let GZ be the
canonical distance graph of Z. Note that we use the term removing an edge
x→ y from a distance graph to say that the value of this edge is assigned as
(<,∞). We say a path is lighter than another to indicate that the weight
of the former path is less than the weight of the latter path. In the same
spirit, we use the term lightest path from x to y to refer to the path with the
minimum weight from x to y.

Let G′1 be the distance graph obtained by removing from GZ all edges

involving x̃ and adding the edges x̃
(≤,0)−−−→ tp and tp

(≤,0)−−−→ x̃, for each clock
x ∈ R such that x ∈ Xp. Let G1 be the distance graph obtained by
canonicalizing G′1. We will show that the set of valuations defined by G1 is
[R]Z, i.e., [[G1]] = [R]Z.
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Consider edges of the form y −→ z in G1, where y, z 6∈ R. Notice that
y and z could be reference clocks as well. We now show that the weight
of such edges does not change from GZ to G1. First, observe that the first
step in this transformation, i.e., removal of edges, cannot lead to lighter
paths in distance graphs. Next, we inspect whether the newly added edges
of weight (≤, 0) between x̃ and tp (from x̃ to tp and tp to x̃) where x ∈ R
can contribute to a lighter path from y to z in G′1. Suppose that there was a
lighter path from y to z using such a newly added edge between x̃ and tp.
Consider the lightest such path from y to z.

• Suppose that the new lighter path used the x̃
(≤,0)−−−→ tp edge. Since there

are no other incoming edges to x̃, the path cannot reach x̃ without first
going to tp. However, this would imply that this lighter path is of the

form y → · · ·u→ tp
(≤,0)−−−→ x̃

(≤,0)−−−→ tp → s→ · · · z. Removing the part

tp
(≤,0)−−−→ x̃

(≤,0)−−−→ tp of weight 0 yields a path y → · · ·u→ s→ · · · z in
GZ whose weight is the same. But this is a contradiction, as we have
taken the shortest path.

• Suppose that the new lighter path is of the form y → · · · tp −→ x̃ −→
u −→ · · · −→ z. Recall that the only outgoing edge from x̃ in G′1 is to
tp. As a consequence, if there is an edge x̃ −→ u in G1, it is because

of a path x̃
(≤,0)−−−→ tp −→ u. But this implies that our path can be

rewritten as y −→ · · · tp
(≤,0)−−−→ x̃

(≤,0)−−−→ tp −→ u −→ · · · −→ z. Using the
same argument as in the previous case, we arrive at a contradiction.

Thus, the weight of an edge y −→ z such that y, z 6∈ R does not change from
GZ to G1.

We will now show that [[G1]] = [R]Z

[R]Z ⊆ [[G1]]: Pick v′ ∈ [R]Z. We have v′(tp) = v(tp) for all reference
clocks tp, v

′(tp)−v′(x̃) = v(tp)−v(x̃) if x /∈ R and x ∈ Xp and v′(tp)−v′(x̃) = 0
if x ∈ R and x ∈ Xp. Observe that v′ satisfies all the constraints of G1.
Hence, [R]Z ⊆ [[G1]].

[[G1]] ⊆ [R]Z: Consider a valuation v ∈ [[G1]]. We construct a new
distance graph G′ whose edges are as follows:

• For clocks x, y 6∈ R, G′ has the edge x
(≤,v(y−x))−−−−−−−→ y. Note that x and y

could be reference clocks here.

• For clocks x 6∈ R such that x ∈ Xp, G
′ has the edges tp

(≤,v(x̃)−v(tp))−−−−−−−−−→ x̃

and x̃
(≤,v(tp)−v(x̃))−−−−−−−−−→ tp.
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• For clocks x ∈ R, there are no edges involving x̃ in G′. This signifies
that the weight of such an edge is (≤,∞).

Notice that v ∈ [[G′]]. Also, observe that G′ is a canonical zone.
Observe that a solution to GZ ∩G′ gives a valuation v′ such that v′ ∈ Z

and v is obtained by a reset from v′, and hence will imply v ∈ [R]Z. Now, we
need to show that GZ ∩G′ is non-empty. Suppose that there is a negative
cycle in GZ ∩G′. Since there were no negative cycle in GZ or G′, the new
negative cycle should contain edges from both GZ and G′. Further, since
both GZ and G′ are canonical, the negative cycle should alternate between
edges of GZ and G′.

Consider an edge x −→ y, where x, y 6∈ R. Recall that the weight of such
an edge does not change from GZ to G1. Since v ∈ [[G1]], we know that

v(y)− v(x) ≤ c, (4.5)

where (≤, c) is the weight of the edge x −→ y in GZ. Further, observe that
the weight of the edge x −→ y in G′ has weight v(y)− v(x). From 4.5, we can
see that this edge in GZ∩G′ has to be from G′. Thus, all edges in GZ∩G′ of
the form x −→ y where x, y 6∈ R come from G′. This implies that the negative
cycle cannot be limited to the clocks that were not reset.

Also, observe that since there are no edges in G′ involving x̃ where x ∈ R,
any edges involving these clocks must come from GZ. Suppose our negative
cycle contained a clock x̃ such that x ∈ R. By our criterion for the negative
cycle, either the incoming or the outgoing edge associated to x̃ should come
from G′, which we know is not possible as there are no edges associated to s
in G′. This implies that the negative cycle cannot involve clocks that are
reset.

Let the negative cycle be of the form

x −→ · · · −→ y −→ tp −→ z −→ u −→ · · · −→ x

where tp is a reference clock and all other clocks could be either reference
clocks or offset clocks that were not reset.

Suppose that the edge tp −→ z comes from G′. Then, the edge z −→ u
should be from GZ. However, since u /∈ R, we know that the edge z −→ u
in GZ ∩G′ comes from G′, which is contrary to our requirement. Thus, the
edge tp −→ z comes from GZ. As a consequence, the incoming edge to tp,
namely y −→ tp, should be from G′.

We have already seen that all the edges of the form x −→ y such that
x, y 6∈ R can only be from G′. Since G′ is canonical we can replace all these
edges by a single edge to get the negative cycle

x −→ tp −→ z −→ x
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Further, since x −→ tp and z −→ x are both from G′, we can replace it by a
single edge. Thus, the situation boils down to a negative cycle of just 2 edges
of the form

z
(l,k1)−−−−→ tp

(l,k2)−−−−→ z

where the edge z
(l1,k1)−−−−→ tp is from GZ and the edge tp

(l2,k2)−−−−→ z is from
G′. From our assumption, since this is a negative cycle, we have (l1, k1) +
(l2, k2) < (≤, 0). Since we know that k2 = v(z)− v(tp), this implies

v(z)− v(tp) + k1 < 0

We know that the edges between z and tp in G1 is unchanged from GZ, since
z 6∈ R. Further, since we know that v ∈ [[G1]], we have v(tp) − v(z) ≤ k1,
which implies

v(z)− v(tp) + k1 ≥ 0

This is a contradiction. Thus, our assumption that there was a negative
cycle was wrong.

The operations of local time elapse, guard intersection, and reset, enable

us to describe a local step (q,Z)
b−−→ (q′,Z′) on the level of local zones. This

is done in the same way as for global zones. Observe that a local step is
indexed only by an action, as the aspect of time is taken care of by the local
time elapse operation.

Definition 4.2. There is a transition (q,Z)
b−−→ (q′,Z′) provided for each

process p ∈ dom(b) its unique transition on b is (q(p), gp, Rp, q
′(p)) for some

gp and Rp, Z
′ = local-elapse(Z2) and Z′ 6= ∅ with Z2 = [

⋃
p∈dom(b)Rp]Z1 and

Z1 = Z ∩
⋂
p∈dom(b) Zgp ∩ {tp1 = tp2 | p1, p2 ∈ dom(b)}.

For a sequence of actions u we write (q,Z)
u−−→ (q′,Z′) for a sequence of

transitions indexed by elements of u.

4.3. Local zone graph

Equipped with the notion of local zones, we can now construct a local zone
graph and show that it is sound and complete for reachability testing. We
say a local zone is time-elapsed if Z = local-elapse(Z).

Definition 4.3 (Local zone graph). For a network of timed automata N
the local zone graph of N , denoted LZG(N ), is a transition system whose
nodes are of the form (q,Z) where q is a state of the network and Z is a time

elapsed local zone, and whose transitions are steps (q,Z)
b−−→ (q′,Z′). The

initial node (q0,Z0) consists of the initial state q0 of the network and the
local zone Z0 = local-elapse({v0}), v0 is the initial (local) valuation.
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Next, we prove the pre/post properties of runs on local zones.

Lemma 4.6 (Pre and post properties of runs on local zones). Let u be a
sequence of actions.

• If (q, v)
u−−→ (q′, v′) and v ∈ Z for some time-elapsed local zone Z, then

(q,Z)
u−−→ (q′,Z′) and v′ ∈ Z′ for some local zone Z′.

• If (q,Z)
u−−→ (q′,Z′) and v′ ∈ Z′ then (q, v)

u−−→ (q′, v′), for some v ∈ Z.

Proof. Proof follows by induction on the length of u.
For the pre property: Suppose that u is a single action a. Then, (q, v)

a−−→
(q′, v′) implies there is a sequence of local steps: (q, v)

∆−−→ (q, v1)
a−−→

(q′, v2)
∆′−−→ (q′, v′). Since v ∈ Z and Z is local time elapsed, we have v1 ∈ Z.

By definition of (q,Z)
a−−→ (q′,Z′) we get v′ ∈ Z′. The induction step follows

by a similar argument, and noting the fact that Z′ is local time-elapsed in
(q,Z)

a−−→ (q′,Z′).
For the post property: When u is a single action, the definition entails

that there is a v ∈ Z such that (q, v)
a−−→ ∆−−→ (q′, v′). When u = a1 . . . an,

consider the sequence of zones (q,Z)
a1−−→ (q1,Z1) · · · (qn−1,Zn−1)

an−−→ (q′,Z′),
use a similar argument to obtain a vn−1 ∈ Zn−1 and then the induction
hypothesis for the shorter sequence a1 . . . an−1.

Directly from Lemma 4.6 we obtain the main property of local zone
graphs which allows us to use it for reachability testing.

Theorem 4.1. For a given network of timed automata N , there is a run
of the network reaching a state q iff for some non-empty local zone Z, node
(q,Z) is reachable in LZG(N ) from its initial node.

Remark. The proof of Theorem 4.1 is based on Lemma 3.9 which says that
if there is a local run to a configuration (q, v) where v is a synchronised
valuation, then the state q is reachable. The “non-empty” in the statement
of Theorem 4.1 is meant to highlight the requirement that the zone contains
at least one synchronized local valuation. This is because if the zone contains
at least one local valuation, then it also contains a synchronized valuation
(obtained by synchronizing this local valuation).

Notice that LZG(N ) may still be infinite and it cannot be used directly
for reachability checking. This problem will be addressed in Chapter 5.

4.4. Commutativity in the local zone graph

In this section, we discuss some important properties of the local zone
graph with respect to concurrency. In Section 3.4, we showed that in local
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time semantics for networks of timed automata, two actions with disjoint
domains are independent. Specifically, we showed that two actions with
disjoint domains satisfied the diamond property as well as the forward
diamond property (see Definition 2.48.) In this section, we investigate if
these properties extend to the setting of local zone graphs.

Diamond property: First, we examine if the diamond property holds for
actions with disjoint domains in the local zone graph.

Lemma 4.7. Let dom(a)∩ dom(b) = ∅. If (q,Z)
ab−−→ (q′,Z′), then (q,Z)

ba−−→
(q′,Z′).

Proof. Suppose that (q,Z)
ab−−→ (q′,Z′ab). We will show that there is (q,Z)

ba−−→
(q′,Z′ba), and that Z′ab ⊆ Z′ba. By symmetry this will show the lemma.

Take v′ ∈ Z′ab. Using the backward (post) property of steps on zones
(Lemma 4.6) we get a run:

(q, v)
a−−→ (qa, va)

∆a−−→ (qa, v
′
a)

b−−→ (q′, vb)
∆b−−→ (q′, v′),

where v ∈ Z. Using commutation on the level of runs, Lemma 3.4, we get a
run

(q, v)
∆′b−−→ (q, v′b)

b−−→ (qb, v
′′
b )

∆′a−−→ (qb, v
′′
a)

a−−→ (q′, v′′′a )
∆′′a−−→ (q′, v′)

Now using the forward (pre) property of steps on zones from Lemma 4.6 we
obtain that Zba exists and v′ ∈ Zba.

Thus, it is clear that the diamond property holds for actions with disjoint
domains in the local zone graph. Extending Lemma 4.7 to longer sequences
of actions, we get the following property, which states that if a run σ is
feasible from a zone in the local zone graph, then all runs equivalent to σ (in
the sense of ∼ equivalence as given in Definition 3.1) are feasible from that
zone and lead to the same zone.

Corollary 4.1. If (q,Z)
u−−→ (q′,Z′) and u ∼ w, then (q,Z)

w−−→ (q′,Z′).

Forward diamond property: We show that actions with disjoint do-
mains do not satisfy the forward diamond property in the local zone graph.
In Lemma 4.8, we point out that even if two actions a and b have disjoint
domains and are individually enabled from a local zone (q,Z), the sequence
ab need not be enabled from (q,Z). Observe that this is in contrast to the
situation at the valuation level for local time semantics as given in Lemma 3.4.

Lemma 4.8. There exists a local zone (q,Z) and actions a and b such that
dom(a)∩dom(b) = ∅, both actions a and b are feasible from (q,Z) but neither
ab nor ba is feasible from (q,Z).
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Proof. Let P1 and P2 be processes with clocks {x1, y1} and {x2, y2} respec-
tively. Consider a transition sequence consisting of four synchronized actions:

ρ : −−−→
{y2}
−−−→
{x2}

x2≥1−−−−→
{y1}

y2≤3−−−−→
{x1}

Since all actions are synchronized, the local zone obtained after the sequence
ρ is Zρ which will satisfy the following constraints (recall that the clocks
maintain the timestamps of the last resets):

0 ≤ ỹ2 ≤ x̃2 ≤ ỹ1 ≤ x̃1 and x̃1 − ỹ2 ≤ 3 and ỹ1 − x̃2 ≥ 1

Because of these interleaved constraints, for each valuation v ∈ Zρ:

v(x̃1)− v(ỹ1) = 2 =⇒ v(x̃2)− v(ỹ2) = 0

and v(x̃2)− v(ỹ2) = 2 =⇒ v(x̃1)− v(ỹ1) = 0

Now, consider two local actions with guards: g1 : y1 ≥ 3 ∧ x1 ≤ 1 and
g2 : y2 ≥ 3 ∧ x2 ≤ 1. Guard g1 implies that x̃1 − ỹ1 ≥ 2 and similarly g2

implies that x̃2 − ỹ2 ≥ 2. Intersecting Zρ with g1 gives valuations in which
v(x̃1)− v(ỹ1) ≥ 2 and v(x̃2)− v(ỹ2) ≤ 0. Similarly, intersecting Zρ with g2

gives the other symmetric combination. Hence from the set obtained by
taking action g1, action g2 is not enabled and vice versa. However, both g1

and g2 are enabled at Zρ.

Thus, combining Lemma 4.8 and Corollary 4.1, we can conclude the
following: Disjoint domains is not a sufficient condition to conclude that two
actions are independent. In other words, just because two actions a and b
have disjoint domains, we cannot postpone the execution of one of them in
favor of the other. However, if we know that ab is feasible, then ba is feasible
as well.

4.5. Aggregate zones in local zone graph

We know from Corollary 4.1 that starting from a local zone all equivalent
interleavings of a sequence of actions u end up in the same local zone. This
is in stark contrast to the global zone graph, where each interleaving results
in a possibly different global zone (see Figure 4.1). Let

MZ(q, Z, u) = {v′ | ∃v ∈ Z, ∃w, w ∼ u and (q, v)
w

==⇒ (q′, v′)}

denote the union of all these global zones.
Salah et al. [SBM06] have shown that, surprisingly, MZ(q, Z, u) is always

a global zone. We call it aggregated zone, and the notation MZ is in the
memory of Oded Maler. In the same work, this observation was extended to
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A = A1 ‖ A2

A1 A2

p0

p1

q0

q1

a

{x}
b
{y}

t ≥ 0

x̃ = ỹ = 0

t ≥ x̃
x̃ ≥ ỹ = 0

t ≥ ỹ
ỹ ≥ x̃ = 0

t ≥ ỹ
ỹ ≥ x̃ ≥ 0

t ≥ x̃
x̃ ≥ ỹ ≥ 0

a b

b a

t1 ≥ x̃ = 0

t2 ≥ ỹ = 0

t1 ≥ x̃ ≥ 0

t2 ≥ ỹ = 0

t1 ≥ x̃ = 0

t2 ≥ ỹ ≥ 0

t1 ≥ x̃ ≥ 0

t2 ≥ ỹ ≥ 0

a b

b a

Global zone graph Local zone graph

Figure 4.1: Local zone graph and global zone graph of a network. If two
actions of a given sequence σ reset clocks, then two interleavings of σ with a
different ordering of these actions lead to different nodes of the global zone
graph (if both of them are feasible.).

an algorithm for acyclic timed automata that from time to time merged zones
reached by equivalent paths to a single global zone. We prove below that this
aggregated zone can, in fact, be obtained directly in the local zone graph:
the aggregated (global) zone is exactly the set of synchronized valuations
obtained after executing u in the local zone semantics. Here we need some
notation: let Z be a global zone and Z a local zone; define

sync(Z) = {v ∈ Z | v is synchronized}

local(Z) = {local(v) | v ∈ Z}

global(sync(Z)) = {global(v) | v ∈ sync(Z)}

Lemma 4.9. For each global zone Z and local zone Z: sync(Z) and local(Z)
are local zones and global(sync(Z)) is a global zone.

Proof. sync(Z) is the local zone Z ∧
∧
i,j(ti = tj); local(Z) is the local zone

obtained by replacing t with some ti in each constraint, and adding the
constraints

∧
i,j(ti = tj); global(sync(Z)) is obtained by replacing each ti with

t in each constraint of sync(Z).

Theorem 4.2. Consider a state q, a sequence of actions u and a time
elapsed global zone Z. Consider the local zone Z = local-elapse(local(Z)).
If (q,Z)

u−−→ (q′,Z′), we have MZ(q, Z, u) = global(sync(Z′)), otherwise
MZ(q, Z, u) = ∅.

Proof. Pick v′ ∈ MZ(q, Z, u). There exists w ∼ u, v ∈ Z and a global run
(q, v)

w
==⇒ (q′, v′). From Lemma 3.9, there exists a local run (q, local(v))

w−−→



98 4. Local zone graph

(q′, local(v′)). By assumption, local(v) ∈ Z. Hence from the pre property of
local zones (Lemma 4.6), there exists (q,Z)

w−−→ (q′,Zw) such that local(v′) ∈
Zw. As local(v′) is synchronized, we get local(v′) ∈ sync(Zw). But, by
Corollary 4.1, Zw = Z′. This proves local(v′) ∈ sync(Z′) and hence v′ ∈
global(sync(Z′)).

For the other direction take v′ ∈ global(sync(Z′)). As (q,Z)
u−−→ (q′,Z′),

by post property of local zones (Lemma 4.6) there is a local run (q, vu)
u−−→

(q′, local(v′)) for some vu ∈ Z. Since vu ∈ Z, it is obtained by a local time
elapse from some v ∈ local(Z). Hence v is synchronized and global(v) ∈
Z. From Lemma 3.9 we get that for some w ∼ u there is a global run
(q, global(v))

w
==⇒ (q′, v′). Hence v′ ∈ MZ(q, Z, u).

Theorem 4.2 gives an efficient way to compute aggregated zones: it is
sufficient to compute local zone graphs. Computing local zone graphs is not
more difficult than computing global zone graphs. But, surprisingly, on the
level of zones, the combinatorial explosion due to interleaving does not occur
in local zone graphs, thanks to the theorem above. Hence, this gives an
incentive to work with local zone graphs instead of global zone graphs.

This contrasts with the aggregation algorithm in [SBM06] which requires
to store all the paths to a global zone and detect situations where zones can
be merged, that is, when all the equivalent permutations have been visited.
Another important limitation of the algorithm from [SBM06] is that it can
only be applied to acyclic zone graphs. If local zone graphs can be computed
for general timed automata (which contain cycles), we can get to use the
aggregation feature for all networks (and not only acyclic ones). To do this,
there is still a major problem left: local zone graphs could be infinite when
the automata contain cycles.



Chapter 5

Making local zone graphs
finite

In Chapter 4, we introduced local zone graphs for networks of timed automata.
We proved in Theorem 4.1 that local zone graphs are sound and complete
w.r.t. reachability, i.e., there is a path from the initial node to a node (q,Z)
in the local zone graph of a timed automaton A if and only if q is reachable
in A. We also showed that the local zone graph of a network of timed
automata has the following useful property: starting from a node of the local
zone graph, all equivalent interleavings of a sequence of actions end up in
the same node. We pointed out that this is in stark contrast to the case
in the global zone graph, where each interleaving results in a potentially
different global zone. We showed that this property makes it an attractive
option to use the exploration of local zone graph, rather than the global zone
graph, to answer the reachability problem for networks of timed automata.
Unfortunately, local zone graphs may not be finite and an algorithm that
proceeds by exploring the local zone graph is not guaranteed to terminate.
To ensure termination of such an algorithm, we need some way to compute
a finite truncation of local zone graph, whose exploration is sufficient.

We face a similar problem in the case of global zone graphs, which are
also infinite in general. The standard approach to make a global zone graph
finite involves using a node covering relation between the nodes of the global
zone graph (discussed in detail in Section 2.8). In order to use the local zone
graph to answer the reachability problem for networks of timed automata,
we need such a covering relation between nodes of the local zone graph.

In this chapter we first examine some of the solutions proposed in the
literature to obtain a node covering relation between nodes of the local
zone graph. We point out that these solutions either have some fatal flaws
or are not effectively computable. We then go on to propose a new node
covering relation for nodes of the local zone graph that is based on a relation
between local zones that we call sync-subsumption. It allows us to define a

99
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transition system called local sync graph that is the local zone graph reduced
by applying this new node covering relation. We propose an algorithm that
uses the exploration of local sync graphs to answer the reachability problem
for networks of timed automata.

Applying a partial order reduction procedure to the exploration of a local
sync graph is one way to make this procedure even more efficient. However,
we do not know how to compute the independence relation of actions of local
sync graphs, and as a consequence, do not know how to apply partial order
reduction to local sync graphs.

The results in this chapter appeared in [GHSW19].

5.1. Approaches to get finiteness for local zone graphs

The standard approach to make a global zone graph finite involves using
a subsumption relation between global zones. The subsumption relation is
defined using an abstraction operator a (see Definition 2.35). The relation
va
LU (discussed in detail in Section 2.8) is one such subsumption relation

between global zones that uses the a4LU abstraction operator. Abstraction
operators are usually based on a simulation relation between global valuations
(see Definition 2.18). Abstractly, a simulation relation is a relation between
valuations that clubs together those valuations that are indistinguishable
with respect to runs from them. Recall that simulation relations between
global valuations are usually parameterized by certain maximum constants
occurring in guards, for instance the region equivalence for global valuations
(see Definition 2.16) which is parameterized by the maximum constant M
occurring in guards, and the LU preorder (see Definition 2.39) which is
parameterized by L and U , the maximum constants respectively used in
a lower bound and upper bound guards. Additionally, if it is known that
there are only finitely many distinct sets a(Z) where Z is a global zone, the
subsumption relation based on a can be used to obtain an effective procedure
to answer the reachability problem for timed automata, as was shown in
Section 2.8.

Observe that the existence of a simulation relation for global valuations
(LU preorder) was crucial to obtain an abstraction operator, a4LU , for global
zones (Definition 2.40). The fact that a4LU over global zones is a simulation
relation of finite index was used to obtain conditions to guarantee termination
of exploration of the global zone graph.

In this section, we present some of the solutions in standard literature to
the problem of obtaining a subsumption relation for local zones. For each of
these solutions, we show that there are technical problems that restrict its
effectiveness.
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5.1.1 Catch-up equivalence

In the work that introduced local time semantics and local zone graphs,
Bengtsson et al. [BJLY98] define an equivalence between local valuations,
referred to as catch-up equivalence. They also propose an extension of
catch-up equivalence to local zones. In their work, they show that catch-up
equivalence for local zones is a simulation relation of finite index. Then,
following the same ideas as for global zones, one can hope to construct a finite
local zone graph using a subsumption relation between local zones based on
catch-up equivalence. Since this graph is guaranteed to be finite, this could
be used to answer the reachability problem. In this section we present the
definition of catch-up equivalence and discuss the problems associated with
this approach.

We say two synchronized local valuations v and v′ are region-equivalent
if v ≡M v′, where v = global(v) and v′ = global(v′) (for region equivalence,
see Definition 2.16). Equivalence classes of synchronized local valuations are
called synchronized regions. Bengtsson et al. [BJLY98] propose to extrapolate
the region equivalence that is defined on synchronized valuations to non-
synchronized valuations by introducing the notion of catch-up transitions.

Recall that in local time semantics, each process has a different reference
clock. Intuitively, a catch-up transition is one that allows processes which
are lagging behind w.r.t. to the reference clock value, to catchup with the
processes having higher values of reference clocks. Essentially, by doing this,
we are allowing the system to move to a state that is “more synchronized in
time”.

Definition 5.1 (Catch-up transition). A local delay transition (q, v)
δ−→i

(q, v′) is called a catch-up transition if the maximum value of reference clocks
at v′ is not greater than the maximum value of reference clocks at v, i.e.,

max
p∈Proc

v′(tp) ≤ max
p∈Proc

v(tp)

For example, consider a network N1 of two timed automata and a local
valuation v of N1 where: v(t1) = 10, v(t2) = 12. Now consider the valuation
v1 obtained by executing a local delay of δ = 2 in process A1. We have
v1(t1) = v1(t2) = 12. Here, δ is an example of a catch-up transition. However,
observe that not all local delay transitions are catch-up transitions. For
instance, a local delay transition of δ′ = 5 in process A1 from v takes us to
a valuation v2 where v2(t1) = 15, v2(t2) = 12 - here, the maximum value of
reference clocks at v2 is greater than the maximum value of reference clocks
at v, and we end up with a valuation which is no more synchronized than the
valuation v that we started out with. Hence, δ′ is not a catch-up transition.

We denote by R(q, v) the set of all synchronized regions that can be
reached from the (state, local valuation) pair (q, v) by action transitions or
catch-up transitions.
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Definition 5.2 (Catch-up equivalence). (q, v) and (q′, v′) are said to be
catch-up equivalent if the set of synchronized regions reachable from both
these states are the same; i.e.,

(q, v) ∼catch−up (q′, v′) if R(q, v) = R(q′, v′)

From Lemma 2.10, we know that the number of synchronized regions is
finite. As a consequence, we can conclude that catch-up equivalence also has
finite index.

Unfortunately, the question of effective algorithms to check for catch-up
equivalence was left open in [BJLY98]. To the best of our knowledge, there is
no efficient procedure to check if two local valuations are catch-up equivalent.
Therefore, catch-up equivalence, though useful theoretically, cannot be used
to obtain terminating procedures to check reachability via the exploration of
local zone graphs.

5.1.2 Minea’s approach

Building on [BJLY98], another finite abstraction of the local zone graph
was proposed by Minea [Min99a, Min99b]. In this section, we discuss this
approach and point out that it carries a bug, and it is not evident how to
repair this bug.

The approach in [Min99a] is founded on an equivalence between local valu-
ations along the lines of the region equivalence proposed by Alur et al. [AD94]
(see Section 2.3). We present the equivalence as presented in [Min99a] below.
Note that in this section, the set of all offset variables including the reference
clocks is denoted as T+.

Definition 5.3 (Equivalence defined in Section 3.7 of [Min99a]). Fix a
network of timed automata N = 〈A1, . . . , Ak〉. Let cmax be the maximum
constant used in the guards of N . Two local valuations v and v′ are said to
be equivalent, written as v 'reg v′ if for all variables x̃, ỹ ∈ T+ (including
the reference clocks):

• either bv(x̃)− v(ỹ)c = bv′(x̃)− v′(ỹ)c,

• or bv(x̃)− v(ỹ)c > cmax and bv′(x̃)− v′(ỹ)c > cmax,

• or bv(x̃)− v(ỹ)c < −cmax and bv′(x̃)− v′(ỹ)c < −cmax.

The equivalence is extended to configurations: (q, v) 'reg (q′, v′) if q = q′

and v 'reg v′.

We now state an observation about the equivalence from Definition 5.3
made in [Min99a].

Let v 'reg v′ w.r.t. cmax. Then:
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1. If g is a guard with a constant smaller than cmax, then v |= g iff v′ |= g.

2. For each clock set R, [R]v 'reg [R]v′.

3. For each i ∈ {1, . . . , k} and δ ≥ 0 there exists δ′ ≥ 0 such that
v +i δ 'reg v′ +i δ

′.

Based on this observation, it is claimed that 'reg is a simulation relation.
We state the proposition given in [Min99a] below.

Let (q, v) 'reg (q, v′) be equivalent configurations.

1. If (q, v)
a−→ (q1, v1), there exists (q1, v

′
1) such that (q, v′)

a−→ (q1, v1) and
(q1, v1) 'reg (q1, v

′
1).

2. If (q, v)
δ−→i (q, v1) there exists δ′ ∈ R≥0 such that (q, v′)

δ′−→i (q, v′1) and
(q, v1) 'reg (q, v′1).

We will now show that this claim is not correct. In particular, we show
that it is possible to construct a local delay transition that can distinguish
two local configurations that are 'reg equivalent.

Proposition 5.1. There exist local valuations v and v′ and a delay δ such
that v 'reg v′, but for no delay δ′, we have v + δ 'reg v′ + δ′.

Proof. Consider a network N1 of two timed automata A1 and A2, such that
X1 = {x}, X2 = {y}. This gives X̃ = {x̃, t1, ỹ, t2}. Let cmax = 3. Define
valuations v and v′ as follows:

v : x̃ = 0, t1 = 0, ỹ = 0, t2 = 4 v′ : x̃ = 0, t1 = 0, ỹ = 0, t2 = 5

Note that the differences between variables in v are either 0, 4 or −4 and the
corresponding differences in v′ are 0, 5 or −5. Hence by definition, v 'reg v′.
Consider valuation v +1 2 obtained by local delay of 2 units in process A1

from v:

v +1 2 : x̃ = 0, t1 = 2, ỹ = 0, t2 = 4

Observe that in v +1 2, the difference x̃− t1 = −2 and t1 − t2 = −2 both of
which are greater than −cmax. We claim there is no local delay δ′ such that
v +1 2 'reg v′+1 δ

′. Valuation v′+1 δ
′ is given by x̃ = 0, t1 = δ′, ỹ = 0, t2 = 5.

If v +1 2 'reg v′ +1 δ
′, on the one hand, we need b−δ′c = −2, hence δ′ ≤ 2,

and on the other hand, we need bδ′ − 5c = −2, which entails δ′ ≥ 3. This is
not possible.

Note that Proposition 5.1 contradicts the statement 3 of the claim made
in [Min99a]. The main problem is that even from a valuation where the
difference between a pair of reference clocks is bigger than the maximum
constant, by executing local delays, this difference can be brought within
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the maximum constant. This situation is fundamentally different from the
standard semantics, where if a clock is above the maximum constant in a
valuation, further delays keep it above this constant. This allowed the region
equivalence to work in the global semantics.

Using the propositions given in their work, the following theorem is
proposed in [Min99a].

Definition 5.4 (Maximization operator, Section 3.7 of Minea). Given a
canonical representation of a local zone Z, the maximized zone max(Z) with
respect to cmax is obtained by the following modifications on Z. For each
x̃, ỹ ∈ X̃ and each constraint φ := x̃− ỹlc: if c > cmax remove the constraint
φ, and if c < −cmax, change φ to x̃− ỹ < −cmax. Canonicalize the resulting
set of constraints.

Clearly the number of maximized zones is finite. Given a network N ,
we can now define a transition system MaxOZG(N ) as follows: nodes are of
the form (q,Z) where Z is a maximized zone; there is a transition (q,Z)

a−−→
(q′,max(Z′)) if there is a transition (q,Z)

a−−→ (q′,Z′) in OZG(N ); the initial
node is of the form (q0,max(Z0)) where (q0,Z0) is the initial node of OZG(N ).
Theorem 5 of [Min99a] (which talks about LTL model checking) can be
rephrased for the question of reachability as follows. There is a run of the
network N reaching a state q iff for some non-empty (maximized) zone Z,
(q,Z) is reachable in MaxOZG(N ) from its initial node. A natural implication
of this theorem is the soundness and completeness of MaxOZG(N ) w.r.t.
reachability.

Using the observation that we made in Proposition 5.1, we are now able
to state the following theorem.

Theorem 5.1. MaxOZG(N ) is not sound for reachability.

Proof. We will make use of valuations v and v′ given in the proof of Proposi-
tion 5.1. We will come up with an automaton network 〈A1, A2〉 such that:
(1) accepting state is not reachable; (2) valuation v′ is reachable in the
network and hence is present in a reachable zone; (3) maximization of the
zone containing v′ adds v to the zone; (4) the accepting state is reachable
from v. This entails that the maximization operation is not sound.

To achieve this, it is convenient to add an extra clock z̃ in component A2

and a fictitious clock 0 which is never reset. Figure 5.1 gives the network.
Note that cmax = 3. Although clock y does not appear in A2, one can assume
that there are other transitions from q0 that deal with y. For simplicity, we
avoid illustrating these transitions explicitly. Also, when we write x̃ = 2 we
mean x̃ − 0 = 2. In the discussion below, v, v′ are valuations restricted to
x̃, ỹ, t1 and t2.

In order to reach the state p2, the synchronization action c needs to be
taken: transition sequence a1c requires c to be taken at global time 4, and
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A1 A2

p0

p1

p2
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q2

q3
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c

b1

b2
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x = 2
{x}

x = 2

z = 2
{z}

z = 3
{z}

〈p0, q0〉
x̃ = 0, t1 ≥ 0
ỹ = 0, t2 ≥ 0
z̃ = 0

〈p1, q0〉
x̃ = 2, t1 ≥ 2
ỹ = 0, t2 ≥ 0
z̃ = 0

〈p0, q1〉
x̃ = 0, t1 ≥ 0
ỹ = 0, t2 ≥ 2
z̃ = 2

〈p1, q1〉
x̃ = 2, t1 ≥ 2
ỹ = 0, t2 ≥ 2
z̃ = 2

〈p0, q2〉
x̃ = 0, t1 ≥ 0
ỹ = 0, t2 ≥ 5
z̃ = 5

〈p1, q2〉
x̃ = 2, t1 ≥ 2
ỹ = 0, t2 ≥ 5
z̃ = 5

a1 b1

b1 a1 b2

b2 a1

OZG(〈A1, A2〉)

〈p0, q0〉
x̃ = 0, t1 ≥ 0
ỹ = 0, t2 ≥ 0
z̃ = 0

〈p1, q0〉
x̃ = 2, t1 ≥ 2
ỹ = 0, t2 ≥ 0
z̃ = 0

〈p0, q1〉
x̃ = 0, t1 ≥ 0
ỹ = 0, t2 ≥ 2
z̃ = 2

〈p1, q1〉
x̃ = 2, t1 ≥ 2
ỹ = 0, t2 ≥ 2
z̃ = 2

〈p0, q2〉
x̃ = 0, t1 ≥ 0
ỹ = 0, t2 ≥ 3
z̃ ≥ 3, t2 ≥ z̃

〈p1, q2〉
x̃ = 2, t1 ≥ 2
ỹ = 0, t2 ≥ 3
z̃ ≥ 3, t2 ≥ z̃

〈p2, q3〉
x̃ = 2, t1 ≥ 4
ỹ = 0, t2 ≥ 4
z̃ ≥ 3, t2 ≥ z̃

a1 b1

b1 a1 b2

b2 a1

c

MaxOZG(〈A1, A2〉)

Figure 5.1: Accepting state is not reachable in the network 〈A1, A2〉, but
MaxOZG(〈A1, A2〉) says otherwise.

transition sequence b1b2c requires c at global time 5. Hence c is not enabled
in the network. This is witnessed by c not being enabled in OZG(〈A1, A2〉).
Valuation v′ is present in the zone reached after b1b2. The MaxOZG(〈A1, A2〉)
is shown on the right. Zones where maximization makes a difference are
shaded gray. In particular, the zone b1b2 on maximization adds valuation
v, from which a1c is enabled, giving a zone in MaxOZG(〈A1, A2〉) with state
p2.

5.2. Sync-subsumption for local zones

We have seen that the existing approaches to obtain a finite local zone
graph have problems that render them ineffective. From an analysis of these
problems, we can conclude that a finite abstraction of the differences between
reference clocks constitutes the main challenge. We propose a solution which
bypasses the need to worry about such differences: restrict to synchronized
valuations for subsumption.

We briefly recall the operators sync and global that we introduced in Sec-
tion 4.5. The sync operator when given a local zone returns the set of synchro-
nized valuations in the local zone, i.e., sync(Z) = {v ∈ Z | v is synchronized}.
The global operator when applied to a synchronized local valuation v, yields
the offset valuation v such that v(t) = v(ti) and v(x̃) = v(x̃) for offset clocks
x̃ ∈ X̃. The global operator can be extended to sets of synchronized local
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valuations as follows: global(sync(Z)) = {v | v = global(v), v ∈ Z}. We have
already seen in Lemma 4.9 that global(sync(Z)) is a global zone.

Subsumptions over global zones are well studied (we discuss in detail
one such subsumption, va

LU , in Section 2.8). Taking an off-the-shelf finite
abstraction that is based on a simulation a and a subsumption relation
va between global zones based on this abstraction, we propose to do the
following: given two local zones Z1 and Z2, we perform a subsumption test
global(sync(Z1)) va global(sync(Z2)).

We consider a4LU as this off-the-shelf abstraction. We know that a4LU

is finite when considered over global zones (shown in Lemma 2.27). As a
consequence, we know that there are only finitely many zones of the form
global(sync(Z)) that are pairwise incomparable w.r.t. a4LU subsumption.

Remark. Observe that we could have used any abstraction based on a simu-
lation relation, that is finite when considered over global zones. For instance
aM [BBLP06], which is another such abstraction operator, would also have
been a suitable candidate.

Recall that we use the notation Z va
LU Z ′ to indicate that the global

zone Z is subsumed by the global zone Z ′. We now define vaLU
sync between

local zones.

Definition 5.5. Given two configurations s := (q,Z) and s′ := (q′,Z′) of
the local zone graph, we write s vaLU

sync s
′ if q = q′ and global(sync(Z)) va

LU

global(sync(Z′)).

From the above discussion, it is clear that vaLU
sync is a finite index sub-

sumption relation for local zones. Equipped with such a relation, we can
now define local sync graphs, that are essentially finite truncations of local
zone graphs. We will prove in Theorem 5.2 that local sync graphs are sound
and complete w.r.t. reachability.

Definition 5.6 (Local sync graph). A local sync graph G of a network of
timed automata N based on a, is a tree and a subgraph of LZG(N ) satisfying
the following conditions:

C0 each node of G is labeled either covered or uncovered ;

C1 the initial node of LZG(N ) belongs to G and is labeled uncovered;

C2 each node of G is reachable from the initial node;

C3 for each uncovered node s, all its successor transitions s
a−−→ s′ occurring

in LZG(N ) should be present in G;

C4 for each covered node s ∈ G there is an uncovered node s′ ∈ G such that
s vaLU

sync s
′. A covered node has no successors.



5.2. Sync-subsumption for local zones 107

The above definition essentially translates to this algorithm: explore the
local zone graph say in a BFS fashion, and subsume (cover) using vaLU

sync . The
local sync graph of a network is not unique as it depends on the order of
exploration. Using Lemma 2.27, we can conclude that a local sync graph
is always finite. Theorem 5.2 below states that local sync graphs are sound
and complete for reachability, and this algorithm is correct.

Theorem 5.2 (Soundness and completeness of local sync graphs). Consider
a network of timed automata N , and LU-bounds compatible with guards
in N . A state q is reachable in N iff a node (q,Z), with Z non-empty, is
reachable from the initial node in a local sync graph for N constructed with
vaLU

sync .

Proof. If (q,Z) is reachable in a local sync graph then it is trivially reachable
in the local zone graph and the (backward) implication follows from soundness
of local zone graphs (see Theorem 4.1).

For the other direction which implies completeness of local sync graphs,

let us take a global run: (q0, v0)
δ1,b1

===⇒ (q1, v1) · · · δn,bn
===⇒ (qn, vn). Consider

a local sync graph G. By induction on i, for every (qi, vi) we will find a
reachable uncovered node (qi,Zi) of G, and a synchronized local valuation
vi ∈ Zi such that vi �LU global(vi). This proves completeness, since every
reachable (qi, vi) will have a reachable representative node in the local sync
graph.

The induction base is immediate, so let us look at the induction step.

Consider the global step (qi, vi)
δi,bi

===⇒ (qi+1, vi+1). Since vi �LU global(vi),

there is a delay δ′i such that (qi, global(vi))
δ′i,bi===⇒ (qi+1, v

′
i+1) and vi+1 �LU

v′i+1. As the global delay δ′i can be thought of as a sequence of local delays,

we have the local run (qi, vi)
∆,bi−−−→ (qi+1, v

′
i+1), where v′i+1 = local(v′i+1).

Note that v′i+1 is synchronized and vi+1 �LU global(v′i+1). From the pre-

property of local zones (Lemma 4.6) there exists a transition (qi,Zi)
bi−−→

(qi+1,Z
′
i+1) with v′i+1 ∈ Z′i+1; in fact, v′i+1 ∈ sync(Z′i+1). If (qi+1,Z

′
i+1) is

uncovered, take v′i+1 for vi+1 and Z′i+1 for Zi+1 (needed by the induction step).
Otherwise, from condition C4, there is an uncovered node (qi+1,Z

′′
i+1) such

that global(sync(Z′i+1)) va
LU global(sync(Z′′i+1)). This gives v′′i+1 ∈ sync(Z′′i+1)

such that global(v′i+1) �LU global(v′′i+1). Now take v′′i+1 for vi+1 and Z′′i+1 for
Zi+1.

We have already seen in Section 4.5 that the aggregated zone of σ is
given by sync(Z), where (q,Z) is the node reached on σ in the local zone
graph. Since we are considering containment with respect to synchronized
valuations, it is easy to see that we maintain aggregated zones in local sync
graphs as well. Observe that a node being covered implies that further
exploration from that node is suspended. Recall that while all the equivalent
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sequences of σ lead to the same node in the local zone graph, they could
potentially lead to different nodes in the global zone graph. Suppose that
there is a covering from the node (q,Z) reached on a sequence σ in the local
zone graph. This has the effect of suspending further exploration from all
the sequences equivalent to σ. Further, if (q,Z) is covered in the local zone
graph, it does not imply that the node (q,Z) of the global zone graph is
covered, where (q,Z) is reached on a sequence σ′, such that σ′ ∼ σ. As a
consequence, a subsumption in the local zone graph has the effect of stopping
the exploration of several executions of the global zone graph. In this sense,
sync-subsumption in the local zone graph can be perceived as being “more
aggressive” than subsumptions in the global zone graph.

Thus, we have shown that local sync graph, obtained by using sync-
subsumption while exploring local zone graphs, is sound and complete with
respect to reachability. Furthermore, we have seen that local sync graphs
handle interleavings of concurrent actions better than the global zone graph.
Thanks to these results, we have an algorithm to test reachability of networks
of timed automata that proceeds by exploring the local sync graph.

5.3. Efficient reachability algorithm using local sync
graphs

In this section, we present a new reachability algorithm for networks of timed
automata that is based on the exploration of local sync graphs. The algorithm
takes as input a network of timed automata N , computes its LU -bounds (see
Definition 2.37), and constructs a variant of a local sync graph of N , as given
in Definition 5.6. An efficient algorithm for sync-subsumption between local
zones, i.e., to check if a local zone Z is sync-subsumed by another local zone
Z′, is given in appendix C. This allows us to store and manipulate local zones
while considering the synchronization of these local zones for comparisons;
in other words, we do not need to separately store sync(Z)’s or a(sync(Z))’s.

The algorithm proceeds similarly to the standard reachability algorithm,
with the main difference that while the standard reachability algorithm
constructs and explores the global zone graph and uses the va

LU -subsumption
between standard zones, our algorithm explores the local zone graph and
considers the vaLU

sync -subsumption between local zones. Just as the standard
algorithm, Algorithm 2 starts the exploration of the local zone graph of N
from the initial node (q0,Z0) and maintains two lists of nodes: the list Visited
stores all the nodes constructed by the algorithm, and the list Waiting stores
all the nodes that have been constructed but whose successors have not been
computed yet.

Observe that Algorithm 2 removes the covered nodes in lines 8 and 13.
Hence, the resulting graph, represented by the set Visited, is not a local sync
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Algorithm 2 Reachability algorithm for networks of timed automata based
on the exploration of its local sync graph

Input : A network of timed automata N .
Output : true iff N has a run reaching an accepting state.

1: Set Waiting = Visited := {(q0,Z0)}
2: if q0 is accepting then return true

3: while Waiting 6= ∅ do
4: remove some (q,Z) from Waiting
5: for all (q′,Z′) s.t. (q,Z)

a−→ (q′,Z′) for some a do
6: if q′ is accepting and sync(Z′) 6= ∅ then
7: return true
8: else if ∃ (q′,Z′′) ∈ Visited s.t. Z′ vaLU

sync Z′′ then
9: Skip

10: else
11: for (q′,Z′′) ∈ Visited do
12: if Z′′ vaLU

sync Z′ then
13: Remove (q′,Z′′) from Visited and Waiting

14: Add (q′,Z′) to Waiting and Visited

15: return false

graph according to Definition 5.6. Still, it has all the expected properties
that ensure its correctness: every node in Visited is reachable in LZG(N ),
and for every reachable node (q,Z) in LZG(N ), there exists a node (q,Z′) in
Visited such that (q,Z) vaLU

sync (q,Z′).

Correctness of the algorithm

We will now prove that Algorithm 2 is correct. The soundness of the algorithm
is given by Lemma 5.1, while the completeness follows from Lemma 5.3.

Lemma 5.1. (Soundness) If Algorithm 2 returns true, then N has an
accepting run.

Proof. Algorithm 2 returns true by either executing line 2 or line 7. Line 2
is only executed when the initial state q0 of N is an accepting state - in
this case, the claim is vacuously true. Next, consider the case when line 7
is executed. We can infer from the algorithm that this happens only when
a node (q,Z) has just been removed from Waiting, and (q,Z)

a−→ (q′,Z′) is
such that q′ is an accepting state and sync(Z′) is non-empty. Since (q,Z)
was in Waiting, it follows from the algorithm that there is a sequence of
actions σ such that (q0,Z0)

σ−→ (q,Z). This implies that there is a path
(q0,Z0)

σ.a−−→ (q′,Z′) in LZG(N ). From Lemma 4.6, we know that there is a
local run (q0, v0)

σ.a−−→ (q′, v′) where v′ ∈ Z′ is a synchronized local valuation
(follows from the fact that sync(Z′) is non-empty). Then, by Lemma 3.9, we
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know that N has a run (q0, global(v0)) −→ (q′, global(v′)). Since q′ is accepting,
this is an accepting run of N .

Lemma 5.2. Let σ be path in LZG(N ):

(q0,Z0)
a1−→ (q1,Z1)

a2−→ · · · (qn−1,Zn−1)
an−→ (qn,Zn).

If Algorithm 2 does not return true at termination, then for each 0 ≤ i ≤ n,
there exists a state (qi,Z

′
i) in the set Visited such that Zi vaLU

sync Z′i.

Proof. The proof of the lemma is quite similar to the proof of Lemma 2.32,
with the main difference that in this proof, we deal with local zones and
vaLU

sync subsumption, in the place of global zones and va
LU subsumption,

respectively.

Lemma 5.3. (Completeness) If LZG(N ) has a path to a node (q,Z), where
q is accepting and sync(Z) is non-empty, then Algorithm 2 returns true.

Proof. Suppose that the Algorithm 2 terminated by returning false. Then,
by Lemma 5.2, if there is a run to an accepting node (q,Z) of LZG(N ), it
follows that (q,Z) is in Visited when the algorithm terminates. But this
is not possible because the accepting state is never added to Visited. The
only other possibility is that sync(Z) = ∅, but we know that this is not the
case.

From Lemma 5.1 and Lemma 5.3, we can infer that Algorithm 2 is correct.
The termination of the algorithm is guaranteed by the finiteness of vaLU

sync ,
which is a direct consequence of the finiteness of va

LU over global zones, given
by Lemma 2.27.

An optimization for Algorithm 2

Recall that in the proof of completeness of local sync graph, we consider
a local run that sees only synchronized local valuations. Thus, when we
construct a path in the local zone graph, we are considering a path passing
through sync(Z)’s. Here, we propose an optimization to Algorithm 2 that
uses this observation: we ignore exploration from the local zones which
contain no synchronized valuations.

First, observe that by restricting exploration from a node, the soundness of
the local sync graph is not compromised. Next, we consider the completeness
of the restricted local sync graph. Recall that in the proof of completeness
of local sync graphs, we consider a global run and trace this run though the
nodes of the local zone graph. Observe that in each of the zones encountered
in this sequence, there is at least one synchronized valuation, namely the
valuation v (or the synchronized valuation v′ such that v �LU v′) seen during
the run. Thus, by removing the nodes which has zones with no synchronized
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valuations, the feasibility of the required sequence is not affected. As a
consequence, the restricted local zone graph is complete.

Consider the restricted local sync graph of a network N obtained by
removing from the local sync graph of N (given by Definition 5.6) nodes
(q,Z) such that sync(Z) = ∅.

Lemma 5.4. Suppose that LZG(N ) has a path to a node (q,Z), where q is
accepting and sync(Z) is non-empty. Then the restricted local sync graph of
N also has path to the node (q,Z).

Proof. Let (q0,Z0)
σ−→ (q,Z) and sync(Z) 6= ∅. Since sync(Z) 6= ∅, it follows

that there exists a sequence σ′, such that σ′ ∼ σ and σ′ is a global run.

From Theorem 4.2, we know that if (q0,Z0)
σ−→ (q,Z), then (q0,Z0)

σ′−→ (q,Z).
Further, since we know that σ′ is a global run, we know that each local zone

in the path (q0,Z0)
σ′−→ (q,Z) contains at least one synchronized valuation,

namely the local(v), where v is a valuation seen in the global run. As a
consequence, (q,Z) is reachable in the restricted local sync graph.

As a consequence of Lemma 5.4, we have the following optimization.

Corollary 5.1 (Optimization). Let (q,Z) be a node of the LZG(N ) such
that sync(Z) = ∅. Then (q,Z) need not to be stored, and its successors need
not be explored.

Algorithm 3 presented below, is the resulting updated procedure to
check reachability. It is a revised version of Algorithm 2 incorporating
the optimization 5.1, implemented by line 8 of the algorithm. Notice that
sync(Z0) is not empty since Z0 contains initial valuations which are by
definition synchronized.

5.4. Why local sync graphs are not amenable to
POR

In this chapter, we have proposed a new algorithm for testing reachability via
exploration of the local sync graph. We have discussed theoretical reasons
why the algorithm may be more efficient than the standard reachability
algorithm. A natural next step to speed up this algorithm further is to apply
a partial order reduction technique while exploring the local sync graph.

However, there is an obstacle to directly applying partial order reduction
to local sync graphs. As already discussed, we need to first have an effective
way to compute the independence relation between actions in the local sync
graph. For local zone graphs, we had showed that if two actions have disjoint
domains, then they satisfy the diamond property - in other words, the order
in which they are executed does not matter. It was this property that made
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Algorithm 3 Reachability algorithm for timed automata based on the
exploration of the restricted local sync graph

Input : A network of timed automata N .
Output : true iff N has a run reaching an accepting state.

1: Set Waiting = Visited := {(q0,Z0)}
2: if q0 is accepting then return true

3: while Waiting 6= ∅ do
4: remove some (q,Z) from Waiting
5: for all (q′,Z′) s.t. (q,Z)

a−→ (q′,Z′) for some a do
6: if q′ is accepting and sync(Z′) 6= ∅ then
7: return true
8: else if sync(Z′) = ∅ then
9: Skip

10: else if ∃ (q′,Z′′) ∈ Visited s.t. Z′ vaLU
sync Z′′ then

11: Skip
12: else
13: for (q′,Z′′) ∈ Visited do
14: if Z′′ vaLU

sync Z′ then
15: Remove (q′,Z′′) from Visited and Waiting

16: Add (q′,Z′) to Waiting and Visited

17: return false

local zone graph ideal for applying partial order reduction. It turns out that
disjointness of domains does not imply independence of actions in local sync
graphs. In particular, in local sync graphs, two actions with disjoint domains
violate both the diamond and the forward diamond property. In the next
section, we demonstrate this using examples.

We already saw in Lemma 4.8 that two actions with disjoint domains
need not satisfy the forward diamond property in the local zone graph. We
gave local zone (q,Z) and two actions a and b such that a and b have disjoint
domains and are individually enabled from (q,Z), the sequence ab is not
enabled from (q,Z). We will now show that two actions with disjoint domains
need not satisfy the diamond property either.

vaLU
sync does not preserve the set of enabled actions

We remark that even without forward diamond property it is in principle
possible to apply partial-order reduction during exploration. For instance, in
the local zone graph, actions with disjoint domains do not satisfy the forward
diamond property; yet partial order reduction is feasible in the local zone
graph, as actions with disjoint domains satisfy the diamond property in the
local zone graph. Had the local zone graph been a finite object, this would
have yielded us a working POR procedure for networks of timed automata.
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To make the local zone graph finite, we proposed the sync-subsumption
between local zones. Unfortunately, sync-subsumption does not preserve the
set of enabled actions. In other words, if Z is covered by Z′, an action a that
is enabled from Z need not be enabled from Z′. As a consequence, actions
with disjoint domains do not satisfy the diamond property. We explain this
in detail using an example.

Consider the local zone graph given in Figure 5.2. Let Z2 and Z′2 be as

((p0, q0),Z0)

((p1, q0),Z1) ((p0, q1),Z2))

((p1, q1),Z3)

((p2, q2),Z4)

((p0, q1),Z
′
2

a b

b

d

aX

Figure 5.2: An example of a local sync graph to illustrate that local sync
graphs are not amenable to partial order reduction techniques. Observe that
sync-subsumption does not preserve the set of enabled actions from the zone
Z2. As a consequence, the diamond property does not hold in the local sync
graph.

follows and let a be an action with guard x < 5.

Z2 : x̃ = ỹ = 0 ∧ t1 − x̃ ≥ 3 ∧ t2 − ỹ ≥ 10

Z′2 : x̃ = ỹ = 0 ∧ t1 − x̃ ≥ 9 ∧ t2 − ỹ ≥ 10

Clearly,

sync(Z2) = sync(Z′2) = t1 = t2 ∧ t1 − x̃ ≥ 10 ∧ t2 − ỹ ≥ 10.

It follows that Z2 vaLU
sync Z′2. However, in this situation a is enabled from Z2

but not from Z′2.
This issue primarily arises because the vaLU

sync -inclusion depends only on
the synchronized valuations of the two zones, while completely disregarding
the non-synchronized valuations. As a consequence, if an action is enabled
only from non-synchronized valuations from a local zone Z, it may not be
enabled from a local zone Z′ that covers Z.

As a consequence, we cannot directly apply a partial order reduction
method to the exploration of local sync graph. Consider the local sync graph
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p0

p1

p3 q0

q1

A1 A2

A = A1 ×A2

d

x > 1

e a x < 1 b y ≥ 2

(p0, q0,Z0)

t1 − x̃ ≥ 0

t2 − ỹ ≥ 0

x̃− ỹ = 0

(p0, q1,Z1)

t1 − x̃ ≥ 0

t2 − ỹ ≥ 2

ỹ − x̃ = 0 (p0, q1,Z2)

t1 − x̃ > 1

t2 − ỹ ≥ 2

x̃− ỹ = 0

b

dbe

⊆Sync

a

aX

Figure 5.3: An example of two nodes in the local sync graph where sync-
subsumption does not preserve the set of enabled actions.

given in Figure 5.2. A partial order reduction algorithm has two (seemingly
equivalent) options from the node (p0, q0,Z0) - either to explore the action a
or the action b. The algorithm has no preference in this situation. So, an
algorithm that chooses exploration of a reaches the node (p1, q0,Z1) from
which b is enabled. In this case, the algorithm will report that (p1, q1,Z3)
(and eventually (p2, q2,Z4)) is reachable. On the other hand, if the algorithm
chooses b, then it reaches the node (p0, q1,Z2) which is covered by the node
(p0, q1,Z

′
2). Observe that while a was enabled from Z2, it is not enabled from

Z′2. (We give an example of such a bad situation later in Figure 5.3.)
As a consequence, the algorithm will not report that (p1, q1,Z3) is reach-

able, which we know is wrong. Thus, if we want to apply partial order
reduction to local sync graphs, we need to find a way to account for this
phenomenon - perhaps some way to predict when an action may be disabled.
Unfortunately, we do not know of a way to do this.

We now give an example of this pathological situation in the local sync
graphs. Consider the network A and its local sync graph given in Figure 5.3.
Observe that from the initial node, the path dbe and the action b both lead to
nodes of the local zone graph with the same state (p0, q1) and the same set of
synchronized valuations. As a consequence, if the path dbe is explored before
exploring the action b, the node (p0, q1,Z2) reached by b is sync-subsumed
by the node (p0, q1,Z1) reached by dbe, as shown in Figure 5.3. Further, we
can see that the action a which is enabled from (p0, q1,Z2) is not enabled
from (p0, q1,Z1).

Thus, to summarize, in order to make the local zone graph finite, we
introduced a subsumption relation vaLU

sync between local zones. With the
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subsumption relation, the exploration of the graph is guaranteed to terminate,
but the price to pay was that the diamond property was no longer true. As a
consequence, it is not clear how to apply a partial-order reduction procedure
on this graph.

If we want to develop a partial order reduction procedure for networks
of timed automata, we need to go back to local zone graphs and develop
another subsumption technique that renders a transition system for which
the independence relation between actions is easy to compute.
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Chapter 6

A framework for applying
partial order reduction using
local zones

In Chapter 5, we proposed a new reachability algorithm for networks of timed
automata based on the exploration of local zone graphs. In the algorithm,
we compute a transition system called the local sync graph which is a finite
truncation of the local zone graph. We discussed theoretical reasons why local
sync graphs may be smaller than the standard zone graph. We would now
like to apply partial order reduction to the reachability checking procedure
based on the exploration of local zone graphs. In this way, we hope to achieve
the gains due to both approaches - local time semantics, as well as partial
order reduction.

However, we are faced with a major hurdle in this approach - as we
pointed out in Section 5.4, we do not know to compute the independence
relation between actions in local sync graphs. As a consequence, we do not
know how to apply partial order reduction to local sync graph. So, if we want
to apply partial order reduction while simultaneously using the local time
semantics, we need to develop an alternate subsumption relation between
local zones.

From our analysis of the challenges to applying partial order reduction to
local sync graphs, we identify the following key problem: vaLU

sync subsumption
does not preserve the set of all paths from a node of the local zone graph.
An example illustrating this is discussed in Section 6.1. We would like our
new subsumption operator to be path-preserving, i.e., if (q,Z) is covered by
(q,Z′), then all the paths from (q,Z) are feasible from (q,Z′) as well. However,
we show that, in general, it is not possible to obtain a finite quotient of the
local zone graph that is path-preserving.

Recall that a finite quotient of the standard zone graph was constructed
using the a4LU abstraction [BBFL03] that arises from a simulation relation

117
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for global valuations. Proceeding in a similar way, we propose a relation
≡∗M between local valuations and prove that ≡∗M is a simulation relation
(see Definition 2.18). Based on this simulation relation, we then define
an abstraction operator a∗M over local zones. It turns out that a∗M is not
finite in general. We observe that the main reason for this is the divergence
between reference clocks of the different processes. In general, keeping track
of arbitrarily large differences between reference clocks appears to be a major
inherent difficulty when trying to design finite abstractions for local zone
graphs.

We avoid this problem by restricting our attention to those networks,
for which, given any feasible sequence of actions in its local zone graph,
it is possible to find a run of the network where the differences between
reference clocks is bounded at all times. In order to make this idea precise,
we introduce the concept of spread of a valuation, which is the maximum
difference between two reference clocks in the valuation. We say that a run is
D-spread-bounded if the spread of all the valuations in the run are bounded by
a non-negative integer D. A network is D-spread-bounded if every local run
has an equivalent run that is D-spread-bounded. If a network is D-spread-
bounded for some D, we simply say that the network is spread-bounded.
Equipped with this notion, we restrict our attention to spread-bounded
networks.

Let N be a network of timed automata that is D-spread-bounded. We
show that when computing a covering relation between two nodes of the
local zone graph of N , it is sufficient to consider containment with respect to
the behaviour of valuations of spread D. We define a subsumption relation
aDM for local zone graphs that does precisely this. aDM is parameterized by a
constant D and compares sets of valuations of spread D. Essentially, this is
a generalization of the idea of vaLU

sync introduced in Section 5.2 - while vaLU
sync

compares the set of synchronized valuations in two local zones, aDM compares
the set of valuations of spread D. We refer to the transition system obtained
by applying the aDM subsumption to the local zone graph of a network as the
LZGD

M of the network.
We then show that for a D-spread-bounded network of timed automata,

it is sufficient to compute the LZGD
M of the network to answer the reachability

problem. We remark that the independence relation of LZGD
M of a network is

easy to compute. By defining the notion of the LZGD
M of a D-spread-bounded

network, we lay the foundations for applying partial order reduction to these
networks. Finally, we motivate the idea of a source-set based partial order
reduction method for LZGD

M of a D-spread-bounded network. We prove that
if N is D-spread-bounded, then applying the source set to the LZGD

M(N )
is sound and complete w.r.t. reachability. We make this notion concrete
in Chapter 8, where we propose an algorithm that applies partial order
reduction to the exploration of the LZGD

M of a network of timed automata.
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6.1. No finite quotient for local zone graphs

As already shown in Chapter 4, the local zone graph of a network of timed
automata is a symbolic representation of the local time semantics of the
network that is sound and complete with respect to reachability. As local
zone graphs are not finite in general, we need finite abstractions (see Defini-
tion 2.35) for local zone graphs to ensure the termination of a reachability
procedure based on the exploration of local zone graphs.

We now introduce the notion of an abstract local zone graph, which
is a finite representation of a local zone graph. An abstraction operator

a : P(RX̃′≥0) → P(RX̃′≥0) is a function from sets of local valuations to sets of
local valuations.

Definition 6.1 (Abstract local zone graphs). Given a timed automaton A,
and an abstraction operator a, the abstract local zone graph based on a,
denoted as LZGa(A) is a transition system with states of the form (q,W),
where q is a state of A and W = a(W) is a set of local valuations. The
initial state is (q0,W0), where W0 = a(Z0) and Z0 is the initial zone of

LZG(A), and transitions are of the form (q,W)
t−→a (q′, a(W′)) if W = a(W)

and W′ = {v′ | ∃ v ∈W,∃ δ ∈ R≥0 s.t. (q, v)
t−→ δ−→ (q′, v′)} is non-empty.

The abstraction a is said to be complete if for any path in LZG(A) of the
form (q0,Z0)

σ−→ (q,Z), there is a path in LZGa(A) of the form (q0,W0)
σ−→a

(q,W), where W0 = a(Z0). a is said to be sound if for any path in LZGa(A)

of the form (q0,W0)
ρ−→a (q,W) there is a path in LZG(A) of the form

(q0,Z0)
ρ−→ (q,Z).

Definition 6.2 (Transition compatible abstraction). Let A be a timed
automaton and let LZG(A) be the local zone graph of A and LZGa(A) be the
abstract local zone graph based on an abstraction a. Let f be a mapping
from the nodes of LZG(A) to the nodes of LZGa(A), such that for all nodes
η, η1, η2 of LZG(A)

• η and f(η) have the same control state.

• if η1
t−→ η2 is a transition in LZG(A), then f(η1)

t−→a f(η2) is a transition
in LZGa(A).

If such a mapping f exists, then we say that a is transition compatible.

Lemma 6.1. If a is transition compatible, then a is complete.

Proof. Let a be transition compatible and let f be the corresponding mapping
from the nodes of LZG(A) to the nodes of LZGa(A).

Then, it can be observed that if σ is a path in LZG(A) leading to a node
η, there exists a path σ to the node f(η) in LZGa(A). By definition of f , the
nodes η and f(η) have the same control state.
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We will now present a network of timed automata, for which we will
show that there exists no finite abstraction that is both sound and transition
compatible. The network A (Figure 6.1) that consists of two processes A1

and A2, was originally presented in a similar context in Lugiez et al. [LNZ05].
It is easy to see that any accepting run of the network executes an equal
number of a’s and b’s followed by the global action c.

A = A1 ‖ A2

A1 A2

p0

p1

q0

q1

a

x = 1; {x}
b

y = 1; {y}

cx = 1 c y = 1

Figure 6.1: A network with no finite quotient for LZG

Consider the local zone graph of A, denoted as LZG(A). Let (p0, q0,Zi,j)
be the node of LZG(A) reached on the execution aibj (let i > j) from the
initial node:

(p0, q0,Z0)
aibj−−→ (p0, q0,Zi,j)

We denote by ηi,j the node (p0, q0,Zi,j) of the local zone graph.

Lemma 6.2. From the node ηi,j in the local zone graph of A, the only
sequence of the form b∗c reaching the accepting state is bi−jc.

Proof. We know that the network A accepts the language

LA = {(ab+ ba)∗c}

This is the set of all global runs accepted by A. As a consequence, any
local-time run of A which leads to an accepting state should see an equal
number of a’s and b’s. This follows from the soundness of local time semantics
w.r.t. the global semantics.

From the soundness of local zone graphs w.r.t. the local time semantics,
we know that any sequence of actions which leads to an accepting node of
the local zone graph must have an equal number of a’s and b’s. Therefore, if
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the path ρ leads to an accepting state from ηi,j , since ρ cannot contain a’s
(by assumption), the number of b’s in ρ must be i− j, and the number of c’s
must be 1. Moreover, the action c cannot occur before any occurrence of the
action b, since the execution of c disables the action b. The only sequence of
actions which satisfies this criterion is bi−jc.

Corollary 6.1. There are infinitely many distinct nodes ηi,j in the local
zone graph of A.

Lemma 6.3. There is no finite abstraction for local zone graphs that is
sound and transition compatible.

Proof. Consider the network A and its local zone graph LZG(A). Let a be an
abstraction of LZG(A) that is sound and transition compatible. We will show
that a cannot be finite. Let LZGa(A) denote the abstract local zone graph
of A based on a. Since a is transition compatible, there exists a mapping f
from the nodes of LZG(A) to the nodes of LZGa(A), such that for any node

η of LZG(A), η and f(η) have the same control state and if η1
t−→ η2 is a

transition in LZG(A), then f(η1)
t−→a f(η2) is a transition in LZGa(A).

From Corollary 6.1, we know that there are infinitely many nodes ηi,j in
LZG(A).

To show that a is not finite, we will show that

f(ηi,j) 6= f(ηk,l) if i− j 6= k − l

Let us assume, for the sake of contradiction, that this is not the case.
This implies that there exist two nodes of LZG(A), ηi,j and ηk,l, such that
f(ηi,j) = f(ηk,l), and i− j 6= k − l.

From Lemma 6.2, we know that from the node ηi,j , the sequence bi−jc
leads to an accepting node of LZG(A). Since a is transition compatible, we
know that the sequence bi−jc leads to an accepting node from f(ηi,j) in
LZGa(A). Similarly, we know that the sequence bk−lc leads to an accepting
node from f(ηk,l) in LZGa(A). Since f(ηi,j) = f(ηk,l), we know that bk−lc
leads to an accepting node from f(ηi,j) in LZGa(A).

Since the sequence aibj leads to the node ηi,j in LZG(A), we know that
aibj leads to f(ηi,j) in LZGa(A). Therefore, we can see that the path aibjbk−lc
leads to an accepting node in LZGa(A). Since the abstraction a is sound, this
means that the run aibjbk−lc leads to an accepting state in LZG(A). But we
know from Lemma 6.2 that this is true only if i− j = k− l, which contradicts
our assumption.

The network A (Figure 6.1) demonstrates a major inherent difficulty
when trying to develop finite abstractions for local zone graphs. Recall that
for local zone graphs, there is such a finite quotient that is based on a4LU

abstraction and aM abstraction [BBFL03, BBLP06].
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Observe that the paths posing problems in LZG(A) are those for which
the difference between local times (the values of reference clocks) of two
processes grows arbitrary. Our approach will be to restrict our attention to
only runs passing only through valuations where the difference between local
times is bounded. We say that such a run has bounded spread. The first
step is to develop a generalization of a4LU to an abstraction on local zones
that preserves all runs of bounded spread. We construct such an abstraction,
referred to as a∗M , in the next section. We then address the main challenge
of using it efficiently to check reachability.

6.2. A region equivalence for local valuations

In Section 2.3, we had presented the notion of regions for global valuations.
In this section, we introduce a similar notion of regions for local valuations,
referred to as M∗-regions. As in the standard setting, we assume that
we are given a bounds function M that determines for each clock x, the
maximal constant M(x) used in a guard involving x. We will use a slightly
different version of this bounds function which is defined over offset clocks
and reference clocks. Our objective is to develop a notion of regions taking
into account the bounds function. In contrast to the standard setting, even
for a fixed M the number of M∗-regions will be infinite. But we can still
define a notion of an abstraction of a local zone similar to a4LU abstraction
in the standard setting.

We recall the notation that we use with respect to the set of clocks here.
Xp denotes the set of clocks of a process Ap, and X = ∪p∈ProcXp. Further, we

use the following notation for clocks in the offset setting: X̃p = {x̃ | x ∈ Xp},
X̃ ′p = X̃p ∪ {tp} and X̃ ′ =

⋃
p X̃
′
p.

6.2.1 M∗-regions

In this section, we introduce a notion of regions for local valuations. We will
show that the idea is quite similar to the notion of regions in the setting of
offset valuations, discussed in Section 2.3. We first restate a few technical
lemmas that we had used to prove results for regions of offset valuations.
These are presented with proofs in Section 2.3. We will use these lemmas to
prove results about the region equivalence for local valuations.

Lemma 6.4. For all x ∈ R \ Z, we have {−x} = 1− {x}.

Lemma 6.5. For x, y, z ∈ R, {z−x} ≤ {z− y} iff bx− yc = bx− zc+ bz−
yc+ 1.

Lemma 6.6. For x, y, z ∈ R, {x− z} ≤ {y − z} iff {z − x} ≥ {z − y}.
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Definition 6.3. For local valuations v and v′, we define v ≈∗ v′ if for all
pairs of offset clock variables (including reference clocks) x, y ∈ X̃ ′, we have
bv(x− y)c = bv′(x− y)c.

Lemma 6.7. Let v ≈∗ v′. Then, for variables x, y, z ∈ X̃ ′, we have {v(z −
x)} ≤ {v(z − y)} iff {v′(z − x)} ≤ {v′(z − y)}.

Proof. Follows from Lemma 6.5 and Definition 6.3.

In Lemma 6.8, we show that local valuations that are ≈∗-equivalent can
mutually simulate each other w.r.t. the local passage of time. Note that we

denote by
δ−−→p a delay of δ time units in process Ap.

Lemma 6.8. Let v ≈∗ v′. For every local delay v
δ−−→p u, there exists a δ′

such that v′
δ′−−→p u

′ where u ≈∗ u′.

Proof. We assume that δ < 1. If δ ≥ 1 then we can decompose it into its
integral part and fractional part and repeat the reasoning.

We divide the variable differences into three sets:

C+ = {tp − z̃ | z ∈ X \ {tp}}
C− = {z̃ − tp | z ∈ X \ {tp}}
C0 = {x̃− ỹ | x, y ∈ X \ {tp}}

A local delay of δ increases the value of differences in C+, decreases the ones
in C− and leaves the C0 differences unaltered. Consider an element φ ∈ C+.
Based on the relation between δ and 1 − {v(φ)}, its value either stays in
the same integer interval, or moves to the next integer point, or to the next
integer interval. A symmetric change happens in C−. We now make this
idea more precise.

u(tp − z̃) = v(tp − z̃) + δ

= bv(tp − z̃)c+ {v(tp − z̃)}+ δ

= bv(tp − z̃)c+ 1− {v(z̃ − tp)}+ δ

u(z̃ − tp) = v(z̃ − tp)− δ
= bv(z̃ − tp)c+ {v(z̃ − tp)} − δ

From the above calculations, we observe two properties:

bu(tp − z̃)c = bv(tp − z̃)c+ 1 iff δ ≥ {v(z̃ − tp)} (6.1)

bu(z̃ − tp)c = bv(z̃ − tp)c − 1 iff δ > {v(z̃ − tp)} (6.2)

Note that the difference in the inequalities (≥ in (6.1) and > in (6.2)) is
expected, since for any x ∈ R we have b−xc = −bxc if {x} = 0, and
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b−xc = −bxc − 1 otherwise. Among the ordering of fractional parts of
differences in C− for v, consider (z̃1 − tp), (z̃2 − tp) that are consecutive in
this ordering such that {v(z̃1 − tp)} ≤ δ < {v(z̃2 − tp)}.

We now propose a δ′ as required. From Lemmas 6.6 and 6.7, we know
that the fractional parts of differences in C− are ordered in the same way in
v and v′. We take any δ′ with {v′(z̃1 − tp)} ≤ δ′ < {v′(z̃2 − tp)}, such that
in addition δ′ = {v′(z̃1 − tp)} if δ = {v(z̃1 − tp)}. Let u′ = v′ + δ′. Since we
started with v ≈∗ v′, from (6.1) and (6.2) we get u ≈∗ u′.

Thanks to these intermediate results, we can now propose a region
equivalence for local valuations, for the given clock bounds. As in the
standard setting, we consider a bound function M that maps each clock to a
non-negative integer. For convenience, we consider a modified function M
tailored for clocks in the offset setting. For standard clocks, just as in the
standard case, M(x) gives the maximal constant used in a guard involving
x. For reference clocks tp, we set M(tp) =∞. That is,

M(x̃) = M(x) for offset clocks x̃ ∈ X̃

M(tp) =∞ for reference clocks tp ∈ X̃

The notion of M∗-equivalence that we propose ensures that two local
valuations can simulate each other in an arbitrary timed automata whose
guards respect M bounds.

Definition 6.4 (M∗-equivalence). Let M :
⋃
p∈ProcXp ∪ {tp} 7→ N ∪

{∞,−∞} be a bounds function mapping each clock to a non-negative con-
stant, −∞ or ∞. For a local valuation v, let

Bounded(v) =
⋃

p∈Proc
{x ∈ X̃ ′p | v(tp − x) ≤M(x))}

Note that by definition, all the reference clocks belong to Bounded(v).
Two local valuations are M∗-equivalent, denoted as v ≡∗M v′, if

• Bounded(v) = Bounded(v′)

• v B ≈∗ v′ B where v B and v′ B denote the valuations v and v′ restricted
to clocks in B = Bounded(v).

We write [v]M
∗

to denote the equivalence class of v under ≡∗M and refer to it
as the M∗-region of v.

For example, consider the network A (Figure 6.1), that contains two
processes A1 and A2. Let t1, t2 be the reference clocks of A1, A2 respec-
tively. From the network, we have M(x̃) = M(ỹ) = 1,M(t1) = M(t2) =
∞. A local region for N is given by one of the four possible intervals
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[0, 0], (0, 1), [1, 1], (1,∞) for the differences t1 − x̃, t2 − ỹ and x̃ − ỹ and
one of the infinitely many intervals [0, 0], (0, 1), [1, 1], (1, 2), [2, 2], . . . for (the
modulus of) t1 − t2. This is because by Definition 6.4, all reference clocks tp
are automatically in Bounded(v) and the exact integral values between their
differences need to be maintained. As a consequence, there are infinitely
many M∗-regions. The example of network A (Figure 6.1) shows that this is
the price to pay for working with local valuations.

We say that a network of timed automata conforms to bounds function M
if for each process p and clock x ∈ Xp, all the guards testing x use constants
not bigger than M(x). We write (q, v) ≡∗M (q, v′) when v ≡∗M v′.

Recall the definition of a simulation relation given in Definition 2.18. A
simulation relation on the local time semantics is a binary relation between
configurations (q, v) 4 (q, v′) such that:

• 4 is reflexive and transitive,

• for every local delay-action sequence (q, v)
∆,b−−→ (q1, v1), there exists

a local delay sequence ∆′ such that (q, v′)
∆′,b−−→ (q1, v

′
1) and (q1, v1) 4

(q1, v
′
1).

The relation 4 is a bisimulation if 4 is also symmetric.

Proposition 6.1. Let M be a bounds function. Consider a network of timed
automata conforming to M . The relation (q, v) ≡∗M (q, v′) is a bisimulation.

Proof. From Lemma 6.8, we know that for each local delay transition

(q, v)
δ−→p (q, u) there is a local delay (q, v′)

δ′−→p (q, u′) such that u ≡∗M u′.
Next, we consider the case of action transitions. Since v ≡∗M v′, we

have v(tp − x̃p) > M(xp) iff v′(tp − x̃p) > M(xp), for all xp ∈ Xp and
p ∈ Proc. Moreover, when xp is bounded, bv(tp − x̃p)c = bv′(tp − x̃p)c
and bv(x̃p − tp)c = bv′(x̃p − tp)c. Hence, v satisfies a guard xp ∼ c with
∼ ∈ {<,≤, >,≥} and c ≤ M(xp) iff v′ satisfies the guard. Further, as
a reset of xp results in v(x̃p) = v(tp), it is clear that if v ≡∗M v′, then
[R]v ≡∗M [R]v′.

From Proposition 6.1, we infer that [v]M
∗

is a region analogous to the
standard case, for the setting of local valuations.

6.2.2 Abstraction operation a∗M

Equipped with the notion of M∗-regions we can define the operation of
a∗M -abstraction for local zones. In the standard setting, a4LU abstraction
of a zone is a union of all LU -regions intersecting the zone. Analogously,
we define a∗M abstraction of a local zone to be the union of all M∗-regions
intersecting the local zone.
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Definition 6.5 (a∗M abstraction). For a local zone Z, we define a∗M(Z) :=
{v | ∃ v′ ∈ Z with v ≡∗M v′}.

Recall that in the standard setting, the abstraction of a zone is not a
zone. Similarly, in our setting, the abstraction of a local zone may not be a
local zone. In Section 6.4, we will show that in spite of this, the non-inclusion
test Z 6⊆ a∗M(Z′) can be done efficiently.

Observe that a∗M abstraction is not finite in general. This is a direct
consequence of the existence of infinitely many M∗-regions. For instance,
in the local zone graph of A (Figure 6.1), the local zone Zij reached on the
execution aibj has the constraints: t1− x̃ ≥ i∧ t2− ỹ ≥ j∧ x̃− ỹ = i− j. Pick
a valuation vij with: t1 − x̃ = 1 ∧ t2 − ỹ = 1 ∧ t1 − t2 = i− j ∧ x̃− ỹ = i− j.
From the constraints in zone Zij , we see that for a pair i′, j′ different from
i, j we have vij 6∈ Zi′j′ due to the x̃− ỹ constraint. Hence for two different
zones of the form Zij , it cannot be the case that one subsumes the other.
This gives an infinite local zone graph, even with the a∗M abstraction. In
Section 6.3, we will examine situations when the a∗M abstraction becomes
finite.

6.3. Bounding the spread

In Section 6.2, we proposed a relation ≡∗M between valuations in the local
time semantics, and we proved that ≡∗M is a simulation relation for local
valuations. Further, we showed that the abstraction relation a∗M constructed
using this simulation is not finite. We observe that the key issue that prevents
us from obtaining finite abstractions of local zone graphs is the lack of bound
on the differences between reference clocks.

As a solution to this problem, we restrict our attention to those networks
for which, given any feasible sequence of actions in its local zone graph, it
is possible to find a run where the difference between reference clocks is
always bounded. To make this idea precise, we introduce the notion of the
spread of a valuation, which is defined as the maximum difference between
two reference clocks in the valuation. We say a run is spread-bounded if the
spread of all valuations in the run is bounded by some non-negative integer
D. Equipped with this notion, we restrict our attention to those networks in
which each run has an equivalent spread-bounded run. For local zone graphs
of networks of timed automata that are D-spread-bounded, we show that it
is sufficient to look at valuations of spread D, in order to get a finite local
zone graph, that is amenable to partial order reduction.

We will now formally define the notion of spread and spread-boundedness.

Definition 6.6. The spread between processes Ap, Aq in a valuation v is the
absolute value of the difference between their reference clocks: |v(tp)− v(tq)|.



6.3. Bounding the spread 127

We say that a valuation v has spread D if the spread between every pair of
processes in v is at most D.

Definition 6.7. Consider a run in the local time semantics

(q0, v0)
∆1−−→ a1−→ (q1, v1)

∆2−−→ a2−→ · · · (qn−1, vn−1)
∆n−−→ an−→ (qn, vn)

We say that it is D-spread if all v0, . . . , vn have spread D.

We now present examples of D-spread runs of a network. Consider the
network A given in Figure 6.1. Observe that between the execution of two a
actions, the process A1 needs to elapse exactly one unit of time. Likewise,
between the execution of two b actions, the process A2 needs to elapse exactly
one unit of time.

Consider the following run of A.

(p0, q0)
t1 = 0, x̃ = 0
t2 = 0, ỹ = 0

(p0, q0)
t1 = 1, x̃ = 1
t2 = 0, ỹ = 0

(p0, q0)
t1 = 2, x̃ = 2
t2 = 0, ỹ = 0

(p0, q0)
t1 = 2, x̃ = 2
t2 = 1, ỹ = 1

(p0, q0)
t1 = 2, x̃ = 2
t2 = 2, ỹ = 2

(p1, q1)
t1 = 3, x̃ = 2
t2 = 3, ỹ = 2

∆1 a ∆2 a ∆3 b ∆4 b ∆5 c

Figure 6.2: A run of A of spread 2

From inspection of the run given in Figure 6.2, we see that the maximum
spread between A1 and A2 is in v2, and v2(t1 − t2) = 2. Thus, the spread
between A1 and A2 in v2 is 2 and as a consequence, the run is 2-spread.

Consider another run of A given in Figure 6.3.

(p0, q0)
t1 = 0, x̃ = 0
t2 = 0, ỹ = 0

(p0, q0)
t1 = 1, x̃ = 1
t2 = 1, ỹ = 0

(p0, q0)
t1 = 1, x̃ = 1
t2 = 1, ỹ = 1

(p0, q0)
t1 = 2, x̃ = 2
t2 = 2, ỹ = 1

(p0, q0)
t1 = 2, x̃ = 2
t2 = 2, ỹ = 2

(p1, q1)
t1 = 3, x̃ = 2
t2 = 3, ỹ = 2

∆1 a b ∆2 a b ∆3 c

Figure 6.3: A run of A of spread 0

From Figure 6.3, we see that for all valuations in the run, the spread
between A1 and A2 is 0, and therefore, the run is 0-spread.

Next, we define when a network of timed automata is said to be spread-
bounded.

Definition 6.8. A network of timed automata N is said to be D-spread-
bounded if every local run of N can be converted to a D-spread run by
adjusting the delays.

Observe that if a network N is D1-spread, from Definition 6.8, it follows
that N is D2-spread, for all D2 ≥ D1. On a different note, we remark that
in order to convert a run to a D-spread run, we can adjust also the delays of
processes that do not participate in the next action.

Just as we defined sync(Z) as the restriction of the local zone Z to
synchronized local valuations (see Section 5.2), we define spreadD(Z) as the
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restriction of Z to local valuations of spread D. This allows us to define a
finite abstraction operation, and a subsumption operation based on it.

Definition 6.9 (aDM -subsumption). Let D be an integer and M a bounds
function. For a zone Z we define:

spreadD(Z) = Z ∩ {tp − tq ≤ D : p, q ∈ Proc} .

We define the aDM subsumption operation, denoted as Z vDM Z′, by

spreadD(Z) ⊆ a∗M(spreadD(Z′)) .

Definition 6.10 (LZGD
M(N )). Let N be a network of timed automata con-

forming to a bound function M . A local zone graph with aDM-subsumption
for N , denoted LZGD

M(N ), is a graph whose nodes are pairs (q,Z) where q
of a state of N and Z is a local zone. The initial node of LZGD

M(N ) is the
initial node (q0,Z0) of LZG(N ) and for each node (q,Z) either:

• the node is uncovered, namely, for each transition (q,Z)
a−−→ (q′,Z′) in

LZG(N ) there is transition (q,Z)
a−−→ (q′,Z′) in LZGD

M(N ) if spreadD(Z′)
is not empty; or

• the node is covered, namely, (q,Z) has no outgoing transitions, and
there exists an uncovered node (q,Z′) such that Z vDM Z′.

Note that the definition implies that the initial node is uncovered.
In Theorem 4.1, we reduced the reachability problem for N to reachability

in LZG(N ). More precisely, N has a run executing a chosen action α iff
there is a path in LZG(N ) starting from the initial node and containing the
α edge. The next sequence of lemmas implies that LZGD

M(N ) is sound and
complete w.r.t. reachability. In other words, we will show that LZGD

M(N ) can
be used in place of LZG(N ). Moreover, LZGD

M(N ) is a finite abstraction of
LZG(N ). Additionally, if N is D-spread-bounded then we can use a partial
order reduction method while exploring it.

Remark. Until now, we always defined acceptance as reaching a state of
the network. We show that it is possible to convert a standard network that
accepts by reaching an accepting state to a network that accepts by executing
an action at the end. A detailed discussion of this transformation is presented
in Appendix B.

Lemma 6.9. For every D and a bounds function M that does not map any
offset clock to ∞, the graph LZGD

M(N ) is finite.

Proof. First, observe that there are only finitely many sets of the form
a∗M(spreadD(Z)) for some zone Z. Indeed, such a set is a collection of M∗-
regions of local valuations belonging to spreadD(Z). We will show that there
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is a bound on the constants in constraints defining [v]M
∗

(cf. Definition 6.4)
for v ∈ spreadD(Z). As the spread of v is bounded by D, the difference
between each pair of reference clocks tp and tq is bounded by D. If a clock x
is unbounded then there are no constraints between x and other variables.
If x is a clock of Ap, and x is bounded then tp − x̃p < M(x̃p). This implies
that tq − x̃p < M(x̃p) +D for all other reference clocks tq. For the constraint
x̃−tp < c, we know that c ≤ 0 since x̃ ≤ tp. Then, it follows that −c ≤M(x̃p),
as otherwise x̃− tp < −M(x̃p) giving tp − x̃ > M(x̃p), which is inconsistent
with tp − x̃p < M(x̃p). Lastly, for a constraint of the form x̃− ỹ < c, we can
deduce, for the same reasons that c ≤ D + max(M(x̃),M(ỹ)).

Having defined LZGD
M and proved its finiteness, we now state a property

of vDM subsumption, which will be useful in proving results about LZGD
M

later.

Lemma 6.10. Suppose that N is a D-spread-bounded system conforming to
the bounds function M and (q,Z) is a node reachable in LZGD

M(N ). Then,

if Z vDM Z′ and (q,Z)
a−→ (q1,Z1), then (q,Z′)

a−→ (q1,Z
′
1) for some Z′1 with

Z1 vDM Z′1.

Proof. Since (q,Z)
a−→ (q1,Z1), by the pre-post property of local zones, for

each v1 ∈ Z1, we have v ∈ Z such that (q, v)
a−−→ (q1, v1). Consider v1 that is

D-spread-bounded. Since N is D-spread-bounded, every local run of N can
be converted to a D-spread run. As a consequence, we can assume that v
is D-spread-bounded. By definition of aDM subsumption, there is a v′ ∈ Z′

such that v ≡∗M v′. Since v is D-spread-bounded, so is v′, by definition of
≡∗M . Further, from Proposition 6.1, we also have (q, v′)

a−−→ (q1, v
′
1) such that

v1 ≡∗M v′1.

Since LZGD
M is obtained from LZG by removing some transitions, we

immediately obtain Lemma 6.11.

Lemma 6.11. For each action α, if action α is reachable by a path in
LZGD

M(N ), then it is also reachable by a path in LZG(N ).

Now, it remains to show that LZGD
M is complete. This is given by

Lemma 6.12. The proof follows similarly to the proof of completeness of
local sync graphs (Theorem 5.2).

Lemma 6.12. Given a network of timed automata N , consider M -bounds
function compatible with guards in N . If q is reachable in N , then in
LZGD

M(N ) a node (q,Z) is reachable from the initial node, for some non-
empty zone Z.

Proof. Consider a global run of N : (q0, v0)
δ1,b1

===⇒ (q1, v1) · · · δn,bn
===⇒ (qn, vn).

By induction on i, for every (qi, vi) we can find a reachable uncovered node
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(qi,Zi) of LZGD
M(N ), and a local (in fact, synchronized) valuation vi, such that

vi ∈ Zi and local(vi) ≡∗M vi. Since a synchronized valuation has spread D by
definition, this establishes the completeness of LZGD

M, since every reachable
(qi, vi) will have a reachable representative node in LZGD

M(N ).
The argument is quite similar to the proof of Theorem 5.2, with the

difference that in this proof, we consider a∗M subsumption instead of a4LU

subsumption. The base case of the induction follows directly. Next, we look at

the induction step. Consider the global step (qi, vi)
δi,bi

===⇒ (qi+1, vi+1). Since
the global delay δi can be thought of as a sequence of local delays, we have

the local run (qi, local(vi))
∆i,bi−−−→ (qi+1, local(vi+1)). By induction hypothesis,

we have vi ∈ Z such that vi ≡∗M local(vi). From Lemma 6.1, we know that

there exists a delay ∆′i such that (qi, vi)
∆′i,bi−−−→ (qi+1, vi+1) such that vi+1 ≡∗M

local(vi+1). Since local(vi+1) is a synchronized valuation, from the definition
of ≡∗M , it follows that vi+1 is also synchronized. Using the pre-property of

local zones (Lemma 4.6), there exists a transition (qi,Zi)
bi−−→ (qi+1,Zi+1)

with vi+1 ∈ Zi+1 (in fact, vi+1 ∈ sync(Zi+1)). If (qi+1,Zi+1) is uncovered,
then vi+1 and Zi+1 are as needed for the induction step. Otherwise, by
the definition of LZGD

M (Definition 6.10), there exists an uncovered node
(qi+1,Z

′′
i+1) such that Z′i+1 vDM Z′′i+1. Since vi+1 ∈ spreadD(Zi+1), we have

v′i+1 ∈ spreadD(Z′i+1) such that vi+1 ≡∗M v′i+1. In this case, we take v′i+1 for
vi+1 and Z′i+1 for Zi+1.

We now present an alternate way to obtain the completeness for LZGD
M.

Observe that the LZGD
M with D = 0, is the graph we would get if we use

aM subsumption instead of a4LU subsumption, while computing the local
sync graph. Further, observe that using a∗M subsumption instead of a4LU

subsumption does not affect the correctness of local sync graph. Then, from
the completeness of local sync graphs, we immediately get the completeness
of LZGD

M with D = 0, for all networks. Since increasing the parameter spread
D while computing LZGD

M maintains the reachable nodes of LZGD
M with lower

values of D, this does not affect the completeness.

6.3.1 Partial order reduction for LZGD
M

As promised, in this section, we will show how it is possible to use partial
order exploration in LZGD

M. We will adopt a quite abstract view of partial
order reduction. Later we will explain our choice by showing that it would
not make sense to refer to diamonds in LZGD

M when defining a reduction.
A partial order reduction can be seen as a way of defining a function

source : Q → P(Σ) assigning a set of actions to each state of N . A source
transition in LZG is a transition (q,Z)

a−−→ (q′,Z′) in LZG such that a ∈
source(q). Observe, that source depends only on the state component of the
configuration. A source path is a path consisting of only source transitions.
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A source function is complete for a LZG, if whenever there is a path executing
α then there is a source path executing α. Note that if α is not reachable
then every source function is complete. If α is reachable, and we are given a
path to α then we can take a source function that chooses exactly this path.
Our goal is to have a source function that is easier to calculate than solving
the reachability problem in the first place.

We define a path with subsumption edges as a path of LZGD
M in which

edges can either edges of the LZG or subsumption edges between nodes of
the LZG. Now, we can also talk about source paths with subsumption edges.

Lemma 6.13. Suppose that N is a D-spread-bounded system conforming to
the bounds function M . For every path (q0,Z0)

a1−−→ (q1,Z1)
a2−−→ . . . (qn,Zn) in

LZG(N ), there exists a path with subsumption edges in LZGD
M(N ) (q0,Z0)

a1−−→
(q1,Z

′
1)

a2−−→ . . . (qn,Z
′
n), such that spreadD(Zn) ⊆ a∗M(spreadD(Z′n)). If the

initial path is a source path, so is the path in LZGD
M.

Proof. Consider a path σ = a1a2 · · · an in LZG(N ). Consider a local run

that is an instantiation of this path: (q0, v0)
a1−−→ (q1, v1)

a2−−→ . . .
an−−→ (qn, vn).

Since N is D-spread-bounded, we may assume that each valuation in this
run has spread D. We will show, by induction on i, that the path a1a2 · · · an
exists in LZGD

M(N ). From our induction hypothesis, we know that there is a
path till (qi,Z

′
i) and that there is a D-spread-bounded valuation v′i ∈ Z′i, with

a path (qi, v
′
i)

ai+1−−−→ (qi+1, v
′
i+1)

ai+2−−−→ · · · an−−→ (qn, v
′
n) where all valuations

are D-spread-bounded. Clearly, the induction hypothesis holds for the initial
configuration. For the induction step we look at the definition of LZGD

M.

If (qi,Z
′
i) is not covered, then we have (qi,Z

′
i)

ai+1−−−→ (qi+1,Z
′
i+1) with

v′i+1 ∈ Z′i+1. In this case, we are done with the induction step.
Next, consider the case where (qi,Z

′
i) is covered. In this case, there is an

uncovered node (qi,Z
′′
i ) with Z′i vDM Z′′i . By definition of aDM subsumption,

there is a v′′i ∈ Z′′i such that v′i ≡∗M v′′i . Since v′i is D-spread-bounded, by
definition of ≡∗M , we know that v′′i is also D-spread-bounded. We also have a

run (qi, v
′′
i )

ai+1−−−→ (qi+1, v
′′
i+1)

ai+2−−−→ . . .
an−−→ (qn, v

′′
n) by Proposition 6.1. Since

N is D-spread-bounded, we can assume that this run is D-spread-bounded.
Thus, we are done with the induction step in this case also.

Finally, since source depends only on the state component, the above
path is a source path if the initial one was.

From Lemma 6.11 and Lemma 6.13, we immediately get Theorem 6.1.

Theorem 6.1. Suppose that N is a D-spread-bounded system conforming
to M . If source is a complete function for LZG(N ) then α is reachable on a
run of N iff it is reachable on a source path of LZGD

M(N ).

The formulation given above with source sets may seem more abstract
than necessary - we will now explain why this is useful. We first examine
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more closely whether the diamond and the forward diamond properties (see
Definition 2.48) hold in LZGD

M(N ) for actions with disjoint domains. We show
that, in general, actions with disjoint domains do not satisfy the diamond
property in LZGD

M(N ). We illustrate this schematically using an example in
Figure 6.4.

(s0,Z0)

(sa,Za) (sb,Zb)

(sab,Zab)(sab,Z
′
ab)

(sb,Z
′
b)

(sab,Z
′′
ab)

a b

b

vD
M

vD
M

a

LZGD
M(N )

Figure 6.4: The diamond between a and b in LZG is torn apart by two
subsumptions in LZGD

M

Let N be a network of timed automata and let a and b be actions of the
network, such that dom(a) ∩ dom(b) = ∅. Then, from Lemma 4.7, we know
that there is a diamond in LZG(N ) between the actions a and b. Consider
the LZGD

M(N ) given in Figure 6.4. Suppose that the node (sb,Zb) is covered
by (sb,Z

′
b). Further, suppose that a is an outgoing action from (sb,Z

′
b) and

leads to a node (sab,Z
′′
ab). Observe that the node (sab,Zab) may be covered

by another node (sab,Z
′
ab) in LZGD

M(N ). It is possible that the node (sab,Z
′
ab)

may not be covered by the node (sab,Z
′′
ab), or vice versa. Thus, in LZGD

M(N ),
effectively, the diamond between a and b in LZG(N ) is torn apart by two
subsumptions, as illustrated in Figure 6.4.

Despite the lack of diamonds in LZGD
M, Theorem 6.1 allows us to apply any

source set based method on LZGD
M(N ). Suppose that we have an algorithm

that given a network N computes for every state q, the set of actions
source(q). If this source function is complete for LZG(N ) then we can use
it for exploration in LZGD

M(N ). By Theorem 6.1, there is a source path in
LZGD

M(N ) executing the given action α iff there is a source path in LZG(N ).
By Theorem 4.1 the later statement is equivalent to N having a run executing
α.
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6.4. Testing Z 6⊆ a∗
M
(Z′)

The results of Section 6.3 imply that we can use LZGD
M(N ) for checking reach-

ability provided N is D-spread-bounded and conforms to the bounds function
M . In this section, we address the question of constructing LZGD

M(N ) effi-
ciently. In principle, this can be done with a standard exploration algorithm
if the subsumption relation aDM can be computed efficiently. We show that
checking aDM subsumption between two local zones can be done with efficiency
similar to that of testing subsumption in the standard setting.

In this section, we show that given two local zones Z and Z′, checking
if Z vDM Z′ can be done in O(|X̃ ′|2) time, where X̃ ′ is the set of all clocks
(including offset clocks and reference clocks). Observe that the complexity is
the same as in the global case, although in our setting we need to take into
account the reference clocks. As in the global case, the complexity follows by
showing that if inclusion does not hold, then there is a negative cycle witness
over just two clocks, as shown in Proposition 6.2. However, the final test
(Theorem 6.2) has subtle differences from the previous test on global zones.

Recall that in the representation of global zones using difference bound
matrices (see Section 2.5), a special zero clock is added whose value is always
0. The value of a clock x in the global situation is read with respect to this
zero clock as x− 0. In the local-time situation, the reference clocks act as
different zeroes and hence there is a choice of which x̃− tq to pick. In the
inclusion test, we need to carefully choose this offset. The goal of this section
is to provide the actual inclusion test through a sequence of intermediate
technical observations, closely resembling the global test.

First, we state Lemma 6.14, that follows directly from the definition of
the abstraction (see Definition 6.5).

Lemma 6.14. Let Z,Z′ be non-empty local zones. We have that Z 6⊆ a∗M(Z′)
iff there exists a valuation v ∈ Z such that [v]M

∗ ∩ Z′ is empty.

Our objective is to efficiently find a valuation v that witnesses the non-
inclusion. For the rest of this section, we consider zones to be represented
using (canonical) distance graphs (see Section 2.5). Recall that in a distance

graph, an edge x
(l,c)−−−→ y translates to y − x l c. Note that we use dxe to

denote the smallest integer greater than or equal to x.

Definition 6.11 (Local zone representation for a region). Given a local
valuation v, define local zone Gv to be the canonical form of the following
set of constraints:

1. for each process Ap and clock x ∈ Xp such that x 6∈ Bounded(v),
add constraint tp − x̃ > Mx if Mx 6= −∞ (which translates to edge
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tp
(<,−Mx)−−−−−−→ x̃) or the constraint tp − x̃ ≥ 0 if Mx = −∞ (which

translates to edge tp
(≤,0)−−−→ x̃).

2. for every x, y ∈ Bounded(v), add x− y < dv(x− y)e if v(x− y) is not
an integer, and x − y ≤ v(x − y) otherwise (which gives edge y −→ x
with the appropriate weight)

Lemma 6.15. For each valuation v, we have [[Gv]] = [v]M
∗
.

Proof. Follows directly from definitions.

We now define a ceiling function for weights.

Definition 6.12. Given a weight (≤, c) with c ∈ R≥0, we define d(≤, c)e =
(<, dce) if c is not an integer, and d(≤, c)e = (≤, c) otherwise. When the
weight is of the form (<, c) we define d(<, c)e = (<, dce) if c is not an integer,
and d(<, c)e = (<, c+ 1) otherwise.

We remark that there is some asymmetry in Definition 6.12 when the
weight is of the form (<, c). The reason for adopting this convention will be
clear from the proof of Lemma 6.17, where we use it for the first time. A
more detailed discussion about the choice of this convention is available in
in [Sri12].

Lemma 6.16. In the canonical distance graph Gv, the edge y → x (the
tightest constraint for x− y in [v]M

∗
) is given by:

[v]M
∗

yx =


(<,∞) y 6∈ Bounded(v)

d(≤, v(tp − y))e+ (<,−Mx) y ∈ Bounded(v), x 6∈ Bounded(v) , Mx 6= −∞
d(≤, v(tp − y))e y ∈ Bounded(v), x 6∈ Bounded(v), Mx = −∞
d(≤, v(x− y))e otherwise

where tp is the reference clock of the process Ap such that x ∈ Xp.

Proof. Let the graph obtained from constraints given in Definition 6.11 be
called G′v. This graph on canonicalization gives Gv.

The lemma follows from a sequence of observations on G′v. If y is
unbounded then there there is no outgoing edge from y so there is no path
to x. So suppose that y is bounded. If x is also bounded then actually the
shortest path from y to x in G′v is given by the edge y → x. To see this,
assume to the contrary, that there is a shorter path y → · · · → x. Together
with the edge x→ y this path would form a negative cycle.

The last case is when x is unbounded. Then, the only edge containing

x is coming from its reference clock: it is tp
(<,−Mx)−−−−−−→ x or tp

(≤,0)−−−→ x. So,
all the paths from y to x use the edge tp → x. Since tp is bounded by
definition, by the first observation, the shortest path from y to tp has weight
d(≤, v(tp − y))e.
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Proposition 6.2. Let Z′ be an arbitrary local zone. Then, [v]M
∗ ∩ Z′ is

empty iff there exist two variables x, y such that:

1. y ∈ Bounded(v), x is either a reference clock or a process clock with
Mx 6= −∞ and

2. [v]M
∗

yx + Z′xy < (≤, 0).

Proof. We assume that zones [v]M
∗

and Z′ are represented by their canonical
distance graphs Gv and GZ′ . The intersection [v]M

∗ ∩ Z′ is empty iff there
is a negative cycle in min(Gv, GZ′). Let us call this negative cycle N . Since
both the zones are canonical, we can assume that the edges of N alternate
between those of Gv and GZ′ . We will now establish that this cycle can be
reduced to a cycle containing only two variables.

Consider an unbounded variable x ∈ N with Mx 6= −∞. The only edges
in Gv involving x are of the form y → x with y ∈ Bounded(v). Since the
consecutive edges of N should alternate between Gv and GZ, this implies
that the incoming edge should be from a bounded variable and the outgoing
edge should be to a bounded variable. Thus, we cannot have two consecutive
unbounded variables in N .

Suppose that there are two variables b1, b2 ∈ N with b1, b2 ∈ Bounded(v).
First, note that the constraints between b1, b2 in Gv can take two forms:
either

1. b1
(≤,c)−−−→ b2 and b2

(≤,−c)−−−−→ b1, or

2. b1
(<,c)−−−→ b2 and b2

(<,−c+1)−−−−−−→ b1.

Consider the path b1 → x1 · · ·xk → b2 in N . Let the weight of this path be
(l, d). If (l, d) is bigger than or equal to weight of the edge b1 → b2 of Gv,
then this sequence can be replaced with the edge b1 → b2 to get a shorter
negative cycle. If not, (l, d) is strictly less than the weight of b1 → b2: that
is, (l, d) < (≤, c) or (l, d) < (<, c) depending on case 1 or case 2 above.
This entails that (l, d) plus the weight of the edge b2 → b1 from Gv is a
negative cycle. Hence b1 → x1 · · ·xk → b2 → b1 with b2 → b1 from Gv is
a shorter negative cycle. Due to this reason, we can assume, without loss
of generality, that N contains at most two variables from Bounded(v), and
when there are exactly two of them they are connected by a direct edge,
implying that N contains only these two variables.

Thus, we now have a cycle b1 → x → b2 → b1 in N . Since the edges
of N should alternate between Gv and GZ, we know that two consecutive
edges of this cycle should be from the same graph. Since both Gv and GZ

are canonical, we can replace these two edges with a direct edge, to get a
cycle of the same weight. Thus, we now have a cycle over two vertices, where
at least one of them is a bounded variable.
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Finally, consider an unbounded variable x ∈ N with Mx = −∞. Again,
the only edges in Gv involving x are of the form y → x with y ∈ Bounded(v).

The weight of y → x equals the path y → tp
(≤,0)−−−→ x. Replacing the edge

with this path still gives a negative cycle. Now, note that in zone Z′, every
valuation satisfies x − tp ≤ 0. Therefore the weight Z′tpx ≤ (≤, 0) and

replacing tp
(≤,0)−−−→ x with the edge tp

(l,Z′tpx)
−−−−−→ x also gives a negative cycle.

The original N had an outgoing edge x → x1 coming from Z′. Since Z′ is
canonical, the edges tp → x→ x1 can be replaced with tp → x1 with weight
coming from Z′. This eliminates x from N .

These observations reduce the negative cycle to the form required by the
lemma.

We will now try to compute the least value of [v]M
∗

yx for v ∈ Z. Note
that for v ∈ Z such that v(tq − y) > My, the value of [v]M

∗
yx is (<,∞) by

Lemma 6.16. So, for these valuations, the inequality 2 never holds. Therefore,
we first look at valuations in Z ∩ (tq − y ≤ My). We consider two cases,
depending on whether x is bounded. We say that a valuation v is x-bounded
if x ∈ Bounded(v); otherwise, we say that v is x-unbounded.

Lemma 6.17. When Z∩(tq−y ≤My) is non-empty and has only x-bounded
valuations, the least value of [v]M

∗
yx for v ∈ Z is given by d−Zxye.

Proof. Let G1 be the distance graph obtained from GZ by replacing the
weight of the edge y → tq with min(Zytq , (≤,My)). The set [[G1]] equals
Z ∩ (tq − y ≤My) and contains only x-bounded valuations by assumption.
From Lemma 6.16, we know that the value of [v]M

∗
yx for v ∈ [[G1]] is given by

d(≤, v(x− y))e. To find the least value of this quantity, we need the largest
value of v(y − x) among valuations in [[G1]]. This value can be inferred from
the weight (l1, w1) of the shortest path from x to y in G1.

Here, the inequality l1 could be a weak inequality (l1 =≤) or a strong
inequality (l1 =<). When the inequality is weak, this means that for all
v ∈ [[G1]], we have v(y − x) ≤ w1. This implies that for all v ∈ [[G1]], we have
v(x− y) ≥ −w1. In this case, the least value of d(≤, v(x− y))e is given by
(≤,−w1), which is equal to d−Zxye according to Definition 6.12.

For the case of strong inequality, the situation is slightly more complicated.
In this case, we know that for all v ∈ [[G1]], v(y − x) < w1. This implies that
for all v ∈ [[G1]], we have v(x− y) > −w1. This means that for all v ∈ [[G1]],
we have v(x− y) ≥ −w1 + ε, for some ε < 1. In this case, the least value of
d(≤, v(x− y))e is equal to (≤, d−w1 + εe), which is given by (≤,−w1 + 1).
This is again equal to d−Zxye, as per Definition 6.12.

Observe that the shortest path from x to y in GZ also has weight (l1, w1).
The differences between G1 and GZ are only due to the modification of the
weight of the edge y → tp. But a shortest weight path from x to y cannot



6.4. Testing Z 6⊆ a∗M(Z′) 137

take the edge y → tp as this would produce a path in which y appears twice.
Hence (l1, w1) = Zxy and the lemma follows.

Lemma 6.18. Assume that Mx 6= −∞. When Z ∩ (tq − y ≤ My) is non-
empty and has only x-unbounded valuations, the least value of [v]M

∗
yx from

v ∈ Z is given by (<,−Mx) + d−Ztpye.
Proof. The proof proceeds as in Lemma 6.17, with the change that now, by
Lemma 6.16, the value of [v]M

∗
yx is given by d(≤, v(tp − y))e+ (<,−Mx). We

need the least value of v(tp − y) and hence the greatest value of v(y − tp).
As in the proof of Lemma 6.17, consider the graph G1 obtained by replacing
the weight of the edge y → tq by min(Zytq , (≤,My)) in GZ. The shortest
path from tp to y is given by Ztpy and hence the least value of [v]M

∗
yx is

d−Ztpye+ (<,−Mx).

Lemma 6.19. Assume that Mx 6= −∞. When Z ∩ (tq − y ≤My) contains
both x-bounded and x-unbounded valuations, the least value of [v]M

∗
yx is given

by: {
d−Zxye if Zxy ≤ (≤,Mx) + Ztpy

(<,−Mx) + d−Ztpye otherwise

Proof. We will find the least value β1 among x-bounded valuations and the
least value β2 among x-unbounded valuations and then take min(β1, β2).

To find β1, consider the graph G′1 obtained from GZ by modifying the
weight of edges y → tq to min(Zytq , (≤,My)) and x → tp to min(Zxtp , (≤
,Mx)). The set [[G′1]] gives the set of x-bounded valuations in Z∩(tq−y ≤My).
This set is non-empty by the assumption made in the lemma. Among these
valuations, [v]M

∗
yx is given by d(≤, v(x− y))e. We now proceed as in the proof

of Lemma 6.17 to find the shortest path from x to y in G′1. The newly
added edge x→ tp could influence this, and we get the shortest path to be
min(Zxy, (≤,Mx) + Ztpy). Hence:

β1 =

{
d−Zxye if Zxy ≤ (≤,Mx) + Ztpy

(≤,−Mx) + d−Ztpye otherwise

To find β2, consider the graph G′2 obtained from GZ by modifying edge
y → tq to min(Zytq , (≤,My)) and tp → x to min(Ztpx, (<,−Mx)). The set
[[G′2]] gives the set of x-unbounded valuations in Z∩(tq−y ≤My). Again, this
set is non-empty by the assumption made in the lemma. For these valuations,
from Lemma 6.16, we know that [v]M

∗
yx is given by dv(tp − y)e+ (<,−Mx).

We now proceed as in the proof of Lemma 6.18 to find the shortest path
from tp to y in G′2. This is given by min(Ztpy, (<,−Mx) + Zxy). Observe
that d(<,Mx)− Zxye = (<,Mx)− Zxy + (<, 1). Hence:

β2 =

{
−Zxy + (<, 1) if Ztpy ≥ (<,−Mx) + Zxy

d−Ztpye+ (<,−Mx) otherwise
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We want to get β1 and β2 in terms of the same cases so that we can find the
minimum.

When Zxy ≤ (≤,Mx) + Ztpy, we get Zxy + (<,−Mx) ≤ (<, 0) + Ztpy by
adding (<,−Mx) on both sides. This implies that Zxy + (<,−Mx) ≤ Ztpy.
Hence in this case min(β1, β2) is given by d−Zxye.

When Zxy > (≤,Mx) + Ztpy, there is a corner situation when still Ztpy ≥
(<,−Mx) + Zxy and otherwise Ztpy < (<,Mx) + Ztpy. In the latter case,
min(β1, β2) is given by d−Ztpye+ (<,−Mx). It remains to resolve the former
case. This happens when Zxy = (<, c), Ztpy = (≤, c − Mx). So β1 is
(≤,−Mx) + d−Ztpye = (≤, c) and β2 is −Zxy + (<, 1) = (<, c + 1). Hence
min(β1, β2) is given by β1. This proves the lemma.

Proposition 6.3. Assume that Mx 6= −∞. The least value of [v]M
∗

yx among
valuations in Z is given by:{

(<,∞) if Ztqy < (≤,−My)

max(d−Zxye, (<,−Mx) + d−Ztpye) otherwise

Proof. When Ztqy < (≤,−My), every valuation in Z is y-unbounded. From
Lemma 6.16, the value of [v]M

∗
yx is (<,∞). This gives the first case in the

lemma. Otherwise, Lemmas 6.17, 6.18 and 6.19 give this value based on
whether Z ∩ (tq − y ≤My) contains only x-bounded, only x-unbounded or
both kinds of valuations, respectively. In each of the cases, we can show that
the value is given by the maximum of the two quantities required by the
lemma. Let G′ be the distance graph obtained by taking GZ and modifying
the weight of the y → tq edge to min(Zytq , (≤,My)). The set of valuations
[[G′]] is Z ∩ (tq − y ≤My), which is non-empty in our case.

Suppose that [[G′]] contains only x-bounded valuations, Lemma 6.17 gives
the least value of [v]M

∗
yx to be d−Zxye. Since every valuation in [[G′]] is x-

bounded, G′ entails tp−x ≤Mx and the shortest path from x to tp is at most
(≤,Mx) - let us call this path G′xtp . We then have G′xtp ≤ (≤,Mx). Now,
consider the shortest path from x to y in G′. Call it G′xy. By property of
distance graphs, we have G′xy ≤ G′xtp+G′tpy. The paths leading to y do not get
affected by the addition of y → tq to GZ. Hence G′xy = Zxy and G′tpy = Ztpy.
This gives Zxy ≤ (≤,Mx) +Ztpy, which implies Zxy < (<,Mx) +Ztpy. Hence,
d−Zxye = max(d−Zxye, (<,−Mx) + d−Ztpye).

When [[G′]] contains only x-unbounded valuations, Lemma 6.18 gives the
least value of [v]M

∗
yx to be (<,−Mx) + d−Ztpye. Since every valuation in [[G′]]

in x-unbounded, we have the shortest path G′tpx ≤ (<,−Mx). Note that
G′tpy ≤ G

′
tpx+G′xy. From the same argument as in the case for only x-bounded

valuations, we have that Ztpy ≤ (<,−Mx) + Zxy. Adding (<,Mx) to both
sides, we get (<,Mx) + Ztpy ≤ Zxy, which implies that (<,−Mx)− Ztpy ≥
−Zxy. Hence, (<,−Mx) + d−Ztpye = max(d−Zxye, (<,−Mx) + d−Ztpye).

When [[G′]] contains both x-bounded and x-unbounded valuations, Lemma
6.19 gives two cases. When Zxy ≤ (≤,Mx) + Ztpy, the least value of [v]M

∗
yx
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is d−Zxye. This is equal to max(d−Zxye, (<,−Mx) + d−Ztpye) by the same
argument as in the only x-bounded case. When Zxy > (≤,Mx) + Ztpy, the
least value of [v]M

∗
yx is (<,−Mx) + d−Ztpye. Now, since Zxy > (≤,Mx) +Ztpy,

it is clear that Zxy > (<,Mx) + Ztpy, where we have changed (≤,Mx)
to (<,Mx). We then have that (<,−Mx) + d−Ztpye = max(d−Zxye, (<
,−Mx) + d−Ztpye).

Theorem 6.2. Let Z,Z′ be non-empty zones. Then, Z 6⊆ a∗M(Z′) iff there
exist two variables x, y such that

Ztqy ≥ (≤,−My) and Z′xy < Zxy and Z′xy + (<,−Mx) < Ztpy

where tp, tq are reference clocks and x ∈ Xp ∪ {tp} and y ∈ Xq ∪ {tq},
respectively.

Proof. (⇒): Suppose that Z 6⊆ a∗M(Z′). Then, there exists v ∈ Z such that
[v]M

∗ ∩ Z′ = ∅. By Proposition 6.2, this means there are two variables
x, y with y ∈ Bounded(v) and Mx 6= −∞ such that [v]M

∗
yx + Z′xy < (≤, 0).

Hence the valuation in Z with the least value of [v]M
∗

yx satisfies this constraint.
Proposition 6.3 gives this least value. Plugging this value to this constraint
and noting that d(l,−d)e + (l′, d′) < (≤, 0) iff (l′, d′) < (l, d) gives the
right hand side of the theorem.

(⇐): When the three conditions in the right hand side of the theorem hold,
then the valuation v with the least value of [v]M

∗
yx as given by Proposition 6.3

satisfies [v]M
∗

yx + Z′xy < (≤, 0). This implies that [v]M
∗ ∩ Z′ = ∅ and hence

Z 6⊆ a∗M(Z′).

Observe that the variables x, y in the check in Theorem 6.2 can denote
the reference clocks tp, tq also respectively. In that case, Mx =∞,My =∞
respectively. We now propose a simplified version of the test in Theorem 6.2
that deals with the cases where x and y are reference clocks separately.

Corollary 6.2. Let Z,Z′ be non-empty zones. Then, Z 6⊆ a∗M(Z′) iff there
exist two variables x ∈ Xp ∪ {tp}, y ∈ Xq ∪ {tq} such that

Ztqy ≥ (≤,−My) and Z′xy < Zxy and Z′xy + (<,−Mx) < Ztpy if x 6= tp, y 6= tq

Ztqy ≥ (≤,−My) and Z′tpy < Ztpy if x = tp, y 6= tq

Z′xtq < Zxtq and Z′xtq + (<,−Mx) < Ztptq if x 6= tp, y = tq

Z′tptq < Ztptq if x = tp, y = tq
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Chapter 7

Spread-bounded systems

In Chapter 6, we proposed a subsumption relation vDM for local zones that is
based on a simulation relation between local valuations, and introduced the
transition system obtained by applying the vDM subsumption to the local
zone graph of a network, referred to as the LZGD

M of the network. We showed
that if a network of timed automata is D-spread-bounded, then it is sufficient
to explore the LZGD

M of the network to answer the reachability problem for
the network. Furthermore, using Theorem 6.1, we showed that the properties
of LZGD

M allow us to use a partial order reduction technique while exploring
the LZGD

M of the network. In Chapter 8, we will propose an algorithm that
applies a partial order reduction method based on source sets to the LZGD

M

of a network.
However, constructing the LZGD

M of a network of timed automata (and
then applying partial order reduction to the LZGD

M) is sound and complete
with respect to reachability only if the network is D-spread-bounded. There-
fore, it is crucial to have ways to identify when a network is spread bounded
and compute a tight bound D on the spread of the network.

In this chapter, we first illustrate, by the means of an example, that
there are networks of timed automata which have unbounded spread. This
demonstrates the need for efficiently checkable conditions to say when a
network is spread-bounded. We define two classes of networks of timed
automata, which we refer to as global-local systems and client-server systems,
respectively. We give customized conditions for spread-boundedness of
networks belonging to both these classes.

A major handicap of the vDM subsumption is that in general, it preserves
more information than the sync-subsumption. For subsumption between two
nodes of the LZG, while the sync-subsumption only compares synchronized
valuations in the zones, the vDM subsumption involves comparing all the
valuations of some fixed spread D. As a consequence, the vDM subsumption
may result in lesser coverings and consequently, a bigger zone graph, when
compared to the zone graph generated using the sync-subsumption. Thus,

141
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if a network of timed automata is 0-spread-bounded, we have the best of
both worlds - we are able to work with smaller zone graphs in the first place,
while also benefiting from the gains due to partial order reduction.

Lastly, we show that, in general, the problem of deciding whether a
network of timed automata is 0-spread-bounded is hard. We prove that given
a network of timed automata, deciding whether the network is 0-spread-
bounded is Pspace-complete. We also show that deciding whether a network
of timed automata is D-spread-bounded is Pspace-hard.

Definitions: Here we briefly recall some of the definitions pertaining to this
chapter. Let N = {A1, A2, · · · , An} be a network of timed automata. The
spread between processes Ap and Aq of N in a valuation v is defined as the
absolute value of the difference between their reference clocks, |v(tp)− v(tq)|.
We say that a valuation v has spread D if the spread between every pair
of processes in v is at most D. Given a local run σ of N , we say that σ is
D-spread if all valuations of σ have spread D. We say that N is said to be
D-spread-bounded if every local run of N can be converted to a D-spread
run by adjusting the delays.

7.1. Systems with unbounded spread

In this section, we present an example of a network of timed automata that
has unbounded spread. In doing so, we illustrate a typical situation that
prevents a system from having a bounded spread.

Consider a network A that consists of two processes, A1 and A2, as shown
in Figure 7.1.

Lemma 7.1. A is not spread-bounded.

Proof. Consider the run ambc of A. In this run, the process A1 executes
m times the self-loop a on state p0. Note that each iteration of this loop
takes exactly 1 time unit. In parallel, the process A2 needs to execute a local
action b in a bounded time (without elapsing more than 1 time unit) and
then synchronize with A1. So, A2 reaches q1 in less than 1 time unit. As a
consequence, after executing the loop on action a for m times, the spread
between A1 and A2 is at least m − 1. The two automata are in states p0

and q0, and the local time of A1 is at least m and the local time of A2 is
less than 1. Thus, the run ambc is feasible in local time semantics and has
spread at least m− 1. Since m can be arbitrary, the spread of this network
is not bounded.

This example shows that not all networks of timed automata are spread-
bounded. Thus, if we are to apply partial order reduction method to a
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A = A1 ‖ A2

A1 A2

p0

p1

q0

q1

q1

a

x = 1; {x}

c
b y < 1

c

Figure 7.1: Example of a network of timed automata with unbounded spread

network of timed automata, we need to be sure that the network is spread-
bounded. Therefore, it is crucial to have ways to identify when a network
is spread-bounded and compute the bound D on the spread of the network.
This is our focus in the next sections.

We define two classes of networks of timed automata, namely global-local
systems and client-server systems. We then propose conditions for spread-
boundedness for networks belonging to these classes and give bounds for the
spread of such networks.

7.2. Global-local systems

We introduce a special class of networks of timed automata where each
communication action synchronizes all the components of the network. We
say a network N = {A1, A2, · · · , An} is a global-local system if it satisfies
two properties:

(gl-trans) N has only two kinds of actions - local actions whose domain is
{Ai} for some i, and global actions whose domain is {A1, A2, · · · , An}.

(gl-final) Every accepting state of N is only reachable by executing a global
action in the end. In other words, if a tuple (q1, · · · , qn) is an accepting
state, then for 1 ≤ i ≤ n each incoming transition to qi is labelled by a
global action.

An execution of a global-local system is a sequence that alternates between
subsequences containing only local actions and subsequences containing only
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global actions. From Lemma 4.7, we know that in a sequence of local actions,
actions of different processes can be commuted as they have disjoint domains.
However, no local action can be commuted with a global action, as they
do not have disjoint domains. We also cannot commute two global actions.
Effectively, this means that a global action cannot be commuted with any
other action. As a consequence, any commuting of actions that we do has to
be restricted to the sequence of local actions between two global actions.

We will now give sufficient conditions for a global-local system to be
spread-bounded. In Section 7.2.1, we focus on conditions for 0-spread-
boundedness. Later, in Section 7.2.2 we will discuss conditions to conclude
that a global-local system is spread-bounded, but not necessarily 0-spread-
bounded.

7.2.1 Conditions for 0-spread

In this section, we investigate when a global-local system is 0-spread. We
propose some sufficient conditions for a global-local system to be 0-spread.

By definition, the valuation obtained immediately after executing a global
action has spread 0. We observe that one way to make a run 0-spread is
to make the execution times of all local actions between two global actions
identical. A local fragment of the run can be converted to this form, if one
of the following are possible:

1. all local actions can be delayed so that they can be executed at the
time of the next global action, or

2. all local actions can be accelerated so that they can be executed at the
time of the preceding global action.

If it is possible to transform every sequence of local actions in this way,
then, the whole run can be converted to a 0-spread run.

As a preparatory step, for every local state of a process and every clock,
we calculate if there is an active, upper or lower bound guard in this state.
This is analogous to computing LU bounds for clocks with the exception
that here, we only need to know if the bound is −∞ or not; we do not care
for the exact value of the bound.

Definition 7.1. For a local state q of a process, we define UGV (q) to be
the set of clocks x such that there is a path from q to a transition with an
upper bound guard on x, and x is not reset on the path. Similarly we define
LGV (q) but for lower bound guards.

Definition 7.2. A state q of an automaton is locally-relaxed if for each
sequence of local actions q = q1

g1−−→
R1

q2
g2−−→
R2

. . .
gk−−→
Rk

qk+1:

1. If gi has an upper bound guard on x, then x ∈ R1 ∪ · · · ∪ Ri−1; in
particular, g1 has no upper bound guard.
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2. If x ∈ Ri then x does not have a lower bound guard in gi+1, . . . , gk,
and x 6∈ LGV (qk+1).

A state is locally-tense if

1. there are no lower bound guards in g1, . . . , gk, and

2. If x ∈ R1 ∪ · · · ∪Rk then x 6∈ UGV (qk+1).

Our strategy is to convert a run to a 0-spread run without changing the
execution times of global actions. For locally-relaxed states, we will execute
all the local actions just before the next global action. Condition 1 says
that there should be no upper bound guard that could prevent executing
a transition later than in the original run. Condition 2 ensures that there
are no problems later; since we reset x later than in the original run, in the
future we do not allow lower bounds. For example, consider the following

run −−→
{x}

x>10−−−→. Observe that this run requires an elapse of 10 units of time

between the first and the second transitions - as a consequence, the two
transitions cannot both be executed just before the global action. Observe
that the condition that we discussed disqualifies such a sequence.

For locally-tense states the idea is to execute all local actions immediately
after the preceding global action. So, we need condition 1 that guarantees
that there are no lower bound guards in the sequence, to be sure that we are
allowed to do this. Since we execute local actions sooner, the resets happen
sooner. This should not cause any problem for the rest of the run. Condition
2 ensures this by eliminating the possibility of upper bound guards involving
a clock that is reset in the rest of the run.

Having defined the notion of locally-relaxed and locally-tense states, we
now introduce the notion of a tame global-local system, in which all reachable
states are of one of these two forms.

Definition 7.3. A global-local system is tame iff every reachable configu-
ration consists entirely of locally-relaxed states or entirely of locally-tense
states.

We will now show that if a global-local system is tame, then it is 0-spread.

Theorem 7.1. If A is a tame global-local system, then A is 0-spread.

Proof. Consider a run of A:

(q0, v0)
u1−→
∗

(q1, v1)
w1==⇒
∗
· · · (q2n−2, v2n−2)

un−→
∗

(q2n−1, v2n−1)
wn==⇒
∗

(q2n, v2n)

Here ui’s are sequences of local actions and wi’s are sequences of global
actions (denoted by ==⇒ arrows). Observe that the valuation obtained after
the execution of each action in a sequence wi of global actions has spread 0
by definition. Therefore, we do not need to modify the time of execution of
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any action in wi’s. We need to convert the sequences ui of local actions to a
0-spread run. We will execute each action in a sequence ui at the same time.
If the configuration reached after wi−1 is locally-tense, we will execute each
action in ui at the time of execution of the last action in wi−1. Otherwise,
we will execute each action in ui at the time of execution of the first action
of wi.

Consider one such sequence of local actions (qi, vi)
ui+1−−−→

∗
(qi+1, vi+1). We

assume that we have managed to construct a 0-spread run till (qi, v
′
i) and

maintain following invariant.

Invariant 7.1.1. (qi, v
′
i) satisfies the following

1. v′i(tp) = vi(tp) for each reference clock tp,

2. if there are active x > c bounds from qi, then v′i(x̃) ≤ vi(x̃),

3. if there are active x < c bounds from qi, then v′i(x̃) ≥ vi(x̃).

Note that here, by active, we mean active in the graph of one of the
processes. The local run ui+1 looks as follows:

(qi,0, vi,0)
δ1−→ g1−−→

R1

(qi,1, vi,1)
δ2−→ g2−−→

R2

. . .
δl−→ gl−→

Rl

(qi,l, vi,l)

where qi,0 = qi, vi,0 = vi and qi,l = qi+1, vi,l = vi+1.
Suppose qi consists of locally-tense states. We replace the run ui+1 with

the following run:

(qi,0, v
′
i,0)

0−→ g1−−→
R1

(qi,1, v
′
i,1)

0−→ g2−−→
R2

. . .
0−→ gl−→
Rl

(qi,l, v
′
i,l)

δ−→ (qi,l, v
′
i+1)

where v′i,0 = v′i. The difference is that we do not have any delay between
consecutive actions, and just do an accumulated delay at the end.

We will show the following claim.

Invariant 7.1.2. All pairs vi,j , v
′
i,j satisfy the following

1. v′i,j(tp) ≤ vi,j(tp) for each reference clock tp,

2. if there is an active x < c bound from qi, then v′i,j(x̃) ≥ vi,j(x̃), or
x ∈ R1, . . . , Rj−1 and v′i,j(x̃) = v′i,j(tp), where x is a clock of process
Ap.

Observe that this invariant allows us to execute the sequence, since by
our assumption, all guards in g1, . . . , gl are upper bound guards.

The invariant clearly holds for j = 0, as we have assumed that the pair
vi, v

′
i satisfies a stronger assumption 7.1.1. For j ≥ 1 we have the first item

immediately from the definition. The second item holds by easy analysis.
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In this way, we arrive at the pair vi,l, v′i,l satisfying the above two
conditions. We consider δ such that v′i+1(tp) = vi+1(tp), for all reference
clocks tp. This establishes the first item from the general invariant.

For the second item, if x ≥ c is active in qi+1, we have two cases. If
x ∈ R1, . . . , Rl, then v′i+1(x̃) = v′i(tp) = vi(tp) and vi+1(x̃) ≥ vi(tp). As a
consequence, we have v′i+1(x̃) ≤ vi+1(x̃). If x is not reset, then x had an
active upper bound already in qi, so we can use the induction assumption.

For the third item, if x ≤ c is active in qi+1, then x ∈ UGV (qi+1). As
a consequence, x is not reset in R1, . . . , Rl and so, we use the induction
assumption. Thus, we are done with the case when qi consists of locally-tense
states.

Next, we consider the case where qi consists entirely of locally-relaxed
states. We replace the original run ui+1 with the following run:

(qi,0, v
′
i)

δ−→ (qi,0, v
′
i,0)

0−→ g1−−→
R1

(qi,1, v
′
i,1)

0−→ g2−−→
R2

. . .
0−→ gl−→
Rl

(qi,l, v
′
i,l)

where v′i,l = v′i+1. Observe that we first do the accumulated delay between
the two global actions and then do all local actions in 0-time. We will show
the following.

Invariant 7.1.3. All pairs vi,j , v
′
i,j satisfy the following

1. v′i,j(tp) ≥ vi,j(tp) for each reference clock tp,

2. if there is an active x > c bound from qi, then v′i,j(x̃) ≤ vi,j(x̃).

3. if gj is of the form x < c, then v′i,j(x̃) = vi,j(tp), where x is a clock of
process Ap.

Invariant 7.1.3 guarantees the feasibility of the sequence.
The invariant holds for j = 0, as a stronger assumption 7.1.1 holds on

these valuations. For j = 1, consider δ such that v′i,1(tp) = vi+1(tp). Then,
we have the first part of invariant 7.1.3. The second item continues to hold
from the induction hypothesis, as we do not reset any clocks.

For 1 < j ≤ n, the first part of invariant 7.1.3 is immediate. From the
definition of locally-relaxed (condition 2), we know that if x ∈ LGV (qi,j), then
x /∈ R1∪· · ·∪Rj . The second part of invariant 7.1.3 follows as a consequence.
For the third part, from the definition of locally-relaxed states (Definition 7.2),
we know that if gj is of the form x < c, then x ∈ R1 ∪ · · · ∪Rj−1. Thus, we
have the first item of the general invariant 7.1.1.

For the second item, if x ≥ c is active in qi+1, then x ∈ LGV (qi+1). From
condition 2, we know that x /∈ R1 ∪ · · · ∪Rl. Since x is not reset, x had an
active lower bound already in qi, so we can use the induction assumption.

For the third item, if x ≤ c is active in qi+1, we have two cases. If x ∈
R1 ∪ · · · ∪Rl, then v′i+1(x̃) = v′i+1(tp). Since we know that vi+1(x̃) ≤ vi+1(tp)
and v′i+1(tp) ≥ vi+1(tp), we get v′i+1(x̃) ≥ vi+1(x̃). If x is not reset in the
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sequence, then x had an active upper bound already in qi, and so, we use
the induction assumption. Thus, invariant 7.1.1 also holds for the case when
qi consists entirely of locally-relaxed states.

7.2.2 A condition for bounded spread

In this section, we discuss a situation when global-local systems are spread-
bounded, but not necessarily 0-spread. The intuition is that if the network
synchronizes by executing a global action often, then the spread cannot be
too big.

Lemma 7.2. Suppose that A is a global-local system, such that there is a
bound l on the number of consecutive local actions in a run of A. Then, A
is l(M + 1)-spread-bounded, where M is the maximum constant used in a
guard in A.

Proof. Pick any run of A and consider the part of the run consisting of only
local actions. We know that such a local run is enclosed between two global
actions a1 and a2 and is of the following form.

a1−→ (qi,0, vi,0)
δ1−→ g1−−→

R1

(qi,1, vi,1)
δ2−→ g2−−→

R2

. . .
δl−→ gl−→

Rl

(qi,l, vi,l)
δ−→ (qi,l, v

′
i,l)

a2−→ (qi+1, vi+1)

Observe that the valuations vi,0 and v′i,l are synchronized. Consequently, we
can talk about duration of this execution, given by vi+1(tp)− vi,0(tp), where
tp is a reference clock. If the duration is not bigger than lM , then clearly,
all the valuations appearing in the sequence are l(M + 1)-spread-bounded.

If the duration is bigger than lM , then it means that in the local sequence,
there is an action taking more than M time. Observe that if an action requires
a time elapse of more than M time units, then it can elapse arbitrary time
bigger than M . So, if we have such an action, then we can adjust the time
elapsed before that action in the interval (M,+∞). We observe that for any
such action, the delay before it can be shortened at will to at most (M + 1).
In this way, we obtain an execution of duration at most l(M + 1).

To summarize, we can modify the sequence so that each action requires
a delay of at most (M + 1) time units. As the sequence is of length at most
l, its duration of execution is at most l(M + 1).

Corollary 7.1. A global-local system is spread-bounded if no process has a
loop containing only local actions.

7.3. Client-server systems

In this section, we introduce another special class of networks, which we refer
to as client-server systems. In these networks, we have a server process and
several client processes. We denote the server process by S, and the client
processes by C1, C2, · · · , Ck. These systems can have three kinds of actions:
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• local actions of a client, whose domain is {Ci} for some i,

• local actions of the server whose domain is {S},

• synchronization actions involving a client and the server, whose domain
is {S,Ci} for some i.

In the context of client-server systems, we will refer to actions that
synchronize a client and the server as communication actions.

We will now give sufficient conditions for a client-server system to be
spread-bounded. We will first focus on conditions for 0-spread-boundedness.
Later, we will discuss conditions to conclude that a client-server system is
spread-bounded, but not necessarily 0-spread-bounded.

7.3.1 Conditions for 0-spread

In this section, we give some sufficient conditions for a client-server system
to be 0-spread. First, we introduce the notion of a tame client.

Definition 7.4. We say that a client Cp is tame if no local action of Cp has
a clock bound or a reset.

In Lemma 7.3, we will prove the 0-spread-boundedness of client-server
systems in which all the clients are tame.

Lemma 7.3. A client-server system with tame clients is 0-spread.

Proof. Let S be the server process. Consider a run:

(q0, v0)
δ1−→ b1−→ (q1, v1)

δ2−→ b2−→ · · · (qn−1, vn−1)
δn−→ bn−→ (qn, vn)

Define v′i as v′i(tp) = vi(ts) for all reference clocks tp, and v′i(x̃) = v(x̃) for all
other variables. We show that the run with all vi replaced by v′i is a 0-spread

run. Consider an action in the given run : (qi, vi)
δi−→ bi−→ (qi+1, vi+1). We

need to show that (qi, v
′
i)

δi−→ bi−→ (qi+1, v
′
i+1) is feasible.

We look at this transition closely.

(qi, vi)
δi−→ (qi, vi + δi)

bi−→ (qi+1, [Ri](vi + δi))

We show that

(qi, v
′
i)

δ′i−→ (qi, v
′
i + δ′i)

bi−→ (qi+1, [Ri](v
′
i + δ′i))

is possible where δ′i is a vector consisting of delay δi(s) for each process of
the network. In other words, each process does exactly the same delay, the
delay executed by the server originally.
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If bi is a local action, by assumption there are no guards in bi and so,
the transition is feasible. If bi is a synchronization of the client Cp with the
server, then (vi+δi)(ts) = (vi+δi)(tp). Moreover, vi(ts) = v′i(ts) by definition
of v′i. This gives (v′i + δ′i)(tp) = (v′i + δ′i)(ts) = (vi + δi)(ts) = (vi + δi)(tp). So
the transition is feasible as the guards of bi involve only the clocks of Cp and
S.

Next, we propose a more general condition to say that a client-server
system is 0-spread. This approach is targeted at client-server systems with
identical client processes, which are quite common in the standard literature.
In such a setting, we show that if a simpler client-server system, consisting
of just one client and the server satisfies a condition, then we can conclude
that the original client-server system is 0-spread. We specify the condition
that the simpler client-server system should satisfy in Definition 7.5

Definition 7.5. Consider network A consisting of only two processes: a
client and a server. The network is client-0-spread if every run in the local
time semantics can be made 0-spread by adjusting only the local delays of
the client.

Lemma 7.4. Consider a client-server system with identical client processes.
If the network consisting of the server and one client of the network is client-
0-spread, then the network with an arbitrary number of clients is 0-spread.

Proof. Let N be a client-server system with identical client processes, such
that the network consisting of the server and one client of the network is
client-0-spread. We will show that we can convert any local run of N to a
0-spread run.

Consider a local run of N :

(q0, v0)
δ1−→ b1−→ (q1, v1)

δ2−→ b2−→ · · · (qn−1, vn−1)
δn−→ bn−→ (qn, vn)

Consider a client Cp. Consider the actions in the run belonging to the
client Cp and the server. By definition of client-0-spread systems, we know
that the reference time of Cp can be made equal to the reference time of
the server in each valuation of this run. Further, observe that for all other
valuations in the run, the reference time of client Cp does not affect the
feasibility of the action, as the action belongs to another process. So, we
can keep the reference time of Cp synchronized with the reference time of
the server in these valuations. Thus, the reference time of the client Cp is
equal to the reference time of the server in all the valuations. We repeat this
for all the clients. Note that we can do this any order, since by Lemma 3.4,
local actions of different clients can be commuted.

We now make this idea precise. Define v′i as v′i(tp) = vi(ts) for all reference
clocks tp and v′i(x̃) = v(x̃) for all other variables. The run with all vi replaced
by v′i is feasible and is a 0-spread run.
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7.3.2 Conditions for bounded spread

In this section, we discuss some situations when client-server systems are
spread-bounded, but not necessarily 0-spread. We will present two such
cases, one in which there is a bound on time elapsed between two consec-
utive communications of each client, and the other in which all the timing
constraints of the system are of a specific form.

Systems with time bound on consecutive communications

Here we consider client-server systems in which there is a bound on the time
elapsed between consecutive communication actions with each client. We
will show that such networks are spread-bounded.

Lemma 7.5. Suppose that N is a client-server system such that each client
communicates with the server every D time units. Then N is 2D spread-
bounded.

Proof. Consider a local run of N .

(q0, v0)
δ1−→ a1−→ (q1, v1)

δ2−→ a2−→ · · · (qn−1, vn−1)
δn−→ an−→ (qn, vn)

We show that without any modification this run is 2D-spread-bounded. Take
a position i and consider |vi(tp)− vi(tq)|, for arbitrary processes Ap and Aq.
We know that vi(tq) is at least as big as the time of the last synchronization
of Aq with the server. Similarly, vi(tp) is not bigger than the time of the
next synchronization of Ap with the server. So vi(tq) ≥ vi(ts) − D and
vi(tp) ≤ vi(ts) +D.

Systems where the only timing constraints are at wait states

Here, we consider client-server systems in which the timing constraints are
only used to model wait states where the system needs to elapse a certain
amount of time in the state before executing an outgoing action.

p0

p1

p2

a

{x}

b

x ≥ k

c

x ≥ k

Figure 7.2: Wait states
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This is modelled by a reset in all the incoming actions to the state,
followed by a lower bound guard of the form x ≥ k on all the outgoing
actions. We give an example of a wait state in Figure 7.2. We refer to the
maximum constant associated to an outgoing action from a wait state as the
wait time of the state. We now show that in client-server systems where the
only timing restrictions come from wait states are spread-bounded.

Lemma 7.6. Let N be a client-server system such that all the timing
constraints in each process of N are associated to wait states, and these
wait states are not part of any cycle in the respective process. Then N is
spread-bounded, with a bound N ·W on the spread, where N is the maximum
number of wait states in a process of N , and W is an upper bound on the
wait time associated to a wait state in N .

Proof. Consider a run of N . From this run, we can remove any delay that
is not executed from a wait state, since the value of a clock is checked only
from a wait state.

In the run thus obtained, observe that the value of any reference clock ti
is such that 0 ≤ v(ti) ≤ N ·W . This implies that the value of the spread at
any point in the run is bounded by N ·W .

7.4. Deciding 0-spread is Pspace-complete

In this section, we examine how hard it is to detect if a system is 0-spread.
We show that the problem of deciding whether a given network of timed
automata is 0-spread is Pspace-complete. As in the rest of the document,
we assume that the given network of timed automata is deterministic: that
is, the underlying finite automaton of each component is deterministic.

Let Lg(A) be the set of all action sequences u such that there exists a

local run (q0, v0)
u−→ (q, v) where all the valuations are synchronized. In other

words, u is a 0-spread run. This also gives a run in the standard global
semantics of timed automata. Note that Lg(A) is prefix-closed.

A regular language L over a finite alphabet and an independence relation
is trace closed if for every word u ∈ L, all words obtained from u by
commuting independent actions (for a definition of independent actions, see
Definition 2.48) are also in L.

Lemma 7.7. A network A is 0-spread-bounded iff Lg(A) is trace closed.

Proof. Take a run (q0, v0)
u−→ (q, v) passing only through synchronized val-

uations. From Lemma 3.5, for every w ∼ u, automaton A has a local run
(q0, v0)

w−→ (q, v). If A is 0-spread-bounded, then w can be converted to a
0-spread run. Hence w ∈ Lg(A).



7.4. Deciding 0-spread is Pspace-complete 153

If A is not 0-spread-bounded, there exists a local run (q0, v0)
u−→ (q, v)

which cannot be realized with synchronized valuations. Since the network A
is deterministic, every run on u has to pass through the same sequence of
states as in the local run (q0, v0)

u−→ (q, v). Hence there can be no other run
on u passing through only synchronized valuations. This gives u /∈ Lg(A),
and proves the backward direction.

The following lemma is a general observation about regular languages
equipped with an independence relation.

Lemma 7.8. If a language L is not trace closed then there are, possibly
empty, words u, v and two independent letters a, b such that ubav ∈ L and
uabv 6∈ L.

Proof. Suppose it it not the case. Consider two trace equivalent words
w1 ∼ w2 with w1 ∈ L. By definition of trace equivalence, w2 is obtained from
w1 by some finite number of permutations of adjacent independent letters. By
our assumption w2 ∈ L. This implies L is trace closed, a contradiction.

Lemma 7.9. A language of a deterministic automaton is not trace closed
if there are two independent letters a, b, and a reachable state q such that

q
ab−→ q1, q

ba−→ q2 with L(q1) 6= L(q2).

Proof. Let us take u, v and a, b as in Lemma 7.8. The state q is the state
reached on u. Then, v is accepted from q1 but not from q2.

The region graph of the network A contains nodes of the form (q, r)
where q is a state and r is a (standard) region (see Section 2.3). There is
an edge (q, r)

a−→ (q′, r′) if there exists v ∈ r and (global) delay ∆ ∈ R≥0

such that (q, v)
∆,a−−→ (q′, v′) with v′ ∈ r′. Let R(A) be the region graph of A

seen as an automaton with all states marked accepting. Note that if some
action a is not enabled from a node (q, r), then there is no transition on a
from state (q, r) of R(A). Therefore R(A) is an incomplete DFA. It can be
completed by adding a single sink state.

Lemma 7.10. Lg(A) is accepted by DFA R(A). The size of R(A) is singly
exponential in the size of A, the transitions from a given state can be computed
in Ptime.

Proposition 7.1. Checking if a network is 0-spread-bounded can be done in
Pspace.

Proof. A network A is not 0-spread-bounded iff Lg(A) is not trace closed
(Lemma 7.7). Consider a deterministic finite automaton R(A) recognizing
Lg(A) (Lemma 7.10). So, A is not 0-spread if there exist a, b and q as in
Lemma 7.9. Observe that testing L(q1) 6= L(q2) can be done in Pspace as
R(A) is of exponential size and the successor relation can be computed in
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Ptime. This gives a Pspace procedure for checking if A is not 0-spread.
The lemma follows as Pspace is closed under complement.

We now turn to showing the lower bound. We give a reduction from the
emptiness problem for timed automata to the 0-spread-boundedness problem
of a network of timed automata.

Let A be a timed automaton. We construct a network of timed automata
N which consists of processes A′, B and C as shown in Figure 7.3. Process A′

is obtained from automaton A by adding a self-loop on an action a from each
accepting state of A. The action a is a fresh global action (not appearing
in A) which synchronizes the processes A′, B and C. The process B has a
clock x and the process C has a clock y. We reset x in B and y in C on the
global action a. There is a local action b in B which has guard x > k and a
local action c in C with the guard y < k.

s ∈ F a

A

A′

p0

p1

p2

q0

q1

q1

a {x}

b x > k

a {y}

c y < k

B C

Figure 7.3: Network N

Proposition 7.2. A is non-empty iff the network N is not 0-spread-bounded.

Proof. Suppose that A has an accepting run σ to an accepting state s of A.
Note that σ is also a local run of A. Consider this local run σ in N - from
the initial state of A′ to the state s. Since every action in σ is a local action
of N , this run only passes through synchronized valuations (we can keep
the processes B and C synchronized during this run). Now, consider the
extension of this run by the execution of actions a, b and c, in that respective
order. It may be observed that the valuation obtained after executing b is not
a synchronized valuation. Further, it maybe observed that after executing b,
no synchronized valuation can execute the action c. Thus, σabc is a local-run
of the network, which has non-zero spread. On the other hand if A does not
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have an accepting run, a cannot be executed. In this case, all the runs of N
are runs of A. Thus, N is 0-spread.

Remark. Since the network N considered in the proof of Lemma 7.2 is a
global-local system, the Pspace bound also applies to such systems.

Theorem 7.2. Checking if a network of timed automata is 0-spread is
Pspace-complete.

7.5. Deciding D-spread is Pspace-hard

In this section, we investigate the hardness of checking if a system is D-spread.
We will show that this problem is Pspace-hard.

To prove the hardness result, we give a reduction from the emptiness
problem for timed automata to D-spread-boundedness problem of a network
of timed automata. The proof is very similar to the proof of Pspace-hardness
of the 0-spread-boundedness problem.

Given a timed automaton A, we construct a network of timed automata
N which consists of processes A′, B and C as shown in Figure 7.4. Process
A′ is obtained from automaton A by adding a self-loop on a fresh global
action a which synchronizes the processes A′, B and C. The clock x of the
process B and the clock y of the process C are reset on a. There is a local
action b in B which has guard x > k +D and a local action c in C with the
guard y < k. Observe that the newly constructed network is similar to the
network constructed in the 0-spread-boundedness proof (Figure 7.3), except
for the fact that the action b has guard x > k +D instead of x > k.

s ∈ F a

A

A′

p0

p1

p2

q0

q1

q1

a {x}

b x > k +D

a {y}

c y < k

B C

Figure 7.4: Network N
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We now state Proposition 7.3 that states that the D-spread-boundedness
problem is Pspace-hard. The proof is similar to the proof of Proposition 7.2
that shows that Pspace-hardness of the 0-spread-boundedness problem.

Proposition 7.3. A is non-empty iff the network N is not D-spread-
bounded.

Theorem 7.3. Checking if a network of timed automata is D-spread-bounded
is Pspace-hard.



Chapter 8

Implementation of partial
order reduction in TChecker

In Chapter 6, we showed that if a network of timed automata is D-spread
bounded, then the LZGD

M of the network (the transition system obtained by
applying vDM subsumption to the local zone graph of the network) can be used
to check the reachability of the network. Moreover, using Theorem 6.1, we
showed that we can apply a partial order reduction technique based on source
sets to the exploration of the LZGD

M of a network of timed automata, provided
it is D-spread bounded. In this chapter, we work with the assumption that
the networks that we consider are spread bounded and that we know a bound
D on the spread of these networks. In other words, whenever we consider
vDM subsumption for two nodes of the local zone graph of a network, we
assume that the network is D-spread bounded.

In this chapter, we discuss an implementation of a partial order reduction
procedure for networks of timed automata that is provided in the tool
TChecker [HP19]. We discuss two variants of the POR implementation,
namely global-local POR and client-server POR, that are customized and
targeted at the two kinds of networks of timed automata that we introduced
in Chapter 7, namely, global-local systems (see Section 7.2) and client-server
systems (see Section 7.3), respectively.

Before discussing the implementation, we first discuss the application of
an abstract partial order reduction method, namely reachability-complete set
reduction to a simple transition system in Section 8.1. Equipped with the
ideas introduced in this discussion, we then move on to the application of
a reachability-complete set reduction method to finite truncations of local
zone graphs of networks of timed automata.

In our implementation, we compute a reduction of a finite version of
the LZG of a network N , denoted as POR -LZGr(N ). Given a network of
timed automata N , we consider the local zone graph of N with the vDM
subsumption between its nodes. We first augment LZG(N ) by storing some

157
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additional information in its nodes to get the POR-zone graph of N (denoted
as POR -LZG(N )). This additional information is crucial in computing the
subset of actions that are to be explored from a node in the restricted
transition system that we want to obtain. Thus, effectively, POR -LZG(N )
can be viewed as LZGD

M(N ), with each node augmented with some additional
information. Further, our reduced transition system, POR -LZGr(N ), can
be viewed as the part of POR -LZG(N ) that is reachable from the initial
node of POR -LZG(N ) using the reduced set of actions proposed by our
implementation.

In this chapter, we present a general POR-reachability algorithm (Algo-
rithm 5) that takes three inputs, namely a network N of timed automata, a
subroutine Next that gives the successor relation of POR -LZGr(N ), and a
node covering relation v between the nodes of POR -LZG(N ). The implemen-
tation of the procedure Next and the node covering relation v depends on
the POR method that we use. We will propose two different implementations
of Next and the node-covering relation v, one each for global-local systems
and client server systems. Finally, in Section 8.5, we propose optimizations
to the Next procedures that exploit specific properties of global-local and
client-server systems, respectively.

8.1. Partial order reduction for transition systems

In this section, we discuss the application of partial order reduction to a
simple untimed transition system. We introduce the notion of a reachability-
complete set for a transition system and define the idea of a reduced transition
system that is obtained by the application of a reachability-complete set
reduction to a transition system. We then prove that the reduced transition
system is sound and complete with respect to reachability. These ideas will
be useful when we discuss the application of partial order reduction to the
LZGD

M of a D-spread bounded network of timed automata.
We first recall the definitions of a transition system and recall the notion

of a run of the transition system.

Definition 8.1 (Transition system). A transition system is a tuple 〈S,Σ, s0,−→
, F 〉, where S is a set of states, Σ is a finite alphabet of actions, −→ ⊆ S×Σ×S
is a transition relation between states, s0 ∈ S is an initial state and F ⊆ S
is a set of accepting states. We write s

a−→ s′ to denote that (s, a, s′) ∈ −→.
We sometimes refer to −→ as successor relation of the transition system.

Definition 8.2 (Run of the transition system). A run in the transition

system T from a state s is a sequence of transitions starting in s: s
a1−→ s1

a2−→
s2 · · ·

an−→ sn. We denote it by s
σ−→ sn where σ = a1 · a2 · · · an is a sequence

of actions.
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The reachability problem for a transition system T asks if there is a run
of T from its initial state to an accepting state.

We now introduce the notion of a simulation relation over a transition
system.

Definition 8.3 (Simulation relation). Given a transition system T , we say
that �⊆ S × S is a simulation relation over T if for all s1 � s2, s1

a−→ s′1
implies that there exists a s′2 such that s2

a−→ s′2, and s′1 � s′2. We say s′

simulates s if s � s′.

Lemma 8.1. Given a transition system T = 〈S,Σ, s0,−→, F 〉 and a simula-
tion relation � over T , if s � s′ and s

σ−→ sn, then s′
σ−→ s′n, for some s′n such

that sn � s′n.

Proof. Let σ be a run from s of the following form

s
a1−→ s1

a2−→ · · · sn−1
an−→ sn.

We will show that there is a run of the form

s′
a1−→ s′1

a2−→ · · · s′n−1
an−→ s′n

such that si � s′i, for 1 ≤ i ≤ n.
The proof follows by induction on n, the number of transitions in σ. The

base case where n = 0 follows trivially, since we have s � s′.
Consider the induction step. By induction hypothesis, we know that

there is a run σ′ of the form

s′
a1−→ s′1

a2−→ · · · ak−→ s′k

such that si � s′i for 1 ≤ i ≤ k. From the run σ, we know that sk
ak+1−−−→ sk+1.

Further, since � is a simulation relation and sk � s′k, we know that there

exists a s′k+1 such that s′k
ak+1−−−→ s′k+1 and sk+1 � s′k+1. Therefore, the run

σ′ that we have constructed can be extended by the transition ak+1 to get
the run

s′
a1−→ s′1

a2−→ · · · ak−→ s′k
ak+1−−−→ s′k+1

where si � s′i for 1 ≤ i ≤ k + 1.

Thanks to Lemma 8.1, we can propose Algorithm 4 to check the reacha-
bility of a transition system. The procedure takes two inputs, a transition
system T = 〈S,Σ, s0,−→, F 〉, and a simulation relation � over T , and checks
if an accepting state is reachable in T .

Lemma 8.2. If a state s is in the list Waiting of Algorithm 4, then s is
reachable in T .
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Algorithm 4 Reachability algorithm

Input: A transition system T = 〈S,Σ, s0,−→, F 〉 and a simulation relation �
over T .
Output: true iff accepting state reachable in T .

1: Set Waiting = Visited := {s0}
2: if s0 is accepting then return true

3: while Waiting 6= ∅ do
4: s = pop(Waiting)
5: for all s′ s.t s

a−→ s′ do
6: if s′ is accepting then
7: return true
8: else if ∃ s′′ ∈ Visited s.t. s′ � s′′ then
9: Skip

10: else
11: for s′′ ∈ Visited do
12: if s′′ � s′ then
13: Remove s′′ from Visited and Waiting

14: Add s′ to Waiting and Visited

15: return false

Proof. We show that the statement of the lemma is a loop invariant of
Algorithm 4.

Before the first iteration of the loop, we know that Waiting = {s0}. Since
s0 is vacuously reachable in T , the statement is true at the beginning of the
loop.

Now, assume that the loop invariant holds before an iteration of the loop
(line 4.) Thus, we know that each state in the list Waiting at this point is
reachable in T . In the iteration of the loop, we pick a state s from Waiting
and add some states s′ to Waiting such that s

a−→ s′ for some a ∈ Σ. Consider
such a state s′ that is added to Waiting in this iteration of the loop. Since
we know that s is reachable in T , we have a run s0

σ−→ s in T . We can extend
this run by a to get s0

σ−→ s
a−→ s′. Then, it follows that s′ is also reachable

in T . Thus, we know that if a state s′ is added to Waiting in this iteration
of the loop, then s′ is reachable in T . Therefore, the statement of the lemma
continues to hold at the end of the loop.

Lemma 8.3. (Soundness) If Algorithm 4 returns true, then T has an
accepting run.

Proof. We know that Algorithm 4 can return true by either executing line 2
or line 7. Line 2 is only executed in the special case when the initial state
is an accepting state. In this case, we know that the claim is vacuously
true. Next, consider the case when line 7 is executed. We can infer from the
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algorithm that this happens only when a state s has has just been popped
from Waiting and there exists a s

a−→ s′ such that s′ is accepting. Since s
has just been popped from Waiting, from Lemma 8.2, we know that s is
reachable in T . It follows that s′ is a reachable accepting state in T . Hence,
T has an accepting run.

Lemma 8.4. If a state s is added to Visited at some step of Algorithm 4,
then at every step afterwards there is a state s′ in Visited such that s � s′.

Proof. Let s be a state which has been added to Visited at some step of
Algorithm 4. If s is in Visited till the termination of the algorithm, then
we are done. Suppose not. The only step of the algorithm which removes
a state s from Visited is line 13. But we can see that in this case we have
s′ ∈ Visited and s � s′ because of the guard before line 13. Further, if s′ is
removed at a later point in the algorithm, then we know that another state
s′′ such that s′ � s′′ is added to Visited. Then, s′′ serves as the candidate
state in Visited that covers s.

Lemma 8.5. Let σ be run of T of the form

s0
a1−→ s1

a2−→ · · · an−1−−−→ sn−1
an−→ sn

If the algorithm does not return true, then at the termination of the algorithm
for every 0 ≤ i ≤ n, there exists a state s′i in the set Visited such that si � s′i.

Proof. Suppose that the algorithm does not return true. The proof follows
by induction on the number of transitions in σ.

For the base case, we know that the state s0 is added to Visited in line 1
of the algorithm. By Lemma 8.4, till the end of the execution there will be
some s′0 ∈ Visited with s0 � s′0.

By induction hypothesis, assume that there exists a state s′i in Visited,
such that si � s′i. Assume that it s′i is the �-biggest such state. To be in
Visited, s′i must also have been in Waiting at some stage. Since when the
algorithm terminates the list Waiting is empty, at some moment s′i must have
been popped from Waiting.

From the run in T , we know that si
ai+1−−−→ si+1. Since � is a simulation

relation in T and si � s′i, we have s′i
ai+1−−−→ s′i+1, where si+1 � s′i+1. If s′i+1 is

added to Visited, then by Lemma 8.4, we are done. If s′i+1 is not added to
Visited, then there are two possibilities:

• s′i+1 is an accepting state. In this case, Algorithm 4 terminates by
returning true, and we have assumed that it is not the case.

• There exists a state s′′i+1 in Visited such that s′i+1 � s′′i+1. But in
this case, we have si+1 � s′i+1 � s′′i+1. By transitivity of � relation,
si+1 � s′′i+1. Thus, in this case we have s′′i+1 in Visited, such that
si+1 � s′′i+1.
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Corollary 8.1. (Completeness) If T has a reachable accepting state, then
Algorithm 4 returns true.

Proof. Clearly the algorithm terminates, as every state is added to the list
Waiting at most once. By Lemma 8.5, if there is a run to an accepting state
s, then s must be added to Visited at some stage. But this is impossible
because no accepting state can be added to Visited (with the exception of
the case when s0 is an accepting state; In this case however, the algorithm
terminates at line 2.).

From Lemma 8.3 and Corollary 8.1, we have Theorem 8.1, that gives the
correctness of Algorithm 4.

Theorem 8.1. Algorithm 4 returns true if and only if T has a reachable
accepting state.

Reachability-complete set reduction

In this section, we discuss the application of a partial order reduction tech-
nique to the exploration of a transition system. We first introduce the notion
of a reduced transition system generated by a subset of the successor relation.

Definition 8.4 (Reduced transition system). Let T = 〈S,Σ, s0,−→, F 〉 be a
transition system and let −→r ⊆ −→ be a subset of the successor relation of T .
We then define the reduced transition system induced by −→r, denoted by Tr,
as the restriction of T to the states reachable from s0 using only transitions
in −→r. Formally, Tr is given by the tuple 〈Sr,Σ, s0,−→r, Fr〉, where Sr is the
smallest set such that s0 ∈ Sr, and if s ∈ Sr and s

a−→r s
′ for some a ∈ Σ,

then s′ ∈ Sr. The set of accepting states of Tr is given by Fr = Sr ∩ F .

Next, we specify a property that the subset of actions should satisfy for
the reduced transition system to be sound and complete with respect to
reachability.

Definition 8.5 (Reachability-complete set). Consider a transition system
T = 〈S,Σ, s0,−→, F 〉, a transition relation −→r ⊆ −→ and the reduced transition
system Tr induced by −→r. We say that −→r is reachability-complete for T ,
if Tr contains an accepting state whenever an accepting state is reachable
from s0 in T .

Observe that if no accepting state is reachable in T , then the above
definition puts no restrictions on Tr. Otherwise we require that in Tr remains
at least one of the reachable accepting states.
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Corollary 8.2. Suppose that T = 〈S,Σ, s0,−→, F 〉 is a transition system, and
−→r ⊂ −→ that is reachability-complete for T . For Tr the reduced transition
system induced by −→r: Tr has an accepting run if and only if T has an
accepting run.

8.2. Implementation of partial order reduction in
TChecker

In this section, we explain the implementation of partial order reduction in
TChecker. We consider two kinds of networks of timed automata, referred to
as global-local systems and client-server systems, and propose two respective
variants of the implementation - global-local POR (Section 8.3) and client-
server POR (Section 8.4).

Recall that the standard reachability algorithm (Algorithm 4) takes a
transition system T = 〈S,Σ, s0,−→, F 〉 and solves the reachability problem
on T . We have also remarked that if we are only interested in reachability,
then we could take a smaller successor relation −→r and explore the reduced
transition system Tr provided it is reachability-complete. The difficulty is to
find −→r without completely exploring T in advance.

We are interested in the local zone graph (LZG) of a network of timed
automata. We will use the structure of this transition system to compute
−→r on the fly. But we cannot do this directly. For this purpose, we store
some additional information in the nodes of LZG, which helps in computing
the subset of actions that are to be explored from that node in the restricted
transition system that we want to obtain. This augmented LZG is referred
to as the POR-zone graph, denoted by POR -LZG. Thus, POR -LZG can be
viewed as LZG, with each node augmented with some additional information.
Further, the transition system POR -LZGr can be viewed as the part of
POR -LZG (and therefore the LZG) that can be reached using actions in −→r

from the initial node of the POR -LZG.
We now describe the POR-zone graph in detail. Let N be a network

of timed automata and let LZG(N ) be the local zone graph of N . As seen
earlier in Section 4.3, the nodes of LZG(N ) are of the form (q,Z) where q
is a state of N and Z is a local zone. The POR-zone graph of N , denoted
as POR -LZG(N ), is a transition system whose nodes are nodes of LZG(N )
annotated by an additional parameter called the rank of that node, which
helps in deciding the set of successors to be explored from that node. Thus,
a node of POR -LZG(N ) is of the form (q,Z, r) where (q,Z) is a node of
LZG(N ) and r ∈ {0, . . . , n}, where n is the number of processes in the
network N . The transition relation of POR -LZG(N ) is defined as follows:
if (q,Z)

a−→ (q′,Z′) in LZG(N ), and (q,Z, r) is a node of POR -LZG(N ), then
(q,Z, r)

a−→ (q′,Z′, r′), where r′ ∈ {0, . . . , n}. In the sequel we will choose
particular values of r′, but this will depend on the method that we will use.



164 8. Implementation of partial order reduction in TChecker

Before going further, we state a property of POR -LZGs that follows
immediately from its definition and Corollary 4.1.

Lemma 8.6. If (q,Z, r)
u−→ (q′,Z′, r′) and u ∼ w, then (q,Z, r)

w−→ (q′,Z′, r′′),
for arbitrary r′′.

We now present a general POR-reachability algorithm (Algorithm 5).
It is a parametrization of the standard reachability algorithm for generic
transition systems (Algorithm 4) with a function calculating the transition
relation and the covering relation. The POR-reachability procedure takes
three inputs:

1. a network N of timed automata.

2. a subroutine Next that takes as input a node (q,Z, r) of POR -LZG(N )
and returns a set of successors {(q1,Z1, r1), . . . , (qk,Zk, rk)} such that
(q,Z) −→ (qi,Zi) in LZG(N ) for each 0 ≤ i ≤ k.

3. a node covering relation v between nodes of the POR -LZG(N ).

The implementation of the procedure Next that computes the successors
of a given node in the POR-zone graph depends on the POR method that
we use. We will propose two different implementations: one for global-local
systems, called Nextgl presented in Algorithm 6, and one for client server
systems, called Nextcs presented in Algorithm 8. The details about the exact
mechanism of how the rank determines the set of successors from a node
is explained in the descriptions of Nextgl and Nextcs algorithms given in
Sections 8.3 and 8.4.

A transition relation −→r determines Next in a direct way:

(q′,Z′, r′) ∈ Next(q,Z, r) when (q,Z, r)
a−→r (q′,Z′, r′) for some a.

In later sections, we will introduce −→gl determining Nextgl, and −→cs deter-
mining Nextcs.

Likewise, the node covering relation v also depends on the POR method
that we use. The node-covering relation for global-local systems and client-
server systems are defined in Sections 8.3 and 8.4, respectively.

Lemma 8.7. Suppose that POR -LZGr(N ) has a path to a node (q,Z, r).
Then, N has a local run (q0, v0) −→ (q, v), for some v ∈ Z.

Proof. Let (q0,Z0, 0)
σ−→ (q,Z, r) be a path in POR -LZGr(N ). From the

definition of POR -LZGr, this implies that there is a path in LZG(N ) of the
form (q0,Z0)

σ−→ (q,Z). Then, from the soundness of the local-zone graph
given by Theorem 4.1, we know that N has a run of the form (q0, v0) −→ (q, v),
for some v ∈ Z.
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Algorithm 5 POR reachability algorithm

Input: A network of timed automata N , a procedure Next : (Q× Z × N) 7→
2(Q×Z×N), and a node covering relation v.
Output: true iff accepting state reachable in ZG(N ).

1: Set Waiting = Visited := {(q0,Z0, 0)}
2: if q0 is accepting then return true

3: while Waiting 6= ∅ do
4: (q,Z, r) = pop(Waiting)
5: for all (q′,Z′, r′) ∈ Next(q,Z, r) do
6: if q′ is accepting then
7: return true
8: else if ∃ (q′′,Z′′, r′′) ∈ Visited s.t. (q′,Z′, r′) v (q′′,Z′′, r′′) then
9: Skip

10: else
11: for (q′′,Z′′, r′′) ∈ Visited do
12: if (q′′,Z′′, r′′) v (q′,Z′, r′) then
13: Remove (q′′,Z′′, r′′) from Visited and Waiting

14: Add (q′,Z′, r′) to Waiting and Visited

15: return false

Lemma 8.8. Suppose that N has a run to an accepting state. Then, if
−→r is complete for reachability for POR -LZG(N ), then there is a path to an
accepting node in POR -LZGr(N ).

Proof. Consider a run of N of the form

(q0, v0)
δ1−→ a1−→ (p1, v1) · · · an−1−−−→ (pn−1, vn−1)

δn−→ an−→ δn+1−−−→ (pn, vn)

where qn is an accepting state of N .
By completeness of LZG, there exists a path in LZG(N ) of the form

(q0,Z0)
a1−→ (p1, Ẑ1)

a2−→ · · · (pn−1, Ẑn−1)
an−→ (pn, Ẑn)

such that v0 ∈ Z0, vn ∈ Ẑn and vi ∈ Ẑi, for each i ∈ {1, · · · , n− 1}.
By definition of POR -LZG(N ), we have a path in POR -LZG(N ) of the

following form

(q0,Z0, r0)
a1−→ (p1, Ẑ1, r

′
1)

a2−→ · · · (pn−1, Ẑn−1, r
′
n−1)

an−→ (pn, Ẑn, r
′
n).

Since −→r is complete for reachability for POR -LZG(N ), we have a path
of the following form

(q0,Z0, r0)
β1−→r (q1,Z1, r1)

β2−→ · · · (ql−1,Zl−1, rl−1)
βl−→ (ql,Zl, rl).

where ql is an accepting state of N . This path is an accepting path in
POR -LZGr(N )
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Lemma 8.9. If a node (q,Z, r) is in the list Waiting of Algorithm 5, then
N has a local run (q0, v0) to (q, v), for some valuation v ∈ Z.

Proof. We will prove that the following statement is a loop invariant of Algo-
rithm 5: If a node (q,Z, r) is in the list Waiting of Algorithm 5, then (q,Z, r)
is reachable in POR -LZGr(N ). Then, using the soundness of POR -LZGr(N )
as given by Lemma 8.7, we can conclude that there is a local run in N of
the form (q0, v0) −→ (q, v), for some v ∈ Z.

The proof of the loop invariant follows as in the proof of Lemma 8.2 with
POR -LZGr(N ) as the transition system.

The proofs of soundness (Lemma 8.10) and completeness of (Lemma 8.11)
of Algorithm 5 follow similarly to the proofs of Lemma 8.3 and Corollary 8.1,
that respectively gives the soundness and completeness of the standard
reachability algorithm, Algorithm 4.

Lemma 8.10. (Soundness) If Algorithm 5 returns true, then N has an
accepting run.

Lemma 8.11. (Completeness) If POR -LZG(N ) has a reachable accepting
node, then Algorithm 4 returns true.

Remark. When we write reachable in Lemma 8.11, we mean “reachable with
a synchronized valuation”. However, recall that we consider timed automata
without state invariants and time-elapsed zones. This means that every
reachable local zone contains a synchronized valuation.

Using Lemma 8.10 and Lemma 8.11, we can now state Theorem 8.2.

Theorem 8.2. Let N be a network of timed automata. Suppose that −→r is
complete for reachability for POR -LZG(N ). Suppose that Next is determined
by −→r, and v is a simulation relation w.r.t. −→r. Algorithm 5 returns true if
and only if an accepting state is reachable in POR -LZGr(N ).

Proof. Lemma 8.10 gives us the forward direction of the theorem that says
that if Algorithm 5 returns true, then N has a reachable accepting state.

The reverse direction is given by Lemma 8.8 and Corollary 8.11.

In Section 8.3 and Section 8.4, we will propose Next functions and v
relations for different kinds of networks of timed automata. We will use the
above theorem to show that the instance of Algorithm 5 is correct for those
functions.
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8.3. Global-local POR

In this section, we propose a POR implementation that is customized and
targeted at a class of network of timed automata called global-local systems.
We describe a procedure Nextgl that computes the successors of a node of the
POR-zone graph and a covering relation vgl for the nodes of the POR-zone
graph of a global-local system.

8.3.1 Global-local systems

We first briefly recall the properties of global-local systems discussed in detail
in Section 7.2. A global-local system N = {A1, A2, · · · , An} satisfies two
properties:

(gl-trans) N has only two kinds of actions - local actions whose domain is
{Ai} for some i, and global actions whose domain is {A1, A2, · · · , An}.

(gl-final) Every accepting state of N is only reachable through a global
action. If a tuple (q1, · · · , qn) is an accepting state, then for 1 ≤ i ≤ n
each incoming transition to qi is labelled by a global action.

Remark. Suppose that N is a network satisfying the condition (gl-trans).
Then, N can be transformed to a global-local system by introducing a dummy
accepting state in each process, and adding transitions labelled by a new global
action from the (original) accepting states to this dummy accepting state.

Successor computation for global-local systems

The idea of −→gl is to make processes move in turns: first, we move the
first process, then the second, etc. until a global action occurs that restarts
this mechanism. This is where we use the third component r - it records
the process which executed the last action. Given a node (q,Z, r) of the
POR -LZG of a global-local system, only actions involving processes Ai for
i ≥ r are proposed by Nextgl.

Definition 8.6. We define a subset −→gl of −→ transitions. Given a node

(q,Z, r) of POR -LZG and a transition (q,Z)
a−→ (q′,Z′) of LZG, we have

(q,Z, r)
a−→gl (q′,Z′, r′) if either: (i) a is a local action of a process Ar′ for

some r′ ≥ r; or (ii) a is a global action and r′ = 0.

The associated function Nextgl computing the set of −→gl successors of
node is presented in Algorithm 6.

Lemma 8.12. The successor relation −→gl is complete for reachability for
transition systems of global-local systems.



168 8. Implementation of partial order reduction in TChecker

Algorithm 6 Nextgl(q,Z, r)

Input: A node (q,Z, r) of the POR-zone graph of a global-local network of
timed automata A
Output: a set Source of successors of (q,Z, r).

1: Source := ∅
2: for every transition (q,Z)

a−→ (q′,Z′) do
3: if a is a global action then
4: Add (q′,Z′, 0) to Source
5: else
6: {r′} = dom(a)
7: if (r′ ≥ r) then
8: Add (q′,Z′, r′) to Source

9: return Source

Proof. Suppose that N is a global-local system. Let POR -LZGgl(N ) be the
reduced transition system of POR -LZG(N ) induced by −→gl. We show that
the reduced system is reachability complete. Consider a path:

(q0,Z0, 0)
σ1−→ (q1,Z1, r1)

g1−→ (q2,Z2, 0)
σ2−→ (q3,Z3, r3)

g2−→ (q4,Z4, 0) · · ·

(q2n−2,Z2n−2, 0)
σn−→ (q2n−1,Z2n−1, r2n−1)

gn−→ (q2n,Z2n, 0)

in POR -LZG(N ), where σi’s are sequences of local actions and gi’s are global
actions. Observe that after executing a global action, the rank, i.e., the third
component of a configuration is 0.

It is enough to show that there are r′1, . . . , r
′
2n−1 and σ′1, . . . , σ

′
n such that

a path of the form

(q0,Z0, 0)
σ′1−→gl (q1,Z1, r

′
1)

g1−→gl (q2,Z2, 0)
σ′2−→gl (q3,Z3, r

′
3)

g2−→gl (q4,Z4, 0) · · ·

(q2n−2,Z2n−2, 0)
σ′n−→gl (q2n−1,Z2n−1, r

′
2n−1)

gn−→gl (q2n,Z2n, 0)

exists in POR -LZGgl(N ). We will additionally ensure that σ′i ∼ σi.
Firstly, we know that the initial node of POR -LZG(N ) has rank 0. Further,

recall that, if a global action is feasible from a node of POR -LZG(N ), then
it is allowed by −→gl (irrespective of the rank of the node).

Next, consider a segment consisting of only local actions in the aforemen-
tioned path in POR -LZG(N ):

(qi0 ,Zi0 , ri0)
a1−→ (qi1 ,Zi1 , ri1)

a2−→ (qi2 ,Zi2 , ri2) · · · al−→ (qil ,Zil , ril).

Each action in this sequence involves only one process. By Lemma 8.6, we can
commute actions of different processes in this sequence, to get an interleaving
resulting in the same final node, (qil ,Zil , r

′
il

), except maybe for the last

component of the triple. For every process Aj , consider the subsequence σj
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of the above sequence consisting only of actions of process j. Since there may
be no actions of some process in some segment, we consider only non-empty
sequences: σj1 , σj2 , . . . , σjk for some 1 ≤ j1 < j2 < · · · < jk ≤ n. Recalling
the definition of −→gl, we see that in POR -LZGgl(N ), we have a path

(qi0 ,Zi0 , 0)
σj1−−→gl (q′j1 ,Z

′
j1 , j1)

σj2−−→gl (q′j2 ,Z
′
j2 , j2) · · · σ

jk−−→gl (qjk ,Zjk , jk) .

This shows how, for all i, we can obtain σ′i from σi, and this completes the
proof.

The next step is to define the appropriate covering relation vgl that is
a simulation w.r.t. −→gl. One option would be to just require equality on
the third component of triples. The definition we adopt allows for more
coverings.

Definition 8.7 (Node-covering relation vgl). For nodes of a POR -LZG we
define a covering relation: (q,Z, r) vgl (q′,Z′, r′) if q = q′, Z vDM Z′ and
r′ ≤ r.

Lemma 8.13. If N is a global-local system, then vgl is a simulation relation
in POR -LZGgl(N ).

Proof. Let (q,Z, r) vgl (q,Z′, r′) in POR -LZGgl(N ). Observe that by the
definition of the covering: the first components must be the same, Z vDM Z′,

and r′ ≤ r. We show that if (q,Z, r)
a−→gl (q1,Z1, r1), then there exists a

node (q1,Z
′
1, r1) in POR -LZGgl(N ) such that (q,Z′, r′)

a−→gl (q1,Z
′
1, r1), and

(q1,Z1, r1) vgl (q1,Z
′
1, r1). Observe that the simulating node (q1,Z

′
1, r1)

differs from (q1,Z1, r1) only in the second component.
Since Z vDM Z′, we know by Lemma 6.10 that (q,Z′)

a−→ (q1,Z
′
1) for some

Z′1 with Z1 vDM Z′1.

If a is a global action, we have (q,Z′, r′)
a−→gl (q1,Z

′
1, 0) in POR -LZGgl(N ).

As in this case also r1 = 0, we obtain the following desired result: (q1,Z1, r1) vgl

(q1,Z
′
1, r
′
1).

Otherwise, a is a local action of some process Ar1 . Since a is enabled
from (q,Z, r) in POR -LZGgl(N ), we know that r1 ≥ r. As r′ ≤ r, from the

definition of −→gl, we know that (q′,Z′, r′)
a−→gl (q1,Z

′
1, r1). It is clear that

(q1,Z1, r1) vgl (q1,Z
′
1, r1).

Thanks to Lemma 8.12 and Lemma 8.13, we can use Theorem 8.2 to get
a reachability algorithm for global-local systems.

Lemma 8.14. Algorithm 5 using Nextgl and vgl solves the reachability
problem for global-local systems.
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8.3.2 Extended global-local systems

In order to broaden the applicability of our global-local POR technique,
we now propose a more general class of systems, which we call extended
global-local systems, and show how to apply global-local POR on these
systems. In these extended global-local systems, we do not impose restrictions
on communications between processes. The price to pay will be reduced
concurrency, or even no concurrency at all if there is a communication action
between every pair of processes.

As before, an action is global if it synchronizes all the processes of the
network. Otherwise an action is non-global. As a consequence, a local action
of a process is a non-global action, but there are also communication actions
that are non-global. A network N = {A1, A2, · · · , An} is said to be an
extended global-local system if it satisfies property (gl-final) from page 167.
Thus, given an accepting state (q1, · · · , qn) of N where qi is a state of Ai
for 1 ≤ i ≤ n, each incoming transition to qi is labelled by a global action.
Recall that by a remark on page 167, every network can be transformed to a
network satisfying (gl-final).

Successor computation for extended global-local systems

The idea is to group processes into equivalence classes: two processes belong to
the same equivalence class if there is a non-global action that can synchronize
them. The approach we are going to propose can be viewed as applying the
standard global-local POR algorithm to a system where processes are “total
synchronizations of equivalence classes of processes”.

We describe in more detail the equivalence relation on processes. We say
that two processes can communicate with each other if there is a non-global
action with the two processes in its domain. We will work with equivalence
classes of “can communicate with each other” relation. To have some notation
for these equivalence classes, we define a mapping groupid that assigns an
integral value to each process Ai: it is the smallest value j such that process
Aj belongs to the equivalence class of Ai. Notice that if two processes can
synchronize on a non-global action, then they have the same groupid. We
define groupid of a non-global action to be the groupid of processes involved
in this action. For convenience, we also define groupid(a) = 0 for all global
actions a.

We can now define a restricted transition relation −→egl. It is a general-
ization of Definition 8.6.

Definition 8.8. We define a subset −→egl of −→ transitions. Given a node

(q,Z, r) of POR -LZG and a transition (q,Z)
a−→ (q′,Z′) of LZG, we have

(q,Z, r)
a−→egl (q′,Z′, groupid(a)) provided groupid(a) ≥ r, or a is a global

action.
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An algorithm for computing −→egl transitions in presented in Algorithm 7.

Algorithm 7 Nextegl(q,Z, r)

Input: A node (q,Z, r) of the POR-zone graph of an extended global-local
network of timed automata A.
Output: Source(q,Z, r)

1: Source := ∅
2: for every transition (q,Z)

a−→ (q′,Z′) do
3: if a is global then
4: Add (q′,Z′, 0) to Source
5: else
6: r′ = groupid(a)
7: if (r′ ≥ r) then
8: Add (q′,Z′, r′) to Source

9: return Source

Lemma 8.15. The successor relation −→egl is complete for reachability for
transition systems of extended global-local systems.

Proof. The proof follows closely along the lines of the completeness for
global-local systems (Lemma 8.12.)

Let POR -LZGegl(N ) be the reduced transition system of POR -LZG(N )
induced by −→egl. We show that the reduced system is reachability complete.
Consider a path:

(q0,Z0, 0)
σ1−→ (q1,Z1, r1)

g1−→ (q2,Z2, 0)
σ2−→ (q3,Z3, r3)

g2−→ (q4,Z4, 0) · · ·

(q2n−2,Z2n−2, 0)
σn−→ (q2n−1,Z2n−1, r2n−1)

gn−→ (q2n,Z2n, 0)

in POR -LZG(N ), where σi’s are sequences of non-global actions and gi’s are
global actions. Observe that after the execution of a global action, the rank
of a configuration is 0.

It is enough to show that there are r′1, . . . , r
′
2n−1 and σ′1, . . . , σ

′
n such that

a path of the form

(q0,Z0, 0)
σ′1−→egl (q1,Z1, r

′
1)

g1−→egl (q2,Z2, 0)
σ′2−→egl (q3,Z3, r

′
3)

g2−→egl (q4,Z4, 0) · · ·

(q2n−2,Z2n−2, 0)
σ′n−→egl (q2n−1,Z2n−1, r

′
2n−1)

gn−→egl (q2n,Z2n, 0)

exists in POR -LZGegl(N ). We will ensure that σ′i ∼ σi.
First, we know that the initial node of POR -LZG(N ) has rank 0. Further,

recall that, if a global action is feasible from a node of the POR -LZG(N ),
then it is allowed by −→egl (irrespective of the rank of the node).



172 8. Implementation of partial order reduction in TChecker

Next, consider a segment consisting of non-global actions in the afore-
mentioned path in POR -LZG(N ):

(qi0 ,Zi0 , ri0)
a1−→ (qi1 ,Zi1 , ri1)

a2−→ (qi2 ,Zi2 , ri2) · · · al−→ (qil ,Zil , ril).

We know that two actions with different groupid have disjoint domains,
and hence, can be commuted thanks to Lemma 8.6. For every j, consider
the subsequence σj of the above sequence consisting only of actions with
groupid = j. Since there may be no actions of some process in a segment, we
consider only non-empty sequences: σj1 , σj2 , . . . , σjk for some 1 ≤ j1 < j2 <
· · · < jk ≤ n. Recalling the definition of −→egl we see that in POR -LZGegl(N )
we have a path

(qi0 ,Zi0 , 0)
σj1−−→egl (q′j1 ,Z

′
j1 , j1)

σj2−−→egl (q′j2 ,Z
′
j2 , j2) · · · σ

jk−−→egl (qjk ,Zjk , jk) .

This shows how, for all i, we can obtain σ′i from σi, and this completes the
proof.

To complete the construction we need to define a covering relation and
show that it is a simulation w.r.t. −→egl. We show that we can in fact, use
the same relation vgl as in Definition 8.7.

Lemma 8.16. If N is an extended global-local system, then vgl is a simula-
tion relation in POR -LZGegl(N ).

Proof. The proof is very similar to that of Lemma 8.13.
Let (q,Z, r) vgl (q,Z′, r′) in POR -LZGegl(N ). Observe that by the def-

inition of the covering: the first components must be the same, Z vDM Z′,

and r′ ≤ r. We show that if (q,Z, r)
a−→egl (q1,Z1, r1), then there exists

a node (q1,Z
′
1, r1) in POR -LZGegl(N ) such that (q,Z′, r′)

a−→egl (q1,Z
′
1, r1),

and (q1,Z1, r1) vgl (q1,Z
′
1, r1). Observe that the simulating node (q1,Z

′
1, r1)

differs only on the second component from (q1,Z1, r1).
Since Z vDM Z′, we know by Lemma 6.10 that (q,Z′)

a−→ (q1,Z
′
1) for some

Z′1 with Z1 vDM Z′1.

If a is a global action, we have (q,Z′, r′)
a−→egl (q1,Z

′
1, 0) in POR -LZGegl(N ).

As in this case also r1 = 0, we have (q1,Z1, r1) vgl (q1,Z
′
1, r
′
1).

Otherwise, a is a non-global action and groupid(a) = r1. Since a is
enabled from (q,Z, r) in POR -LZGegl(N ), we know that r1 ≥ r. As r′ ≤ r,
from the definition of −→egl, we know that a is enabled from (q′,Z′, r′) and

we have (q′,Z′, r′)
a−→egl (q1,Z

′
1, r1). Here, it is clear that (q1,Z1, r1) vgl

(q1,Z
′
1, r1).

Thanks to Lemma 8.15 and Lemma 8.16, we can use Theorem 8.2 to get
a reachability algorithm for extended global-local systems.

Lemma 8.17. Algorithm 5 using Nextegl and vgl solves the reachability
problem for extended global-local systems.
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8.4. Client-server POR

In this section, we propose a POR implementation that is customized and
targeted at a class of networks of timed automata called client-server systems.
We describe a procedure Nextcs that computes the successors of a node of the
POR-zone graph and a covering relation vcs for the nodes of the POR-zone
graph of a client-server system.

8.4.1 Client-server systems

We first briefly recall the properties of client-server systems discussed in
detail in Section 7.3. In these networks, we have a server process (denoted by
S) and several client processes (denoted by C1, C2, · · · , Ck). For convenience,
we suppose that S, is the process number 0. These systems can have three
kinds of actions

• local actions in a client, whose domain is {Ci} for some i,

• local actions in the server which has domain {S},

• synchronization actions involving a client and the server, that have
domain {S,Ci} for some i.

So, for every action a, dom(a) is either a singleton {S} or {Ci}, or a pair
{S,Ci}, for some client Ci. We refer to synchronizations involving processes
S and Ci as communication actions.

Further, the definition of client-server systems also imposes conditions
on how an accepting state can be reached in the system - in a client-server
system, each process needs to execute a communication action with the
server just before reaching an accepting state.

Recall that an accepting state is a global state, i.e., a tuple (q0, q1, · · · , qn),
where q0 is a state of S and qi is a state of process in Ci, for 1 ≤ i ≤ n. Then,
the aforementioned implies that given an accepting state (q0, q1, · · · , qn) of N ,
for 1 ≤ i ≤ n, each incoming transition to qi is labelled by a communication
action with the server.

Remark. Suppose that N is a network which satisfies all the properties of
client-server systems except the condition on the reachability of accepting
states. N can be transformed to a client-server system by introducing a
dummy accepting state in each process, and adding incoming transitions from
all the (original) accepting states to this dummy accepting state, such that
each of these transitions is labelled by a new communication action with the
server.
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Successor computation for client-server systems

The idea of −→cs is to choose one client and continue executing actions of
that client till it does a communication action; then, a next client is chosen.
The third component r, keeps the index of the process that has executed the
last action.

Definition 8.9. We define a subset −→cs of −→ transitions of POR -LZG.
Given a node (q,Z, r) of POR -LZG and a transition (q,Z)

a−→ (q′,Z′) of LZG,
we have (q,Z, r)

a−→cs (q′,Z′, r′) if either:

• when r = 0: a is a local action of the client r′, or a involves the server
and r′ = 0.

• when r > 0: a is a local action of the client r and r′ = r, or a is a
communication action of the client r with the server and r′ = 0.

The associated function Nextcs computing the set of −→cs successors of a
node is presented in Algorithm 8.

Algorithm 8 Nextcs(q,Z, r)

Input: A node (q,Z, r) of the POR-zone graph of a network of timed automata
N = 〈S,C1, C2, · · ·Ck〉
Output: Succ(q,Z, r)

1: Succ := ∅
2: for every transition (q,Z)

a−→ (q′,Z′) do
3: if r = 0 or Cr ∈ dom(a) then
4: if S ∈ dom(a) then
5: r′ = 0
6: else
7: r′ = i for some Ci ∈ dom(a)

8: Add (q′,Z′, r′) to Succ

9: return Succ

Lemma 8.18. The successor relation −→cs is complete for reachability for
transitions systems of client-server systems.

Proof. Let POR -LZGcs(N ) be the reduced transition system of POR -LZG(N )
induced by −→cs. We show that the reduced transition system is reachability
complete. The proof is by induction on the length of a path to a final state.

Consider a path

(q0,Z0, 0)
σ−→ (q1,Z1, r1)

b−→ (q2,Z2, 0)
ρ−→ (q3,Z3, 0)

in POR -LZG(N ), where b is the first action of the server in the sequence.
Hence, all actions in σ are local actions of clients. Observe that such an
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action b must exist as, by our assumption on client-server systems, each
process needs to execute a communication action just before reaching an
accepting state. Moreover this implies that the rank in the last configuration
is 0, but there may be other ranks on ρ in the segment of the path between
q2 and q3.

If b is a local action of the server, all actions in σ commute with b. By
Lemma 8.6, the following is also a path in POR -LZG(N ):

(q0,Z0, 0)
b−→ (q′1,Z

′
1, 0)

σ−→ (q′2,Z
′
2, r
′
2)

ρ−→ (q3,Z3, 0)

By the induction assumption, we have a path (q′1,Z
′
1, 0)

σρ−→cs (q3,Z3, 0). We

also have (q0,Z0, 0)
b−→cs (q′1,Z

′
1, 0) by the definition of −→cs. This gives us a

path in POR -LZGcs(N ).
The other case is when b is a communication action with a client r. In

this case, we split σ into two subsequences: σ1 consisting of local actions of
client r, and σ2 consisting of local actions of other clients. All actions of σ2

commute with b. By Lemma 8.6 the following is also a path in POR -LZG(N ):

(q0,Z0, 0)
σ1−→ (q′1,Z

′
1, 0)

b−→ (q′′1 ,Z
′′
1, 0)

σ2−→ (q′2,Z
′
2, r
′
2)

ρ−→ (q3,Z3, 0)

By the induction assumption, we have (q′′1 ,Z
′′
1, 0)

σ2ρ−−→cs (q3,Z3, 0) in POR -LZGcs(N ).
From the definition of −→cs we get

(q0,Z0, 0)
σ1−→cs (q′1,Z

′
1, r)

b−→cs (q′′1 ,Z
′′
1, 0)

This gives us a desired execution.

In order to apply our reachability testing algorithm, it remains to define
a covering relation vcs that is a simulation w.r.t. −→cs.

Definition 8.10. For nodes of POR -LZG(N ), we define a covering relation
(q,Z, r) vcs (q′,Z′, r′) if q = q′, Z vDM Z′ and r′ = r or r′ = 0.

Lemma 8.19. If N is a client-server system, then vcs is a simulation
relation in POR -LZGcs(N ).

Proof. Let (q,Z, r) vcs (q,Z′, r′) in POR -LZGcs(N ). Observe that by the
definition of the covering: the first components must be the same, Z vDM Z′,

and r = r′, or r′ = 0. We show that if (q,Z, r)
a−→cs (q1,Z1, r1), then

there exists a node (q1,Z
′
1, r1) in POR -LZGcs(N ) such that (q,Z′, r′)

a−→cs

(q1,Z
′
1, r1), and (q1,Z1, r1) vcs (q1,Z

′
1, r1). Observe that the simulating node

(q1,Z
′
1, r1) differs from (q1,Z1, r1) only in the second component.

Since Z vDM Z′, we know by Lemma 6.10 that (q,Z′)
a−→ (q1,Z

′
1) for some

Z′1 with Z1 vDM Z′1.

Both when r = r′ or r′ = 0, we have (q,Z′, r′)
a−→cs (q1,Z

′
1, r1) in

POR -LZGcs(N ). As a consequence, we have (q1,Z1, r1) vcs (q1,Z
′
1, r1).
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Thanks to Lemma 8.18 and Lemma 8.19, we can use Theorem 8.2 to get
a reachability algorithm for client-server systems.

Lemma 8.20. Algorithm 5 using Nextcs and vcs solves the reachability
problem for client-server systems.

8.4.2 Extended client-server systems

In this section, we present the application of the client-server POR technique
to a more general class of systems, referred to as extended client-server
systems. We hope that this extension would help broaden the scope of our
client-server POR technique.

In these systems, we allow arbitrary synchronizations involving non-
server processes. Thus, we have a server process and disjoint groups of client
processes that have synchronizations within the groups. Our approach can
be viewed as considering each such group of client processes as a client and
applying client-server POR on the resultant client-server system.

We use an idea similar to the one we used for extended global-local systems
(see Section 8.3.2): we group client processes into equivalence classes. We
say that two client processes can communicate with each other if there is an
action with the two processes in its domain. This relation “can communicate
with each other” is an equivalence relation and it partitions the set of client
processes into equivalence classes. The equivalence class of a client process
C is the set of client processes C ′ such that C and C ′ can communicate
with each other without the server, i.e., there is sequence of communication
actions not involving the server linking C and C ′.

Given a network {C0, C1, C2, · · · , Ck}, we assume that the process C0 is
the server, while the others are clients. We define a mapping groupid that
assigns an integral value to each process Ci such that

• The server has groupid = 0. It is the unique process with groupid = 0.

• For a client Ci, we define groupid(Ci) as the smallest j > 0 such that
the process Cj belongs to the equivalence class of Ci.

It follows from the definition of groupid, that if there is an action synchronizing
two clients Ci and Cj such that i, j > 0, then groupid(Ci) = groupid(Cj).

The function groupid defines an equivalence relation on clients. We have
three categories of actions:

• client actions involving only clients with the same groupid,

• local server actions involving only the server,

• communication actions involving the server and some clients, all with
the same groupid.
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We define the groupid of a client action as the groupid of processes involved
in this action. Otherwise, groupid of an action is 0.

The degenerate case of this situation is when all the clients have the
same groupid. In this case there is no restriction on possible communication
actions, but there will also be no gain when applying the method we are
going to present.

The only restriction we impose is that the final state of each process
should be only reachable by a communication action with the server.

Successor computation for extended client-server systems

The idea of −→ecs is to choose one groupid and let the processes of this groupid
execute till a communication action with the server; after that some other
group of processes is chosen. The third component now keeps track of the
groupid of the last action.

Definition 8.11. We define a subset −→ecs of −→ transitions. Given a node
(q,Z, r) of POR -LZG and a transition (q,Z)

a−→ (q′,Z′) of LZG we have
(q,Z, r)

a−→ecs (q′,Z′, groupid(a)) under the condition that either: (i) r = 0, or
(ii) a is an action involving processes with groupid = r.

Algorithm 9 Nextecs(q,Z, r)

Input: A node (q,Z, r) of the POR-zone graph of a network of timed automata
N and a map groupid : {S,C1, C2, · · ·Ck} 7→ N
Output: Source(q,Z, r)

1: Source := ∅
2: for every transition (q,Z)

a−→ (q′,Z′) do
3: if r = 0 or there is Ci ∈ dom(a) with groupid(Ci) = r then
4: if S ∈ dom(a) then
5: r′ = 0
6: else
7: r′ = groupid(a)

8: Add (q′,Z′, r′) to Source

9: return Source

Lemma 8.21. The successor relation −→ecs is complete for reachability for
transition systems of extended client-server systems.

Proof. Let POR -LZGecs(N ) be the reduced transition system of POR -LZG(N )
induced by −→ecs. We show that the reduced system is reachability complete.
The proof is by induction on the length of a path to a final state.

Consider a path

(q0,Z0, 0)
σ−→ (q1,Z1, r1)

b−→ (q2,Z2, r2)
ρ−→ (q3,Z3, r3)
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in POR -LZG(N ), where b is the first action of the server in the sequence.
Such an action b must exist as, by our assumption on extended client-server
systems, the final state can be reached only with a communication action.
Hence, all actions in σ are actions not involving the server.

If b is a local action of the server, all actions in σ commute with b. By
Lemma 8.6 the following is also a path in POR -LZG(N ):

(q0,Z0, 0)
b−→ (q′1,Z

′
1, 0)

σ−→ (q′2,Z
′
2, r
′
2)

ρ−→ (q3,Z3, r3)

By the induction assumption we have a path (q′1,Z
′
1, 0)

σρ−→cs (q3,Z3, r3). We

have also (q0,Z0, 0)
b−→cs (q′1,Z

′
1, 0) by the definition of −→cs. This gives us a

path in POR -LZGecs(N ).
The other case is when b is a communication action with clients of

groupid = r. In this case, we split σ into two subsequences: σ1 consisting
of actions of client with groupid = r, and σ2 consisting of actions of other
clients. All actions of σ2 commute with b. By Lemma 8.6 the following is
also a path in POR -LZG(N ):

(q0,Z0, 0)
σ1−→ (q′1,Z

′
1, 0)

b−→ (q′′1 ,Z
′′
1, 0)

σ2−→ (q′2,Z
′
2, r
′
2)

ρ−→ (q3,Z3, r3)

By the induction assumption we have (q′′1 ,Z
′′
1, 0)

σ2ρ−−→cs (q3,Z3, r3) in POR -LZGecs(N ).
From the definition of −→cs we get

(q0,Z0, 0)
σ1−→cs (q′1,Z

′
1, r)

b−→cs (q′′1 ,Z
′′
1, 0)

This gives us an execution of the desired form.

For the node covering relation, we use the same relation vcs as for client-
server systems (Definition 8.10). The proof of the lemma is practically the
same as that of Lemma 8.19.

Lemma 8.22. v is a simulation relation for POR -LZG(N ), if N is an
extended client-server system.

Thanks to Lemma 8.21 and Lemma 8.22, we can use Theorem 8.2 to get
a reachability algorithm for extended client-server systems.

Lemma 8.23. Algorithm 5 using Nextecs and vcs solves the reachability
problem for extended client-server systems.

8.5. Optimizations for POR reachability algorithm

In this section, we study some properties of global-local and client-server
systems and use these properties to propose some optimizations for the
respective POR implementations, namely global-local POR and client-server
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POR. At the end of the section, we present the revised versions of the Next
procedures with these optimizations incorporated - Next∗gl (Algorithm 10) and
Next∗cs (Algorithm 11), respectively. Note that, in this section, we work with
the more generic framework of extended global-local systems and extended
client server systems.

Global-local POR

Recall that the conditions on global-local systems stipulate that an accepting
state in an extended global-local system can only be reached by executing
a global action at the end. Here, we discuss some optimizations to the
Nextegl procedure that exploit this property of extended global-local systems.
Each of these optimizations essentially identifies nodes of the POR -LZG of
the network from which paths cannot contain global actions, and stops the
exploration from these nodes.

First optimization For the first optimization, we introduce the notion of
gl(i, q, r), which is an over-approximation of the set of global actions that
process Ai can execute from a node with state q and rank r. Two things
are to be noted here. First, if groupid(Ai) < r, then from a node with
rank r, process Ai is not allowed to execute its local actions before the next
global action. Second, this is a syntactic construct – the timing information
associated to a node has no bearing on the value of gl(i, q, r). We now make
this notion precise.

Definition 8.12 (gl(i, q, r)). Let N = 〈A1, A2, · · ·Ak〉 be a global-local
system. We define a set of global actions gl(i, q, r) for i, r ∈ {1, . . . , k},
and q a state of N . If groupid(Ai) < r, then gl(i, q, r) is the set of global
actions g such that there is an outgoing transition labelled g from q. If
groupid(Ai) ≥ r, then gl(i, q, r) is the set of global actions g such that there
is a state q′ reachable from q by a sequence of non-global transitions whose
groupid is groupid(Ai) and an outgoing transition labelled g from q′.

We use this notion to curtail exploration from those nodes of POR -LZG(N )
from which we are sure that there is no run containing a global action.

Lemma 8.24. Let N be an extended global-local system, and let (q,Z, r)
be a node of POR -LZGegl(N ). If there exist two processes Ai and Aj such
that gl(i, q, r) ∩ gl(j, q, r) = ∅, then an accepting state cannot be reached from
(q,Z, r).

Proof. Recall that, by the definition of global-local systems, an accepting
path should end with a global action. If gl(i, q, r) ∩ gl(j, q, r) = ∅, then this
means that there is no global action that can be executed from (q,Z, r) or
any node reachable from it (independently of Z).
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Figure 8.1: An example that illustrates the effect of Optimization 1 of
global-local POR

As a corollary, we get the following optimization.

Optimization 1. For an extended global-local system N , if (q,Z, r) is a
node of POR -LZGegl(N ) such that gl(i, q, r) ∩ gl(j, q, r) = ∅, for some i, j,
then (q,Z, r) need not be stored and its successors need not be explored.

Example for Optimization 1: Consider the network N presented in Fig-
ure 8.1a. We present the POR-zone graph, POR -LZGgl(N ), as produced by
Algorithm 6 in Figure 8.1b. The nodes that will be removed by Optimiza-
tion 1 are highlighted in red. To understand the working of this optimization,
we pick one such node, 〈(A,B), 2〉, and explain why this node is removed
by Optimization 1. Observe that the location A of process A1 does not
have any outgoing global actions. This means that gl(1, B, 2) = ∅ and as a
consequence, gl(1, B, 2) ∩ gl(2, B, 2) = ∅. Hence, the node 〈(A,B), 2〉 can be
removed, and its successors need not be explored.

Second optimization Here, we present another optimization, Optimiza-
tion 2 for the Next procedure for global-local systems. Before presenting
the optimization, we first state Lemma 8.25 that gives a key property of
the transition relation of the reduced POR-zone graph. Note that we refer
to the set of clocks Xi ∪ ti as clocks of process Ai. Then, Z|<p denotes the
projection of Z to the clocks of processes A1, A2, · · · , Ap−1.

Lemma 8.25. Let N be an extended global-local system. Let (q,Z, r) be a
node of POR -LZGegl(N ) and let (q,Z, r)

a−→egl (q′,Z′, r′) be a transition in
POR -LZGegl(N ). If a is a local action, then Z′|<r⊆ Z|<r.
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Proof. Let v′ be a valuation in Z′. By the pre-property of transitions on
zones (Lemma 4.6), we know that there exists a valuation v in Z such that

(q, v)
a−→ δ−→ (q′, v′). By commutativity of transitions in local time semantics,

we can commute the delay transitions in processes whose groupid is less than
r (denoted by δ<r) to the beginning of the sequence to obtain a sequence of
the form

(q, v)
δ<r−−→ (q, v1)

a−→
δ≥r−−→ (q1, v

′)

where δ≥r is the local delay in processes with groupid at least r. Since Z is
local-time-closed, we have v1 ∈ Z. We observe that v1|<r= v′|<r. As v′ was
arbitrary, this implies that Z′|<r⊆ Z|<r.

We now introduce the notion of nextglobal(q,Z, r) which gives an over-
approximation of the set of first global actions on paths from (q,Z, r) in
the POR -LZGegl. Consider a path σ starting from the node (q,Z, r) in the
POR -LZGegl. Recall that only the local actions of processes Ai for i ≥ r
can be executed before a global action is executed. Therefore, such a global
action c must satisfy two conditions:

• there must be an outgoing transition c from qi, for all i < r;

• a transition c must be reachable by a sequence of local actions of
groupid = i, for all i ≥ r.

Formally, we can define nextglobal(q,Z, r) using the notion of gl(i, q, r) intro-
duced in Definition 8.12.

Definition 8.13. nextglobal(q,Z, r) =
⋂

Ai∈Proc
gl(i, q, r).

If no action in the set nextglobal(q,Z, r) is feasible from some node
reachable from (q,Z, r), then we can conclude that no outgoing path from
(q,Z, r) can be accepting. We prove this in Lemma 8.26. Let sync<r denote
the constraint t1 = t2 = · · · = tr−1 that synchronizes the reference clocks of
processes 1 to r − 1. For a global action c and a state q, we let gc,q<r denote
the conjunction of the guards of processes 1, . . . , r − 1 on their transitions
on c from q. Recall that we only consider deterministic automata. We let
gc,q<r = false if an automaton i < r has no transition on c from q.

Lemma 8.26. Let N be an extended global-local system, and let (q,Z, r) be
a node of POR -LZGegl(N ). Let (q,Z, r) be a node of POR -LZGegl(N ) such
that for all actions c ∈ nextglobal(q,Z, r), Z∧ sync<r ∧ g

c,q
<r = ∅, Then, a path

from (q,Z, r) in POR -LZGegl(N ) cannot contain a global action.

Proof. Since Z ∧ sync<r ∧ g
c,q
<r = ∅ for all actions c in nextglobal(q,Z, r), we

know that no global action is enabled from (q,Z, r).
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Figure 8.2: An example that illustrates the effect of Optimization 2 of
global-local POR

Let (q,Z, r)
a−→ (q′,Z′, r′) be a local action in POR -LZGegl(N ). By def-

inition of global-local POR, we know that this local action has groupid at
least r. Observe that the components 1, . . . , r − 1 of q and q′ are the same.

From Lemma 8.25, we know that Z′ ∧ sync<r′ ∧ g
c,q′

<r′ = ∅. This implies that
no global action is enabled from (q′,Z′, r′).

By repeating this reasoning, we can see that a path from (q,Z, r) cannot
contain a global action.

As a consequence of Lemma 8.26, we get Optimization 2.

Optimization 2. Let N be an extended global-local system N , and let
(q,Z, r) be a node of POR -LZGegl(N ) such that for all actions a in nextglobal(q,Z, r)
we have Z ∧ sync<r ∧ ga = ∅. Then, by Lemma 8.26, (q,Z, r) need not be
stored and its successors need not be explored.

Example for Optimization 2: Consider the network N3 given in Fig-
ure 8.2a. The network consists of three processes A1, A2 and A3. Observe
that the accepting state of N3, (p2, q2, r5), is marked in green. Further, note
that the global actions are denoted in red. The POR-zone graph of N3 is
given in Figure 8.2b.

The nodes marked in red will be removed by Optimization 2. In each of
these nodes, there is a common global action in the future, but no global
action can be enabled from the node or any of its successors. For instance,
consider the node 〈(p0, q1, r0),Z8, 2〉 of POR -LZGegl(N3). The global action
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g is an outgoing action from the state p0 in A1 and the state q1 in A2, and is
reachable by local actions from r0 in A3. So, this node will not be eliminated
by Optimization 1. However, observe that the set Z8 ∧ (t1 = t2) ∧ (x1 = 5)
is empty since Z8 implies (x̃1 = ỹ1) ∧ (t2 − ỹ1 ≥ 100) (recall that x1 = 5 is
translated as t1 − x̃1 = 5 in the offset settings). Therefore, the action g is
never enabled from this node, even if we follow the sequence of local actions
in A3. In a similar way, all the nodes highlighted in POR -LZGegl(N3) as
shown in Figure 8.2b will not be explored due to Optimization 2.

We now present a revised version of the successor computation proce-
dure, Next∗gl (Algorithm 10) with the two optimizations incorporated into it.
Optimization 1 is reflected in line 8, and Optimization 2 is given by line 9 of
the algorithm.

Algorithm 10 Next∗gl(q,Z, r)

Input: A node (q,Z, r) of the POR-zone graph of a network of timed automata
N
Output: A set of successors of (q,Z, r).

1: Succ := ∅
2: for every transition (q,Z)

a−→ (q′,Z′) do
3: if a is global then
4: Add (q′,Z′, 0) to Succ
5: else
6: r′ = groupid(a)
7: if (r′ ≥ r) ∧
8: (∀i, j gl(i, q′, r′) ∩ gl(j, q′, r′) 6= ∅) ∧
9: not (∀c∈nextglobal(q′,Z′,r′). Z′ ∧ sync<r′ ∧ gc = ∅) then

10:

11: Add (q′,Z′, r′) to Succ

12: return Succ

Client-server POR

In this section, we discuss an optimization to the Nextecs procedure that ex-
ploit properties of extended client-server systems. Recall that in an extended
client-server system, each client process needs to execute a communication ac-
tion with the server just before reaching an accepting state. As a consequence,
if we can deduce that on all paths from a given node of POR -LZGecs(N ) there
cannot be a communication action, then we can avoid further exploration
from this node.

Let the network of timed automata N = 〈S,C1, C2, · · ·Ck〉 be a client-
server system. Let q be a state. By comm(q, 0) we denote the set of
communication actions of the server that label outgoing transitions from q.
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We also introduce a more complicated notion comm∗(q, r), for rank r > 0.
It gives an over-estimation of the set of communication actions that can be
executed by processes of groupid equal to r. Note that from a node of rank
r, either all the actions are explored (if r = 0) or only actions of processes
whose groupid is r are explored till the next communication with a server (if
r 6= 0).

Definition 8.14. Let q be a state of N and let r > 0 be a rank. A communi-
cation action c belongs to comm(q, 0) if there is an outgoing server transition
labeled by c from q. A communication action c belongs to comm∗(q, r) if
there is a sequence of client actions with groupid equal to r, leading to a
state q′ with an outgoing transition labeled c.

Lemma 8.27. Let N be an extended client-server system, and let (q,Z, r)
be a node of POR -LZGecs(N ) with r > 0. If comm∗(q, r) ∩ comm(q, 0) =
∅, then there can be no communication action on a path from (q,Z, r) in
POR -LZGecs(N ).

Proof. From the node (q,Z, r), only actions of processes with groupid equal to
r are explored. Recall that comm(q, r) denotes the set of all communication
actions that are reachable by a sequence of local actions of processes with
groupid equal to r. Since comm∗(q, r)∩comm(q, 0) = ∅, we know that no such
action is enabled from the current location of the server. This means that no
communication action is enabled from (q,Z, r) nor can it become enabled by
only executing client actions with groupid equal to r in POR -LZGecs(N ).

As a corollary of Lemma 8.27, we immediately get Optimization 3.

Optimization 3. Let N be an extended client-server system. Let (q,Z, r)
be a node of POR -LZGecs(N ) such that comm∗(q, r)∩ comm(q, 0) = ∅. Then,
by Lemma 8.27, (q,Z, r) need not to be stored, and its successors need not
be explored.

Example for Optimization 3: Consider the network A given in Figure
8.3a.

The network consists of two client processes A1 and A2, and a server
process S. Note that the communication actions of the network are denoted in
red. A part of the POR-zone graph of A is given in Figure 8.3b. Consider the
node 〈(p2, q1, s1), Z4, 2〉 of POR -LZGecs(A) that is marked in red. Observe
that c2 is the only communication action that is reachable from q1 via
(exclusively) local actions. This is expressed as comm∗((p2, q1, s1), 2) =
{c1}. However, the set of outgoing actions from the current state s1 of
server is {c2}, i.e., comm((p2, q1, s1), 0) = {c2}. Since comm∗((p2, q1, s1), 2)∩
comm((p2, q1, s1), 0) = ∅, we know that there is no common communication
action in the future from this node or any of its successors. Therefore, the
node (p2, q1, s1, Z4) will be removed by Optimization 3.
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Figure 8.3: An example that illustrates the effect of Optimization 3 of
Client-server POR

We now present the revised Next procedure for extended client-server
systems with Optimization 3 as reflected in line 4 of the algorithm.

Algorithm 11 Next∗cs(q,Z, r)

Input: A node (q,Z, r) of POR -LZGecs(N ) of a client-server network N
Output: A set of successors of 9q,Z, r)

1: Succ := ∅
2: for every transition (q,Z)

a−→ (q′,Z′) do
3: if r = 0 or
4: (there is Ci ∈ dom(a) with
5: groupid(Ci) = r, and comm∗(q, r) ∩ comm(q, 0) 6= ∅) then
6: if S ∈ dom(a) then
7: r′ = 0
8: else
9: r′ = i for some Ci ∈ dom(a)

10: Add (q′,Z′, r′) to Succ

11: return Succ
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Chapter 9

Experiments

In this thesis, we have proposed two different solutions to address the
challenge of state-space explosion for the reachability problem for networks
of timed automata. The first solution, based on the computation of the
local sync graph (Definition 5.6) of the network, while the second solution
involves applying partial order reduction to a finite truncation of the local
zone graph of the network. A prototype of both of these algorithms has
been implemented in the tool TChecker [HP19]. In this chapter, we discuss
the experiments with these implementations on standard benchmarks for
timed automata. We compare the performance of these implementations with
the standard UPPAAL reachability algorithm, which is the state-of-the-art
solution to solve the reachability problem for timed automata.

In the first part of this chapter, we focus on the implementation of Algo-
rithm 3 discussed in Chapter 5. The second part of this chapter is concerned
with the implementation of the POR-reachability procedure (Algorithm 5)
that was proposed in Chapter 8. We compare the results of running the
implementations of these procedures alongside the results for the classical UP-
PAAL reachability algorithm. All the three algorithms solve the reachability
problem for a network of timed automata by computing a transition system
and exploring it to search for an accepting state. The classical reachability
algorithm computes a transition system called the global zone graph of the
network, while Algorithm 3 computes the local sync graph of the network
(see Definition 5.6) and Algorithm 5 computes the POR-zone graph (see
Section 8.2) of the network.

For both our implementations, we first introduce some toy models (that
are essentially simple networks that are easy to understand), and illustrate the
working of our implementations on these simple networks. Equipped with this
understanding, we discuss the results of running these implementations on
bigger models that constitute the standard benchmarks for timed automata.
We also give a comparison of their performance to that of the classical
UPPAAL reachability algorithm provided in TChecker and provide tables

187



188 9. Experiments

that display the exhibit the results.
As a metric of the performance of the algorithms, for each network of

timed automata that we run experiments on, we consider three parameters for
comparison: the number of visited nodes and stored nodes in the transition
system computed by the algorithm, and the runtime of the algorithm. We
analyse the performance of our implementations and wherever applicable, we
articulate the reasons for the gains, or lack thereof, of our implementation
with respect to the standard procedure.

Remark (Runtime of the algorithm). TChecker runs 2 threads for every
execution: a computation thread and a garbage collection thread. The user
time sums the running time of both threads, whereas the total time is the
maximum of the two times. For the purposes of experiments in this chapter,
we have taken the total time as an estimate of the running time.

9.1. Efficient reachability testing using local sync
graphs

In this section, we discuss the implementation of Algorithm 3 that solves the
reachability problem for a network of timed automata by the construction
of its local sync graph. We will refer to this implementation as the local
sync graph implementation (LSG-implementation). We discuss the perfor-
mance of the LSG-implementation, and compare its performance with the
implementations of the classical UPPAAL reachability algorithm provided
in TChecker.

We first introduce a toy-model for which the LSG-implementation com-
putes local sync graphs that are an order of magnitude smaller than the
global zone graphs computed by the standard reachability procedure. Us-
ing this toy-model, we will analyse the working of LSG-implementation by
studying the local sync graph of the model that it generates. We compare
and contrast the global zone graph and the local sync graph of the toy model
and explain the source of gains for the model.

9.1.1 Toy model for LSG implementation

Our toy model is given by a network of timed automata N , with n identical
processes, as depicted in Figure 9.1. Note that the actions b and c are global
actions, while all other actions are local actions. Each automaton Ai executes
local action ai, after which one of the global actions, b or c is executed.

Table 9.1 presents results of our experiments on instances of the toy
model with different number of processes. From Table 9.1, we can observe
an order of magnitude gains for our toy models. We now clarify the source
of these gains by explaining the working of the LSG implementation on this
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Figure 9.1: A toy model to explain the working of the LSG implementation

model. We do this by considering the instance of N with 2 processes, A1

and A2. The global zone graph and the local sync graph for this network
are given in Figures 9.2a and 9.2b, respectively.

〈A,A,Z0〉

〈B,A,Z1〉 〈A,B,Z2〉

〈B,B,Z3〉 〈B,B,Z4〉

〈C,C,Z5〉 〈D,D,Z6〉

a1 a2

a2 a1

c b

cb

(a) Global zone graph of N

〈A,A,Z0〉

〈B,A,Z1〉 〈A,B,Z2〉

〈B,B,Z〉

〈C,C,Z4〉 〈D,D,Z5〉

a1 a2

a2 a1

c b

(b) Local sync graph of N

Figure 9.2: Zone graphs of network N given in Figure 9.1

In both A1 and A2, there is a local action ai followed by a global action
b or c. Observe that when A1 and A2 perform local actions a1 and a2,
doing a1a2 or a2a1 leads to the same control-state of the automaton. From
Figure 9.2a, we can see that in the global zone graph of N , the paths a1a2

and a2a1 lead to different zones Z1 and Z2, in the global zone graph. As
a result, we have two copies of the node with the control state (B,B), one
per each interleaving of the local actions. On the other hand, the two paths
result in the same zone Z (containing both Z1 and Z2) in the local sync
graph (see Figure 9.2b). In this way, our new reachability procedure is able
to construct a local zone graph that is an order of magnitude smaller than
the global zone graph of the network, as can be observed from Table 9.1.
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Models Global ZG Local SG
(# processes) visited stored time visited stored time

2 7 7 0.033 6 6 0.030

3 18 18 0.078s 10 10 0.049s

4 67 67 0.283s 18 18 0.322s

5 328 328 1.360s 34 34 0.203s

8 109,603 109,603 5m19s 258 258 2.267s

Table 9.1: Experimental results for the toy model given in Figure 9.1. The
table gives the statistics of the global zone graph and the local sync graph
with different number of processes.

Remark. Observe that we have two global actions from the state B of each
component, namely b with a lower bound guard, and c with an upper bound
guard. The purpose of these two actions is to force the a4LU subsumption to
differentiate between the zone reached by the different interleavings of local
actions a1 and a2. Had there been only one global action, when using the
a4LU subsumption, one zone gets subsumed by the other zone since there is
no active lower bound (or upper bound) from the resultant state. We remark
that if we use aM -subsumption while computing the global zone graph, we do
not need the two global actions b and c in the model to differentiate the zones
Z1 and Z2.

9.1.2 Benchmark models

In this section, we discuss the results of the experiments done using the LSG-
implementation for some of the classical benchmarks for timed automata.
We compare our implementation with two implementations of the standard
reachability procedure based on the exploration of the global zone graph of
the network: TChecker and UPPAAL [LPY97, BDL+06], the state-of-the-art
verification tool for timed automata. All the three implementations use a
breadth-first search with subsumption. Note that in the case of local sync
graph, the subsumption used is the vaLU

sync subsumption (see Definition 5.5).
Table 9.2 presents results of our experiments with standard models from the
literature (except Parallel that is a model we have introduced). The model
Parallel as presented in Figure 9.3, is a network consisting of n identical
processes A1, · · · , An, that do not communicate with one another, and a
centralized process Lock that communicates with each process Ai. (One
can see that Parallel is a client-server system, as defined in Section 7.3.)
The actions acquire and release are communication actions, while all other
actions are local actions.

Local sync graphs yield no gain on 3 standard examples (which are
not given in Table 9.2): CSMA/CD [TY01], FDDI [DOTY95] and Fis-
cher [TY01]. In these models, the three algorithms visit and store the same
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Figure 9.3: Parallel model

number of nodes. The reason is that for CSMA/CD and FDDI replacing
each local zone Z in the local zone graph by its set of synchronized valuations
sync(Z) yields exactly the global zone graph. In the third model, Fischer,
each control state appears at most once in the global zone graph. So there is
no hope to achieve any gain with our technique. This is due to the fact that
doing ab or ba results in two different control states in the automaton. As a
consequence, Fischer is out of the scope of our technique.

In contrast, we observe significant improvements on other standard models
(Table 9.2). Observe that due to subsumption, the order in which nodes
are visited impacts the total number of visited nodes. UPPAAL and our
prototype TChecker (Global ZG column) may not visit the same number
of nodes despite the fact that they implement the same algorithm. In our
prototype we use the same order of exploration for Global ZG and Local ZG.
CorSSO [YW06] and Critical region [MPS11] are standard examples from
the literature. Dining Philosophers [LNZ05] is a modification of the classical
problem where a philosopher releases her left fork if she cannot take her
right fork within a fixed amount of time. We observe an order of magnitude
gains for most of these four models. The reason is that, as we illustrated
using our toy model in Section 9.1.1, in most states, when two processes can
perform actions a and b, doing ab or ba leads to the same control-state of
the automaton. Hence, a difference between ab and ba (if any) is encoded
in distinct zones Zab and Zba obtained along these two paths in the global
zone graph. In contrast, the two paths result in the same zone Z (containing
both Zab and Zba) in the local sync graph. In consequence, our approach
that combines the local zone graph and abstraction using synchronized zones
is very efficient in this situation.
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Models UPPAAL Global ZG Local ZG
(# processes) visited stored sec. visited stored sec. visited stored sec.

CorSSO 3 64378 61948 1.48 64378 61948 1.41 1962 1962 0.05
CorSSO 4 timeout timeout 23784 23784 0.69
CorSSO 5 timeout timeout 281982 281982 16.71

Critical reg. 4 78049 53697 1.45 75804 53697 2.27 44490 28400 2.40
Critical reg. 5 timeout timeout 709908 389614 75.55

Dining Phi. 7 38179 38179 34.61 38179 38179 7.28 2627 2627 0.32
Dining Phi. 8 timeout timeout 8090 8090 1.65
Dining Phi. 9 timeout timeout 24914 24914 7.10
Dining Phi. 10 timeout timeout 76725 76725 30.20

Parallel 6 11743 11743 4.82 11743 11743 1.09 256 256 0.02
Parallel 7 timeout timeout 576 576 0.04
Parallel 8 timeout timeout 1280 1280 0.11

Table 9.2: Experimental results obtained by running UPPAAL and our
prototype TChecker (Global ZG and Local ZG) on a MacBook Pro 2013 with
4 2.4GHz Intel Core i5 and 16 GB of memory. The timeout is 90 seconds.
For each model we report the number of concurrent processes.

9.2. POR-implementation in TChecker

In this section, we discuss the experiments performed with the implementation
of the partial order reduction procedure implemented in TChecker [HP19].
We discuss the performance of the POR-reachability algorithm as imple-
mented in TChecker, and compare its performance with two other imple-
mentations: the classical UPPAAL reachability algorithm and the LSG-
implementation discussed in Section 9.1. We recall that our POR-reachability
algorithm computes a transition system called the POR-zone graph (denoted
as POR -LZGr), discussed in detail in Section 8.2.

For a comparison of the three procedures, for each model, we compile
the results of experiments in a table. For each procedure, the table gives the
number of visited nodes and stored nodes in the transition system computed
by the procedure, and the runtime of the procedure, for the model with
different number of processes.

Remark. We run the algorithm with the default values of parameters for
smaller models, which produce zone graphs of order 1000 nodes. For larger
zone graphs, we increase the values of these parameters to block-size =
100, 000, 000 and table-size = 65, 536, 000, as the size of the models increase.

Recall that we had proposed two variants of the POR implementation -
namely, global-local POR (Section 8.3) and client-server POR (Section 8.4),
targeted at two classes of networks of timed automata, global-local systems
and client-server systems, respectively. Thus, each model can be classified
into one of the following categories, each of which represents a situation that
can arise when applying our POR technique:
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Type 1. Spread bounded global-local model where POR works

Type 2. Spread bounded global-local model where POR does not work

Type 3. Spread bounded client-server model where POR works

Type 4. Spread bounded client-server model where POR does not work

Type 5. Models with unbounded spread - so, our methods do not apply

We will first present some toy models, one from each of the categories.
We discuss the performance of our POR-implementation on these toy models,
and explain the reasons for the gains or lack of gains observed while running
the implementation on the model. By doing this, we hope to present and
distinguish the situations, favourable and unfavourable for our methods. We
then discuss the working of our POR-implementation on some of the classical
benchmarks for timed automata, and explain the gains (or lack of gains) for
our algorithm on these models.

9.3. Toy models

In this section, we will introduce some toy models and discuss the results
of applying the POR-implementation on these networks. We describe, in
some detail, how our procedure works on these toy models. Through these
examples, we hope to convey to the reader, an intuition of the working of
our implementation and the source of gains or lack thereof, for these models.

We will consider five toy models, one from each of the categories given in
the classification given above.

9.3.1 Type 1: Global-local toy model where POR works

Here, we present a toy global-local model for which our global-local POR
method is much more efficient than the standard reachability procedure. The
model is given by a network of timed automata N , with n identical processes,
as depicted in Figure 9.4. Note that the action g is a global action, while
all other actions are local actions. Each automaton in this network is of the
form of a chain of local actions with a global action at the end. Thus, each
process is free to execute its sequence of local actions independently, and in
the end jointly execute a global action.

Table 9.3 presents the result of experiments on instances of the model in
Figure 9.4 with different number of processes.

From the definition of tame model (see Definition 7.3) , we can see
that the model in Figure 9.4 is a tame model. As a consequence, from
Lemma 7.1, it immediately follows that it is 0-spread. We run the global-
local POR-reachability algorithm with the parameter spread set to 0, for
this model.
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Figure 9.4: A toy global-local model for which our global-local POR obtains
good gains

Models Global ZG Local sync graph POR-zone graph
(# processes) visited stored time visited stored time visited stored time

2 17 17 0.078 17 17 0.077 8 8 0.040

3 65 65 0.319 65 65 0.349 11 11 0.044s

4 257 257 1.745s 257 257 2.295s 14 14 0.062s

5 1,025 1,025 10.264s 1,025 1,025 10.159s 17 17 0.091s

8 65,537 65,537 14m51s 65,537 65,537 14m52s 26 26 0.113s

Table 9.3: Experimental results for the toy global-local model with different
number of processes. Experiments for models with up to 4 processes were
run with default values of parameters. For the model more than 4 processes,
the computation of global zone graphs and local sync graphs were done
with values of parameters set to block-size = 100, 000, 000 and table-size
= 65, 536, 000.

We now explain the working of the global-local POR-reachability algo-
rithm on this model. We do this by considering the instance of N with
2 processes, A1 and A2. The global zone graph and the POR-zone graph
for this network are given in Figures 9.5a and 9.5b, respectively. Observe
that A1 has a sequence of local actions a1b1c1 followed by a global action g.
Similarly, A2 has a sequence of local actions a2b2c2 followed by the global
action g. From Figure 9.5a, we can see that the global zone graph of N
explores all the possible interleavings of these sequences of local actions. As
a result, we have a diamond composed of these local actions in the global
zone graph.

On the other hand, in POR -LZGr(N ), we explore only one interleaving of
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Figure 9.5: Global zone graph and POR-zone graph (without the zone
information) of the instance of model in Figure 9.4 with 2 processes

this sequence of local actions, as can be seen in Figure 9.5b. In POR -LZGr(N ),
all the local actions of A1 are explored before exploring the local actions of A2.
We will now see how this is accomplished. The initial node of POR -LZGr(N )
has rank 0, which means that local actions of all the processes are explored
from this node. Consider the node (A,B) reached by exploring the local
action a2 in A2. Recall that this node has rank 2. Using Optimization 1
for global-local POR, we are able to conclude that no global action is
possible from this node or any of its successors in POR -LZGr(N ). Thus, the
exploration of this node is not useful, as far as reachability is concerned.
Therefore, we avoid the exploration of this node and its successors. In a
similar manner, until we reach the local state (D,A) in POR -LZGr(N ), we
are able to infer that exploration of local actions in A2 are useless w.r.t.
reachability. So, a local action of process A2 is explored only when there are
no more local actions left to be explored in A1.

In this way, our global-local POR method is able to construct a POR-zone
graph that is linear in the size of the network, while the global zone graph is
exponential in the size of the network.
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9.3.2 Type 2: Global-local toy model where POR does not
work

In this section, we present a toy model that illustrates a typical situation
where our global-local POR technique does not fare well. The toy model
is given by the network of automata given by the network N , as given in
Figure 9.6. As was the case for the toy model in Section 9.3.1, we can see
that the model in Figure 9.6 is a tame model and it immediately follows that
it is 0-spread.
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g

· · ·
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Figure 9.6: A toy global-local model for which global-local POR does not
give gains.

Models Global ZG Local SG POR-zone graph
(# processes) visited stored time visited stored time visited stored time

2 9 9 0.435s 9 9 0.989s 12 9 0.058s

3 27 27 0.141s 27 27 0.148s 34 27 0.119s

4 81 81 0.427s 81 81 0.448s 96 81 0.320s

5 243 243 1.566s 243 243 1.611s 274 243 0.896s

8 6561 6561 56.498s 6561 6561 56.121s 6816 6561 28.731s

Table 9.4: Experimental results obtained by running prototype TChecker on
the toy global-local model given in Figure 9.6. Experiments for models of up
to 4 processes were run with default values of parameters. For the model
with 8 processes, experiments were done with values of parameters set to
block-size = 100, 000, 000 and table-size = 65, 536, 000.

Table 9.4 presents the results of experiments on instances of the model
in Figure 9.6 with different number of processes. The POR-implementation
was run with spread set to 0.

To understand the lack of gains for this model, we first consider a simpler
network A given in Figure 9.7. Consider the POR-zone graph of A produced
by our global-local POR-algorithm without the optimizations, given in
Figure 9.8b. Comparing the global zone graph of A, ZG(A) (Figure 9.8a), and
POR -LZG′r(A), we can see that even though we have far fewer interleavings
in POR -LZG′r(A) as compared to the global zone graph, the number of states
is the same in both the transition systems. Thus, if we consider the number
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Figure 9.7: Network A

of states as the parameter of comparison, our POR-zone graph is no better
than the global zone graph.

Next, we consider the POR-zone graph of A, POR -LZGr(A), computed by
the optimized version of our POR-procedure, given in Figure 9.8c. (Note that
the red nodes are not part of POR -LZGr(A).) Recall that Optimization 1 was
used to eliminate nodes of the POR-zone graph from which no global action
is possible in the future. Observe that Optimization 1 helps in eliminating a
lot of nodes from POR -LZGr(A) that are irrelevant to reachability.
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Figure 9.8: Global zone graph and POR-zone graph generated by the POR-
implementation with and without Optimization 1, of network A as given in
Figure 9.7. We have omitted the zone information for all the zone graphs.

A crucial reason why Optimization 1 worked was that the initial state did
not have any global outgoing actions. Had there been outgoing global action
g on all the states, Optimization 1 would not have removed any node of the
POR-zone graph. This is, in fact, the situation in the model in Figure 9.6
- there is a self-loop on the global action g on the states A and B. As a
result, in this network, the global action g is enabled from all configurations
of states. Thus, in this situation, Optimization 1 is no longer useful. As
a consequence, we would not get any gains due to our global-local POR
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implementation.

Remark. Despite the lack of gains with our global-local POR-method, observe
that in Table 9.4, the runtime of the POR-implementation is lesser than
that of the standard algorithm and the LSG implementation. This is because
the number of interleavings in the POR-zone graph is much lesser than the
number of interleavings in the global zone graph and the local sync graph of
the model.

9.3.3 Type 3: Client-server toy model where POR works

In this section, we present a toy client-server model for which our client-server
POR method is more efficient than the standard reachability procedure. We
discuss the working of client-server POR method on this model and explain
the source of gains. The model, as depicted in Figure 9.9, is a network
of timed automata N containing a server process and n (identical) client
processes. Note that in the process Clienti, the action c (highlighted in red)
is a communication with the server, while all other actions are local actions.

s0 s1 s2 s3 s4 s5

ai

{xi}

bi di ei c

(a) Client Ci

I

c

(b) Server process

Figure 9.9: A toy client-server model for which our client-server POR gives
good gains

Since the network has no timing constraints, we can convert any run
to a run in which each action is executed in 0 time. Therefore, we can
conclude that the model has spread 0. We consider the global zone graph
and POR-zone graph of spread 0, of the toy client-server model. The client-
server POR-reachability algorithm is run with the parameter spread set to 0.
Table 9.5 presents the results of experiments on instances of the model in
Figure 9.9 with different number of clients.

We now explain the working of the client-server POR-reachability algo-
rithm by illustrating how our procedure works on an instance of this toy
model. For simplicity, we consider the instance of the model with just 2
clients. Figure 9.10a gives the global zone graph and Figure 9.10b gives the
POR-zone graph of this network.

Observe that there is a sequence of actions a1b1d1e1c in A1 and a2b2d2e2c
in A2. We can see, from Figure 9.10a, that all the interleavings of the
sequences a1b1d1e1c and a2b2d2e2c are explored in the global zone graph.
As a consequence, we are forced to explore a lot of intermediate states in
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Models Global ZG Local SG POR-zone graph
(# clients) visited stored time visited stored time visited stored time

2 36 36 0.590 36 36 0.152 20 20 0.078

3 216 216 1.286 216 216 1.271 56 56 0.182

4 1296 1296 9.804s 1296 1296 9.606s 144 144 0.444s

5 7776 7776 1m27s 7776 7776 1m15s 352 352 4.159s

8 1,679,616 1,679,616 98m18s 1,679,616 1,679,616 95m10s 4352 4352 25.206s

Table 9.5: Experimental results for the toy client-server model given in
Figure 9.9. Experiments for models of up to 4 clients were run with default
values of parameters. For the model with 5 and 8 clients respectively, experi-
ments were done with values of parameters set to block-size = 100, 000, 000
and table-size = 65, 536, 000.
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Figure 9.10: Global zone graph and POR-zone graph (without the zone
information) of the instance of model in Figure 9.9 with 2 clients.

the global zone graph, which do not lead to any new accepting states, and
therefore do not provide any additional information w.r.t. reachability.

Now, consider the POR-zone graph of this network. Here, we start with
the initial node (s0, s0, I) whose rank is 0. From this node, we explore all
enabled actions. Next, consider a successor of this node in the POR-zone
graph - the node (s1, s0, I). This node has rank 1. Recall that from a
node of rank r, if r 6= 0, only actions of process Ar are explored till the
next communication with a server. Thus, even though the action a2 is
enabled from the node (s1, s0, I), the client-server POR procedure postpones
the exploration of a2 to a later point. Note that from a lot of states (as
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demonstrated above for (s1, s0, I)) in the POR-zone graph, the exploration
of many actions is postponed, thereby avoiding the exploration of nodes
which do not contribute any new information with respect to reachability.

More concretely, thanks to our client-server POR algorithm, once we start
exploring the actions of a client, we continue to explore only local actions of
that client until we see a communication action. Thus, the client-server POR
method ensures that we do not explore all execution orders in POR -LZGr(N ).
Rather, we explore only two symmetric orders - the sequence of actions of
A1 followed by the sequence of actions in A2, and the sequence of actions
of A2 followed by the sequence of actions in A1. In this way, we obtain a
POR-zone graph that is much smaller (w.r.t. the number of nodes) than the
global zone graph.

9.3.4 Type 4: Client-server toy model where POR does not
work

In this section, we present a typical situation where our client-server POR
technique does not give us any gains.

Consider a client-server system A, in which every action of each process
is a communication action (see Figure 9.11). This means that each node of
the POR-zone graph has rank 0. As a consequence, from every node of the
POR-zone graph, all the actions will be explored. Thus, there is no reduction
in the number of nodes when we compare the POR-zone graph of A, when
compared to the global zone graph of A.

s0 s1 s2 s3 s4 s5

c

{xi}

c c c c

(a) Client Ci

I

c

(b) Server process

Figure 9.11: A toy client-server model A for which our client-server POR
does not give any gains

Models Global ZG Local SG POR-zone graph
(# clients) visited stored time visited stored time visited stored time

CS-toy-bad-2 36 36 0.024s 36 36 0.021s 36 36 0.023s

CS-toy-bad-3 216 216 0.066s 216 216 0.061s 216 216 0.065s

CS-toy-bad-4 1,296 1,296 0.465s 1,296 1,296 0.409s 1,296 1,296 0.429s

CS-toy-bad-5 7,776 7,776 3.5s 7,776 7,776 3.9s 7,776 7,776 3.9s

Table 9.6: Experimental results for the toy client-server model given in
Figure 9.11.
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9.3.5 Type 5: Toy model with unbounded spread

We have already presented an example of a network of timed automata that
has unbounded spread in Section 7.1. We repeat this example here, so as to
illustrate a typical situation that prevents a system from having a bounded
spread.

Consider a network A of two processes, A1 and A2, as shown in Fig-
ure 9.12.

A = A1 ‖ A2

A1 A2

p0

p1

q0

q1

q1

a

x = 1; {x}

c
b y < 1

c

Figure 9.12: Example of a network with unbounded spread

We can show that the run ambc of A is possible in local time semantics
and has spread at least m − 1, which implies that the spread of A is not
bounded. For a proof, see Lemma 7.1.

9.4. Bigger benchmarks

In this section, we discuss the results of the experiments with our POR-
implementation on some of the classical benchmarks for timed automata.
We will consider some networks of timed automata inspired from classical
benchmarks and classify them into one of the categories of the classification
given in page 193. Using the intuition obtained from the working of the
POR-algorithm on the toy models, we explain the gains (or lack thereof) for
our POR-implementation on these models.

9.4.1 Type 1: Global-local model where POR works

Here, we consider a global-local system for which our global-local POR
method turns out to be more efficient than the standard reachability proce-
dure. We consider the global-local variant of the Fire-alarm model, a model
from the standard benchmarks for timed automata.
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Fire-alarm model

Standard model. The standard Fire-alarm model [MWP12] is a network
consisting of n processes, referred to as Sensor processes, and a server process.
Each process in the model is modelled using a timed automaton as depicted
in Figure 9.13.

Ini Wait

SentFin

xi ≤ K1 xi ≤ K2

xi ≤ D xi ≤ K3

xi ≥ K1

xi ≥ D
{xi}

xi ≥ K3

τ

τ

τ

alive

acq

s

alive

acq

Sensori

Server process

Figure 9.13: Standard Fire-alarm model

In this model, the values of constants K1,K2,K3 differ for each process,
and are chosen in such a way that the process Sensori executes the action
Sent→ Fin before the process Sensori+1 executes the action Ini→Wait, for
each 0 ≤ i < n. The value of the constant D depends on the number of
processes and is chosen in such a way that all the sensors end their cycle
simultaneously, D seconds after the process Sensor1 starts execution. Thus,
in each global run of the network, the process Sensori reaches the Fin state
before the process Sensori+1 starts execution of its cycle. Once each Sensor
process reaches the Fin state, each of them executes the action Fin → Ini
simultaneously, and completes the cycle.

Global-local model. For running our implementation, we consider a
global-local variant of this model. Our Fire-alarm global-local model is as
depicted in Figure 9.14. Note that, while the action g from Reset to Ini is a
global action, all other actions are local actions. In our model, we consider
the same values of K1, K2 and K3 for all sensor processes. In this way, we
relax the strong restrictions on the order of execution of sensors that existed
in the standard model.

Since this modified Fire-alarm model is a global-local system, we can
apply our global-local POR on this model. Lemma 9.1 states that the Fire-
alarm global-local model has a spread of D. Consequently, we can apply
global-local POR with spread set to D on this model.
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xi ≥ K1
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Figure 9.14: Fire-alarm global-local model

Lemma 9.1. Fire-alarm global local model is D-spread bounded, where D is
the constant used in the guard on action Fin→ Reset in the model.

Proof. Consider a run σ of the Fire-alarm global-local model:

(q0, v0)
σ1−→ (q1, v1)

g1−→ (q2, v2)
σ2−→ (q3, v3)

g2−→ (q4, v4) · · ·

where σi’s are sequences of local actions and gi’s are global actions.
Observe that the valuations v2i+1 are synchronized valuations, for all

i ≥ 0, as these valuations have to execute global actions. Further, note
that in each of these valuations, x̃1 = x̃2 = · · · = x̃n. Now, we examine the
maximum difference between reference clocks that can appear in valuations
in the sequence of local actions (q0, v0)

σ1−→ (q1, v1).
We know that for all valuations in σi, we have x̃1 = x̃2 = · · · = x̃n.

Further, we know that in all these valuations ti − x̃i ≤ D. This implies that
ti − tj ≤ D, for all i, j ∈ {1, 2, · · · , n}.

Table 9.7 presents the result of experiments on instances of the Fire-alarm
global-local model with different number of processes.

9.4.2 Type 2: Global-local model where POR does not work

In this section, we focus on the global-local variants of some benchmark
models, for which our global-local POR does not perform well. We consider
one such model, the Fischer global-local model, and analyse the performance
of POR-implementation on this model in detail.

Fischer global-local model

Standard Fischer model. The standard Fischer model has n processes
A1, . . . , An and a common variable id, that is stored in a separate process.
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Models Global ZG Local SG POR-zone graph
(# processes) visited stored time visited stored time visited stored time

2 19 19 0.329s 19 19 0.168s 9 9 0.047s

3 71 71 0.368s 71 71 0.138s 13 13 0.061s

4 271 271 2.269s 271 271 0.114s 17 17 0.299s

5 1,055 1,055 0.102s 1,055 1,055 0.123s 21 21 0.085s

8 65,791 65,791 7.752s 65,791 65,791 29.622s 33 33 1.740s

10 1,049,599 1,049,599 > 1hr 1,049,599 1,049,599 > 1hr 41 41 1.865s

Table 9.7: Experimental results obtained by running prototype TChecker
on the Fire-alarm global-local model for different number of processes. Ex-
periments for models of up to 5 processes were run with default values of
parameters. For the model with more than 5 processes, experiments were
done with values of parameters set to block-size = 100, 000, 000 and table-size
= 65, 536, 000.

Thus, we have a timed automaton for each process, and a timed automaton
which stores the shared variable id, as shown in Figure 9.15.
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Figure 9.15: Fischer standard model

We now describe the functioning of the Fischer standard model. Each
process has four states: A,Req,Wait and CS. Initially it is in the A state.
After elapsing an arbitrary amount of time in the A state, the process checks
whether the shared variable is currently free (by checking if the value of id
is 0). If id is not being accessed by any other process, within k time units,
the process declares its intent to access the critical section by setting the
value of id to its index, i. After waiting for at least k time units, the process
checks that the value of id is still i (makes sure that some other process has
not accessed and written into it) and then enters the critical section. If the
value of id is no longer i after k time units, it means that some other process
is trying to access the critical section and has issued a later request. In this
case, the process waits in the state Wait until the critical section is free again
and then goes back to the Req state.
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Global-local model. Here, we present a global-local variant of the Fischer
model where the variable ID permits concurrent reads.
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ID-to- j j ∈ {0, 1, · · · , n}

id := j

Ai Ci

Figure 9.16: Fischer global-local model

To allow this behaviour, we introduce n copies of the variable ID, which we
call local cache Ci of the process Ai. Thus, we have a local cache Ci for each
process and these cache synchronize on writes. The network is of the form
A1 ×C1 × · · · ×An ×Cn where Ci are the caches as given in the Figure 9.16.
This system is a global-local system if we consider (A1×C1)×· · ·× (An×Cn)
as the network - we consider the product of Ai × Ci so that it becomes a
single automaton. In the resulting system the ID-to- i actions are global
actions, while all other actions are local actions.

Note that there are self-loops for each global action on each state of the
Fischer product process (Ai × Ci). As shown in Section 9.3.2, networks in
which there are common outgoing global actions from each state are not
favourable to our global-local POR technique, as Optimization 1 will not
remove any node in the POR-zone graph of this network, as every node has
outgoing global actions. Hence, we cannot hope to have any gains in these
models.

We generalize this observation further as follows: The processes partic-
ipating in the models such as Fischer and CSMA/CD have to keep track
of a central resource at all times. This central resource could be a shared
variable in the case of Fischer, or the status of the shared bus in the case of
CSMA/CD. As a consequence, when we model these protocols using global-
local networks, we are forced to add global actions reflecting the modification
of the status of this common shared resource in each state of all the processes.
This is detrimental for the performance of our global-local POR algorithm.

Table 9.8 presents the result of experiments on instances of the Fischer
global-local model with different number of processes.

9.4.3 Type 3: Client-server model where POR works
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Figure 9.17: WCET Model
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Models Global ZG Local SG POR-zone graph
(# clients) visited stored time visited stored time visited stored time

Fischer gl-2 18 18 0.021s 18 18 0.017s 20 20 0.014

Fischer gl-3 71 65 0.039s 71 65 0.042s 89 89 0.034s

Fischer gl-4 268 220 0.075s 268 220 0.085s 424 424 0.128s

Fischer gl-5 727 977 0.270s 727 977 0.225s 2287 2287 0.526s

Table 9.8: Experimental results obtained by running prototype TChecker
on the Fischer global-local model from Figure 9.16 for different number of
processes.

Figure 9.18: WCET Model

WCET model. The model described in this section is inspired from the
multicore architecture model introduced by Gustavsson et al. [GELP10],
using which they simulate a fictitious shared-memory multicore architecture.
Their model consists of k programs operating concurrently with k cores
and a main memory. The task of each program involves executing a set
of instructions, some of which require accessing and writing into a shared
variable. This task is done a fixed number of times before the execution is
finished.

The WCET model consists of a server process, called Cache, and four
processes for each client i, namely Programi, Corei, I-Cachei and D-Cachei,
given in Figure 9.17 and Figure 9.18. These four processes of each client
have mutual synchronizations between them and all the processes have
synchronizations with the server.

As already mentioned, the process Programi has to execute a set of
instructions n times. Some of these instructions require accessing a shared
variable, and therefore, mutual exclusion is required for these instructions.
This is accomplished by using a lock variable. The status of the lock is stored
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in the server in a Boolean variable locked - therefore, the actions involving
lock are synchronizations with the server. There are three actions involving
the lock variable - the check-locked action which checks that the lock is not
free, the lock action which checks that the lock is free and acquires the lock,
and the unlock action which checks that the lock is not free and releases the
lock. These actions are represented as self-loops in all states in the server.

When a client needs to access a shared variable (this is modelled in the
state Check-lock of the process Program), it checks the status of the lock
by communicating with the server. If the lock is not free (for instance, if
the shared variable is being accessed by some other client), Program goes to
the LD-ID-lock state by executing the check-locked action and continues its
execution. If the lock is free, Program executes the communication action
lock and then proceeds to execute the instructions which required the shared
variable. Once the client completes the execution of these instructions, the
process Program releases the lock by executing the communication action
unlock from the unlock state. This cycle is repeated n times. The model
that we consider here, referred to simply as WCET-model, is a variant of
the original model. The model is as given in Figure 9.17.

We now describe the processes in some detail.

• Programi (Figure 9.17)

This process models a program that executes a specific set of instruc-
tions n times. We model the behaviour of a program by a sequence
of exec-instr actions, followed by a exec-instr-done action. Observe that
each of these actions are synchronizations with the process Corei. The
process Program also has lock and unlock actions, that are designed for
ensuring mutual exclusion, as discussed above. The process Program
also has a Finished action which signals the completion of all instruc-
tions by the program. Note that the actions lock, unlock and Finished
are communication actions, i.e., synchronizations with the server.

• Corei (Figure 9.17)

The Corei process starts its execution by executing the exec-instr ac-
tion that is a synchronization with Programi. After executing the
exec-instr action, the Corei process issues request to access the instruc-
tion cache and data cache by executing the access-I action with the
processes I-Cachei and the access-D action with D-Cachei, respectively.
The successful completion of the access requests to the instruction
cache and the data cache are signalled by the execution of the actions
access-I-done (jointly with I-Cachei) and access-D-done (jointly with
D-Cachei), respectively. Upon completion of the cache access, Corei
signals it to Programi by executing the exec-instr-done action. The
Corei process also executes the action done jointly with Programi, the
purpose of which is to signal to the program that the core is not in the
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middle of its execution. Observe that Corei has “wait states” which
requires the elapse of a certain amount of time in them.

• I-Cachei (Figure 9.18)

The I-Cache process is meant to simulate the working of the instruction
cache of the architecture. Once the Core issues a request to access the
instruction cache by executing the access-I action, if there is a Cache hit,
the I-Cache executes the access-I-done action after waiting for at least
K3 time units. Otherwise, I-Cache executes the action access-cache-s,
which indicates a request to access the secondary cache. Note that this
is a communication action with the server process.

• D-Cachei (Figure 9.18)

Just as the I-Cache process simulates the working of the instruction
cache, the D-Cache process simulates the working of the data cache
of the architecture. Once the Core issues a request to access the data
cache by executing the access-D action, if there is a Cache hit, the
D-Cache executes the Data-done action after at least K4 time units.
Otherwise, D-Cache executes the action access-cache-s, which indicates
a request to access the secondary cache and is a communication action
with the server process.

The server simulates the secondary cache and stores a Boolean variable
called “locked”, which is used to ensure mutual exclusion, whenever required.

We now demonstrate that this model is an extended client-server model
(see Section 8.4.2). For ease of reference, we denote by WCETi the set
{Programi, Corei, I-Cachei,D-Cachei}. The synchronizations in the model
are of the following formulated

• communication actions involving the server and processes from the set
WCETi, for some i ∈ {1, . . . , n}.

• synchronizations involving processes from the set WCETi.

Observe that there are no synchronizations between a process from WCETi
and WCETj , where i 6= j. Further, the only timing constraints in the WCET
model are of the form of wait states. It may be observed that the WCET
model is an example of a client-server network with wait states, that are
considered in Lemma 7.6. Directly from the lemma, it follows that the
WCET model is spread bounded with a bound of N ·W , where N is the
number of wait states of a process that can appear in a run of N , and W is
an upper bound on the wait time associated to a wait state in N . We apply
our client-server POR to the WCET model, with the parameter spread set
to 1000, which is greater than N ·W in this case.

Table 9.9 presents the number of visited nodes and stored nodes in the
global zone graph, local sync graph and the POR -LZGr of instances of the
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WCET model for different number of clients, and the respective runtime of
the procedures. Note that the results in the Table 9.9 are for the WCET
model with the value of n set to 1.

Models Global ZG Local SG POR-zone graph
(# clients) visited stored time visited stored time visited stored time

1 138 138 2.260s 138 138 2.339s 113 101 2.287s

2 9,379 9,379 1m5.354s 8,803 8,803 53.081s 6260 4520 1m5.344s

3 647,338 647,338 95m19.460s 524,650 524,650 81m31.305s 168,463 114,319 11m4.878s

4 47,084,877 47,084,877 > 1,027m29s 29,648,493 29,648,493 > 472m31s 3,608,470 2,204,254 200m49.445s

Table 9.9: Experimental results for the WCET model given in Figure 9.17 for
different number of clients. Experiments were done with values of parameters
set to block-size = 100, 000, 000 and table-size = 65, 536, 000.

9.4.4 Type 4: Client-server model where POR does not work

Fischer-client-server. Recall the standard Fischer model that we intro-
duced in Section 9.4.2. In this model, we have a timed automaton for each
process, and a timed automaton which stores the shared variable id.
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Figure 9.19: Fischer client-server model

Observe that this model falls under the category of the client-server
models. However, each action of a client is synchronized with the server, i.e.,
each action in this model is a communication action. This means that there
is no concurrency in this model, and consequently no hope of getting any
reduction with our POR-reachability algorithm.
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9.4.5 Type 5: Models that are spread-unbounded

Dining philosophers model. In this section, we consider a timed version
of the classical Dining Philosophers protocol, inspired from a model presented
in Lugiez et al. [LNZ05]. The classical model involves a certain number of
philosophers who are seated around a table with a fork placed between each
of them, and the philosophers are required to have dinner respecting certain
conditions. A philosopher can only eat when she has forks placed to her left
and right. Further, each fork can only be held by one philosopher at a time.

Our Dining Philosophers model consists of n processes modelling philoso-
phers and n identical processes modelling forks. We have a timed automaton
for each process as depicted in Figure 9.20. In our model, we have a timeout
to release the acquired fork if the other fork cannot be obtained within a
fixed time, in order to avoid deadlocks.

The Fork automaton has two states - free and taken. If the automaton is
in free state, it signifies that the fork is free to be acquired, whereas if it is in
taken state, it means that the fork is currently being held by a philosopher.
Whenever a philosopher wants to acquire a fork, the process modelling that
philosopher synchronizes with the Fork automaton to execute the take action
which changes the state from free to taken. Similarly, when a fork is released
by a philosopher, the process modelling it synchronizes with the respective
fork automaton to do the rel action, and changes its state from taken to free.

The timed automaton modelling Philosopher has four states -Idle, Acq,
Eat and Release. The automaton is initially in the state Idle. Recall that
Philosopheri uses Forki−1 and Forki to eat. After elapsing an arbitrary amount
of time in the Idle state, Philosopheri checks whether Forki−1 is currently
free; if it is free, it is acquired. Within K1 time units of acquiring Forki−1,
Philosopheri tries to acquire Forki. If it is not possible to acquire Forki within
K1 time units, Forki−1 is released and Philosopheri goes back to Idle state.
On the other hand, if she manages to acquire Forki, the philosopher proceeds
to Eat state, where she spends K2 time units (the duration of the dinner).
Exactly after spending K2 time units in the Eat state, the Philosopher
releases both forks in zero time and goes to Idle state.

Next, we will show that the Dining Philosophers model given in Fig-
ure 9.20 is not spread bounded.

Lemma 9.2. The Dining Philosophers model is not spread bounded.

Proof. Consider the instance of the Dining Philosophers model with 4 philoso-
phers and 4 forks. Recall that Philosopher1 needs Fork1 and Fork4 to eat,
Philosopher3 needs Fork2 and Fork3, and so on. Further, assume that the
duration of dinner is d time units.

Consider the situation where Philosopher1 has acquired Fork4 - the system
is now in the state (Acq, Idle, Idle, Idle) for the philosophers. Now, suppose
Philosopher3 acquires Fork2 and Fork3. At this point, the state of philosophers
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Figure 9.20: Dining Philosophers model

is: (Acq, Idle,Eat, Idle). From this state, Philosopher3 can execute the loop:
Eat → Release → Idle → Acq an arbitrary number of times (say k times),
thereby increasing the difference of local time of the automata Philosopher1
and Philosopher3 by K · d.

Note that the action take1 of Philosopher1 (from the state Acq) has an
upper bound guard associated to it. So, in a local run which executes this
action, Philosopher1 cannot elapse time arbitrarily and keep up with the local
time of Philosopher3. As a result the reference clocks of Philosopher1 and
Philosopher3 can diverge arbitrarily from each other.

Next, we show that the network can reach a synchronized valuation
from the aforementioned valuation of large spread. This is accomplished by
Philosopher1 executing the loop: Eat→ Release→ Idle→ Acq and catching
up with the local time of Philosopher3 - after which the processes can do a
transitive synchronization, where Philosopher1 synchronizes with Fork1, then
Fork1 synchronizes with Philosopher2, followed by synchronization between
Fork2 and Philosopher3.

The run given above is a local-time run, which has no equivalent k-spread
run. This implies that the system is not k-spread, for any value of k. In
other words, it is not spread bounded.
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Conclusion

The key contributions of this thesis are a systematic study of state-space
explosion in the verification of networks of timed automata caused due to
interleaving of the components and solutions for alleviating the effects of
this explosion. We believe that these are important steps towards obtaining
scalable verification procedures for various classes of timed automata. In
this chapter, we summarize the work presented in this thesis, and identify
some directions for future research.

10.1. Summary of our contributions

We provide two different solutions for the state-space explosion problem in
verification of networks of timed automata. The first one is an algorithm that
tests the reachability of networks of timed automata based on the exploration
of the local zone graph of the network. The second is a framework for partial
order reduction methods for networks of timed automata and POR algorithms
for some classes of timed automata.

In order to design our algorithm, we revisit the local time semantics
of timed automata and local zone graphs [BJLY98]. We discover a very
useful fact which says that local zones compute aggregated zones [SBM06],
where an aggregated zone is a union of all the global zones obtained by
equivalent executions. We use this fact as a theoretical foundation to de-
sign an algorithm for constructing local zone graphs using subsumption on
aggregated zones. Furthermore, we show that the existing techniques that
use subsumption operations on local zones [BJLY98, Min99a, Min99b] do
not work. We propose a new subsumption for local zone graphs based on
standard abstractions for timed automata, where the subsumption is applied
on synchronized zones. The restriction to synchronized zones is crucial as
standard abstractions cannot handle multiple reference clocks. Our algorithm
is the first efficient implementation of local zone graphs and aggregated zones.

213
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Experimental results show an order of magnitude gain with respect to state
of the art algorithms on several standard examples.

We remark that a natural progression for this work is to apply standard
partial order techniques to the aforementioned algorithm. Unfortunately, we
do not have an effective way to compute the independence relation between
actions in the finite local zone graph that we construct. Consequently, we
cannot apply a partial order reduction method on this transition system.

Next, we propose a region equivalence for local valuations and show that
this region equivalence is a simulation relation for local valuations. Further-
more, building on this region equivalence, we propose a new subsumption
relation, which we call a∗M subsumption. However, the transition system
obtained by applying the a∗M subsumption to local zone graphs is not finite
in general. We identify that the fundamental difficulty in designing a finite
subsumption for local zone graphs is the arbitrary divergence between the
reference clocks of different processes of the network. Equipped with this
understanding, we define the spread of a network of timed automata to
be the maximum divergence between reference clocks across processes and
restrict our attention to networks that are spread-bounded.

We modify the a∗M subsumption to design a new subsumption relation,
called aDM subsumption, that is parameterized by a constant D. By applying
the aDM subsumption while exploring the local zone graph of a network, one
obtains a finite transition system, denoted LZGD

M. We show that if the spread
of a network is bounded by D, then the LZGD

M of the network is sound
and complete with respect to reachability. Further, we give a condition
that computes an approximation of the independence relation of the LZGD

M

of a D-spread-bounded network. We identify two classes of networks of
timed automata, referred to as global-local systems and client-server systems,
respectively, and propose partial order reduction methods for spread-bounded
networks belonging to these categories. We also provide an evaluation of a
prototype of the implementation of these methods on some examples using
the tool TChecker [HP19].

10.2. Directions for future research

The main directions for future research are to develop better partial order
reduction methods for networks of timed automata. We have proposed a
framework for applying partial order reduction to networks of timed automata,
and proposed POR-algorithms for some classes of timed automata. Refining
our algorithm to optimize it further, and expanding its applicability to more
classes is an important direction for immediate future research. It is also
desirable to carry out further experimental investigations to determine the
effectiveness of our POR-reachability algorithms.
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The scope of our techniques is restricted to networks of simple timed
automata. In particular, classes of timed automata with more behavior, such
as timed automata with diagonal constraints [AD94], updatable timed au-
tomata [BDFP04], priced timed automata [BFLM11] and probabilistic timed
automata [KNSS02] fall outside the scope of our technique. Generalizing our
technique to allow its application to these more general models is a broader
and more ambitious research direction.

We list some other open problems below.

Computing the spread of a given network of timed automata. The
POR-reachability procedure that we introduce in Chapter 8 can only be ap-
plied to networks of timed automata that are spread-bounded. Consequently,
it is crucial to have ways to check if a network is spread bounded and compute
an upper bound on the spread of the network. In Chapter 7, we propose some
efficiently checkable syntactic conditions on a network that imply bounds on
its spread. Identifying more such efficiently checkable sufficient conditions is
an immediate open question of interest. A more challenging question would
be to obtain a characterization of networks of timed automata of a specified
spread.

Further, it would be interesting to design an efficient procedure that
takes a network of timed automata as input and outputs the spread of the
network. We believe that such a procedure would significantly enhance the
applicability of our POR-reachability procedure.

Analogue of a4LU subsumption. The aDM subsumption for local zones
proposed in Chapter 6 is analogous to the standard aM subsumption for
standard zones. In the setting of standard zone graphs, it is known that
the a4LU subsumption produces zone graphs with fewer nodes than the
aM subsumption. So, defining an analogue of the a4LU subsumption for
local zones has the potential to make the POR-reachability algorithm more
efficient.

Optimizations to POR-reachability algorithm. We have proposed
separate POR-reachability procedures for global-local systems. Further inves-
tigation of the global-local and client-server POR algorithms and designing
optimizations to make these procedures more efficient is an interesting line
of work.

Semi-commutation in global-zone graphs. In this thesis, we work
predominantly in the setting of local-time semantics. It may also be possible
to come up with partial order reduction techniques in the standard semantics.
In the standard setting, this would involve looking at sequences and checking
if a given sequence is semi-commutable. This direction has already been
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investigated in Dams et al. [DGKK98] and Hansen et al.[HLL+14]. We think
further exploration along these lines might prove useful.

Adapting POR-reachability algorithm for specific models. We have
proposed a POR-reachability procedure for the general class of network of
timed automata. In various subclasses of networks of timed automata such as
timed automata with only one clock, timed automata with urgent behavior
etc., it may be possible to exploit the specific properties of these subclasses
to optimize the performance of out POR-reachability procedure further.
Adapting the algorithm to specific subclasses of networks of timed automata
is an essential direction of study.

Complexity of the D-spread-boundedness problem. In Chapter 7,
we show that the D-spread-boundedness problem is Pspace-hard. However,
we have not given an upper bound for the complexity of the D-spread-
boundedness problem. proving a concrete upper bound for the complexity of
the D-spread-boundedness problem is an interesting open question.
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Appendix A

Models with state invariants

In this section, we show that the scope of our techniques can be extended to
the more generic setting of networks of timed automata with state invariants.
Introduced by Henzinger et al. [HNSY94], a timed automaton with state
invariants is one where each state of the automaton is associated to a set of
constraints of the form x ∼ c, where x ∈ X is a clock of the automaton, c is a
non-negative integer and ∼ ∈ {≤, <,=,≥, >}. We show that we can convert
any network of timed automata with state invariants to a network of timed
automata without state invariants, such that the networks are equivalent
w.r.t. local time reachability.

A.1. Definitions

In this section, we will present some basic definitions for networks of timed
automata with state invariants. Recall that Φ(X) is the set of clock con-
straints over the set of clocks X, where each clock constraint is of the form
x ∼ c, where x ∈ X, c ∈ N, and ∼∈ {<,≤,=,≥, >}. We use ≺ to denote
either < or ≤, and � to denote either > or ≥.

Definition A.1 (Timed automaton with state invariants). A timed automa-
ton with state invariants, A, is given by a tuple (Q,Σ, X, T, q0, F, Inv), where
Q is a finite set of states, X is a (finite) set of clocks, Σ is a finite alphabet
of actions, q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting states.
T is a finite set of transitions of the form (q, g, a,R, q′) where q ∈ Q is the
source state, q′ ∈ Q is the target state, g ∈ Φ(X) is a clock constraint over
X, R ⊆ X is the set of clocks reset, and a ∈ Σ. Finally, Inv : Q 7→ 2Φ(X)

associates an invariant from ΦX to states from Q.

Remark. Note that we do not consider invariants of the form x − y ∼
c. While invariants of the form x − y ∼ c can be eliminated using the
techniques discussed in this section, the resultant network would contain
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226 Models with state invariants

diagonal constraints (see remark in page 23), which is not in the purview of
this thesis.

We work with networks N = {A1, A2, · · · , An}, where each process
Ai = (Qi,Σi, Xi, Ti, q

0
i , Fi, Invi) is a timed automaton with state invariants.

We also do not allow shared clocks in our networks, i.e., Xi ∩Xj = ∅, for all
i, j ∈ Proc.

We now define local time semantics for networks of timed automata
with invariants. Recall that in local time semantics, we have the notion
of a local delay. A local delay δ ∈ R≥0 in process p ∈ Proc is a step

(q, v)
p,δ−−→ (q, v+p δ). For a sequence of local delays ∆ = (p1, δ1) . . . (pn, δn) we

will write (q, v)
∆−→ (q, v′) to mean (q, v)

p1,δ1−−−→ (q, v1)
p2,δ2−−−→ · · · (pn,δn)−−−−→ (q, v′).

We write q(p) to denote the location of process Ap in the state q of N . In
other words, if the state q is a tuple of the form (q1, · · · , qn), then q(p) = qp.

There are two kinds of local steps in a network N : local delay, and local
action.

• Local delay: Let ∆ = (p1, δ1) . . . (pn, δn). (q, v)
∆−→ (q, v′) if for each

process p ∈ Proc, v′(tp) = v(tp) + δp and for every clock x ∈ X \ T ,
v′(x) = v(x), and v′ |=

∧
p∈Proc Invp(q(p));

• Local action: For an action b, we have a step (q, v)
b−→ (q′, v′) if

for each p ∈ dom(b) the unique b transition of the process Ap is
Tp(b) = (q(p), gp, Rp, q

′(p)), and the following hold:

– start times are synchronized: v(tp1) = v(tp2), for each p1, p2 ∈
dom(b);

– guards are satisfied: v � gp, for each p ∈ dom(b);

– resets are performed: v′ = [
⋃
p∈dom(b)Rp]v;

– invariants are satisfied: v′ |= Invp(q
′(p)), for each p ∈ Proc;

– other processes do not move: q(p) = q′(p), for each p 6∈ dom(b).

A run in the local time semantics is a sequence of local steps:

(q0, v0)
∆1−−→ (q0, v

′
0)

a1−→ (q1, v1)
∆2−−→ (q1, v

′
1)

a2−→ · · · an−→ (qn, vn)
∆n+1−−−→ (qn, v

′
n)

where v0 is an initial local valuation. Note that the valuations on a local
run may not be synchronized. We make the standard assumption that
v0 |=

∧
p∈Proc Invp(q0(p)).
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A.2. Elimination of invariants

We now show that we can convert any network of timed automata to a network
of timed automata without invariants, such that both the networks are
equivalent w.r.t. reachability. We do this via a sequence of transformations,
each of which eliminates some invariants from the network, while preserving
the reachability properties of the network.

A.2.1 Initial and accepting states

In Section B, we show that we can transform any network of timed automata
N into a network in compact form N ′ (see Appendix B), such that the
reachability properties are preserved. Observe that the initial state and ac-
cepting states of each process of N ′ does not have state invariants. Therefore,
without loss of generality, we can assume that the initial state and accepting
states of each process of the given network does not have state invariants.

A.2.2 Restriction to upper-bound invariants

We will now show that we can eliminate invariants of the form x � c from
any network of timed automata. We define the size of a timed automaton
as the sum of number of states and the total information associated to
transitions. Concretely, the size of a timed automaton A is defined as the
|QA|+ |TA| · gmax ·XA, where QA, TA, XA are the set of states, transitions
and clocks of A and gmax is the maximum number of atomic constraints in
the guard of a transition in A.

Lemma A.1. For every network of timed automata N = {A1, A2 · · · , An},
there exists a network of timed automata N ′ = {A′1, A′2 · · · , A′n}, such that
in each process A′i of N ′, all invariants are of the form x ≺ c, and both
networks are equivalent w.r.t. reachability. The transformation takes time
O(Qmax · Tmax · Xmax · n), where Qmax = max

1≤i≤n
Qi, Tmax = max

1≤i≤n
Ti and

Xmax = max
1≤i≤n

Xi where Qi, Ti and Xi are the set of states, transitions and

clocks of process Ai, respectively. The size of the network N ′ is greater than
the size of N by O(TN · |X|), where TN is the set of transitions in N and
X =

⋃
1≤i≤n

Xi.

Proof. Observe that lower-bound invariants (invariants of the form x � c)
satisfy the property that once such an invariant is true, it remains true under
time-elapse. So, it is sufficient to check the satisfaction of such invariants for
the valuation with which the state is reached.

We propose a transformation to convert a timed automaton into a timed
automaton without lower-bound invariants. Let A be a timed automaton
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with state invariants. From the discussion in Section A.2.1, we can assume
that the initial state of A does not have a state invariant. Pick any state q
of A (other than the initial state). For each invariant x � c of state q, we

modify each transition of the form p
a,g−−→
R

q as follows:

• if x 6∈ R, then the guard g is replaced by the guard g′ ≡ g ∧ x � c.

• otherwise,

– if c ≤ 0, then the guard is left unchanged, i.e., g′ ≡ g.

– if c > 0, then we remove the transition.

Finally, we remove the invariant x � c associated to the state q. Repeat this
transformation for each state of A, except the initial state.

Let N ′ = {A′1, · · · , A′n} be the network obtained by carrying out the
aforementioned transformation independently to each process of the network
N = {A1, A2, · · · , An}. By definition, no process of N ′ does not have state
invariants of the form x � c.

It is easy to see that for each valuation v, we have

v |= g and [R]v |= x � c ⇔ v |= g′

We can then prove that any local run of N is feasible in N ′, and vice
versa. Both the directions of the proof follow by induction on the number
of steps in the run, with the help of A.2.2. Specifically, we show that a run
(q0, v0)

σ−→ (q, v) of N is feasible in N ′, by inducting on the number of steps
in the run. The converse direction also follows by a similar argument.

We now give a bound on the time taken for this transformation. Consider
a state s of a process Ai of the network N . We assume that s has only one
invariant of the form x � c for a given clock x; if there were two invariants
of the form x � c1 and x � c2 in a state, where c1 > c2, we can ignore the
invariant x � c2. It is easy to see that, for the process Ai, the transformation
takes |Qi|.|Xi|.|Ti| time. We carry out the transformation independently to
each process of the network. Thus, the network N ′ can be constructed in
time O(Qmax · Tmax ·Xmax · n), where Qmax = max

1≤i≤n
Qi, Tmax = max

1≤i≤n
Ti and

Xmax = max
1≤i≤n

Xi.

Next, we give a bound on the size of the network N ′. The number of
states and transitions in the new network N ′ is the same as that in N . The
only aspect in which N ′ is different from N is in the guards of the transitions
and the invariants of states. Consider a transition in Ai with guard g. The
new guard g′ of this transition in A′i can have Xi additional constraints.
Consider a transition with guard g in N and guard g′ in N ′. The guard g′

can have up to X new atomic constraints more than the guard g. Thus, the
size of the new network N ′ differs from the size of the original network N
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by O(TN · |X|), where TN is the number of transitions in N (and N ′) and
X =

⋃
1≤i≤n

Xi.

Thus, without loss of generality, we can assume that the given network
of timed automata is such that for each process of the network

• all invariants are of the form x ≺ c.

• initial state and accepting states do not have state invariants.

Next, we present a transformation that eliminates upper-bound con-
straints from a given network of the aforementioned form, such that the new
network is accepting iff the original network is accepting.

A.2.3 Elimination of upper-bound invariants

We consider a network N = {A1, A2, · · · , An} of timed automata, where
Ai = (Qi,Σi, Xi, Ti, q

0
i , Fi, Invi). Recall that Invi associates an invariant from

ΦXi to states from Qi. We write q(p) to denote the location of process Ap
in the state q of N . In other words, if the state q is a tuple of the form
(q1, · · · , qn), then q(p) = qp. We will abuse the notation to write Invp(q) to
denote Invp(q(p)).

We have already shown in Section A.2 that we can assume, without loss
of generality, that each process of the network N has only invariants of
the form x ≺ c, and has no invariants in initial state or accepting states of
processes. Thus, if q ∈ Fi, then we have Inv(q) ≡ true.

We will show that we can construct a new network N ′ by pushing all
the invariants in each state of each process Ai of N to the guards on all the
outgoing transitions. We now make the transformation precise. The required
network is defined as N ′ = {A′1, · · · , A′n} where the process A′i is of the form
(Qi,Σi, Xi, T

′
i , q

0
i , Fi, Inv

′
i). The process A′i of N ′ is obtained by transforming

the process Ai of N as follows:

• For each state q of the process Ai of N , we set Inv′i(q) ≡ true.

• For each transition q
a,g−−→
R

q′ in process Ai, we have the transition

q
a,g′−−→
R

q′ in A′i, where g′ ≡ g ∧ Invi(q).

Thus, the process A′i is different from Ai in only the guards of transitions
and the invariants of states. The transformation is illustrated in Figure A.1.

We will now show that N ′ has an accepting run if and only if N has an
accepting run.

Lemma A.2. Each run in N is also feasible in N ′.
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Figure A.1: Transformation of a network to a network without state invariants

Proof. Consider a run σ of N of the form

(q0, v0)
∆0−−→ (q0, v

′
0)

a1−→ (q1, v1)
∆1−−→ (q1, v

′
1)

a2−→ · · ·
∆l−1−−−→ (ql−1, v

′
l−1)

al−→ (ql, vl)
∆l−→ (ql, v

′
l)

where v0 is an initial local valuation and v′l is a synchronized valuation.
We will show that σ is a run in N ′ as well.
Pick a configuration (qi, v

′
i), 0 ≤ i ≤ l, in the run σ. We will show that

(qi, v
′
i)

ai+1−−−→ (qi+1, vi+1) is feasible in N ′.
Suppose that the transition qi

ai+1−−−→ qi+1 has the guard gp in process Ap,

where p ∈ dom(ai+1). Similarly, suppose that the transition qi
ai+1−−−→ qi+1 in

the new network N ′ has the guard g′p in process Ap. From the definition of
N ′, we know that g′p ≡ gp ∧ Invp(qi).

From the run σ of N , we know that v′i |= Invp(qi) for all p ∈ Proc. Further,
since ai+1 is feasible from (qi, v

′
i), we know that for each p ∈ dom(ai+1), v′i |=

gp. From these observations, we can conclude that for each p ∈ dom(ai+1),
we have v′i |= gp ∧ Invp(qi). This implies that ai+1 is feasible from (qi, v

′
i) in

N ′ as well.
Further, observe that since N ′ has no state invariants, the delay ∆i is

feasible. So, the delay transition (qi, vi)
∆−→ (qi, v

′
i) is also feasible in N ′.

Thus, we have shown that each step of the run σ is feasible in N ′.

Lemma A.3. Each accepting run of N ′ is feasible in N as well.

Proof. Consider an accepting run ρ of N ′.

(q0, v0)
∆0−−→ (q0, v

′
0)

a1−→ (q1, v1)
∆1−−→ (q1, v

′
1)

a2−→ · · ·
∆l−1−−−→ (ql−1, v

′
l−1)

al−→ (ql, vl)
∆l−→ (ql, v

′
l)
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where v0 is an initial local valuation and ql is an accepting state and v′l is a
synchronized valuation.

We will show that the run ρ is feasible in N .
From the definition of N ′, we know that the set of constraints present

in each guard of N is strictly contained in the set of constraints present in
the respective guard in N ′. As a consequence, if ai+1 is feasible from v′i in
N ′, then ai+1 is feasible from v′i in N also. So, all that is left to show is that
each valuation in the run satisfies the respective state invariant.

First, we show that it is enough to show that v′i |= Invp(qi) for all p ∈ Proc,
where 0 ≤ i ≤ l. This is a direct consequence of the fact that all the invariants

in N are of the form x ≺ c. Since vi
∆i−→ v′i, it is evident that v′i |= Invp(qi)

implies vi |= Invp(qi).
We will now show that v′i |= Invp(qi) for all p ∈ Proc, where 0 ≤ i ≤ l.

Suppose that the transition qi
ai+1−−−→ qi+1 has the guard gp and g′p, in process

Ap and A′p, respectively. Recall that from the definition of N ′, we have
g′p ≡ gp ∧ Invp(qi).

Consider v′i such that 0 ≤ i ≤ l. We need to show that v′i |= Invp(qi) for all
p ∈ Proc. Since ai+1 is feasible from v′i, we know that for each p ∈ dom(ai+1),
v′i |= g′p. As a consequence, we have v′i |= Invp(qi), for all p ∈ dom(ai+1).

It remains to show that v′i |= Invp(qi) for p 6∈ dom(ai+1).
We have two cases for such a process Ap.

• Suppose that Ap participates in an action in ρ after ai+1. Let ak+1 be
the first such action, i.e., p ∈ dom(ak+1) for some i < k < l such that
p 6∈ dom(aj) for i < j ≤ k. Let the guard of ak+1 in Ap be g and in A′p
be g′. From the definition of N ′, we know that g′ ≡ g ∧ Invp(qk).

Since ak+1 is feasible from v′k, we know that v′k |= g′. As a consequence,
we have v′k |= Invp(qk). Further, we know that the process Ap has not
participated in an action from (qi, v

′
i) to (qk, v

′
k). Consequently, the

location of Ap is the same in qi and qk, i.e., qi(p) = qk(p). Hence, we
also have Invp(qk) ≡ Invp(qi). Further, we know that v′k(tp) ≥ v′i(tp) and
v′k(x̃) = v′i(x̃) for all x ∈ Xp. Since v′k |= Invp(qk), we have v′i |= Invp(qi).

• Suppose that Ap does not participate in any of the actions ai+1, · · · , al.
But since the run ρ is accepting, this implies that the location of Ap
in qi is part of an accepting state. From our assumption, this implies
that Invp(qi) ≡ true. As a consequence, in this case also, we have
v′i |= Invp(qi).

From Lemma A.2 and Lemma A.3, we get Theorem A.1.

Theorem A.1. N is accepting iff N ′ is accepting.

The network N ′ can be obtained from N in time O(Qmax ·Tmax ·Xmax ·n),
where Qmax = max

1≤i≤n
Qi, Tmax = max

1≤i≤n
Ti and Xmax = max

1≤i≤n
Xi where Qi, Ti
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and Xi are the set of states, transitions and clocks of process Ai, respectively.
Further, the size of the networkN ′ is greater than the size ofN byO(TN ·|X|),
where TN is the set of transitions in N and X =

⋃
1≤i≤n

Xi. The arguments

for these results follow similarly to the proof of Lemma A.1.



Appendix B

Networks of timed automata
in compact form

In this section, we show that any network of timed automata can be trans-
formed into a network of timed automata that accepts by executing a special
action, and has no invariants in initial and accepting states, such that reach-
ability properties are preserved. Note that we work with networks of timed
automata with state invariants in this section.

Definition B.1 (Network of timed automata in compact form). A network
of timed automata N = {A1, · · · , An} is said to be in compact form if it
satisfies the following properties:

• N accepts by executing a special action α. In other words, if σ is an
accepting run of N , then the final action of σ is the special action α.

• For each process Ai of N , neither the initial state nor the accepting
states have state invariants.

We say that a network is accepting if it has an accepting run. We will
show that we can convert any network N to a network N ′ in compact form,
such that N is accepting iff N ′ is accepting. We will provide two different
constructions, one for global-local systems and one for client-server systems.
Note that the conversion technique for global-local systems is quite general,
and can be applied to any network of timed automata. However, in the
case of client-server systems, the resultant network in compact form is not
a client-server system. Since we would like to apply our client-server POR
technique on the network in the compact form, we propose here an alternate
transformation that yields a client-server system in compact form.

233
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B.1. Global-local systems

In this section, we will show that we can convert any global-local system N
to a global-local system N ′ in compact form, such that N is accepting iff N ′
is accepting.

Let N = {A1, A2, · · · , An} be a global-local system, where each process
Ai = (Qi,Σi, Xi, Ti, q

0
i , Fi, Invi) is a timed automaton with state invariants.

For each process Ai of N , let A′i = (Q′i,Σ
′
i, X

′
i, T
′
i , q
′0
i , F

′
i , Inv

′
i) be the process

obtained by adding

• new states Initi and Finali with no state invariants. In the process
A′i, we have Q′i = Qi ∪ {Initi,Finali}, q′0i = Initi and F ′i = {Finali},
Inv′i(Initi) ≡ true and Inv′i(Finali) ≡ true.

• new global actions start and end, i.e., Σ′i = Σi ∪ {start, end}.

• the following transitions to Ti:

– Initi
start−−→
x≤0

q0
i , where x is some clock in Xi.

– q
end−−→ Finali, for all states q ∈ Fi.

The transformation is illustrated in Figure B.1. Let N ′ be the network
{A′1, A′2, · · · , A′n}. In a process A′i of N ′, observe that the initial state and
accepting states do not have invariants. Further, note that the only incoming
transition to the accepting state of a process A′i of N ′ is labelled by the
action end. As a consequence, any accepting run of N ′ has to end by the
execution of the global action end. Hence, the network N ′ is a global-local
system in compact form.

Further, the guards on the corresponding transitions ensure that the global
action start can only be executed from the initial valuation. Furthermore,
the action end can only be executed from an accepting state of N and a
synchronized valuation. As a consequence, we have Lemma B.1.

Lemma B.1. N is accepting iff N ′ is accepting.

Proof. Suppose that N is accepting. This means that there is a run σ of N
of the form (q0, v0)

σ−→ (ql, vl), where ql is an accepting state of N , v0 is an
initial local valuation and vl is a synchronized valuation. From the definition
of N ′, we can conclude that the following run is feasible in N ′. Note that we
write Init to denote the state (Init1, · · · , Initn) and Final to denote the state
(Final1, · · · ,Finaln).

(Init, v0)
start−−→ (q0, v0)

σ−→ (ql, vl)
end−−→ (Final, v′l)



Networks of timed automata in compact form 235

q0
i

piqi

riti

fi

·
·
·

(a) Process Ai of network N

Initi

q0
i

piqi

riti

fi

Finali

·
·
·

startxi ≤ 0

end

(b) Process A′
i of network N ′

Figure B.1: Transformation of global-local system into a global-local system
in compact form

Conversely, suppose that N ′ is accepting. We know that any accepting run
of N ′ is of the form

(Init, v0)
start−−→ (q0, v

′
0)

ρ−→ (ql, vl)
end−−→ (Final, v′l)

From the guards on the action start, we know that v′0 = v0. Thus, we have

the run (q0, v0)
ρ−→ (ql, vl) in N , where q0 is the initial state of N and v0 is

an initial local valuation. Further, from the definition of N ′, we know that
the action end can only be executed from an accepting state of N . Hence,
ql is an accepting state. Since end is a global action, it follows that vl is a
synchronized valuation.

Note that if we start with a global-local system N , then the network
N ′ in compact form obtained as a result of the transformation is also a
global-local system.

B.2. Client-server systems

In this section, we will show that we can convert any client-server system
N to a client-server system N ′ in compact form, such that N is accepting
iff N ′ is accepting. Note that the technique described in Section B.1 can
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also be applied to client-server systems; however, in this case, the resultant
network in compact form is not a client-server system. We would like to
apply our client-server POR technique on the network in the compact form.
In order to allow this, we propose here a different transformation that yields
a client-server system in compact form.

Let N = {S,C1, C2, · · · , Ck} be a client-server system, where the server
process is given by S = (Qs,Σs, Xs, Ts, q

0
s , Fs, Invs) and each client process

is of the form Ci = (Qi,Σi, Xi, Ti, q
0
i , Fi, Invi).

We first give the transformation of the client processes. For each client Ci
of N , let C ′i = (Q′i,Σ

′
i, X

′
i, T
′
i , q
′0
i , F

′
i , Inv

′
i) be the process obtained by adding

• new states Initi and Finali with no state invariants. Thus, In C ′i, we have
Q′i = Qi∪{Initi,Finali}, q′0i = Initi and F ′i = {Finali}, Inv′i(Initi) ≡ true
and Inv′i(Finali) ≡ true.

• new communication actions starti and endi; Σ′i = Σi ∪ {starti, endi}.

• the following transitions to Ti:

– Initi
starti−−−→ q0

i .

– q
endi−−→ Finali, for all states q ∈ Fi.

The transformation is illustrated in Figure B.2. Next, we give the transfor-
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fi

·
·
·

(a) Client Ci of network N

Initi

q0
i

piqi

riti

fi

Finali

·
·
·

starti

endi

(b) Client C ′
i of network N ′

Figure B.2: Transformation of client-server system into a client-server system
in compact form: client processes



Networks of timed automata in compact form 237

mation of the server process. Let S′ = (Q′s, Σ′s, X
′
s, T

′
s, q
′0
s , F

′
s, Inv

′
s) be the

process obtained by adding to the server process S of N

• new states Inits and Finals with no state invariants. Thus, we have
Q′s = Qs ∪ {Inits,Finals}, q′0s = Inits and F ′s = {Finals}, Inv′s(Inits) ≡
true and Inv′s(Finals) ≡ true.

• new communication actions start1, start2, · · · , startk and end1, end2, · · · ,
endk, i.e., Σ′s = Σs ∪

⋃
1≤j≤k

{startj , endj}.

• new clocks z1, z2. Thus, X ′s = Xs ∪ {z1, z2}.

• the following transitions to Ts:

– Inits
startj−−−→
z1≤0

Inits, for 1 ≤ j < k.

– Inits
startk−−−→
z1≤0

q0
s .

– q
end1−−−→
{z2}

Finals, for all states q ∈ F .

– Finals
endj−−−→
z2≤0

Finals, for 1 < j ≤ k.

q0
s fs· · ·

(a) Server S of network N

Inits q0
s fs Finals

start1, · · · , startk−1

z1 ≤ 0

end2, · · · , endk

z2 ≤ 0

· · ·
startk

z1 ≤ 0 {z2}

end1

(b) Server S′ of network N ′

Figure B.3: Transformation of client-server system into a client-server system
in compact form: server process

The transformation described above is illustrated in Figure B.3.
Let N ′ be the network {S′, C ′1, C ′2, · · · , C ′k}. It is clear that the initial

state and accepting states of processes in N ′ do not have state invariants.
Further, from definition of N ′, the only incoming transition to the accepting
state F ′i of A′i is labelled by the action endi. Moreover, from the definition
of guards of the actions end1, · · · , endk in the server process S′, it follows
that these actions can only be executed consecutively, in 0 time. Hence, any
accepting path of N ′ must end with the sequence of communication actions
end1 · · · endk. Therefore, N ′ is a client-server system in compact form, with
the sequence of actions endk playing the role of the special action α.

Next, observe that the guards on the corresponding transitions ensure
that the start actions can only be executed in 0 time. Similarly, the end



238 Networks of timed automata in compact form

actions can only be executed in 0 time from some (q, v), where q is an
accepting state. Since the end actions are communication actions that can
only be executed in 0 time, it is guaranteed that v is a synchronized valuation.
As a consequence, we have Lemma B.2.

Lemma B.2. N is accepting iff N ′ is accepting.

Proof. Suppose that N is accepting. This means that there is a run σ of N
of the form (q0, v0)

σ−→ (ql, vl), where ql is an accepting state of N , v0 is an
initial local valuation and vl is a synchronized valuation. From the definition
of N ′, we know that the following run is feasible in N ′. Note that we write
Init to denote the state (Inits, Init1,· · · , Initk) and Final to denote the state
(Finals, Final1,· · · , Finalk).

(Init, v0)
start1−−−→ start2−−−→ · · · startk−−−→ (q0, v0)

σ−→ (ql, vl)

end1−−−→ end2−−−→ · · · endk−−−→ (Final, v′l)

Conversely, suppose that N ′ is accepting. We know that any accepting run
of N ′ is of the form

(Init, v0)
start1−−−→ start2−−−→ · · · startk−−−→ (q0, v

′
0)

ρ−→ (ql, vl)

end1−−−→ end2−−−→ · · · endk−−−→ (Final, v′l)

From the guards on the actions start1, · · · , startk, we know that no time
is elapsed and no clocks are reset between v0 and v′0. We have the run

(q0, v
′
0)

ρ−→ (ql, vl) in N , where q0 is the initial state and v′0 is an initial local
valuation. From the definition of N ′, we know that

• the action endi is only enabled from an accepting state of Ai.

• the actions end1, · · · , endk are executed in 0 time.

As a consequence, we can conclude that ql is an accepting state. Further,
since the actions end1, · · · , endk are communication actions that are executed
in 0 time, it is guaranteed that vl is a synchronized valuation. Therefore, the
run ρ is an accepting run of N .

We remark that if we start with a client-server system N , then the
network N ′ in compact form obtained as a result of the transformation is
also a client-server system.



Appendix C

Sync-subsumption check for
local zones

In this section, we give a direct test to check sync-subsumption (see Defini-
tion 5.5) between local zones.

vaLU
sync inclusion test for local zones

We say that a local zone Z is sync-subsumed by local zone Z′, denoted
Z vaLU

sync Z′, if
global(sync(Z)) va

LU global(sync(Z′))

The naive test to check sync-subsumption involves the following steps:

• Computing sync(Z) and sync(Z′). From Lemma 4.9, we know that upon
synchronizing a local zone, we still have a local zone.

• Converting sync(Z) and sync(Z′) to offset zones by applying the global
operation. By Lemma 4.9, the operator global converts a local zone
into a global zone. Let Z = global(sync(Z)) and Z ′ = global(sync(Z′)).
We further apply the std operator on the offset zones Z and Z ′ to get
standard zones Z and Z ′ respectively.

• Applying the va
LU check for Z and Z ′.

We will now propose a simpler and more direct test to detect this.
We denote by Zxy the weight of the edge x→ y in the distance graph of

Z. We now recall the standard test to check if Z va
LU Z

′.

Lemma C.1. [HKSW11] Let Z and Z ′ be non-empty standard zones. Then,
Z 6va

LU Z
′ if and only if there exist two clock variables x and y, such that

Zx0 ≥ (≤,−Ux) and Z ′xy < Zxy and Z ′xy + (<,−Ly) < Zx0

239
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We now propose an equivalent condition for global zones in the offset
setting using the translation of offset zones to standard zones. Recall the
translation of offset zones to standard zones as given in Definition 2.33. From
this translation and Lemma C.1, we get the following va

LU subsumption
check for offset zones:

Lemma C.2. Let Z and Z ′ be non-empty offset zones. Then, Z 6va
LU Z ′ if

and only if there exist two offset clock variables x̃ and ỹ, such that

Ztx̃ ≥ (≤,−Ux) and Z ′ỹx̃ < Zỹx̃ and Z ′ỹx̃ + (<,−Ly) < Ztx̃

Henceforth, we work with this condition over offset zones, rather than
the former condition over standard zones.

Next, we show that synchronized zones can be efficiently computed from
local time-elapsed zones, as given by the following lemma.

Lemma C.3. Given a local-time elapsed zone Z, the distance graph of
sync(Z) in the canonical form, is obtained from the distance graph of Z by
the following steps:

• Set the weight of all ti −→ tj edges to (≤, 0)

• Set the weight of all ti −→ x̃ edge to min{GZ
ti,x̃
| ti ∈ T}

Proof. Let Z be a local-time elapsed zone and let GZ be the canonical distance
graph of Z. Since Z is local-time elapsed, we know that all edges of the form
x̃→ t for x̃ ∈ X̃ and t ∈ T has weight (<,∞).

Let Z′ = Z ∧
∧
ti,tj∈T (ti = tj). Each edge in GZ′ of the form ti → tj for

ti, tj ∈ T has weight (≤ 0). Let Z′′ be the zone obtained by canonicalizing
Z′. We consider the edges of GZ′′ . Recall that we say a path is lighter than
another, if the weight of the former is lesser than the weight of the latter
path.

x̃→ ti The lightest path of this form, where x̃ ∈ X̃ to any ti ∈ T is (<,∞).
Consider a lighter path from x̃ to t. It must be of the form x̃→ · · · →
ỹ → tj → · · · → ti. Since the edge ỹ → tj has weight (<,∞), this path
has weight (<,∞).

ti → tj The lightest path between any two reference clocks ti and tj is (≤, 0).
We know that the weight of the edge ti → tj in GZ′ is (≤, 0). Now,
suppose that there is a lighter path in GZ′′ . Since all edges between
reference clocks have weight (≤, 0), this path can only be of the form
ti → · · · → x̃ → tj . Once again, since each edge x̃ → tj has weight
(<,∞), this path also has weight (<,∞).

x̃→ ỹ The lightest path between two offset clocks is given by the direct edge
between them from GZ′ .
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ti → x̃ We will show that the weight of such an edge is equal to min{Ztj ,x̃ | tj ∈

T}. Consider paths of the form ti
(≤,0)−−−→ tj

�,c−−→ x̃. The minimum weight
of such a path is given by min{Ztj ,x̃ | tj ∈ T}.
Suppose that there is a lighter path from ti to x̃. Note that this path
cannot use edges of the form ỹ → tj , as these edges have weight (<,∞).

Suppose that this path is of the from ti
(≤,0)−−−→ · · · (≤,0)−−−→ tj → · · · → x̃.

where the ti
(≤,0)−−−→ · · · (≤,0)−−−→ tj part of the path consists entirely of

reference clocks. The part involving reference clocks can be substituted

by the simple edge ti
(≤,0)−−−→ tj . Further, observe that all edges from

tj to x̃ are from GZ. Since GZ is canonical, this part of the path can
be substituted by the simple edge tj −→ x̃. Then, the path reduces to

ti
(≤,0)−−−→ tj −→ x̃. It is easy to see that this path cannot be lighter.

This is a huge improvement over the naive computation of synchronized
zones, which would first involve adding edges of weight 0 between reference
clocks and then canonicalizing it. Let n be the number of processes and
c be the number of clocks in the network. The naive computation takes
time O(c+ n)3, whereas the computation given in Lemma C.3 takes time
O(n2 + c · n2) = O(c · n2).

We will now use the results given in Lemma C.3 and Lemma C.2 to
propose a direct check for sync-subsumption between local zones, without
transforming the local zones. Since the computation of sync(Z) from a local
zone Z requires only specific local transformations of some clocks (as stated
in Lemma C.3), we can execute the check specified by Lemma C.2 directly
using the edges of the distance graphs of the local zone Z and Z′, as stated
in the following lemma.

Lemma C.4. Let Z and Z′ be non-empty time-elapsed local zones. Then, Z
is not sync-subsumed by Z′ if and only if there exist two variables x̃ and ỹ
such that

• min{Zti,x̃ | ti ∈ T} ≥ (≤,−Ux) and

• Z′ỹx̃ < Zỹx̃ and

• Z′ỹx̃ + (<,−Ly) < min{Zti,x̃ | ti ∈ T}

Proof. Let Z and Z′ be non-empty time-elapsed local zones. Let Z =
global(sync(Z)) and Z ′ = global(sync(Z′)). We denote the distance graphs of
Z,Z ′,Z and Z′, by GZ , GZ′ , GZ and GZ′ , respectively.

From Lemma C.2, we know that Z 6va
LU Z ′, if there do not exist two

offset clock variables x̃, ỹ such that

Ztx̃ > (≤,−Ux) and Z ′ỹx̃ < Zỹx̃ and Z ′ỹx̃ + (<,−Ly) < Ztx̃
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The key observation is that weights of the relevant edges of GZ and GZ′

can be directly obtained from GZ and GZ′ , without modifying GZ and GZ′ .
From Lemma C.3, we know that the weight of the t −→ x̃ edge in GZ , where
Z = global(sync(Z)), is given by min{GZ

ti,x̃
| ti ∈ T} in GZ. Similarly, the

weight of the ỹ −→ x̃ edge in GZ is equal to the weight of the ỹ −→ x̃ edge in
GZ.

As a consequence, the weights of the relevant edges of GZ can be obtained
from GZ - either directly, in the case of x̃ −→ ỹ edges and or by finding the
minimum of all ti −→ x̃ edges for the t −→ x̃ edges.

Further, note that the only edges required from GZ′ are the ỹ −→ x̃ edges,
which is the same as the respective ỹ −→ x̃ edge in GZ′ . Therefore, these
edges may be directly taken from GZ′ .

Gain over the naive approach

Let n denote the number of processes in the network and c = |X| be the
number of clocks in the network. Then, the check given in Lemma C.4 takes
O(c2 + n · c) time and requires constant amount of space.

Running time. As already discussed, the naive test to check if a local
zone Z is sync-subsumed by another local zone Z′ has the following steps:

1. compute sync(Z) and sync(Z′) - the naive sync-zone computation takes
O(c+ n)3 time.

2. Convert sync(Z) and sync(Z′) to offset zones by the global operation
and then to standard zones by the std operation - can be done by a
O(c2 + c · n) procedure.

3. Applying the va
LU check on the offset zones obtained in the previous

step - this procedure takes O((c+ 1)2) time.

As can be seen above, the naive vaLU
sync subsumption check involves five

steps - applying procedure (1) and (2) on both the zones Z and Z′ and then
doing the check (3) on the standard zones obtained. The time complexity of
the procedure is O(c+ n)3. On the other hand, the explicit check given in
Lemma C.3, involves only one step which takes O(c2 + c · n) time.

Furthermore, while the naive check would involve computation over both
Z and Z′, in the direct check, no computation needs to be done on Z′. This
is because the only edge weights from Z′ required for the test are of edges of
the form x −→ y. Since the weight of these edges is the same as weights of
the respective ỹ −→ x̃ edges in the distance graph of Z′, these edge weights
may be directly obtained from the distance graph of Z′.
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Space complexity The naive vaLU
sync subsumption check also uses addi-

tional space of the order of O((c + n)2) since we are required to store
the distance graphs of sync(Z) and sync(Z′), and in the subsequent step,
std(global(sync(Z))) and std(global(sync(Z′))). In contrast, the explicit check
given in Lemma C.3 needs only constant space. The only part of the check
that requires space involves computing the minimum of weights of all ti −→ x̃
edges in the distance graph of Z, for i ∈ {1, 2, · · · , k} - this computation only
requires constant space.

In practice, whenever a new zone Z is visited while exploring the local
zone graph, we would need to compute sync(Z) and then the standard zone
Z = std(global(sync(Z))) and store the distance graph of these zones, in
addition to the distance graph of the local zone. The algorithm would need
to store this standard zone Z for every local zone Z that has been seen, and
whenever a new zone Z′ is seen, check if this zone is vaLU

sync subsumed by some

zone that has already been seen. In contrast, if the direct vaLU
sync check is used,

there is no need to store any of this additional information for local zones
- this is because any relevant edge weight that is required for subsumption
checks can be directly obtained from the distance graphs of the local zones.
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