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Abstract

We propose a novel method to test the binary black hole (BBH) nature of compact
binaries detectable through gravitational wave (GW) interferometers and hence constrain
the parameter space of other exotic compact objects. The spirit of the test lies in the “no-
hair” conjecture for black holes where all properties of a Kerr black hole are characterised
by its mass and spin. The method relies on observationally measuring the quadrupole
moments of the compact binary constituents induced due to their spins. If the compact
object is a Kerr black hole (BH), its quadrupole moment is expressible solely in terms
of its mass and spin. Otherwise, the quadrupole moment can depend on additional
parameters (such as equation of state of the object). The higher order spin effects
in phase and amplitude of a gravitational waveform, which explicitly contains the
spin-induced quadrupole moments of compact objects, hence uniquely encodes the
nature of the compact binary. Thus we argue that an independent measurement of
the spin-induced quadrupole moment of the compact binaries from GW observations
can provide a unique way to distinguish binary BH systems from binaries consisting of
exotic compact objects.

We quantify the expected statistical precision in measuring the spin-induced multipole
moments using this method by means of the Fisher information matrix. Also, we
implement this into the software package developed and currently used by the LIGO
scientific collaboration and using this we obtain the first observational bounds on the
spin-induced quadrupole moment parameter of a binary black hole system observed
by the ground-based gravitational wave detectors. We further compute the projected
accuracies with which the spin-induced multipole moments of a compact binary may be
estimated with the future ground and space-based gravitational wave observatories.
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Chapter 1

Introduction

1.1 Basics of gravitational waves

In 1916 Einstein proposed the existence of gravitational waves (GWs) as a consequence
of his general theory of relativity [17]. Gravitational waves can be thought of as ripples in
spacetime. They are transverse in nature and propagate at the speed of light according
to Einstein’s general theory of relativity. While electromagnetic waves are oscillating
electric and magnetic fields that propagate through spacetime, gravitational waves are
produced due to the oscillations of the spacetime itself. Unlike electromagnetic waves
that are easily absorbed and scattered by the medium of propagation, GWs are hardly
affected by the intervening medium due to the weak interaction of gravity.

Below we briefly describe gravitational waves in linearised general relativity. Ein-
stein’s equation connects spacetime geometry to the matter distribution in the following
way,

Rµν −
1

2
gµν R =

8π G

c4
Tµν . (1.1)

In Eq. (1.1), Rµν is called the Ricci tensor, R is the Ricci scalar and Tµν is the energy
momentum tensor characterizing the source. Gravitation constant and the speed of
light are represented by G and c respectively. The spacetime is completely specified
the metric gµν which is characterized by, ds2 = gµν xµ xν where µ, ν = 0, 1, 2, 3. In
order to understand the wavelike solutions of Eq. (1.1) in a simple way, we assume that
the spacetime is nearly flat and Einstein’s equation can be studied as an expansion
around flat spacetime. This method is called the linearized gravity approximation.
In this case we write the spacetime metric gµν as gµν = ηµν + hµν , where ηµν is the
flat spacetime metric (Minkowski) and hµν is a small perturbation to it. How small
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is the tensor perturbation is not easy to define. But there exists a reference frame
in which the numerical values of hµν is less than 1. Linearized theory of general
relativity has a redundant gauge freedom which is the invariance of the theory under
the following coordinate transformations, xµ → x

′µ = xµ + ζµ. We define the following
h̄µν=hµν − 1

2
h ηµν , h = ηµνhµν and in this case Eq. (1.1) reduces to,

2h̄µν + ηµν∂
ρ∂σh̄ρσ − ∂ρ∂ν h̄µρ − ∂ρ∂µh̄νρ = −16π G

c4
Tµν . (1.2)

The same gauge freedom can be used to choose Lorentz gauge, ∂ν h̄µν = 0 and
Eq. (1.2) reduces to,

2h̄µν = −16 π G

c4
Tµν . (1.3)

Equation (1.3) resembles that of the Maxwell’s equations for electromagnetic fields which
can be written as, 2Aµ = 4π

c
Jµ . Here Aµ = (Φ, Ã) represents the electric (Φ) and

vector potential (Ã) while Jµ = (cρ, J̃) denotes charge (ρ) and current densities (J̃) of
the source. Unlike the second rank tensors in Eq. (1.1), electromagnetic field equations
are vector equations. The same way electromagnetic field equations are sourced by
the charge and current densities of the source, gravitational waves are wave equations
sourced by energy momentum tensor of the gravitating source 1. It is also important to
emphasis that both electromagnetic and gravitational waves can exist in vacuum.

After solving Eq. (1.3) for a slowly moving source, where the time component of the
metric perturbation can be neglected, with appropriate gauge choices (we work with the
transverse-trace less gauge, often expressed as TT gauge [18]) one obtains the leading
order solution as,

hTT
ij (t, x) =

2 G

r c4
Q̈ij(t− r/c), (1.4)

where (t − r/c) represents the retarded time, Q is the quadrupole moment of the
source and r is the distance to the source. There are a few things to note here. The
perturbation metric in the TT gauge can be expressed as a multipolar expansion of
different source moments, similar to the electromagnetic waves (here we show only the
leading order contribution). The monopole and dipole contributions to the expansion
turn out to be zero as a consequence of conservation of mass and linear momentum of
the source, respectively. Hence the leading order contribution to the gravitational wave

1Notice that sources are not necessary for gravitational or electromagnetic waves, cosmic micro
wave background radiation is an example of one such case.
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comes from the quadrupole moment in general relativity as shown in Eq. (1.4) and this
equation is called the quadrupole formula. Hence, any source with non-vanishing second
time derivative of quadrupole moment can emit gravitational waves and the amplitude is
always inversely related to the distance to the source, r. Most importantly, the solution
given in Eq. (1.4) has only two degrees of freedom left as a consequence of symmetries
of Einstein’s equations which we imposed through this particular gauge choice and the
gravitational wave strain satisfies the conditions, h0µ = 0, hi

i = 0 and ∂ i hij = 0. This
implies that we finally obtain a transverse plane wave solution with two independent
components correspond to two polarization states of the wave: the plus and the cross
polarization. When a gravitational wave passes orthogonal through a ring of test masses,
the relative separation between the test masses changes as an effect of the wave. This will
change the shape of the ring depending upon the polarisation state of the gravitational
wave. This property of gravitational waves is used in interferometric gravitational
wave detectors. As in the case of electromagnetic theory where the Poynting flux is
proportional to the square of the first time derivative of the vector potential, here the
GW flux is proportional to the first time derivative of the amplitude of the GW given in
Eq. (1.4). That is the GW flux is proportional to

...
Qi j

2
. In the quadrupole approximation,

we get the luminosity of gravitational waves as given by Lgw = G
5 c5

( ...
Qjk

...
Qjk − 1

3

...
Q

2
)
.

The quadrupole moment Q̈i j (t − r/c) given in Eq. (1.4) can be expanded at the
leading order as an integral of the mass density (time-time component of the stress
tensor) as, Qi j =

∫
d3x T00(t, x) xi xj.

As an example, we take a two body bound system which evolve under gravitational
radiation reaction. Assume the masses to be m1, m2 with reduced mass µ = m1 m2

m1+m2
. The

relative separation from the centre of mass of the system is denoted by a and the source
is viewed along the angular momentum axis of the binary system. This means the
inclination angle, which measures the angle between the observer’s line of sight and the
orbital angular momentum axis of the binary, is assumed to be zero. The non-vanishing
contributions to the quadrupole moment tensor can be written as, Q11 = µ a2 cos2 φ,
Q22 = µ a2 sin2 φ, Q12 = µ a2 cosφ sinφ and Q12 = −Q21. The corresponding metric
tensor takes the form,

hTT
ij = −4 Gµ a2 ω2

c4 r


h+ h× 0

h× −h+ 0

0 0 0

 . (1.5)
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The two independent components of the metric in this case are h+ = cos 2φ and
h× = sin 2φ, where φ is the orbital phase and the gravitational wave phase will be twice
the orbital phase at the leading order. The time derivative of the orbital phase, angular
velocity, is denoted by the letter ω [19].

In order to compare the amplitude of the gravitational wave signals emitted from
different sources, we will do a rough calculation by assuming a highly relativistic
source, like a rotating neutron star with time varying quadrupole moment of the form
Q̈i j (t − r/c) ∼ m vns

2 (vns is the non-spherical velocity), the expression given in Eq. (1.4)
will be reduce to h(t, x) ∼ 2 G

r c4 m vns
2 [19]. One can compare this with the Newtonian

potential, φ(r) = G m
c2 R

and we see that h(t, x) ∼ φ(r) v2
ns

c2 . Now if we place this neutron star
system at a distance of r ∼ 60Mly assuming φ(r) ∼ 0.2 c2 the GW amplitude will be
∼ 5×10−22. For this system, an order of magnitude estimate for the GW luminosity can
be obtained as follows, Lgw ∼ G

5 c5

...
Q

2 ∼ G
5 c5

(
G m
c2 R

)2 ( vns

c

)6 and this is ∼ 1052W for vns

c
= 1

(measure of how relativistic is the source is) and G m
c2 R

= 0.5 (called the compactness of
the source). We summarize by saying that the GWs will be detectable only from a
source which is highly relativistic and whose compactness is close to the maximum
value.

1.2 Astrophysical sources of gravitational waves

As we discussed in the previous section, only sources of gravitational waves which are
astrophysical in origin have the strength good enough to be detected by the currently
available technology.

1.2.1 Gravitational wave burst sources

Gravitational wave burst sources are short duration (less than a few seconds) transients.
Examples for these kind of sources are, supernovae, cosmic string cusps, high mass
BBH merger etc. Data analysis algorithms which are capable of detecting burst sources
look for excess energy (power) in the noisy data obtained from the detector. There
are multiple transient search methods include coherent wave-burst (cWB) [20] and
omicron-LALInference-Bursts (oLIB) [21] for the search of GW transients. Reference
[22], reports the all sky search for short duration GW signals in the observation runs of
second generation detectors and found no new signals.

Page 11



Introduction Chapter 1

1.2.2 Continuous gravitational wave sources

For continuous GW sources the GW frequency will remain almost a constant during
the time over which the signal is observed. The strength of GW signal produced by
these sources are several orders of magnitude weaker compared to coalescing binaries.
One such source is spinning NS with non-axi symmetry (which has got a non-zero time
varying quadrupole moment). As the star rotates, the non-axi symmetries of the star
lead to the generation of gravitational waves. As far as the sensitivity of current ground
based gravitational wave detectors are concerned the most interesting continuous GW
sources are highly spinning galactic NSs. The detailed search for continuous GWs in
the LIGO data is reported in Ref. [23].

1.2.3 Stochastic gravitational wave sources

Stochastic gravitational waves are background radiation can be of astrophysical (gener-
ated by superposition of the signals compact binaries, CW, supernova, etc) or primordial
(produced in the early universe) origin. Unlike the other GW sources which comes from a
particular direction of the sky, stochastic GW background may not be always directional.
One example for a stochastic gravitational wave background from astrophysical origin
which is directional could be where a large concentration of galaxies in some direction
in the sky producing overlapping sources or signals. The strength of GW in different
directions for stochastic backgrounds could be different and that is precisely what allows
us to learn about the early universe. The gravitational wave signal is identified by cross
correlating the data from multiple detectors [24].

The strength of the cosmological stochastic GW background predicted by the
standard inflationary cosmology is too weak to be detected by current detectors but the
astrophysical background from binary coalescence is expected to be detectable in the
next few years with improved detector sensitivities of ground-based gravitational wave
detectors. As reported in Ref. [25, 26], the current searches of stochastic gravitational
wave data from ground-based detectors have produced interesting upper limits.

1.2.4 Compact binary coalescence

Another class, perhaps the most important and the one central to this thesis, of GW
sources is the compact binary coalescence (CBC). A binary consisting of two compact
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objects merge under gravitational wave radiation reaction to form a new compact object.
Given the compactness requirements for the detectability of gravitational waves (see
Sec. 1.1) the binaries that are most promising are those composed of NSs or BHs.

Broadly, the compact binary dynamics consists of three major phases, inspiral,
merger and ringdown. The initial stage of the dynamics, where the orbit start shrinking
due to the GW radiation reaction and they come closer. As the orbital separation
between the two decreases, the emission rate increases. This is called the inspiral.
Depending upon the intrinsic parameters, especially masses and spin angular momenta,
this process may take several millions of years. End of the inspiral leads to the merger
of the compact binary system to form a new object. This highly relativistic stage is
called merger. The merger remnant maybe highly deformed and emit GWs while it
settles down to a stable configuration. This final regime of the binary dynamics is called
the ringdown. From the inspiral to merger both the frequency and amplitude of the
gravitational wave increases as a function of time and hence referred to as GW chirp.

One can model the inspiral phase using post-Newtonian formalism[27] whereas
numerical relativity simulations are needed to model the merger regime [28]. In order to
study the ringdown part of the dynamics, one may use black hole perturbation theory
techniques [29]. The inspiral waveform is a function of the masses and spins of the
binary components, the position and orientation of the source in the sky with respect to
the observer and the distance to the source. The damped sinusoidal ringdwon radiation
for a black hole is characterized by the frequency and damping time. Fig. 1.1 shows the
gravitational waveform from inspiral-merger-ringdown dynamics of a binary black hole
system.

The post-Newtonian (PN) approximation provides an accurate description of the
dynamics of early inspiral of compact binary coalescence and here the relevant quantities
are expressed as expansions of PN parameter, v/c [27]. There are many physical effects
that appear in the waveform which can be modelled through the analytical techniques
of PN theory. For example, the spin angular momentum [30], the orbital precession [31],
the eccentricity of the orbit [32], the tidal deformations (due to the presence of external
gravitating fields) [33], spin-induced deformations (arise due to spinning motion of the
object) [34], the spin-tidal effects [35] etc.

The only reliable way to obtain the GW forms of CBCs near the merger to early
ringdown is by solving Einstein’s equations numerically, as the analytical methods
such as post-Newtonian theory break down beyond a point. Solving the full Einstein
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Figure 1.1: The gravitational waveform model of a non-spinning binary black hole
system with a total mass of 30M� and mass ratio of 2. As we discussed in Sec. 1.2.4,
the dynamics can be broadly classified to three regimes, inspiral, merger and
ringdown.

equations on a computer itself was a hard task and first done by Susan Hahn and
Richard Lindquist in 1963 [36] following the theoretical calculations done by Charles
Misner, Richard Arnowitt and Stanley Deser [37] for two black holes. This was further
studied in Ref. [38] where the evolution starts with two black holes and collide to form
a highly distorted black hole which emit gravitational waves to settle down to the stable
state, this was the first demonstration of geometrodynamics using numerical relativity
simulations. Even though many groups including the joint Cornell/Caltech Program
to Simulate eXtreme Spacetimes (SXS) actively involved in studying the numerical
simulations of two orbiting BHs, the orbital evolution and merger of a binary black
hole system was first carried out by Frans Pretorius in 2005 [39]. This remarkable
achievement lead to several other findings starting from the simple extension of this work
to the spinning case [40, 41] and to the detailed catalog of BBH numerical waveforms
with arbitrary spin magnitudes, orientations and mass ratios [42–44].

Solving the Einstein equation numerically and generate waveform models with
thousands of cycles is computationally challenging. There are several approaches to
build GW forms describing all the three phases of the binary dynamics by combining the
inspiral part (analytical) and the numerical relativity part. For example, the Effective
one body waveform families, which provides accurate analytical model for the inspiral-
post inspiral phase of the binary, have been extended by fixing post inspiral coefficients
from the numerical data describing the strong field regime [45, 46] which incorporates
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physical effects such as spins [47], tides [48] etc. In Ref. [49–52], authors developed a
phenomenological family of waveforms where the PN inspiral phase is interpolated to
merger ringdown phases by fitting unknown coefficients using numerical data. Recent
extensions of this frequency domain waveform include spin precession effects [53], tidal
effects [54] etc and has been used for GW searches and parameter extraction [55].

The inspiral-merger-ringdown features will vary with respect to the properties of
the compact object constituting the binary system. More importantly, the predicted
observational features in the gravitational waveform will strongly depend upon the
underline theory (if it is not GR) and also on the nature of the compact object (if it is
not a black hole or a neutron star).

The most accurate waveform models for compact binary coalescence are needed for
both detection and parameter estimation of gravitational wave signals. In the next
section, we discuss the matched filter analysis, which can be used to search for compact
binary signals from the data consists of both true signal and noise. Further, we also
give a brief overview of gravitational wave parameter estimation techniques emphasising
the importance of most accurate waveform models.

1.3 Gravitational wave data analysis techniques and

parameter estimation for compact binaries

Matched filtering is a general data analysis technique for searching known signals in
a noisy data hence can be used to look for gravitational wave signals. In this section
we discuss more details about the GW signal extraction techniques and parameter
estimations once we provided with the GW strain data.

1.3.1 GW signal extraction from the data

1.3.1.1 Matched filter analysis for compact binaries

Matched filtering is a data analysis technique that efficiently searches for a GW signal
from a compact binary system buried in a noisy data. A detector output consists of the
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gravitational wave signal and the background noise which can be written as,

s(t) = h(t;
−→
θi ) + n(t), (1.6)

For simplicity we start with the assumption that the noise to be stationary and Gaussian
with zero mean, 〈n(t)〉=0. The auto-correlation function is defined as the correlation
between noise at time t and t

′ , and is defined as, K (t, t ′) = K (t−t ′) =< n(t)n(t ′) >. For
a wide sense stationary noise where, K (t, t ′) = K (t + τ , t ′+ τ) where τ is infinitesimally
small time translation. In this case the auto-correlation function depends only on τ the
time difference, irrespective of the time t. We define ñ(f ) as the Fourier transform of n(t)

and in the Fourier space the auto-correlation takes the form, 〈ñ(f )ñ∗(f ′)〉 = Sn(f )δ(f ′−f )

. The Fourier transform of the correlation function Sn(f ) =
∫∞
−∞ e2πi f ′τ K (τ)dτ is called

the power spectral density of the noise. Each detector is characterized by the noise
spectral density, Sn(f ), we will discuss this in detail in the next section.

Suppose we define a cross correlation function, Csq(t) =
∫∞
−∞ s(τ)q(t + τ)dτ given

the detector output s(t) and a linear filter q(t). The matched filter analysis provides the
optimal filter which maximises the ratio of mean of correlation function to its variance.
This is called the matched filter SNR and is defined as SNR = 〈Csq(t)〉√

〈(Csq(t))2〉−(〈Csq(t)〉)2
.

With appropriate substitutions, the above expression in the frequency domain simplifies
to,

SNR =

∫∞
−∞ q̃(f)h̃∗(f)ei 2π f tdf√∫∞
−∞ Sn(f)|q̃(f)|2df

. (1.7)

As we can see from this equation, the SNR is only a function of the q̃(f ) given the signal
model h̃∗(f ). By invoking the Schwartz inequality, we can establish that the filter which
maximizes the SNR will be q̃(f ) = A h̃(f )

Sn(f )
. The constant A is fixed by the normalization

condition for the filter,
∫∞
−∞ Sn(f )|q̃(f )|2df = 1. It is evident from the above expression

that the filter obtained by this procedure is not just a copy of signal but it is weighted
by the noise PSD. From this, we can re-express the SNR in terms of the optimal filter,

ρ =

√∫ ∞
0

|h̃∗(f )|2
Sn(f )

df . (1.8)

Here, Sn(f ) has dimensions of time since this quantity is defined in frequency domain
conventionally we follow the dimension as Hz−1. In Fig. 1.4, we show the power spectral
densities of various ground and space-based gravitational wave detectors.
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To perform the searches for compact binaries one can cross correlate the data
with waveform models predicted by general relativity using the matched filter analysis
described above. PyCBC [56] and GstLAL [57] are two independent pipelines one can
use to calculate the matched filter SNR given the gravitational wave strain data.

1.3.2 Parameter estimation techniques for compact binary coa-

lescence

1.3.2.1 Parameter estimation using the Fisher Information Matrix analysis

When we have an accurate model for the signal of interest and the expected sensitivity of
the detector, Fisher information matrix approach can be used to compute the expected
1-σ error bars on the parameters of the signal [58] assuming the noise in the detector
is Gaussian-stationary and the signal-to-noise ratio is high. A quick review of Fisher
information matrix formalism is given here. More details can be found in [58].

As shown in Eq. (1.6), the data contain noise and hence the measured parameters
−→
θi

can fluctuate about the true value leading to errors associated with their measurements.
Hence measured value of

−→
θi =

−→
θi

true±∆
−→
θi , where

−→
θi

true is the true value of the parameter
and ∆

−→
θi is the error associated with the measurement due to noise, give us information

about the parameter
−→
θi . The measurement errors on

−→
θi can be estimated using the

semi-analytic parameter estimation technique, Fisher information matrix. From the
measurement, we are interested in the posterior probability distribution function for

−→
θi

given the signal s(t). When we consider flat prior on
−→
θi posterior probability distribution

is nothing but the likelihood function which is of the form, p(s|
−→
θi ). It can be shown

that, for Gaussian noise in the limit of high signal-to-noise ratios, the Fisher information
matrix is related to the likelihood distribution function as,

p(s|
−→
θi ) ∝ e−

1
2

(Γjk ∆
−→
θj ∆
−→
θk ), (1.9)

. where Γi j is called the Fisher information matrix [59, 60] defined as follows,

Γi j = 2

∫ fupper

flower

df
h̃i (f )h̃∗j (f ) + h̃j (f )h̃∗i (f )

Sn(f )
, (1.10)

where Sn(f ) represents the noise power spectral density (PSD) of the detector and
h̃i ≡ ∂h̃(f ;

−→
θi )/∂

−→
θi is evaluated at the true value of the parameter

−→
θi =

−→
θi

true
. The
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inverse of the Fisher matrix provides a lower bound on the covariance matrix (Σi j)
through the Cramer-Rao bound and the error (σi ) on each parameter

−→
θi is given by the

square root of the diagonal entries of the covariance matrix. That is,

σi =
√

Σi i . (1.11)

The upper and lower cut-off frequencies given in Eq. (1.10), fupper and flower are chosen
according to the sensitivity of the detector configuration which is in consideration.

1.3.2.2 Bayesian inference for parameter estimation and model selection

In the gravitational wave parameter estimation, we would like to address two questions
under the framework of Bayesian inference. First question is that, given the GW data,
what are the parameters characterizing the source under the assumption of a fixed
waveform model. The next question would be that, which is the preferred model among
the different models describing the dynamics of the GW source. In this section, we give
a brief overview of these methods and how to use them for the parameter estimation
and model selection of compact binary described by general relativity. See references
[12, 61–63] for a detailed review of gravitational wave parameter estimation methods
using Bayesian inference.

To begin with, we introduce a hypothesis H which is (one of) our assumption(s)
about the true waveform model underlying in the data d recorded by the detectors. If
−→
θi = {θ1, θ2..θN} is the set of parameters describing the model H, then using Bayes’
theorem, one can write,

P(
−→
θi |H, d) =

P(
−→
θi |H) P(d |H,

−→
θi )

P(d |H)
, (1.12)

where, the quantity on the left hand side, P(
−→
θi |H, d), is the posterior probability of

the parameter
−→
θi , given the data. P(

−→
θi |H) is known as the prior probability which is

our state of knowledge of
−→
θi prior to the data being available. The quantity P(d |

−→
θi ,H)

is known as the likelihood function which is the probability of data given the H as the
underlying model and

−→
θi is the true set parameters characterizing the hypothesis. For a
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Gaussian stationary noise, the likelihood function can be expressed as,

P(d |H,
−→
θi ) ∝ exp

(
−(d̃ − h̃|d̃ − h̃)

2

)
, (1.13)

where, d̃ and h̃ are respectively the data and model waveform in frequency domain. The
noise weighted inner product (.|.) in the exponent is defined as,

(d̃ − h̃|d̃ − h̃) = 4

∫ fupper

flower

(d̃ − h̃)∗ (d̃ − h̃)

Sn(f)
df (1.14)

where the integration is over a domain between the lower and upper cutoff frequencies
of the analysis and the ∗ in the numerator denotes the operation of complex conjugation.
The denominator Sn(f) is the one-sided noise power spectral density of the GW interfer-
ometer. Further, the term P(d |H) in Eq. (1.12) is known as the evidence of the model
H, denoted by Z, which can be obtained by the following integral following Eq. (1.12),

Z = P(d |H) =

∫
P(
−→
θi |H) P(d |

−→
θi ,H)d

−→
θi , (1.15)

where the integration is over the entire prior domain (or volume) of the multi-
dimensional parameter space. Evidence, also known as the marginalized likelihood, is
a measure of how well the data d is in agreement with the model H within the prior
domain of the parameter space.

For a multi-dimensional parameter space
−→
θi = {θ1, θ2, ...θN}, the posterior probability

distribution for a given parameter θ1 is calculated by marginalizing the multi-dimensional
posterior distribution over the remaining parameters,

P(θ1|d ,H) =

∫
P(
−→
θi |d ,H) dθ2, ...dθN . (1.16)

The mean µθ and variance σθ for a single parameter θ (i.e., , of a 1-dimensional
posterior distribution) can be obtained, respectively, by

µθ =

∫ θmax

θmin

θ P(θ|d ,H) dθ, (1.17)

σ2
θ =

∫ θmax

θmin

(θ − µθ)2 P(θ|d ,H) dθ, (1.18)
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and the 90% credible intervals are obtained as the shortest interval (θleft, θright) which
contains 90% of the posterior probability distribution, i.e.,

∫ θright

θleft

P(θ|d ,H)dθ ∼ 0.9. (1.19)

In order to perform a model selection between two competing hypotheses H1 and
H2, one computes the odds ratio O1

2 between the two models which is defined as the
ratio of the posterior probability of the two models given the data,

O1
2 =

P(H1|d)

P(H2|d)
(1.20)

Odds ratio is a useful quantity to express how well the data prefers a given hypothesis
(H1) over the other (H2). When the data d favors the the model H1 over H2, then the
numerator will be larger and hence an odds ratio will be larger than 1. Using Bayes’
theorem, the above expression can be written as

O1
2 =

P(H1)

P(H2)

P(d |H1)

P(d |H2)

=
P(H1)

P(H2)

Z1

Z2

=
P(H1)

P(H2)
B1

2 (1.21)

with
B1

2 =
Z1

Z2
(1.22)

where Z1 and Z2 are the evidences of the models H1 and H2 respectively as defined in
Eq. (1.15). The quantity B1

2 is known as Bayes factor of the two models H1 and H2.
In those cases where there are no strong prior information (i.e., we do not prefer one
model over the other a priori), then one generally assumes flat priors (uniform prior) for
each model. In such cases, the ratio of priors P(H1)

P(H2)
in above equation will be unity and

therefore the odds ratio will be simply equal to the Bayes factor. In such cases Bayes
factor B1

2 is the quantity of most interest for the model selection purposes as it only
depends on the data not on data and prior information.
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LALInference [12] is a Bayesian inference toolkit available in LIGO Algorithm
Library (LAL) which performs parameter estimation and model selection discussed
above, for gravitational wave signals. In order to achieve this, LALInference makes use
of stochastic sampling algorithms such as Nested Sampling [64], Markov Chain Monte
Carlo (MCMC) sampling etc [65–67] etc.

The primary goal of the LALInference pipeline is to perform parameter estimation
on real GW signals. However, LALInference can also be run on simulated signals known
as software injections, with known physical parameters, widely used for exploratory
studies. This allows one to inject software injections on real data segments (noise)
from LIGO-VIRGO runs as well as fake noise which is generated by a random number
generator. Further, LALInference allows to choose zero-noise realization (zero-noise
injections) which ensures that the estimates obtained are free of systematics due to the
particular noise realization and hence will have effects only from the parameter space
degeneracies and correlations which are more likely related to underlying physics of the
GW waveform.

1.4 Towards the detection of gravitational waves

1.4.1 Early efforts: Bar detectors and binary pulsar observa-

tions

In early 1960s, Joseph Weber proposed the idea of using resonant bars to detect
gravitational waves [68–70]. The basic idea was to capture the vibrations on the solid
aluminium cylinders, about 2 meters long and 1 meter in diameter, due to gravitational
wave passage at its resonant frequency of about 1660Hz. A piezoelectric crystal was
used to convert the resonant vibrations into an electrical signal. Weber demonstrated a
method to isolate real signal from noise which was expected to arise from seismic and
electromagnetic disturbances to the cylinders and the random thermal motion of the
aluminium atoms where he introduced the idea of signal threshold. Even though he
reported the detection of GWs at two different locations on earth no other scientist
could reproduce the claims made by Weber [68–70].

In the meanwhile, binary pulsar observations by Taylor and Russell Hulse provided
strong evidence for the existence of gravitational waves. The study started in 1974
and they continued observing the orbital decay of a binary system, PSR B1913+16,
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composed of a pulsar in orbit around a neutron star [71, 72]. The rate of shrinkage
of the orbit over time was consistent with theoretical predictions which rely on the
assumptions of gravitationally dissipating system [73]. For this remarkable discovery,
Hulse and Taylor were awarded the Physics Nobel Prize in 1993 [74, 75] and this speed
up the developments of laser interferometric gravitational wave detectors.

1.4.2 Interferometric detectors and the first direct detection of

gravitational waves

1.4.2.1 Interferometric gravitational wave detectors: working principle

Figure 1.2: Demonstration of the basic working principle of laser interferometric
gravitational wave detectors [1].

The working principle of interferometric GW detectors is the same as that of a
Michelson interferometer. As shown in Fig. 1.2, in a Michelson interferometer a beam of
light falls on a half-reflecting surface, called the beam splitter. The light splits in to two,
one part is transmitted and the other part is reflected to the perpendicular direction
of initial propagation as the beam splitter is oriented at 45 degrees with respect to
the propagation of the light ray. Light rays on both the directions travel till the end
mirrors, which is kept at equidistant from the beamsplitter, and reflect back to the
beam spitter. At the beam splitter the two beams recombine to produce minimum
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amplitude (destructive interference) or maximum amplitude (constructive interference)
depending upon the phase difference between the two rays.

If a plane GW passes transverse to the interferometer, one arm stretches and the
other squeezes depending upon the polarization of the incoming wave and relative
orientation of the detector with respect to the source. This differential motion of
the freely suspended end mirrors at each arm of the detector lead to a change in the
interference pattern observed, and this leads to variation in the photo diode output. In
summary, if there is no GW passes through the detector (interferometer) arm lengths
remain unaltered hence the phase shift of the electromagnetic wave (high power lasers)
will not change. In this case, the time difference ∆τ = τx − τy = 0, that is both the
rays take equal time and the photodiode registers no signal if both rays were out of
phase (destructive interference). In the presence of a plane GW passing perpendicular
to the detector, there will be a time difference ∆τ = τx − τy , equal to 2 L

c
h(t), unlike

the previous case. Using the simple relation connecting the time delay to the phase
shift, ∆φ = 2π

λ
∆τ (where λ is the wavelength of the light used), we can write the above

equation in the form as ∆φ = 2π
λ

2 L
c

h(t) and this phase shift will be registered in the
photodetector [76].

As we discussed in Sec. 1.1, the GW strain amplitude from a typical astrophysical
source of gravitational waves is h(t) ∼ 10−21. The question then one can ask is how to
achieve this sensitivity. Simple way would be to increase the arm length, L. This is not
easy to realise it in practice due to various reasons. But by introducing optical cavities
(indicated as Fabry-Perot cavities in Fig. 1.2) and bouncing the laser beam several times
inside this optical cavity the optical path length can be increased without altering the
physical arm length 2. The noise due to photon count in the detector is proportional to
the intensity (number of photons) of the radiation used. Instead of generating very high
power lasers, which again is not practical, power recycling mirrors are used in current
detectors 3. These two will thereby help improve the sensitivity by a factor of almost
∼ 106!

2For current second generation detectors the arm length is increased from a few kilo meters (4km)
to a few thousand kilo meters (1120 km) by bouncing the beam inside the cavity for a few hundred
times (∼ 300)

3The input laser power of a few hundred Watt (200W) is amplified to a few thousand Watt (750kW)
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1.4.2.2 Noise sources for interferometric gravitational wave detectors

Another big challenge to construct the interferometric detectors and hence to detect
a gravitational wave signal was to control all possible noises at different frequency
bands and improve the sensitivity of the detector. The fundamental noise sources to
the interferometric GW detectors are from Newtonian noise (or gravity gradient noise
dominated at lower frequencies, < 10Hz), thermal noise (present mostly at intermediate
frequency region, few hundred Hertz) and the quantum noise which is a combination
of photon shot noise (appear at high frequencies) and radiation pressure noise (which
appears at lower frequencies). Further more there are technical noise sources those can
be controlled by different technological advances.

1.4.3 Direct detection of gravitational waves

Over the past years ground based interferometric detectors were proposed with poten-
tial sensitivity in the frequency range 20Hz to 10kHz targeting gravitational waves of
astrophysical origin. The first generation Laser Interferometric Gravitational Obser-
vatories (LIGO) were functioning until 2010, though there was no gravitational wave
detection [77]. After installing the advanced LIGO detectors [78], the first observing
run started operation in 2015 September with enhanced sensitivity compared to the
initial detectors.

Detection of GWs is a hard task as one needs most sensitive experimental setups
which can achieve an accuracy of the order of ∼ 10−21 as we discussed. The first
direct detection of the gravitational waves from a binary black hole merger (named
as GW150914) event happened on 14 September 2015 at 09:50:45 UTC, in the two
second generation LIGO detectors one in Hanford, and another in Livingston within a
time difference of 6.9+0.5

−0.4 milli seconds [79]. The GW150914 signal was produced by a
binary black hole system with masses ∼ 35M� and ∼ 29M� at a luminosity distance
of ∼ 410Mpc. The signal lasted for 0.2s in the detector band with a frequency chirp
of 35Hz to 250 Hz. This detection happened as a results of huge effort from scientists
working in many different areas including theoretical modelling of astrophysical sources,
parameter estimation, detector characterization etc. For this remarkable discovery
Rainer Weiss Barry C. Barish and Kip S. Thorne awarded the Physics Nobel prize
in 2017. In Fig. 1.3, we show the GW form from GW150914 and it describes the
inspiral-merger-ringdown regimes. Notice that the numerical relativity model in Fig. 1.3
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matches with the reconstructed template within the statistical uncertainty and this
statistical uncertainty in the estimated parameters is shown in shaded region.

Figure 1.3: Observed gravitational wave signal from GW150914 [2].

After this discovery, the LIGO-VIRGO (joined the network of two LIGO detectors
on 1st August 2017) detectors announced another nine binary black hole mergers and
one binary neutron star merger during their first and second observational runsThe one
year long third observation run of the ground based gravitational wave detectors with
improved sensitivity started on April 2019.

1.5 Implications of gravitational wave detection to as-

trophysics, fundamental physics and cosmology

The direct detection of GWs by LIGO and Virgo detectors had profound impact on
our understanding of astrophysics, fundamental physics and cosmology. Here we give a
quick overview of what we learned from these observations.
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1.5.1 Probing the strong field gravity

1.5.1.1 Tests of consistency with GR

We discuss two methods used to test the consistency of the gravitational wave signals
with GR. These model independent null tests were carried out to see if the GR waveform
model indeed matches with the observed signal.

Residual test: Residual test relies on checking the consistency of residual obtained
by subtracting the best fit waveform from the data and see if is is in agreement with the
instrumental noises. One obtain the maximum aposteriori values or the MAP values
characterizing the binary signal from parameter estimation (for the LIGO-VIRGO
analysis LALInference is used for this) and use this to reconstruct the binary waveform.
After removing the best fit from the data, analyse the residual using a transient search
algorithm (for the LIGO-VIRGO analysis Bayeswave [80] is used for this). There will not
be an excess power left if the data and reconstructed signal are consistent with each other.
The transient algorithm compares the signal-to-noise (measure the excess power in the
data) and signal-to-noise (measures the coherence of excess power in various detectors)
Bayes’ factors 1.3 and use this to make statistically meaningful statements about the
available residual. The studies carried till now on the detected events, including the
first GW detection [81] and the results from the first BBH catalog [82], the residual
obtained found to be statistically indistinguishable from the instrumental noise.

Inspiral-merger-ringdown consistency test: Recently, Ghosh et al. proposed a
method [83, 84] to study the consistency of the inspiral-merger-ringdown dynamics of
a binary black hole system to the one predicted by general relativity. The idea here
is to infer the mass and spin parameters of the merger remnant from the post-inspiral
part of the gravitational wave signal and ask if this is consistent with the same as
inferred from the inspiral part of the gravitational wave signal (using the numerical
fitting formula given in [85]). This method allows one to quantify how close the observed
high mass compact binary mergers are to the mergers of binary black holes in general
relativity [2, 15].
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1.5.1.2 Tests related to the source dynamics/Tests of gravity from GW

generation

Constraining the parametrized deviations from general relativistic inspiral-merger-
ringdown waveform models: If the true theory is not GR there will be a change in the
dynamics of the source and will also reflect in the gravitational waveform models which
assume GR as the correct theory. The waveform models which describe the evolution
of the binary system contain coefficients which are determined either analytically or
numerically. These inspiral-merger-ringdown coefficients have particular functional
dependence on the intrinsic and extrinsic parameters of the binary system if GR is the
correct theory. By introducing parametrized deviations to these coefficients one can
test the true nature of the theory [86, 86–91]. These tests have been carried out for all
the detected binary black hole systems so far and there was no deviation found within
the allowed statistical errors [15, 79, 92–94].

Mapping parametrized PN deviation parameters to alternative gravity models: Mea-
surements of deviations of post-Newtonian coefficients at different PN orders can be
used to constrain different alternative theories. There are scalar tensor theories of
gravity, like Brans-Dicke theory, which allow dipole radiation unlike GR.One can put
strong constraints on the free parameters corresponding to the dipole radiation of the
alternative theories of gravity from GW observations [95]. From the binary neutron star
inspiral observed in the second observing run of LIGO-VIRGO detectors, GW170817,
we got constraints on the dipole radiation coefficient assuming the Brans-Dicke scalar
field theory and which is the first of this kind though it is weaker compared to the ones
from pulsar timing measurements [96].

1.5.1.3 Tests of gravity from GW propagation

Constraining the parameters characterizing the modified dispersion relations: GW
propagation in GR is non-dispersive (velocity of propagation is independent of frequency)
and the graviton is massless with a corresponding infinite Compton wavelength. There
are alternative theories of gravity predictions for GWs with dispersion where the local
Lorentz in-variance is not respected [97]. By considering modified dispersion relations,
E 2 = p2 c2 +A pα cα, and obtaining bounds on these modified dispersion parameters A
and α (here A is the dispersion amplitude and has dimension of [Energy]2−α and α is a
dimensionless constant) one might be able to set constraints on the alternative theories
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of gravity models [98–101]. As shown in Ref. [98, 102], one can use GW observations to
get possible constraints on the modified dispersion parameters. The first bound on the
Compton wavelength (which is a finite value for any massive graviton theory) from
GW observations of a BBH signal is λg > 1013km [92] and this has been extended
to more generic cases in subsequent analysis [15, 82, 103]. This bounds on Compton
wavelength will translates to graviton mass, mg ≤ 5× 10−23eV/c2, and this result is a
slightly better compared to the solar system constraints [82].

1.5.2 Binary neutron star detection and gravitational wave

multi-messenger astronomy

The merger of compact binary systems with one of the component being NSs expected
to emit photons and neutrinos with GWs. The LIGO-Virgo detector network observed
a gravitational-wave signal which is consistent with a binary neutron star (BNS) sys-
tem [104]. This was the loudest inspiral signal ever detected. The BNS detection
allowed the possibility of electromagnetic and neutrino follow-ups and a large number
of scientists working for different instruments participated in the effort.

A binary neutron star merger is an expected progenitor for short GRBs, which is a
beamed emission of isotropic equivalent energy of almost ∼ 1049−1051 erg. After ∼ 1.7s
from the detection of GW170817 [104] an associated gamma-ray-burst, GRB 170817A,
detected by Fermi-GBM and this indeed confirms the first link between short-GRBs
and BNS merger. Subsequently, an optical transient (AT 2017gfo), UV, optical, IR,
X-ray and radio radiations were detected after few hours to days of GRB observation
from the extended search in different frequency ranges from various observatories. Also
lead to the identification of source location in the galaxy NGC 4993 which is situated
approximately at a luminosity distance of 40Mpc [105].

Associated with a short-GRB emission, there expected to be energy emission through
neutrinos and this observations could help us understanding the nature of hadronic matter
formed during such relativistic phenomena [106]. The ANTARES [107], IceCube [108],
and Pierre Auger Observatories [109] could carry out an extensive high energy neutrino
search and no evidence for neutrinos found (in the ±500s of data). This null results
was expected if the short GRB emission is off axis to the observer [110].
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1.5.2.1 Measuring the Hubble constant from gravitational wave standard

siren

It was proposed in Ref. [111] that by combining the luminosity distance to the source
inferred purely from the gravitational-wave signal with the recession velocity inferred
from measurements of the redshift using electromagnetic data can be used to obtain the
Hubble constant, which is measure of the expansion rate of the universe. This proposed
idea was studied in the context of compact binary mergers observable by ground based
GW detectors in Ref. [112] and the authors concluded that, as the number of such
detections (where both EM and GW informations obtained from the same source) the
measurement accuracy can be improved dramatically [112]. From the GW luminosity
distance estimation of 43.8+2.9

−6.9Mpc and the host galaxy identification NGC 4993 of
GW170817 the Hubble constant is determined as 70.0+12.0

−8.0 km/sMpc at 68% credible
interval. This result is completely consistent with other existing measurements based
on the Planck observations [113] of temperature and polarization anisotropies of the
cosmic microwave background (CMB) radiation and the SH0ES (Supernovae, H0, for
the Equation of State of dark energy) team of HST (Hubble Space Telescope) [114].

1.5.2.2 Extreme matter physics

Neutron stars are interesting astrophysical sources to study the dense nuclear matter as
any of the current terrestrial experiments fail to reach such high dense regions. The
details about the matter inside a star are encoded in the equation of state, which
describes how the pressure of the star is related to its density. From the accurate
modelling of the equation of state we can derive the mass-radius relations for the star
which can be used to calculate macroscopic properties such as the multipole moment
structure and the tidal deformability parameter of the system. On the other hand, one
can measure the mass, radius, moment of inertia, tidal deformability parameter (etc)
from observations and understand the nature of equation of state of the star [115]. The
gravitational wave data contain informations such as the tidal deformability and the
spin-induced multipole moments of the source, using accurate parameter estimation
techniques and prior knowledge about such physical effects one can infer those and
can be used to constrain different equation of state parameters. As the NS is found to
be slowly spinning the spin-induced effects are less important compared to the tidal
deformation. The first detection of GWs from BNS merger with EM counter parts allow
us to investigate the properties of the nuclear matter in a great detail. For example, in
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Ref. [104] the preliminary estimates on the component masses and the tidal deformability
are given. A more detailed study is carried out to construct the mass-radius relation for
a NS system from the GW observations of tidal deformability parameter is in Ref. [116].
This has been extended by considering astrophysically motivated prior on mass and
spin of the NS can be found in Ref. [117]. Measured values of neutron star radii are
R1 = 10.8+2.0

−1.7km (R1 = 11.91.4
1.4) for the heavier star and R2 = 10.7+2.1

−1.5km (R2 = 11.91.4
1.4)

for the lighter star within the 90% credible interval (with the assumption that the
maximum mass allowed for the NS is less than 1.97M�). These measurements can
be translated to the the equation of state parameter, and the pressure at twice the
nuclear density is bounded as p(ρnuc) = 3.5+2.7

−1.7 × 1034dyn/cm2 with 90% statistical
confidence [117].

1.5.2.3 Constraints on the number of space time dimensions

By a comparison between the distance measurements from GW and EM observations
we can constrain the spacetime dimensions. In many of the higher dimensional theories,
there are predictions for damping of the waveform due to gravitational leakage into
large extra dimensions [118]. This leakage in to extra dimensions will be reflected in
the way GW amplitude scale with the luminosity dustance [93, 119]. By constructing
a phenomenological ansatz for the GW strain amplitude, constraints obtained on the
number of extra dimensions (D=4 in GR) and the screening length (again a characteristic
length scale beyond which the gravity assumed to leak in to extra dimensions) from the
observed luminosity distance from GW170817 and associated distance measure from
the EM observations of the same source [93, 119].

1.5.2.4 Fundamental physics and other astrophysical implications

The observed time offset between the electromagnetic and gravitational waves can be used
constrain on the fractional speed difference between gravitational and electromagnetic
waves. For example, in the case of GW170817 and GRB170817A the time lag was
1.74± 0.05s and this translate to a fractional speed difference of −3× 10−15 ≤ ∆v

vEM
≤

7× 10−16. From the observed temporal delay, the inferred distance to the source and
the expected emission difference (need more number of detections to disentangle the
emission time difference from the relative propagation time for which we need complete
understanding of the emission mechanisms) we can also perform other tests such as
tests of equivalence principle and tests for Lorentz violations [120]. Most importantly
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the combined information from a GW and EM from the same source, similar to the
case with GW170817 and GRB170817A, we will be able to better understand the short
GRB physics and the properties of neutron star EOS [120].

1.6 Future gravitational wave detectors

As we pointed out earlier the advanced LIGO and advanced VIRGO detectors started
the third-observation runs and will be continued till August 2020 and the KAGRA [121]
detector will join in the later part. LIGO-India is a planned second generation detector
placed in India as a part of world wide network of LIGO detectors expected to be
operational by ∼ 2025 [122]. Adding this to the existing LIGO-VIRGO-KAGRA detector
network is expected to increase the detection rate, by increasing the sensitivity and duty
cycle of the network will lead to increased detection confidence, better identification
of parameters, improved sky localization and so on. Three up-gradations of advanced
LIGO are A+ [123, 124], LIGO Voyager [123] and Cosmic Explorer [125]. Though A+

and LIGO Voyager are proposed to be installed at the same site as LIGO, Cosmic
Explorer is a stand alone project at a different location with ten times more sensitivity
than that of advanced LIGO and is expected to be commissioned by 2035 [125] with
a low frequency cut-off down to 5 Hz . Further more, Einstein Telescope is another
proposed third-generation underground detector with sensitivity comparable to that
of LIGO Cosmic Explorer with maximum achievable lower cut-off frequency on earth
(∼ 1Hz).

The sensitivity of ground-based gravitational wave detectors at lower frequencies
is limited by the seismic noise [126, 127]. In order to overcome this and to extend the
gravitational wave frequency spectrum to even lower frequency regions we need detectors
which operate at frequencies less than 1 Hz [7, 128–131]. The space-based gravitational
wave detectors, such as Laser Interferometric Space Antenna (LISA) [130, 132, 133],
DECi-hertz Interferometer Gravitational wave Observatory(DECIGO) [7, 131, 134, 135]
and Big Bang Observer (BBO) [128, 136], will have the capability to probe gravitational
wave frequencies from a few milli-Hz to tens of Hz. Among these, the LISA mission is
already funded and is expected to be operational by 2034 after successfully demonstrating
some of the key technologies it will use, through the LISA Pathfinder mission [130, 132,
133] which was launched in December 2015.
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The Japanese DECIGO mission is designed to bridge the gap between terrestrial GW
detectors and LISA and is expected to operate in the deci-Hz band [7, 131, 134, 135].
Though the DECIGO configuration was initially designed to probe signatures of the
early universe including cosmic acceleration and gravitational wave background from
inflation [134], one can also look for intermediate-mass black hole binaries with masses
of the order of a few (hundred) thousand solar masses [137], along with binary neutron
stars and stellar-mass binary black holes [6, 138]. Currently, the DECIGO configuration
is a proposal whose science potential is being assessed.

Figure 1.4 show the noise spectral densities for different ground and space-based
gravitational wave detectors. Right panel of the same figure shows the expected signal
to noise ratios for a representative system in each band as a function of the total mass
of the system.
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Figure 1.4: Noise power spectral densities for various ground and space-based
gravitational detectors. Adv. LIGO [3] (purple), Cosmic Explorer [4, 5] (CE, blue),
Einstein Telescope [5] (ET-D, green), DECi-Hertz Gravitational wave
observatory [6, 7] (DECIGO, red and orange for two different configurations) and
Laser Interferometric Space Antenna [8] (LISA, black) corresponding SNRs are given
in the right panel. In order to calculate the SNR we choose binaries optimally
oriented at 1Gpc and the total mass ranges varies according to the detector
sensitivities with a mass ratio of 2.

The combined information from different ground and space-based detectors can
be used to improve the parameter estimation accuracy [139–141]. For example, early
inspiral of stellar mass binary black hole mergers like GW150914 will be detectable
in the LISA band and can be used to give alerts to ground based detectors and EM
partner groups [142]. In a similar way, information from the ground-based detections
will help to reduce the threshold SNR for space-based detectors [143]. The impact of
multi-band astronomy has been studied in different contexts [6, 7, 144–146]. In [144], it
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is shown that the constraints on the dipole radiation can be improved by six orders of
magnitude by the joint observations using advanced LIGO and LISA detectors. This has
been extended to a more general case by considering the parameterized tests of GR and
applications to parity-violating gravity, various space-borne GW detector combinations
with Cosmic Explorer and space-borne detectors [145] such as TianQin [147], LISA [146],
B-DECIGO [7] and DECIGO [6].

.

1.7 Topic of the thesis

Recent detections of binary black hole mergers by advanced LIGO and advanced
VIRGO interferometers [148], confirm that black holes (BHs) are no longer just elegant
mathematical entities, but a physical reality [2, 10, 14, 79]. Now we know that BHs do
exist in nature, can form a binary BH system and merge emitting GWs to form a single
BH. The detected signals show excellent agreement with the numerical relativity model
of merger of two Kerr black holes shown in Fig. 1.3, though one can not completely
rule out the possibility of any alternatives to black holes (and neutron stars). One of
the important questions, from a fundamental physics view point, is whether we can
confidently distinguish the mergers of BBHs from that of binaries comprised of exotic
compact objects such as gravastars [149] , boson stars [150] etc, which may mimic many
features of a BBH merger (see also [151, 152] for reviews on possible BH mimickers and
their GW signatures). Studying compact objects composed of exotic (unknown) matter
may help us answer many fundamental physics questions including the strong field tests
of gravity and to propose new theories, physics beyond standard model, quantifying the
existence of horizon and related quantum phenomena, understanding the exact physical
nature of cold dark matter (or existence of axions or any other such particle) and obtain
the correct model for the inflation. Electromagnetic and gravitational wave signatures
of such objects, give us evidence for the existence of such objects, if they exists.

In this thesis, we propose a novel method to test the black hole nature of compact
objects using gravitational wave observations. This test relies on measuring the spin-
induced multipole moment coefficients of the object, which arise due to the spinning
motion of the object and explicitly appear in the PN waveform. We give a brief
introduction to exotic compact objects in Chapter 2, describe this method in Chapter 3
and in Chapter 4, we develop a Bayesian inference based infrastructure to perform this
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analysis on the real gravitational wave events and perform the test on two of the detected
events GW151226 and GW170608. In Chapter 5 we discuss the possible applications of
the test in the context of upcoming GW detectors.
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Chapter 2

Black hole mimickers and tests of

black hole nature

2.1 Introduction

The name black hole mimickers broadly refers to any astrophysical object which can
potentially mimic the observational properties of black holes. These would also include
compact objects with matter which are described by equations of state or fields that are
‘exotic’ and hence referred to as exotic compact objects. Hence throughout the chapter,
we will use the words black hole mimickers and exotic compact objects interchangeably.

In this chapter, we aim to give a general introduction to black hole mimickers (exotic
compact objects) in Sec. 2.2, examples for different black hole mimicker models are given
in Sec. 2.3, different ways of testing the nature of compact objects using gravitational
and electromagnetic wave observations (Sec. 2.4) and we conclude by introducing a new
test which can be used to distinguish black holes from black hole mimickers (Sec. 2.5)
which forms the basis for this thesis.

2.2 Compact objects: ‘conventional’ and ‘exotic’

Compact objects: Death of a star is predominantly determined by its initial mass,
according to our current knowledge of stellar evolution. A compact object is formed
once the nuclear fuel, which keeps the star in equilibrium, is completely consumed or
burned. Depending upon the nature of the force which balances gravity after this stage,
a star may end up as a white dwarf, neutron star or a black hole. In the case of white
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dwarfs, it is the electron degeneracy pressure that balances gravity, neutron degeneracy
pressure balances gravity in the case of neutron stars. When the core of the collapsing
star is so heavy that none of the above can balance gravity, the star ends up as a black
hole. Compactness is a measure of how closely the matter is packed in a compact object
and is defined as C ∼ M/R, where M and R are the mass and radius of the star.

White dwarfs are comparatively less compact compared to neutron stars with a max-
imum allowed mass of 1.4M� (highest observational value found to be ∼ 1.33M� [153])
and radius a few thousand km. Properties of matter constituting neutron stars are still
unknown at highly dense regions. The maximum mass observed for a neutron star is
∼ 2.02M� [154], though there are theoretical models for neutron star with larger masses.
Usually, the compactness of neutron star lies between ∼ 0.001 − 0.2 [155] depending
upon the internal structure. Another important property is the high magnetic field
which may be ∼ 1015Gauss for a neutron star, usually called magnetar.

Black holes: Black holes are characterized by a central singularity (where the physics
is not known) which is covered by a surface of infinite redshift, called event horizon which
acts as a one-way membrane: things can fall in but cannot come out! The event horizon
is a unique property of BHs hence this can be used to distinguish BHs from alternatives
to BHs. In general relativity, all of the black hole’s multipole moments are completely
described by its mass and spin according to the “no-hair” conjecture [156–161] (review
of BHs can be found here [162, 163]). Most of the probes for BH nature focus on
addressing the question whether the multipole moments of the BH nature are solely
characterized by its mass and spin or are there additional fields which play a role (these
fields are referred to as ‘hairs’).

Depending upon the mass range, black holes may be broadly classified into four cate-
gories; sub-solar mass BHs, stellar-mass BHs, intermediate-mass BHs, and supermassive
BHs. Notice that the formation mechanism in each case could be different and may
not follow the usual stellar evolution channels described above. Sub-solar mass BHs
are BHs with masses less than the mass of the sun, M < 1M�. One of the possibilities
of sub-solar mass BH formation suggested is of primordial origin [164]. Also, there are
studies were the sub-solar mass BHs are expected to contribute to a fraction of the total
dark matter content of the universe [165]. Gravitational-wave searches for sub-solar
mass BHs are in progress and yielded no candidate found to date from first and second
observational runs of ground-based detectors [166].
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Stellar-mass BHs are of masses from a few solar mass up to 100s of solar masses. The
masses of detected compact binary systems through gravitational waves, in the source
frame, roughly range between ∼ 7− 80M� [167]. The strongest observational evidence
for their existence has come from the direct GW observations using ground-based
detectors [2, 10, 11, 14, 15, 79, 103, 167]. Their existence was indirectly confirmed by
various EM observations in the last three-four decades, mainly from X-ray binaries in
our galaxy [168].

Intermediate-mass BHs are predicted to have masses of the order of ∼ 102 − 105M�

and their formation mechanism is currently not known completely [169, 170]. Indirect
evidence for IMBHs from electromagnetic observations is promising and also motivate
new proposals for gravitational wave detectors in the corresponding frequency range.
The ultra-luminous X-ray source HLX-1 hosted by galaxy ESO 243-49 is believed to
be an intermediate-mass BH of mass ∼ 500M� [171]. Another observational evidence
for intermediate-mass BH came from the X-ray quasi-periodic oscillations of M82 X-1,
which is the brightest X-ray source in the galaxy M82 [172]. In Ref. [173], authors
demonstrated the existence of an electromagnetically dark black hole in the globular
cluster 47 Tucanae with mass ∼ 2300M� through the observed pulsar acceleration
rates together with N-body simulations. Recent studies [172] support the evidence for
intermediate-mass BHs and motivates them to develop set-ups to probe the number of
such systems to know their formation and evolution.

Supermassive BHs are even more massive and the masses are assumed to be of the
order of 105 − 1010M�. Various electromagnetic observations tell us that there exists
a supermassive black hole of mass ∼ 105 − 1010M� at the center of each galaxy [174–
176]. Sagittarius A∗ is the closest supermassive black hole situated at the center of
our Milky Way galaxy with a mass of ∼ 4× 106M� [177, 178]. Observational evidence
for supermassive black holes (SMBHs) also include the quasar observations from the
Sloan Digital Sky Survey [179], a recent study which combined information from the
Sloan Digital Sky Survey, the Two Micron All Sky Survey, and the Wide-field Infrared
Survey Explorer [180] and the quasar (ULAS J1120+0641) with mass ∼ 2× 109M� at
a redshift of ∼ 7.085 identified by the United Kingdom Infrared Telescope (UKIRT)
Infrared Deep Sky Survey (UKIDSS) Eighth Data Release in 2010 [181], to name a few.
The formation mechanism of such systems is still not completely understood, though
they are proposed to have formed through galaxy mergers [175]. The first-ever image of
a supermassive black hole situated at the center of the elliptic galaxy M87 has been
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produced by the Event Horizon Telescope (EHT). This radio source is situated around
16 Mpc away with a mass of ∼ 6.5× 109M� [176].

2.3 Models for black hole mimickers

Black hole mimickers: As the name indicates black hole mimickers are compact objects,
which can mimic some of the properties of black holes including mass and spin. We will
review below some of the prime candidates for BH mimickers and observational probes
for their existence. We consider two types of black hole mimickers. One where there
are exotic matter or fields present (Sec. 2.3.1) and the other which are parametrized
deformations of black hole (Sec. 2.3.2).

2.3.1 Exotic compact object models

2.3.1.1 Boson stars

Boson stars are compact objects formed by equilibrium configurations of a scalar field
tied up with its own gravity and the gravitational collapse of such a system is prohibited
by Heisenberg uncertainty principle [182]. Boson stars have been introduced in the
literature at different contexts, as dark matter candidates(for example in Ref. [183])
and models for black hole mimickers [184–186] etc. Depending upon the nature of the
scalar field coupling there are mainly three types of boson stars such as mini (minimal)
boson stars [187], solitonic boson [188] stars and massive boson stars [189] as discussed
in Ref. [190]. The minimum mass of the boson particle will differ in each of these cases
and roughly vary from ∼ 10−11eV to ∼ 102G eV . There have been several works on
rotating boson stars [191, 192] (boson stars with spin angular momenta) including the
important work of Ryan et. al. [193] which we discuss later in this chapter. The first
attempt to give a boson star model in Brans-Dicke theory, one of the alternative theories
of gravity, was done in [194]. This detailed study also provides a comparison between
boson star solutions in general relativity and Bans Dicke theory for different scalar field
couplings. This has been extended to general scalar-tensor theories in Ref. [195]. The
existence of equilibrium boson star solutions in the context of gravity theories with
dilaton is studied in Ref. [196].
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Accurate modelling of compact binary systems is very important for GW detection
as well as parameter estimation studies. In this context, it is also important to develop
waveform models for compact binaries composed of black hole mimickers.

The dynamics and GW signatures of the inspiral of binaries consisting of non-
rotating solitonic BSs with fixed compactness are studied in Ref. [197] and the numerical
simulations performed by the authors found that the merger remnant can either be a
non-rotating BS or a BH. A recent study in Ref. [197] extended the work of Ref. [198]
for rotating solitonic BSs also considering different compactness for the stars. The
late-inspiral waveform of the colliding solitonic BS system found to be different from that
of BH unless the initial compactness of the star is close to the BH value. Furthermore,
the peak GW frequency corresponding to a binary BS merger is shown to be shifted
away from that of BNS and BBH mergers. The late ringdown of such mergers is
expected to exhibit physical features such as echoes [199]. Similarly, three-dimensional
head-on collisions and the distinguishable features in the ringdown radiation compared
to that of BBH mergers of mini boson stars are studied by numerically evolving the
field equations [200].

2.3.1.2 Gravastars

Gravitational condensate stars (gravastars, GS) are a class of compact stars proposed
as an alternative to black holes (BHs) [149]. In Ref. [149] authors introduce a five-layer
model for a gravastar with thermodynamic stability. In general, a GS model consists
of an interior de-Sitter region and an exterior Schwarzschild region. The de-Sitter
space-time models a star with negative pressure. The thin shell gravastar model with a
three-layer structure was first proposed by Visser et.al. [201] which is a simpler model
than the original five-layer structure. In other words, the finite thickness wall in the
five-layer model which differentiates the two spacetimes is replaced by an infinitesimally
thin wall in the case of thin shell GS models.

2.3.2 Parametric models of non-Kerr geometry

2.3.2.1 Bumpy black hole models

Black holes have always been test beds for strong-field gravity (See, for example, this
review article [202]). The Kerr black hole spacetime is completely specified by its mass
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and spin. Motivated by the fact that the null tests of black hole nature can be carried
out through constraining the multipolar deviations from Kerr black holes, Collins and
Hughes introduced a new set of objects, non-rotating BHs with a small ’bump’ on
them, called bumpy black holes [203]. The bumpy black hole space-time approaches the
corresponding black hole limit as the bumpiness vanishes hence the multipolar structure
of these class of objects is very close to BHs. The main issues with this model were
resolved in [204] where the authors provided a more general framework for bumpy black
holes with arbitrary spins. The accumulated orbital phase will carry information about
the non-Kerrness of the space-time and this could be measured through experiments.
Here the physical mechanisms by which the bumps are created on a BH geometry could
be due to the presence of some unknown matter. In Ref. [205] authors introduced
waveform models for deformed bumpy black holes as an extension of their numerical
kludge waveform models for extreme mass ratio inspirals [206].

2.3.2.2 Quasi-Kerr BHs

The gravitational waves emitted from a binary system containing a massive central
body and less massive object orbiting will carry information about the space-time of
the central object [207]. If the central object is not a Kerr black hole the measured
quadrupole moment parameter of the system may not be a function of only the mass
and spin of the system. In the quasi-Kerr framework, the quadrupole moment of the
central object is not necessarily that of a Kerr black hole. The deviation parameter
characterizes the non-Kerr nature of the space-time and it takes zero value for Kerr
black holes. The idea was introduced in [208] and extended studies were carried in
Refs. [209–211].

2.3.2.3 Kerr black holes with scalar hair

In Ref. [212] authors obtained a class of solutions of Einstein-Klein Gordon equations.
These asymptotically flat regular black hole solutions can be interpolated to obtain
boson stars as a limiting case. Equilibrium configurations of this set of solutions are
named as Kerr black holes with scalar hair. These proposed models were extended by
many authors in different ways [213–216].
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2.4 Model independent null tests and black hole na-

ture of the object

Modelling mergers of these exotic objects is a hard problem and their direct deployment
for data analysis is not likely to happen in the near future. So a more pragmatic
approach would be to devise tests that are generic and model-independent and are
based on our solid understanding of the binary black hole dynamics. One of the efficient
methods to probe the presence of exotic compact objects is to understand different ways
in which these objects would modify the properties of black holes and study how these
modifications would affect the gravitational waveforms from binary black holes. Ideally,
one would like to have a parametrized deformation of the binary black hole waveform
in GR in terms of some free parameters which characterize these exotic objects. It
is important to devolep methods to measure these parameters through various means
and put constraints on the black hole mimcker models. These tests are often referred
to as “null tests" as the free parameters are zero for binary black holes. In order to
develop such model-independent null tests of black hole mimickers, it is important to
identify those properties which are unique to black holes and trace their imprints on
the gravitational waveform so that we can measure them from observations.

One of the characteristic properties of black holes in the general theory of relativity
is related to the “no-hair” conjecture, which says that all the multipole moments of
a Kerr black hole are completely specified by its mass and spin. This means that, it
is always possible to relate the `th multipole of the Kerr black hole to the mass (M)
and the dimensionless spin parameter (χ = S/M2) as, M` + i S` = M`+1(iχ)` [156–161].
Here M` and S` are the mass- and the current-type multipole moments, respectively.
This property leads to several observational predictions unique to a black hole which
are built-in to the gravitational waveform facilitating tests of black hole nature, some of
which are discussed below.

Even though our main focus is on tests based on gravitational observations, we also
like to mention about the possible tests of BH nature using electromagnetic observations.
As demonstrated in a series of papers the X-ray observations of reflection spectra from
the accretion disc of black holes can be used as a probe to test the nature of the
compact object. The idea is to fit the thermal spectra of the black hole accretion disc
with a known model which will be a function of BH parameters as well as a deviation
parameter. This method is called continuum fitting method [217] and is recently used to
study the distinguishability of boson star accretions from that of black holes [218–221].
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As the spin of the BH is highly correlated with the deviation parameter getting an
accurate fit is not easy unless the BH is highly spinning or there is a very large deviation
from the Kerr nature [222]. Another proposed method to distinguish BHs from other
compact objects is to look for a certain unique feature in the emission spectra such as
the properties of Iron Kα [223–225]. Usually, one expects more wide and broadened lines
from a Kerr BH accretion disc as it involves highly relativistic phenomena. This iron
line method is more efficient compared to the continuum fitting method as in this case
it is easier to get independent measurements of the BH spin parameter and the Kerr
deviation parameter [226, 227]. There have been methods based on the measurements
of quasi-periodic oscillation frequencies [228] and X-ray polarimetry etc. Through the
measurements of radio waves emitted from the supermassive black hole at galactic
centres, one can test the nature of the object. One such test has been demonstrated
using the BH shadow observations [229], the Event Horizon Telescope team recently
achieved the first step towards this goal by imaging the supermassive BH in the galaxy
M87 utilizing the very larger baseline interferometry [230, 231]. Another way is to study
the pulsars in the vicinity of such a supermassive BH and see how much information
about the central BH we can get from these. The inferred mass and spin parameter of
the BH could be used to do a standard test of the Kerr nature.

2.4.1 Gravitational wave based tests of BH mimickers

2.4.1.1 Tidal deformability parameter estimation

The fact that a black hole cannot be tidally deformed, leads to a vanishing tidal Love
number [232, 233]. Using a gravitational wave phasing formula which contains the tidal
Love numbers [234, 235], one can directly measure these parameters from observations
which in turn can be used to constrain the nature of the compact object constituting
the binary system [190, 236, 237]. Measurement of the tidal deformability parameter
from gravitational wave observations for various neutron star models is also studied
in different contexts [234]. Recently, Cardoso et. al. [190] have calculated the tidal
deformability parameters of non-black hole compact objects (including boson stars,
gravastars, wormholes, and other toy models for quantum corrections at the horizon scale)
and have studied the detectability of such parameters using advanced gravitational wave
detectors. In reference [236], authors studied the distinguishability of boson star systems
from black holes and neutron stars by measuring the tidal deformability parameter. A
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rigorous formulation of this test using Bayesian inference [237] has brought the idea
closer to implementation on detected gravitational wave events.

In Ref. [190] authors calculated the tidal deformability parameter for different
varieties of non-spinning boson stars and studied their detectability through gravitational-
wave observations. The tidal deformability of boson stars with solitonic potential and
quartic (minimal boson star) potential are obtained in a more general framework in [238]
and authors find that the solitonic boson stars can be distinguished from black holes and
neutron stars using the gravitational wave measurements of second-generation detectors.
This analysis also shows that in order to distinguish quartic boson stars one needs to
invoke more sensitive gravitational wave detectors such as Einstein Telescope. Table
2 of Maselli et. al. [239] provides a set of coefficients that can be used to obtain the
equation of state independent universal relations connecting the moment of inertia,
quadrupole moment and the tidal deformability parameter of a boson star.

Equation of state independent universal relations and the logarithmic limit to BH
values for thin-shell gravastar models are studied in Ref.[240]. One can also use this to
study the fundamental difference between gravastars and other compact objects.

2.4.1.2 The quasi-normal mode measurements

Another way to test the black hole nature is by using the quasi-normal modes [241] of
the perturbed black hole formed by the merger [242–245]. For a Kerr black hole, all the
quasi-normal modes are characterized by the mass and spin of the black hole according
to the “no-hair” conjecture. Though the waveform models for exotic compact objects are
less developed, there have been various attempts to calculate the quasi-normal modes
of boson stars [246–248] and gravastars [249–251]. These can be used to discern boson
stars and gravastars from black holes.

There have been studies to look into the difference in the quasi-normal modes
emitted by boson stars compared to the BH case [252]. In Ref. [253], authors describe
the possible quasi-normal mode spectra of minimal, massive and solitonic boson stars
under axial and polar perturbations. It was found that the quasi-normal mode spectra
has distinct features and can be used to distinguish black holes and boson stars.

The axial QNMs of a thick shell gravastar are calculated by Chirenti et.al [249]
and for the case of thin shell GSs the QNMs corresponding to the axial and polar
perturbations are studied by Pani et. al [254]. It is found that the QNM structure of a
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GS is entirely different from that of a BH, and hence can be used to distinguish it from
a BH [255].

2.4.1.3 Tidal heating estimation

Measurement of the so-called tidal heating parameter can also be used as a tool to
test the black hole nature. Consider a black hole event horizon surrounded by external
gravitating objects. The rotational energy of this black hole may dissipate gravitationally
due to the tidal disruption of exterior matter [256]. The loss of energy and angular
momentum of a Kerr black hole near the horizon can lead to non-zero values of the
tidal heating parameter. The measured value of the tidal heating parameter will be
zero for any system without an event horizon. The tidal heating effect shows up in
the gravitational wave phasing [257, 258] which helps us to measure this effect from
observations [259] and thereby test the black hole nature of the compact object.

2.4.1.4 From the echoes

It was proposed in Ref. [199] that the late ringdown waves can be used to distinguish
black holes from black hole mimickers. Since the ringdown is a property related to the
photon sphere, horizonless objects with the photon sphere can also exhibit ringdown
modes hence it may also show similar waveform features compared to BH quasi-normal
mode spectrum. On the other hand, the late-time ringdown signal is expected to
eventually show up differences in the observed spectrum, this can be used to rule out
possibilities of alternatives to black holes. In Ref. [199], authors demonstrated the
importance of such tests to probe quantum effects at the horizon scale. This difference
in the gravitational waveform, in the case of (horizonless) exotic compact objects, can
be observed as the repeated damped sinusoidal waves appear at the late-ringdown.
These are called echoes and in Ref. [260] the observable properties including the time
delay between two consecutive echoes is calculated by considering various models for
exotic compact object models. In order to measure echoes from gravitational wave
observations of late-ringdown signal, a template-based search based on Bayesian inference
is developed [261] and is ready to apply for real events.
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2.5 A new method to test the binary black hole nature

using gravitational wave observations

As we pointed out in the previous section, the definition of a Kerr BH is very closely
tied with the “no-hair” conjecture which says that all the properties of a Kerr BH are
completely described by its mass and spin. Tests based on the “no-hair” conjecture
conjecture include quasi-normal mode ringdown analysis [242, 247, 248, 262], extreme
mass ratio inspiraling binary system based analysis [207, 263–267], tidal deformability
parameter estimation etc.

In this thesis, we propose a new method to test the binary black hole nature of
the detected GW event by measuring the spin-induced quadrupole moments of the
binary’s constituents, whose values are unique for Kerr BHs in GR due to the “no-hair”
conjecture. For an isolated Kerr BH, it is well-known that quadrupole moment scalar
is given by Q = −m3 χ2, where m is the mass of the BH and χ is the magnitude of
the dimensionless spin parameter defined as −→χ =

−→
S

m2 (where
−→
S is the spin angular

momentum vector of the BH). For a non-BH compact object, this may be generalized to
Q = −κ m3 χ2, with κ = 1 as the BH limit. Depending on the equation of state, studies
have shown that for neutron stars (NS), κ may range between ' 2–14 [268, 269]), for
boson stars between ' 10–150 [193].

The next higher-order effect, called the spin-induced octupole moment term is related
to the mass and spin of the system as, O = −λM4 χ3 where the coefficient λ take the
value unity for Kerr black holes whereas λ ∼ 4− 30 for neutron stars [270–272]. The
spin-induced multipole moments of many of the black hole mimicker models are also
available. For example, the variation of spin-induced quadrupole and octupole moment
parameters of a specific class of spinning boson star system in the mass-spin parameter
plane is shown respectively in Figs. 4 and 5 of [193]. The κ and λ values for this case
found to be vary between ∼ 10− 150 and ∼ 10− 200 respectively [193].

Refs. [149, 240, 273] discusses the spin-induced multipole moments for thin shell
gravastar models. According to their model, the quadrupole moment of a thin shell
gravastar can be written as (see Eq. (2.11) of Ref.[240]),

QA = χ2
A M3

A +
8

5
BAM3

A, (2.1)
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where MA is the mass of the component of the system and BA is an integration constant.
We used index A to denote the binary constituents. The value of BA depends solely on
the particular GS model chosen and the expression can be found in the appendix C of
Ref. [273], which is shown to be a function of mass, compactness, inner and outer radii,
angular momentum etc of the model chosen. We can rewrite the Eq. (2.1) as,

QA = χ2
A M3

A

(
1 +

8

5

BA

χ2
A

)
(2.2)

The value of
(

1 + 8
5

BA

χ2
A

)
is unity for a Kerr BH and is called the spin-induced

quadrupole moment coefficient. The variation of the spin-induced quadrupole moment
parameter of a thin shell GS model as a function of the inverse of the compactness for
different values of the dimensionless mass parameter is shown in Fig. 7 of [273]. It is
shown that the value can be negative, positive or zero depending upon the value of the
properties of the model chosen, such as the mass, compactness, inner and outer radii,
angular momentum, etc. As the spin-induced quadrupole moment parameter value also
crosses (goes beyond the BH value) the BH value it is not easy to distinguish a GS from
a BH just from the measurement of the spin-induced multipole moment parameters.

We propose to use the inferred values of spin-induced quadrupole and octupole
moment parameters from the gravitational observations of a binary black hole system
to distinguish them from binaries composed of black hole mimickers. As we discussed
in Sec. 1.3, the post-Newtonian waveform carries information about the spin-induced
moments of binary black hole systems. By using various parameter estimation techniques
(Sec. 1.4), we can quantify the precision with which the spin-induced multipole moment
parameters can be measured within the statistical error bars. If we find that the signal
agrees with the black hole value, the bounds (or the width of the posterior distribution)
obtained at that particular case can be mapped to the constraints on the black hole
mimicker model parameters. If we find an offset from the binary black hole value this will
need detailed further investigation. We explore these possibilities in detail in the coming
chapters utilizing the sensitivities of various ground and space-based gravitational wave
detectors.
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Testing the binary black hole nature

using spin-induced multipole moment

measurements

In this chapter, we discuss the details of our proposal to use spin-induced multipole
moment parameters to distinguish black holes from other objects. We also show the
explicit appearance of these parameters in gravitational wave forms in Sec. 3.1. In
Sec. 3.2, we provide a crisp summary of the analysis with details.

3.1 Spin-induced multipole moment terms in the post-

Newtonian waveforms

Evolution of a compact binary system during the inspiral phase is accurately modeled by
the post-Newtonian formalism (see [274] for a review). While sufficiently accurate post-
Newtonian gravitational waveforms (for the purposes of detection and the parameter
estimation) from compact binaries with non-spinning constituents in quasi-circular
orbits were made available as early as early 2000s [275–277], higher order spin effects
were included through a number of recent investigations [278–288]. For our purposes, we
choose to work with a frequency domain waveform where the spins are (anti-) aligned
with respect to the orbital angular momentum [288]. The state-of-the-art frequency
domain waveform for compact binaries with (anti-) aligned spin components incorporates
spin-orbit effects in phasing up to 4PN (leading effect appears at 1.5PN order in the
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phase), spin-spin effects up to 3PN (starting at 2PN) and the leading cubic-spin terms
at 3.5PN. Moreover, the amplitude involves spin effects up to 2PN.

This waveform is a variant of the one that is presented in Ref. [30]. These are
constructed by simply making the dependences on parameters characterising the spin-
induced quadrupole moment (through κs and κa) and spin-induced octupole moment
(through λs and λa) explicit in the waveform, which were set to their respective values
for Kerr BHs while writing the waveform model of Ref. [30]. In this section we list
various pieces of the waveform where such dependences occur.

Let us first recall the schematic expression for the frequency domain amplitude of a
gravitational wave signal, h̃(f ), given in Ref. [30]. 1 This reads,

h̃(f ) =
M2

DL

√
5 π ν

48

4∑
n=0

6∑
k=1

V
n−7/2
k C

(n)
k e i(k ΨSPA(f /k)−π/4) . (3.1)

Here, M , ν and DL denote the total mass, symmetric mass ratio parameter and the
distance to the binary, respectively and the indices n and k denote the PN order and
harmonic number, respectively. The coefficients C(n)

k denote the amplitude corrections
associated with the contribution from kth harmonic at nth PN order (notice that n

takes half integer values as well). The post-Newtonian parameter, Vk , is defined as v=
Vk(f)=(2 M f/k) forthekthharmonic. Related expressions for each of the C(n)

k s can be
found in Ref. [30, 284]. In Appendix A we list the only coefficient which has explicit
dependence on the parameters (κs and κa) and corresponds to the contributions from
the 2nd harmonic at the 2PN order (C(4)

2 ). In addition, ΨSPA represents the phase of
the first harmonic in the frequency domain as obtained under the Stationary Phase
Approximation (SPA) (see sec. VI of Ref. [284] for details on SPA). Schematically the
expression for this phase can be written as follows

ΨSPA(f ) = 2πf tc − φc +

{
3

256 ν v 5
[ψNS + ψSO + ψSS + ψSSS]

}
v=Vk (f )

, (3.2)

where φc denotes the orbital phase at the instant tc of coalescence, ψNS represents the
non-spinning contributions to the phasing. In Eq. 3.2, ψSS and ψSSS denote quadratic
and cubic in spin terms respectively.

1Pre-factor of Eq. 1 of Ref. [30] should be multiplied with a factor 1/
√
ν. We have corrected this in

the Eq. ((15)).
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We provide expressions for coefficients that contain explicit dependence on κs , κa

and λs , λa in Appendix A 5.5 and can be combined to those listed in Ref. [30, 284] to
write the final waveform expression. The spin-induced quadrupole and octupole moment
parameters of the binary system, κs , κa and λs , λa are defined as, κs=1

2
(κ1 + κ2),

κa=1
2

(κ1 − κ2) and λs=1
2

(λ1 + λ2), λa=1
2

(λ1 − λ2). In our notation, κ1 and κ2 (λ1

and λ2) are the spin-induced quadrupole moment (octupole) parameters of the binary
constituents.

As we briefly mentioned earlier, the effect of the leading spin-induced multipole
moment (mass-type quadrupole, M2= −M3 χ2) in the phasing of gravitational waves
from binary black hole systems was first computed in [289] and contributes to the
gravitational wave phase at 2PN order. Here, the symbols M and χ again represent the
mass and dimensionless spin parameter for each binary component while the negative
sign (by convention) indicates that the spin induces oblateness to the black hole.
Post-Newtonian corrections to this at 3PN order has been computed in [282]. The sub-
leading, spin-induced multipole moment (current-type octupole, S3 = −M4 χ3) starts to
contribute to the phase at 3.5PN order and was computed in [283]. Notice, the spin
dependences of the spin-induced multipole moments here: M2(S3) have quadratic (cubic)
dependences on the spin parameter and first appear in the phasing formula at 2PN
(3.5PN) order because these are the orders at which quadratic-in-spin (cubic-in-spin)
terms start to appear in the gravitational wave phase.

Note that the relations for M2 and S3 assume that the binary constituents are black
holes but can be generalized for a non-BH compact object by introducing coefficients
that characterize the degree of deformation. For instance, we can rewrite these relations
as : M2=−κ M3 χ2 and S3 = −λM4 χ3 where the coefficients κ and λ take the value
unity for Kerr black holes whereas they deviate from unity for other types of compact
objects including exotic alternatives to black holes. For example, the values of κ and λ
for neutron stars, depending upon the neutron star equation of state and mass, range
between ∼ 2 − 14 and ∼ 4 − 30, respectively [270–272]. The spin-induced multipole
moments of a few exotic compact objects are also computed in the literature: for a
particular class of spinning boson star system κ (λ) can take values between ∼ 10− 150

(∼ 10− 200) [193]. Variation of quadrupole and octupole moment parameters in the
boson star mass-spin parameter plane is shown respectively in Figs. 4 and 5 of [193].
Similar computations have been done for gravastars, see for instance Refs. [149, 240, 273]
which discuss spin-induced multipole moments for thin shell gravastar models. If the
observed values of spin-induced quadrupole moments are offset from black hole value,
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Figure 3.1: Errors in measuring κs as a function of binary’s total mass for three
different mass ratio cases (left panel) and for different spin configurations (right panel)
for advanced LIGO. The values of dimensionless spin parameters (χ1,χ2) are fixed at
0.9 and 0.8 for the left panel plots where as mass ratio (q) is fixed to be 1.2 for the
plots in the right panel. Both panels assume a fixed inclination angle of the binary,
ι = π

3 . The binary’s location and other angular parameters are chosen in a way that
produces an observed signal to noise ratio of 10.

it may be interpreted as an evidence of an exotic compact object. On the other hand,
if the posterior distribution for the observed value is found to be peaking at 1 with
a width, the corresponding error bars can be translated into an upper bound on the
allowed value of the parameter for the particular system.

In this chapter, we compute the projected accuracies on the measurement of the spin-
induced quadrupole moment coefficient of the binary system using the semi-analytical
parameter estimation technique of the Fisher information matrix in order to demonstrate
the method follows with the detailed results, see Sec. 1.3.2 for more details about the
Fisher matrix analysis.

3.2 Demonstration of the method

3.2.1 Details of the analysis

In the PN model of compact binaries, the spin-induced quadrupole moment terms
appear at the same order where the leading order quadratic-in-spin terms appear (note
Q ∝ χ2), which is second PN order [34]. The parameter, κ, that characterises the
magnitude of the spin-induced quadrupole moment (given the nature of the object), for
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each binary component, can be tagged as κ1 and κ2, following the notation of [290].2 If
we re-write the waveforms in terms of the symmetric and anti-symmetric combinations
of κ1 and κ2 given by κs = (κ1 + κ2)/2 and κa = (κ1 − κ2)/2, respectively, then a BBH
system is specified by κs = 1,κa = 0. This suggests, if we can accurately measure κs

and κa to be 1 and 0, respectively, we have established that the detected compact binary
is a BBH.

However, note that κs and κa are highly degenerate parameters whose simultaneous
extraction turns out to yield almost no constraint on them. Hence, we resort to a
method where we fix κa to be 0, as expected for a Kerr BBH, and then calculate the
error bars associated with the measurement of κs from GW observations. The aim here
is to see how well can we estimate κs around the true value of 1 (for a BBH) and hence
confirm that the observed system is indeed a BBH. These error bars can be interpreted
as upper bounds on the value of κs allowed for exotic compact objects. In this sense, the
proposed test is a “null-test" of the BBH nature, where, observations would constrain
the allowed range of deviations of κs from the BBH value. Moreover, since the spirit of
the test relies on the fact that quadrupole moments of BHs in a BBH system would
depend only on the mass and the spin, the proposed test can be regarded as the “no-hair”
theorem test for the BBHs.

We wish to clarify that the error bars here refers to the width of the measured
distribution of κs at a fixed confidence level (in our case 1σ). Depending on the masses
and spins of the system, this width may be much larger than 1, in which case this may
be better interpreted as an upper bound on the allowed value of κs for the given system.
In most cases we have studied (in context of advanced LIGO), it is less than ∼ 20 (see
Figs 1 and 2). Since κs for interesting BH mimickers such as Boson stars can be as
high as 150, the proposed method will be able to put stringent, model independent
constraints on the parameter space of BH mimickers. It should also be noted that,
though we have posed this as a null test, the proposed test can detect the signatures of
exotic compact objects through a shift in the peak of the measured distribution away
from 1, as is expected for BH mimickers.

In general, if we parametrize the deviation of κ by κ = 1 + α (where α is the
deformation parameter which is 0 for BHs), and assume that the constituents of the
binary are of identical types (α1 = α2) then, again, showing κs = 1 is equivalent to
showing the BBH nature of the compact binary system. This is because we again have

2Throughout the thesis, suffix 1 refers to the heavier compact binary component and 2 the lighter
one.
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κa ≡ 0, which is consistent with our original assumption for BBHs. Note that even if
the detected compact binary constitute of two stars which have κ 6= 1, the proposed
method will be sensitive in detecting them as they will add to the systematic offset in
the measured value of κs from 1. Hence our proposal to measure only κs should work
for compact binaries with any combination of compact objects when applied to the real
data.

Here we use a waveform which is 2PN in amplitude and 4PN 3 in phase and spins of
the two compact objects are considered to be along or opposite to the orbital angular
momentum vector of the binary as explained in Sec. 3.1. The spin-induced quadrupole
moment coefficient appears at 2PN, 3PN and 3.5PN orders. The spin-induced octupole
moment coefficient which appear at 3.5PN is set to 1, the BH value as we focus only on
quadrupole here. See Appendix 5.5 for more details.

3.2.2 Estimation of κs

We use the semi-analytical parameter estimation technique based on the Fisher informa-
tion matrix formalism [291] to deduce typical accuracies with which κs may be estimated
from GW observations. Fisher information matrix approach allows us to calculate the
the widths of the posterior distribution of various parameters for Gaussian noise and in
the limit of high signal to noise ratio (SNR) (see [292] for detailed discussion on the
possible caveats). Unlike previous works with PN waveforms which have sub-dominant
modes (e.g. [293, 294]), we truncate the waveforms at twice the orbital frequency of the
binary when it reaches the inner-most stable circular orbit (2FISCO) as opposed to the
choice of kFISCO, where k is the maximum number of harmonics of the orbital phase
present in the waveform. Here, the ISCO frequency is computed using numerical fitting
formulae listed in Eqs. (3.7)-(3.8) of [295, 296]. By doing so we hope to control the
systematics due to the neglect of merger and ringdown. Though much less realistic than
numerical methods based on algorithms such as Markov chain Monte-Carlo (MCMC),
the semi-analytic method used here is significantly inexpensive in terms of computational
time and is expected to match with the predictions of numerical methods in the high
SNR limit [297]. However, we caution that the errors we quote here should be taken
as a typical order of magnitude of the expected errors which will be quantified in the
future with MCMC investigations.

3Note that the phasing formula at the 4PN only includes spin-orbit tail terms and hence is only
partial. See a related discussion in Ref. [30]
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Figure 3.2: Two dimensional error contours indicating the measurability of κs in the
χ1 − χ2 plane for two representative binary systems: (5, 4)M� (left panel) and
(10, 9)M� (right panel) for advanced LIGO sensitivity. The inclination angle of the
binary is chosen to a value of π/3 and the source is located and oriented in such a
way that it produces a signal-to-noise ratio of 10 at the detector.

For every system of interest, we construct a Fisher information matrix, using the wave-
form model discussed above for the set of parameters {tc ,φc , DL, ι,M, δ,χ1,χ2,κs} which
describe the signal. Here, tc and φc denote time and phase of the waveform at coalescence,
two mass parameters;M = (m1m2)3/5/(m1 + m2)2/5 and δ = |m1 −m2|/(m1 + m2), are
known as the chirp mass and difference mass-ratio of the binary; parameters (χ1,χ2)

denote the dimensionless spins of the binary components; finally, DL and ι are the
luminosity distance and the inclination angle of the binary, respectively. We consider
the problem from a single detector stand point, and hence do not include the angles
which describe the source location in the set of parameters. We compute the lower
bound on the errors of each parameters (Cramer-Rao bound) by taking the square root
of the diagonal values of the inverse of the 9× 9 Fisher information matrix (co-variance
matrix). These errors are calculated for different masses and spins of the compact
binary systems as well as for different inclination angles (ι). We consider the sources to
be located and oriented in such a way that it produces an SNR of 10 at the detector.
Projected advanced LIGO noise PSD [52] is used to compute the errors. The 1σ error
bars on κs (with a peak at 1) assumes κa = 0, which is the case for Kerr BBHs. From a
GW event, if we find that the posterior distribution for κs is offset from 1, it may be
taken as a signature for at least one of the binary component to be a non-BH object.
Throughout the paper we quote errors in the measurement of parameters characterising
the spin-induced effects. However, as mentioned earlier, for many parts of the parameter
space we find that errors are larger than 100% for which the quoted errors should be
considered as ‘bounds’ on the parameter in question.
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3.2.3 Results and Discussions

The dependencies of the errors (for a fixed SNR of 10) in measuring κs as a function
of the total mass, for few mass ratio cases (left panel) and spin configurations for a
near-equal mass system (right panel) for advanced LIGO sensitivity are shown in Fig. 3.1.
This clearly shows that the proposed test works very well for highly spinning, near equal
mass systems. Evidently, the observed improvement for rapidly spinning systems can
be attributed to the large spin-induced quadrupole moment they possess. In addition,
for nearly equal mass systems, the best estimates of κs come from compact binaries in
which the spins of both components are aligned w.r.t. the orbital angular momentum
vector of the binary and the worst estimates are for those cases where the component
spins are anti-aligned w.r.t. the orbital angular momentum. The decrease in the errors
with mass ratio may be attributed to the additional mass ratio and inclination angle
dependences that amplitude corrections bring in, which affect the correlation of κs with
other parameters (especially spins) in a non-trivial way leading to the observed trend.
On the other hand, the dependence of the errors on the spin orientation is due to its
effects on the upper cut-off frequency. The figure shows that even with a moderate
SNR of 10, the proposed test works very well for a number of mass ratio and spin
configurations, where the best cases have ∆κs < 0.5 (50%). It is worth recalling that
the allowed values of κs for BBH mimickers, such as binaries involving boson stars,
can be as high as 150. Hence the expected bounds are capable of putting stringent
constraints on those models.

Figure 3.2 displays the dependence of the errors of κs on the component spins for
two representative stellar mass compact binaries with component masses (5, 4)M� and
(10, 9)M�. Results are very promising and show that for dimensionless spins larger than
0.5, the errors in estimating κs is smaller than ∼ 5 in both the cases. This would mean
that the proposed test could be effective in certain cases even with moderate spins.

Since the GW detectors are poised to observe tens to hundreds of BBH mergers in
the coming years, we also have the interesting possibility of combining the constraints
from these individual observations. If there are N events for which the test yields
a meaningful bounds on κs , the resulting bound combining all the N events would
be better by ∼

√
N . Hence the combined posterior of about 100 events, on the null

hypothesis, may narrow down the constraints on κs by a factor 10.

Possible constraints on κs from space-based detectors: With the recent
success of LISA pathfinder mission [298], there is renewed interest in pursuing a GW
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Figure 3.3: Projected constraints from GW observations of supermassive BBH
(SMBBH) mergers by LISA detector as a function of the component spins for two
representative SMBBH configurations, (5× 106, 106)M� (left panel) and (107, 106)M�
(right panel), located at 3 Gpc. The inclination angle of the binary is chosen to a
value of π/3.

detector in space with low frequency sensitivity, capable of observing supermassive
BBH (SMBBH) mergers. Towards this goal, we extend our study to the case of low
frequency space based detectors like LISA and projected constraints possible on κs from
them. The results are shown in Fig. 3.3 which uses the noise PSD of Ref. [8]. The
SMBBH system is assumed to be at a luminosity distance of 3 Gpc. We find that the
LISA observations of SMBBH mergers can very accurately constrain the κs parameter
and hence confirm the BBH nature of the observed sources, tightly constraining any
alternatives to BBHs. It should be clear from Fig. 3.3 that errors in measuring κs are
smaller than 10% for a number of configurations with moderate spins–making the test
an extremely deep probe of any possible deviation from BBH nature. These results
show how LISA can be a very sensitive probe of fundamental physics.

Possible constraints on BH mimickers: Since boson stars can have κ between
∼ 10− 150 [193], binary systems of boson stars may have κs in the range ∼ 10− 150.
This allowed range lies well within the reach of the proposed test. Recently for slowly
rotating thin shell gravastars, Ref. [299] showed that the spin-induced quadrupole can
take a wide range of values depending on the specifics of the model (see Fig. 7 of
[299]). This range includes κ = 1, the BH value, too. Indeed, if κGS = 1, our test
will not be able to distinguish it from a BH. Except for this very fine-tuned scenario,
the projected bounds from the proposed test might significantly help to constrain the
allowed parameter space of gravastars and can influence the theoretical developments
in the field. Details of the bounds possible on specific BH mimicker models will be
reported elsewhere [300].
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3.3 Conclusions

Spin-induced multipole moment parameters explicitly appear in the post-Newtonian
waveforms, which models inspiralling compact binaries, can be used test the black hole
nature of the compact object using gravitational waves. Using Fisher information matrix
analysis we can estimate the expected upper bounds on the spin-induced quadrupole
moment parameters as they explicitly appear in the post-Newtonian waveform models.
In chapter 5 we will show the implications of this test binary black hole systems
which are observable by third generation gravitational wave detectors and space-based
gravitational wave detectors.

We note that the proposed test may not be very sensitive in distinguishing a BH
from a BH mimicker in a NS-BH system. This is because the neutron stars are expected
to have small spins (≤ 0.05) for which spin-induced quadrupole would be very small.
Moreover, since NS are expected to have κ value in the range 2 − 14, very accurate
estimation of the κ parameters of both the binary components is necessary to make
the above distinction. This may be possible only with the future generation of GW
detectors.

There are some effects which can potentially contaminate the effectiveness of the
proposed test. Because the compact objects in binaries are, strictly speaking, not
isolated, the “no-hair” conjecture holds only approximately due to which there can
be systematic effects which may affect the test (see Ref. [301] for a discussion on this
aspect). Further, if the BHs are charged, then the resulting values of κ will be offset
from the Kerr value. Lastly, the choice of upper cut-off frequency may be different from
ours if the object has structure and hence can cause systematic errors in our estimates.
These issues need more careful examination which will be carried out in the future.

We conclude by noting that, once implemented in a Bayesian framework, this
proposal can be used to represent every detected compact binary system as contours
in the κ1 − κ2 space. Using multiple observations, the joint posteriors can tighten
the bounds from this proposed null test, potentially constraining the parameter space
allowed for non-BH compact objects. Inclusion of precessional features in the waveform
and incorporating this effect into effective one body waveforms or phenomenological
waveforms, which capture merger and ringdown phases as well, are likely to yield tighter
constraints and will be explored in the later chapters.
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Chapter 4

Application of the method to real

gravitational wave events

Here, we present a Bayesian framework to carry out the tests of BH nature where we
measure the symmetric combination of individual spin-induced quadrupole moment
parameters fixing the anti-symmetric combination to be zero. The analysis is restricted
to the inspiral part of the signal as the spin-induced deformations are not modelled in
the post-inspiral regime. We perform detailed simulations to investigate the applicability
of this method for compact binaries of different masses and spins and also explore
various degeneracies in the parameter space which can affect this test.

We then apply this method to the gravitational wave events, GW151226 and
GW170608 detected during the first and second observing runs of Advanced LIGO and
Advanced Virgo detectors. We find the two events to be consistent with binary black
hole mergers in general relativity. By combining information from several more of such
events in future, this method can be used to set constraints on the black hole nature
of the population of compact binaries that are detected by the Advanced LIGO and
Advanced Virgo detectors.

4.1 Introduction

In Chapter 3, we proposed a new method to distinguish between binary black holes
and binary black hole mimickers by measuring the spin-induced multipole moments
of the compact objects.This Fisher matrix study carried out in chapter 3, explored
the accuracy with which the spin-induced quadrupole moment parameters can be
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measured for non-precessing binaries with various masses and spins. This test was
performed with a post-Newtonian waveform with 4PN (partial) phase corrections
and 2PN amplitude corrections and considered a one-parameter deformation of the
binary black hole waveforms parametrized by the symmetric combination defined by
κs = 1

2
(κ1 + κ2), where κ1,2 denote the spin-induced quadrupole moment parameters of

the binary constituents. The study showed that with the second generation (2G) ground-
based detectors, the spin-induced quadrupole moment parameters can be measured with
reasonable accuracy for highly spinning and nearly equal mass binaries with aligned
spin orientations.

In this chapter, we implement and demonstrate the method given in chapter 3(also
[302]) within the framework of Bayesian inference and perform tests of binary black hole
nature of the LIGO-Virgo detected binary black hole events. Our method uses binary
black hole waveforms with parametrized deformations on the spin-induced quadrupole
moment coefficients κ, defined as κ = 1 + δκ where the parametrized deformations
(labeled as δκ) represents the deviations from binary black hole nature. We make use
of the LALInference [12, 303] library to measure the parameterized deformations δκ
of compact binaries which can be considered as the bounds on their departures from
binary black hole natures. Our method also includes estimation of Bayes factors to
perform Bayesian model selection between binary black hole models and black hole
mimicker models.

We perform detailed studies to demonstrate the method using simulated GW signals
(injections) which include those of various masses and spins. We investigate in detail
about various degeneracies in the parameter space and associated systematics in the
estimated parameters, which may often restrict the applicability of this test. Finally,
we apply this method on the LIGO-Virgo detected binary black holes GW151226 and
GW170608 and obtain constraints on their BH natures.

The rest of this chapter is organized as follows. In Section 4.2, we discuss the
waveform model used in this study and give a brief overview of Bayesian inference for
parameter estimation and model selection. Section 4.3 covers our detailed simulation
studies and results, and in section 4.4, we present the constraints obtained from the
real events GW151226 and GW170608.
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4.2 Method

4.2.1 The waveform model

In frequency domain, the gravitational wave signal from compact binary inspirals in the
detector frame can be schematically written as,

h̃(f ) = C A(f ) eiψ(f ), (4.1)

where, ψ(f ) is the phase and A(f ) is the amplitude of the gravitational wave signal
which is given by ∼ D−1

L M
5/6
c f −7/6 where Mc is the chirp mass, which is related to

individual masses m1 and m2 as, Mc= (m1 m2)3/5

(m1+m2)1/5 , and DL is the luminosity distance to the
source. The factor C carries the antenna response of the interferometers as a function of
the source location and orientation parameters.

The orbital evolution of the inspiralling binary is largely encoded in the phasing
formula and appears in terms of the masses and spins of the binary 1. Due to the recent
developments in the post-Newtonian modeling of compact binaries [27], the phasing
formula for the inspiralling binary has been computed accurately up to 3.5PN order
[46, 48, 274, 278–283, 285–288, 304, 305].

This phasing formula accounts for the higher-order spin corrections such as spin-orbit
interactions (at 1.5PN, 2PN, 3PN and 3.5PN orders) and spin-spin interactions (at 2PN
and 3PN orders).

Since the spin-induced quadrupole moment parameter is unity for Kerr BHs, the
waveforms which are particularly developed for binary black hole systems a priori assume
the value unity. However, for this study, since our interest is in those binary systems for
which κ departs from unity, we re-write the Eqn. Q = −κχ2 m3 in the following form,

Q = −(1 + δκ)χ2 m3, (4.2)

where δκ is the parametrized departure of κ from unity. Hence δκ = 0 is the BH limit and
non-zero δκ corresponds to non-BH objects. Our proposal is to independently measure
δκ and use the measurement to put possible constraints on the allowed parameter space
of BH mimicker models from observed gravitational wave events.

1We have not considered the effects due to orbital eccentricity, tidal deformations due to the presence
of external gravitational field etc. in the waveform.
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For this study, we use the IMRPhenomPv2 [306] waveform approximant which is avail-
able in LSC Algorithm Library, by incorporating into it, the parametrized deformations
shown in Eq. (4.2). IMRPhenomPv2 is a frequency domain inspiral-merger-ringdown
waveform model whose inspiral part of the phasing agrees with the PN phasing and
the merger-ringdown parts are obtained by calibrating to the numerical-relativity wave-
forms [305–309]. These numerical-relativity waveforms have been computed by assuming
binary black hole nature (ie, δκs = 0) by default. Therefore the merger and ringdown
phases of the IMRPhenomPv2 do not account for the κ effects hence the analytical
parametrization described in Eq. (4.2) is not expected to be valid once the binary enters
into the merger regime of the evolution. To avoid any systematic biases due to this, we
truncate our analysis at the inspiral-to-merger transition frequency of the IMRPhenomPv2
defined by fupper = 0.018/M , where M is the total mass of the system [13]. As investi-
gated in Ref. [83], we expect negligible amount of spectral leakage effects due to this
sharp cut-off.

4.2.2 Choice of test parameters

In the most general case, each compact object in the binary can have independent
spin-induced quadrupole moments κ1 and κ2 which are different from the Kerr value of
unity. Hence we can parametrize a potential deviation of the BH nature by introducing
two independent deformation parameters δκ1 and δκ2 given by κ1,2 = 1 + δκ1,2. Due
to the strong degeneracy between δκ1,2 in the gravitational waveform, simultaneous
measurement of the two would yield very weak constraints [302, 310].

Hence one may resort to an alternative approach where one of the linear combinations
of the δκ1,2 parameters is estimated from the data. Following [302], we consider the
symmetric combination δκs = 1

2
(δκ1+δκ2) as the parameter which captures the deviation

from binary black hole nature and estimates the associated error bars when the anti-
symmetric combination is zero (δκ1 = δκ2). Though restrictive, this does not weaken
the proposed null test because a break down of this assumption is also likely to lead to
a shift of the peak of the posterior of δκs away from zero which is what we look for as
evidence for the presence of black hole mimickers.
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4.2.3 Overview of Bayesian inference

Following the brief review of Bayesian inference for gravitational wave parameter
estimation and model selection provided in Sec. 1.4, here we summarise the technical
details keeping the present context of testing the binary black hole nature in mind.

To test the binary black hole nature of the compact binaries, we define the following
two models:

1. The binary black hole model HBH which reads as “The source of the gravitational
wave signal is binary black holes in general relativity”. For this model, the waveform
assumes κs to be unity (or δκs = 0) and the set of parameters defining this model
(i.e., binary black hole parameters) is denoted as

−→
θ BH.

2. The non-BH model Hnon−BH which reads as “The source of the gravitational
wave signal is a binary of non-BH compact objects aka BH mimickers”. The
waveform for this model allows κs to deviate from unity. Therefore we use δκs

as a free parameter and the set of parameters defining this model is given as
−→
θ NBH = {

−→
θ BH, δκs}.
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Figure 4.1: Posterior distributions on δκs for a binary systems with total mass
15M� and mass ratio 1 (top row) and 2 (bottom row) for different spin magnitudes of
(0.2, 0.1), (0.4, 0.3), ( 0.6, 0.3) and ( 0.9, 0.8) from left to right in each row. Binaries
are assumed to be optimally oriented at a luminosity distance of 400 Mpc. Different
colours represent different injected spin orientations: both spins aligned to the orbital
angular momentum (light blue) and both spins anti-aligned to the orbital angular
momentum (orange).
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The one-dimensional posterior for δκs parameter can be obtained by marginalizing
the multi-dimensional posterior over the other parameters, i.e.,

P(δκs |Hnon−BH , d) =

∫
P
(
{
−→
θ BH, δκs}|Hnon−BH , d

)
d
−→
θ BH, (4.3)

and the 90% credible intervals on δκs are obtained as the shortest interval (δκl
s , δκr

s)

which contains 90% of the posterior probability distribution, i.e.,∫ δκr
s

δκl
s

P(δκs |Hnon−BH , d) dδκs ∼ 0.9. (4.4)

To perform model selection between the BH and non-BH models, we compute the
Bayes factor between Hnon−BH and HBH as follows,

Bgener ic
BH =

Z2

Z1
, (4.5)

which quantifies how well the data favors the BH mimicker hypothesis Hnon−BH over the
BH hypothesis HBH . When there is no prior preference for one model over the other,
then Bayes factor is same as the odds ratio between the two models (Odds ratio is defined
as the ratio of posterior probabilities of the two models i.e., P(Hnon−BH |d)/P(HBH |d)).
Following definition of evidence in Eq. (1.15), the Bayes factor in Eq. (4.5) can be
written as,

Bgener ic
BH =

∫
P(
−→
θ NBH|Hnon−BH) P(d |

−→
θ NBH,Hnon−BH)d

−→
θ BH dδκs∫

P(
−→
θ BH|HBH) P(d |

−→
θ BH,HBH) d

−→
θ BH

. (4.6)

For both parameter estimation as well as model selection studies in this chapter,
we use LALInference [12] which is a Bayesian inference package available in the LSC
Algorithm Library [12, 303]. LALInference makes use of stochastic sampling algorithms
such as Nested Sampling [64], Markov Chain Monte Carlo (MCMC) sampling [65–67]
etc. and we use Nested Sampling algorithm for the analysis in this study.

4.3 Studies using simulated data and results

In this section, we perform detailed studies using simulated data to assess the efficiency of
the proposed method to distinguish between binary black holes and binaries comprising
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of black hole mimickers. The aim is primarily to quantify the bounds on the δκs

parameter as a function of the source parameters of the expected gravitational wave
signal. We also present the Bayes factors between black hole mimickers and black hole
models as a function of δκs .

4.3.1 Details of simulations

Masses: We choose binary systems with the total mass M = 15M� in the detector
frame 2 and mass ratios q = 1 and q = 2 as representative cases. The masses are chosen
such that they ensure the signals have a significant amount of inspiral in the detector
band as the parametrization we employ is in the inspiral part of the waveform.

Spins: Four combinations of component spins (dimensionless spin magnitudes) are
used: (0.2, 0.1), (0.4, 0.3), (0.6, 0.3) and (0.9, 0.8) which represent low, moderate, and
high spins, respectively here the heavier BH in the binary always assumed to be highly
spinning compared to the lower mass BH. Each component spin can be either aligned or
anti-aligned with respect to the orbital angular momentum vector. Therefore, for each
binary we consider four possible spin configurations: both are aligned, the heavier BH
spin is aligned but the lighter BH spin is anti-aligned, the heavier BH spin is anti-aligned
but the lighter BH spin is aligned and both BH spins are anti-aligned.

δκs parameter: Binary black hole injections are generated with δκs=0 while non-
BH injections are generated by choosing δκs in the range [-40, 40]. The non-BH injections
are used to compute the Bayes factors between the non-BH and BH hypotheses.

Extrinsic parameters: We choose a fixed distance of 400 Mpc for all the systems
which is broadly motivated by the typical distances of several binary black hole mergers
during the first two observing runs of Advanced LIGO and Advanced Virgo. For all
the systems above, the sky-location and orientation are chosen in such a way that the
optimal SNR for the detector network is highest for a given source with fixed distance
and inclination. Both sky-location and orientation of the source can affect our estimates
of δκs only through the signal-to-noise ratio.

Prior choices: We use prior on δκs to be uniform in [-200,200]. This range includes
the spin-induced quadrupole moment values predicted for various binary black hole
mimicker models [193, 273]. Priors on the dimensionless spin parameters (component

2Total mass of M = 15M� in the detector frame will corresponds to M ∼ 13.8M� in the source
frame if we assume the luminosity distance to source to be 400 Mpc.
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spins) are chosen such that their magnitudes are uniform in [0, 1] and their directions
are isotropically distributed. Component mass priors are uniform in [4, 100]M�. Further,
all the injections are non-precessing (i.e., aligned or anti-aligned spins) whereas the
recovery waveform models account for precession effects.

Network configuration: Throughout our studies, we consider a three-detector
network (HLV) which includes two advanced LIGO detectors at Hanford (H) and
Livingston (L) [311–313] and advanced Virgo detector (V) [314, 315], assuming both
LIGO and Virgo at their design sensitivities given by references [316] and [314, 317],
respectively.

Zero-noise injections: Injections are generated using the lalsim-inspiral library
available in the LSC Algorithm Library [303] with IMRPhenomPv2 as the waveform
approximant. For all the injections, we assume noise realizations to be zero (zero-
noise injections) in order to avoid biases in the parameter estimates introduced by a
particular noise realization. Results from a zero-noise realization is equivalent to results
averaged over many realizations of zero-mean random noise. A noise realization is not
to be confused with the noise PSD Sn(f ) which appears in the likelihood integral (see
Eq. (1.14)) which is always used while computing the relevant quantities.

Other details: For the LALInference analysis, we use a sensitive lower cut-off
frequency of flower =20Hz for all three detectors. The upper cut-off frequency fupper of
the integral in Eq. (1.14) is chosen as the inspiral-to-merger transition frequency of the
IMRPhenomPv2 waveform which is related to the total mass of the system through the
relation M fupper = 0.018 [13], as described earlier.

4.3.2 Bounds on δκs parameter

Fig. 4.1 shows the posterior probability distributions of δκs parameter obtained from the
various simulations. The first row corresponds to component masses (7.5, 7.5)M� (mass
ratio = 1) and the second row corresponds to component masses (10, 5)M� (mass ratio
= 2). In each row, the four different columns correspond to four spin magnitudes (0.2,
0.1), ( 0.4, 0.3), (0.6, 0.3) and (0.9, 0.8) from left to right. The different colors represent
different injected spin orientations: both the spins aligned (light blue) and both spins
anti-aligned (orange) to the orbital angular momentum axis. The dashed vertical lines
are the 90% credible bounds following the respective colors of the histograms. Recall
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Figure 4.2: Left: The 90% bounds on the spin-induced quadrupole moment
parameter (δκs) given in Eq. (4.4) as a function of the injected values of effective spin
parameter (see Eq. (4.7)). All the injections are compact binary inspirals with fixed
total mass of 15M� while varying the mass ratio, spin magnitudes and orientations
which results in different values of effective spin parameter. Right: Figure showing
the degenerate regions in the non-BH parameter space (δκs − χeff) for binary black
hole injections with two different spin orientations aligned (0.6, 0.3) and anti-aligned
(-0.6, -0.3). The light blue and orange represent aligned and anti-aligned cases
respectively and the injected parameters are marked by black stars. The scattered
points show the region at which the non-BH waveform has a very high overlap
(O > 0.995) with the BH injection(s) (See Eq. (4.8)).

that the bounds are estimated as the highest density intervals of the posteriors as defined
in Eq. (4.4).

It is evident from Fig. 4.1 that the bounds on δκs are stronger when the spin
magnitudes are larger (see the panels from left to right together with their narrowing
axis range). This is expected because, for larger spin magnitudes, the waveform has
stronger signatures of spin-induced quadrupole moments (see Eq. (4.2)) which in turn
improves the measurement.

Though all the posteriors in Fig. 4.1 peak at their injected values (δκs = 0), we notice
that there is skewness in all the posteriors about their injected values. This skewness
gets mirror-reflected when the spin orientation is reversed. In other words, comparing
the light blue and orange histograms in each panel, one notices that the longer tail for
light blue is towards left-hand side while for orange, it is towards the right-hand side.
This indicates that our ability to constrain the non-BH nature is different for aligned
and anti-aligned spin orientations. For aligned cases, the type of non-BH nature with
δκs > 0 (such as binaries of boson stars) can be better constrained than the type of
non-BH nature with δκs < 0 (such as binaries of gravastars). On the other hand, for
anti-aligned cases, it is vice versa. We investigate these features in detail below.

Page 65



Application of the method to real gravitational wave events Chapter 4

4.3.2.1 Role of effective spin parameter

We find that the effective spin parameter χeff plays a major role in the features observed
in the posteriors discussed above. Effective spin parameter defined as

χeff =
m1 χ1z + m2 χ2z

(m1 + m2)
, (4.7)

is a combination of component masses m1, m2 and component spins χ1z , χ2z and appears
as the leading order spin dependence in the inspiral PN waveform [309]. In Fig. 4.2
(left panel), we have shown the bounds on δκs parameter as a function of their injected
χeff values where the vertical bars correspond to the 90% credible intervals of the δκs

parameter. The larger the magnitude of χeff , the tighter the bounds on δκs . For systems
with small magnitudes of χeff (for example, χeff < 0.3), the δκs parameter is almost
unconstrained. Further, when χeff is large and positive, the region with δκs > 0 is better
constrained, whereas when the χeff is large and negative, the region with δκs < 0 is
better constrained.

The dependence of δκs posteriors on χeff discussed above holds true despite the fact
that the systems considered for this plot include those with various component masses
and spins. In fact, it is difficult to disentangle the individual effects of the component
masses and spins due to the degeneracy between spins and mass ratio parameters [318].
However, χeff captures the combined effects of all these parameters on the δκs posteriors
and hence is the most important single parameter which describes our ability to constrain
δκs parameter for any given system.

We further investigate the skewness of the posteriors in detail and show that they
are primarily caused by the waveform degeneracies between δκs and χeff parameters.
To demonstrate this, we first define the overlap function O between a binary black hole
injection h̃BH and a non-BH template h̃NBH as,

O =

(
h̃BH|h̃NBH

)
√(

h̃BH|h̃BH

)(
h̃NBH|h̃NBH

) (4.8)

where (.|.) is the noise weighted inner product defined in Eq. (1.14) and both h̃BH and
h̃NBH are in frequency domain. Overlap quantifies how similar are the two signals h̃BH

and h̃NBH and its value is maximum (O = 1) when h̃BH = h̃NBH.
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Figure 4.3: Left: Demonstration of Bayes factor between non-BH and BH models
for different non-BH injections. The x-axis shows the injected value of δκs and y-axis
shows the log of Bayes factors. All the injections are of component masses
(10 + 5)M� and fixed spin magnitudes (0.6, 0.3) while the light blue and orange
markers correspond to aligned and anti-aligned spin orientations respectively. Right:
Complementary analysis done using fitting factors motivated by [9]. For each non-BH
injection with values of δκs as given on x-axis, the fitting factor FF was computed
w.r.t the BH waveforms by maximizing the overlap over the BH parameter space.
Here the maximization is done on a restricted BH parameter space with χeff being the
only free parameter, with the remaining parameters fixed to their injected values. The
quantity on y-axis is 1− FF2 which explicitly appears in the approximate scheme of
[9] (See Eq. (4.10))

We have taken two binary black hole injections with both of them having identical
component masses (10, 5)M� but different spin orientations (0.6, 0.3) and (-0.6, -0.3)
whose χeff values are 0.5 and −0.5 respectively. The templates h̃NBH are uniformly
distributed in the non-BH parameter space with component spins ranging in [-1, 1] and
δκs ranging between [-100, 100]. The masses of the templates are kept fixed at their
injection values which will be justified later with the results.

We show the results of this overlap calculation in the right panel of Fig. 4.2. Templates
having very high overlaps with the injections (O > 0.995) are shown as scattered points
in the δκs − χeff plane (light blue for aligned-spin injection and orange for anti-aligned
spin injection). The injected parameters are marked with stars (black color). For the
aligned spin case (light blue), there are more scattered points on the left half (δκs < 0)
compared to the right half (δκs > 0). This indicates that the left half is more degenerate
and hence less distinguishable from the injected binary black hole signal, compared to
the right half. This is exactly the feature observed in the posteriors as well as the bar
plot (Fig. 4.1 and Fig. 4.2 left) that for systems with aligned spins (or χeff > 0), the
positive side of the δκs posterior is better constrained than the negative side. A similar
explanation holds for the anti-aligned spin case as well with all the features turned
exactly opposite.
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The fact that the masses of the templates are fixed to the injected values might
be considered as ignoring some of the other potential degeneracies which are present.
However, ignoring the role of such degeneracies can be justified since we have shown
above that the δκs − χeff degeneracies could solely explain the features of the posteriors.
In other words, the overlap study with masses fixed to the injections helps underline
that it is the δκs − χeff degeneracy which is primarily responsible for the features of the
posteriors.
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Figure 4.4: Posterior distributions on the spin-induced quadrupole moment
parameter δκs , estimated from the observed gravitational wave events GW151226 [10]
and GW170608 [11]. Left and right panels correspond to two different physically
motivated priors on δκs parameter (symmetric and one-sided). The posteriors are
obtained from the Bayesian analysis of the O1/O2 public GW data using
LALInference [12]. We used IMRPhenomPv2 waveform models [13] for the analysis,
truncated at the inspiral-to-merger transition frequency as the spin-induced
deformations are not modelled in the merger and ringdown phases. The vertical
dotted lines show the 90% credible bounds (highest density intervals) on δκs .

4.3.3 Model selection between BH and non-BH models

In this section, we discuss the model selection studies between non-BH and BH models by
obtaining Bayes factors between them. We estimate the Bayes factors B2

1 (see Eq. (4.6))
using LALInference for a set of non-BH injections whose δκs varies in the range [-40,
40]. All the injections are of fixed component masses (10, 5)M� while the analysis is
repeated with two spin choices for the injections: (0.6, 0.3) and (-0.6, -0.3), which as
followed in the previous section, represents the aligned and anti-aligned orientations
respectively.

The results are shown in the left panel of Fig. 4.3 where the log of the Bayes factors
(logB2

1) are plotted as a function of the injected δκs values. The light blue and orange
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colors correspond to aligned and anti-aligned spins respectively. As one would expect,
when the magnitude of the injected δκs increases, the Bayes factor increases which
mean that they can be better distinguished from binary black hole models. We notice
that the way Bayes factor increases with δκs is different for aligned and anti-aligned
cases. For example, among all the injections with δκs > 0 (such as binaries of boson
stars), Bayes factors are larger for those whose spins are anti-aligned (or negative χeff)
compared to those whose spins are aligned (or positive χeff). The reverse is true for the
injections with δκs < 0 (such as binaries of gravastars).

The features discussed above can have possible consequences on the identification of
BH mimicker populations. For example, among the population of boson star binaries,
our ability to distinguish them from binary black holes will be inclined towards those
with anti-aligned spins. As a result, the population which we identify as binary boson
stars will have more sources with anti-aligned spins (or negative χeff). Similarly, the
population which we identify as binary gravastars will have more sources with aligned
spins (or positive χeff).

4.3.3.1 Further investigations using Fitting Factor

In order to investigate various features in the Bayes factor plot (Fig. 4.3, left panel), we
perform a study using fitting factor to complement the Bayesian analysis. The fitting
factor of a non-BH waveform h̃NBH, with a BH waveform model h̃BH is given by,

FF(
−→
θ NBH) = max−→

θ BH


(

h̃NBH|h̃BH(
−→
θ BH)

)
√(

h̃NBH|h̃NBH

)(
h̃BH(
−→
θ BH)|h̃BH(

−→
θ BH)

)
 (4.9)

where h̃NBH is evaluated at a given point
−→
θ NBH in the non-BH parameter space and

−→
θ BH is any arbitrary point in the BH parameter space over which the maximisation
is carried out. One can see from Eq. (4.9) that FF(

−→
θ NBH) is equal to the overlap,

defined in Eq. (4.8), maximised over the BH parameter space. Qualitatively, FF(
−→
θ NBH)

is regarded as a measure of how well the BH waveform model h̃BH can mimic the
given non-BH signal h̃NBH(

−→
θ NBH). In other words, FF(

−→
θ NBH) describes how well the

non-BH corrections contained in h̃NBH(
−→
θ NBH) can be re-absorbed3 into the BH waveform

h̃BH(
−→
θ BH), by varying

−→
θ BH within its allowed range.

3We closely follow the terminology used by Vallisneri [9] here.
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As discussed before, the Bayes factor B2
1 for a given signal is high when the signal

has a non-BH component of the form that can not be re-absorbed into the BH waveform.
Broadly this implies that a high Bayes factor is closely related to a low fitting factor.
Cornish et al. [319] and Vallisneriet al. [9] showed an approximate scheme to relate the
Bayes factor and fitting factor which, for our context (considering only the dominant
term in the expression) would read as,

logB2
1 ∝ ρ2 ×

(
1− FF(

−→
θ NBH)2

)
(4.10)

where ρ is the signal-to-noise ratio. In a later work, Del Pozzo et al. [320] explored
this in more detail using numerical simulations and extended its validity regimes by
introducing additional correction terms.

In this exercise, we consider a set of non-BH injections similar to the ones considered
in the Bayes factor studies above. For all the injections, we compute FF(

−→
θ NBH) using

Eq. (4.9) for a binary system of masses (10, 5)M�. Note that in our case the BH
parameter space (

−→
θ BH) over which the maximization is done has only one free parameter

which is the effective spin χeff, while all other parameters are fixed to their injected
values as our goal is to understand the ability of χeff to mimic non-BH signals.

The results are shown in the right panel of Fig. 4.3 where 1 − FF(
−→
θ NBH)2 (which

explicitly appears in Eq. i(4.10)) is plotted as a function of the injected δκs . We find
similar features as seen in the Bayes factor plot (left panel). For example, for non-BH
injections with δκs > 0, the value of (1−FF2) is higher for anti-aligned cases (or negative
χeff cases) while it is the opposite for those injections which have δκs < 0. That means
the results independently obtained from the Bayes factor and the fitting factor analyses
are complementary to each other. We emphasize again that this agreement holds despite
restricting the BH parameter space to just one parameter, χeff.

Thus, the fitting factor analysis further underscores the key role played by the
χeff-δκs degeneracy in distinguishing non-BH binaries from BH binaries.

Notice that when the non-BH signals are mimicked by the BH waveforms, it happens
at the cost of offsets in the estimated BH parameters from their true values. In realistic
cases, this will result in systematic biases in the estimated BH parameters, if BH
waveforms are used for the analysis while the true signal was of a non-BH binary. It is
worth mentioning the two contexts in which this can happen. 1) if one presumes the
signal to be of BH nature and hence ignore the possibility of any potential non-BH
nature. 2) one does not assume BH nature a priori, however, given the SNR of the
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signal, the non-BH component in the signal is mild enough to be reabsorbed into the
BH waveform by varying the parameters. Though both the biases are fundamental in
nature [89, 319], the former is also the result of our prior assumption while the latter
is the result of our waveform models being insufficient to account for the underlying
non-BH effects or/and the non-BH effects being buried in noise. In a follow-up work,
these effects will be investigated in detail.
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Figure 4.5: The corner plots of δκs , chirp mass (Mc), symmetric mass ratio (η) and
χeff from GW151226 [10] and GW170608 [11] with symmetric priors on δκs .

4.4 Testing the binary black hole nature of

GW151226 and GW170608

As reported in [14], the first two observation runs (O1/O2) of Advanced LIGO and
Advanced Virgo have identified ten gravitational wave signals which are consistent
with binary black hole waveforms. In this section, we apply the proposed spin-induced
quadrupole moment test on some of the observed events and ask how consistent they are
to the binary black hole hypothesis. As discussed before, at present, our test is based
on a parametrization of the inspiral part of the waveform. Therefore, we restrict the
study to the two inspiral-dominated signals GW151226 [10] and GW170608 [11], where
the inspiral only signal to noise ratio (obtained by considering only Fourier frequencies
less than the ISCO) is ∼ 10. The estimated (median) detector frame total mass
of GW151226 and GW170608 are 23.55M� and 19.89M� [321] and the corresponding
inspiral-to-merger transition frequencies are 155.12Hz and 184.55Hz respectively. We use
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Event Prior 90% bounds Bayes factor
on δκs on δκs (logBgener ic

BH )

GW151226 [-200,200] [-191.78, 13.45] -0.94
[0,200] ≤ 98.67 -2.26

GW170608 [-200,200] [-177.36, 122.98] -0.15
[0,200] ≤ 125.69 -1.15

Table 4.1: Summary of the tests of binary black hole nature of the real gravitational
wave events GW151226 and GW170608 by measuring the spin-induced quadrupole
moment parameters δκs . The results are shown for two different physically motivated
priors on δκs : [-200, 200] (symmetric) and [0,200] (one-sided) as shown in the second
column. The third and fourth columns respectively show the 90% credible intervals
(upper bounds in case of one-sided priors) on δκs and the Bayes factors between
non-BH and BH models.

these as the upper cut-off frequencies (fupper) of the analyses along with IMRPhenomPv2

as the waveform approximant.

Here we briefly summarize the results from the tests of binary black hole nature
of the observed GW signals GW151226 [10] and GW170608 [15]. Among all the ten
binary black hole events detected in O1/O2, we have restricted the analysis for these
two events. This is because, with the currently available waveform models, our test is
applicable only on the inspiral part of the signal and GW151226 and GW170608 are
the only two inspiral dominated events.

Figure 4.4 shows the bounds obtained from GW151226 [10] (red) and GW170608 [11]
(green). We show the posterior probability distribution for δκs , the parametrized
deformations in the κs parameter, which is the symmetric combination of spin-induced
quadrupole moment coefficients of the individual compact objects (κ1 and κ2).In the left
panel, we used a generic prior on δκs , as uniform in [-200,200], which leads to constraints
on generic BH mimicker models which has positive or negative values for δκs . Under this
prior assumption, we find that the deformation parameter δκs is constrained to a 90%
credible interval of [ -191.78, 13.45] for GW151226 and [ -177.36, 122.98] for GW170608.
In the right panel, we have obtained the bounds on δκs for a restricted one-sided prior
of [0, 200]. Unlike the generic prior, this one-sided prior leads to constraints on specific
black hole mimicker models such as boson stars for which δκs is predicted to be positive
always. Under this prior assumption, we obtain 90% credible upper bounds to be
δκs ≤ 98.67 for GW151226 and δκs ≤ 125.69 for GW170608. All the bounds are listed
in Table 4.1. In all the cases, it is noted that the BH limits (δκs = 0) are well within
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the 90% credible intervals which means that the posteriors do not indicate the presence
of any non-BH nature in these events. However, one may also note that the posteriors
are not very sharply peaked at zero implying weaker constraints on the non-BH nature
of the compact objects involved.

In addition to the bounds reported above, we performed Bayesian model selection
between BH mimicker models and BH models by calculating the Bayes factor between
them (defined in Sec. 4.2.3). The estimated Bayes factors for both the events are given
in Table 4.1. For these events, we find that the Bayes factors in the logarithmic scale are
-0.94 (for GW151226) and -0.15 (for GW170608) which implies that Bayes factors do
not show strong evidence in favor of any of the models (neither BH nor non-BH models).
These results are in agreement with our conclusions from the posteriors discussed above.
Only more sensitive measurements in the future may help us quantify this better.

The main results are shown in Fig. 4.4 where the posteriors on δκs parameter are
discussed We consider two different priors on δκs : a symmetric prior [−200, 200] (left
panel) and a one-sided prior [0, 200] (right panel). The symmetric prior [-200,200]
represents a most generic test which accounts for BH mimicker models including those of
both oblate (δκs > 0) and prolate (δκs < 0) spin-induced deformations. The one-sided
prior [0,200] is a restricted case which accounts only for oblate spin-induced deformations.
In other words, the symmetric prior leads to generic constraints on BH mimicker models
including boson stars, gravastars etc. whereas the one-sided prior is motivated by specific
models such as boson star models for which δκs is always positive and hence meant
to provide specific constraints on such models. The prior is restricted to |δκs | ≤ 200

because the parametrized waveforms we construct are found not to be well-behaved
beyond this range and hence cannot meaningfully represent the corresponding physics.
The 90% credible intervals (highest density intervals) on δκs are given in Table 4.1. For
all the cases, it is found that the 90% credible intervals or the upper bounds (in case of
one-sided prior) are consistent with δκs being equal to zero and hence consistent with
GW151226 and GW170608 being binary black holes.

Detailed corner plots are presented in Fig. 4.5 which will help us to gain further
insights about the underlying degeneracies and correlations. As we discussed earlier,
the δκs parameter is found to be highly degenerate with χeff. Again, we note that the
posteriors of δκs are asymmetric about their most probable values and both the events
have got more posterior support for negative values of δκs than positive values. We
recall from Fig. 4.1 and 4.2 that the similar posterior features were observed for cases
in which positive values of χeff were injected. As seen in the corner plots, the estimated
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(median) χeff values are positive for both these events and hence the results from these
two events are completely consistent with our findings from simulation studies. It is
also found that the δκs posteriors are railing against the prior boundaries for both the
events. This may improve in future if there are events which have larger spins or lower
masses, similar to the ones considered in the simulations earlier.

We also performed Bayes factor studies on both the events whose results are also
shown in Table 4.1. With the symmetric and the one-sided priors on δκs , we computed
Bayes factors (B2

1) between the non-BH and BH models (Hnon−BH and HBH respectively).
We find that the log of the Bayes factors (logB2

1) are in the range −2.3 < logB2
1 < 0

for all the cases. These values are too small to be considered as evidence for favoring
or rejecting any of the models which are tested. The slightly negative values obtained
in all the cases may be interpreted as weak evidence in favor of BH models over non-
BH models. We notice that these features are consistent with those observed in the
posteriors in Fig. 4.4 that the posteriors are spread over a wider range of values of δκs

with significant weights over non-BH (i.e. non-zero) values.

4.5 Conclusions

Here, we have developed a Bayesian framework to test the binary black hole nature of
gravitational wave signals using the measurements of spin-induced quadrupole moment
parameters of the compact binaries as proposed in Ref. [302]. We carried out detailed
studies using simulated gravitational wave signals to test the applicability of our method.
The waveform models which are used for this test currently includes spin-induced
deformation terms only in the inspiral part and hence its applicability is limited to the
inspiral regime.

We applied the method on the two inspiral-dominated events from O1/O2, GW151226
and GW170608, and obtained bounds on their binary blackhole natures. These are
the first constraints on the black hole nature of the compact binaries detected by
Advanced LIGO and Advanced Virgo. With more gravitational wave detections with
inspiral-dominated signals, especially of higher spins, there will be increased opportunity
to perform the tests of BH nature using spin-induced quadrupole moment parameter
measurements. The bounds obtained from this analysis on the spin-induced quadrupole
moment parameter can be translated to constraints on the parameter space of certain
black hole mimicker models such as the boson star model in Ref. [193].
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In the next chapter (Sec. 5.2), we extend the analysis given in chapter 3 to demon-
strate the capabilities of third-generation (3G) gravitational wave detectors such as
Einstein telescope [322] and Cosmic Explorer [322–325], to test the binary black hole
nature by measuring the spin-induced multipole moment parameters. Further, in certain
regions of binary black hole parameter space, it gives the ability to measure the spin-
induced quadrupole moment parameters of the individual constituents of the binary,
rather than measuring the symmetric combination defined above. This study is further
extended to the case of space-based detectors LISA and DECIGO and described in
Sec. 5.3 and it is found that they offer unprecedented opportunity to test the black hole
nature of compact binaries in the intermediate-mass and super-massive mass regimes.
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Chapter 5

Measurements of spin-induced

multipole moments and implications

to future gravitational wave detectors

5.1 Introduction

In chapter 3, we explored the possibility of probing the binary black hole nature of coa-
lescing compact binaries, by measuring their spin-induced multipole moments, observed
in advanced LIGO detectors. Coefficients characterizing the spin-induced multipole
moments of Kerr black holes are predicted by the “no-hair” conjecture and appear in
the gravitational waveforms through quadratic and higher order spin interactions and
hence can be directly measured from gravitational wave observations. In this chapter,
we assess the capabilities of future third-generation ground-based detectors such as
Cosmic Explorer and Einstein Telescope as well as the space-based detectors LISA and
DECIGO. Third generation ground-based detectors would be able to constrain the black
hole nature of stellar mass compact binaries (∼ 10− 100M�), whereas the space-based
DECIGO mission will be sensitive to intermediate mass BHs (∼ 105 − 107M�). The
LISA mission will be able to put stringent constraints on the black hole nature fo
supermassive compact binaries.

In the first section of this chapter, by employing a non-precessing post-Newtonian
(PN) waveform model, we assess the capabilities of the third-generation gravitational
wave interferometers such as Cosmic Explorer and Einstein Telescope in carrying out
such measurements and use them to test the binary black hole nature of observed binaries.
More than this, we extend the investigations given in Chap. 3, limited to measuring the
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binary’s spin-induced quadrupole moment using their observation in second generation
detectors, by proposing to measure (a) spin-induced quadrupole effects using third
generation detectors, (b) simultaneous measurements of spin-induced quadrupole and
octupole effects, again in the context of the third-generation detectors. We study how
precision of these measurements as a function of total mass, mass ratio, spin magnitudes,
and spin alignments. Further, we consider two different binary black hole populations,
as proxies of the population that will be observed by the third generation detectors,
and obtain the resulting distribution of the spin-induced quadrupole coefficient. This
helps us assess how common are those cases where this test would provide very stringent
constraints on the black hole nature. These error bars provide us upper limits on the
values of the coefficients that characterize the spin-induced multipoles. We find that,
using third-generation detectors the symmetric combination of coefficients associated
with the spin-induced quadrupole moment of each binary component may be constrained
to a value ≤ 1.1 while a similar combination of coefficients for spin-induced octupole
moment may be constrained to ≤ 2, where both combinations take the value of 1 for a
binary black hole system. These estimates suggest that third-generation detectors can
accurately measure the first four multipole moments of the compact objects (mass, spin,
quadrupole, and octupole) facilitating a thorough probe of their black hole nature.

In the second part of this chapter, we apply the idea proposed in Chapter 3 (Ref. [302])
to binary systems composed of supermassive and intermediate-mass black holes and
derive the expected bounds on their Kerr nature using future space-based gravitational
wave detectors. Using astrophysical models of binary black hole population, we study
the measurability of the spin-induced quadrupole and octupole moment coefficients
using LISA and DECIGO. The errors on spin-induced quadrupole moment parameter
of the binary system is found to be ≤ 1 for almost 40% of the total supermassive
binary black hole population which is detectable by LISA whereas it is ∼ 92% for the
intermediate-mass black hole binaries observable by DECIGO at its design sensitivity.
We find that both the quadrupole and octupole moment parameters can be estimated to a
precision of ≤ 1 for ∼ 2% and ∼ 50% respectively for LISA and DECIGO detectors. Our
findings show that there exists a subpopulation of binary black hole events detectable
by DECIGO which could permit tests of black hole nature to 1% precision.
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5.2 Details of the analysis

5.2.1 Spin-induced quadrupole and octupole moment parame-

ters in the post-Newtonian waveform

The waveform we use for our analyses contain only the leading (second) harmonic
(quadrupolar mode) and its PN corrections in the amplitude, while the presence of
higher modes in the waveform is neglected, and schematically reads as,

h̃(f ) =
M2

DL

√
5 π ν

48

4∑
n=0

V
n−7/2
2 C

(n)
2 ei

(
2 ΨSPA(f /2)−π/4

)
, (5.1)

where M , ν and DL denote the total mass, symmetric mass-ratio and the luminosity
distance to the binary system respectively as described after Eq 15. Coefficients C

(n)
2

represent the amplitude corrections to the quadrupolar harmonic at (n/2) PN order [304].
The pre-factor V2 related to the gravitational wave frequency (f ) and the total mass
of the binary system as, V2 = (πM f )1/3. Here ΨSPA(f ) represents the phase of the
waveform. Each of these C

(n)
2 and the phasing, with explicit dependence on spin-induced

quadrupole (through κs and κa) and octupole (through λs and λa) moment parameters
at respective PN orders are given in Appendix A.

5.2.2 Parameter estimation and detector configurations

In this section, we present the necessary details of the parameter estimation scheme and
the analysis (more details can be found in the introduction of the thesis 1.3.2). Our aim
here is to obtain the projected bounds on the spin-induced multipole moment parameters
using the semi-analytical parameter estimation technique called the Fisher information
matrix [58]. As we discussed in Sec. 1.4, the Fisher information matrix [310, 326, 327]
approach is a semi-analytical parameter estimation technique which can be used to
compute the 1σ error bars on parameters characterizing the gravitational wave signal.
The elements of the matrix are defined as follows,

Γi j = 2

∫ fupper

flower

(
∂i h̃(f ) ∂j h̃

∗(f ) + ∂i h̃
∗(f ) ∂j h̃(f )

) df

Sn(f )
, (5.2)

where we denote the frequency domain gravitational waveform as h̃(f ) and its partial
derivative with respect to the i th parameter characterising the binary system as ∂i h̃(f )
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(here, ∂i h̃
∗(f ) is the conjugate of ∂i h̃(f )). The 1− σ error bars on each parameter are

computed as ∆
−→
θ =

√
Γ−1

i i , under the assumption that the noise in the detector is
stationary and Gaussian, and also in the high signal-to-noise ratio limit [326].

In Sec. 5.3, we intend to explore the parameter estimation analysis for two different
third-generation gravitational wave detector configurations: Cosmic Explorer (CE) [4, 5]
and Einstein Telescope (ET-D) [5]. We choose to terminate the integral of Eq. ((5.2)) at
twice the orbital frequency of the inner most stable circular orbit (fISCO) for a spinning
compact binary and use the fits obtained in [13, 296]1. The lower frequency cut-off in
the integral of Eq. ((5.2)) is fixed by the sensitivity of the detector given by the function
Sn(f ). Since the two have comparable sensitivities and we choose one of them (in our
case CE noise PSD) for the most part of the analysis here. However, we compare the
performance of CE and ET-D for a few representative cases. The low frequency cut-off
for CE (ET-D) configuration is chosen to be 5Hz (1Hz) which defines the flow value we
use in the integral given in Eq. ((1.10)). We also discuss the improvements one expect
due to the use of third-generation detector sensitivities over advanced LIGO and choose
low frequency cut-off as 20 Hz for advanced LIGO.

We investigate the measurability of spin-induced quadrupole and octupole moment
parameters of supermassive and intermediate-mass binary black holes in Sec. 5.4 using
LISA and DECIGO detector configurations. The noise spectral density used for LISA is
given by [8],

Sn(f ) =
20

3 L2

(
4 Sacc

n (f ) + 2 S loc
n + S sn

n + Somn
n

)[
1 +

(
2 L f

0.41c

)2
]

+ Sgal
n , (5.3)

where,

Sacc
n =

{
9× 10−30 + 3.24× 10−28

[(
3× 10−5 Hz

f

)10

+

(
10−4 Hz

f

)2
]}

1

(2π f )4
m2 Hz−1,

S loc
n = 2.89× 10−24 m2 Hz−1,

S sn
n = 7.92× 10−23 m2 Hz−1,

1Here we only consider contributions from the second harmonic as discussed in Sec. 5.2.
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Somn
n = 4.00× 10−24 m2 Hz−1,

Sgal
n = 1.633× 10−44

(
f

1 Hz

)−7/3

exp

(
−
(

f

1.426 mHz

)1.183
)

(
1 + tanh

(
− f − 2.412 mHz

4.835 mHz

))
Hz−1,

are due to low-frequency acceleration, local interferometer noise, shot noise, other
measurement noise and galactic confusion noise, respectively. The detector arm length
is fixed to be L = 2.5× 109 m and c is the speed of light in meters per second. Noise
spectral densities used for DECIGO [6] and DECIGO-B [7] are,

Sn(f ) = 7.05× 10−48

(
1 +

(
f

7.36 Hz

)2
)

+ 4.8× 10−51

(
f

1 Hz

)−4
(

1 +

(
f

7.36 Hz

)2
)−1

+ 5.33× 10−52

(
f

1 Hz

)−4

Hz−1, (5.4)

and

Sn(f ) = 3.03× 10−46

(
1 + 1.584× 10−2

(
f

1 Hz

)−4

+ 1.584× 10−3

(
f

1 Hz

)2
)

Hz−1,(5.5)

respectively.

The lower and upper cut-off frequencies (see Eq. (5.2)) for the analysis are fixed
using the following relations,

fupper = min
(
fmax, fISCO

)
flower = max

(
fmin, f4 yr

)
.

For LISA, we fix fmax as 0.1 Hz and fmin to be 10−4 Hz and for DECIGO the upper
cut-off frequency is kept to be 10 Hz throughout the study. To examine the effect of the
lower cut-off frequency on different DECIGO configurations, we consider two different
scenarios, basic DECIGO or DECIGO-B [7, 134] with a conservative low-frequency
cut-off of 10−1Hz(f1) and DECIGO [6] at its designed sensitivity (which we refer to as
DECIGO) with a low-frequency cut-off of 10−2Hz(f2). As expected, due to the improved
sensitivity, bounds obtained from DECIGO are much better than DECIGO-B in general.
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To obtain the value of fISCO, which corresponds to the innermost stable circular orbit
(ISCO) frequency of Kerr BHs, we use a fitting formula where we provide the mass and
spin parameters of the initial configuration (constituents of the binary) and calculate
ISCO frequency of the remnant BH in terms of its mass and spin [13, 296, 302, 310].
Our choice of lower cut-off frequency accounts for the fact that the compact binary
system spends four years in each of the detector bands. In order to achieve this, we

take f4 yr = fupper

(
1 + m1 m2

(m1+m2)3 6.6× 104 T−1
)− 3

8 , where T is fixed to be 4 yrs [328].

Left panel of Fig. 1.4 shows the noise PSDs of Adv. LIGO, CE, ET-D, LISA and
DECIGO configurations, whereas the right panel shows the variation of signal-to-noise
ratios with the total mass of the compact binaries in the respective frequency bands.

5.3 Spin-induced deformations and tests of binary

black hole nature using third-generation detectors

It was argued in the previous two Chapters 3 and 4 that it would not be possible to
accurately measure the deformability coefficients associated with each binary constituents
(κ1,κ2) simultaneously due to the inherent degeneracies between them. However, the
symmetric combination of the two, κs = (κ1 + κ2)/2, can be measured accurately
assuming the anti-symmetric combination is zero (which would mean that we work with
the condition κ1 = κ2). Since κ1 = κ2 = 1 for a Kerr black hole (and hence κs = 1 for a
binary black hole), an accurate measurement of κs is an excellent test of the binary black
hole nature of the observed compact binary. If the binary system comprises of exotic
compact objects, the measurement of the symmetric combination κs should be sensitive
to such a deviation from binary black hole nature even if κ1 6= κ2. However, a further
analysis, where both κ1 and κ2 are simultaneously measured, will be necessary to further
understand the composition of the binary and detailed nature of the binary constituents.
This possibility is further discussed in Sec. 5.3.1.4. The error bars associated with the
measurement provides the upper limit on the value of κs allowed by the data for black
hole mimicker models. These bounds, therefore, can be mapped on the parameter space
of various black hole mimicker models. A statistically significant detection of κs 6= 1

could be an indication of the presence of exotic physics in play and may be followed up.

In this chapter, we extend the idea explained in Chapters 3 and 5, in three ways
by utilizing the enhanced sensitivity of third-generation detectors [322, 329]. Firstly, we
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estimate the errors on κs assuming a third-generation noise sensitivity and find that
the enhanced sensitivity of third-generation detectors over second-generation detectors
improve the κs estimates, roughly, by an order of magnitude (see Fig. 5.3). Secondly,
we investigate the ability of third-generation detectors to simultaneously measure κs

and λs (symmetric combination of coefficients associated with spin-induced octupole
of each binary component (λ1, λ2)) while we set the anti-symmetric combinations of
each pair of coefficients, (κ1, κ2) and (λ1, λ2) to zero. This would allow simultaneous
measurement of the mass, spin, quadrupole and octupole moments of the source thereby
permitting consistency tests between them as tests of the binary black hole nature.
Thirdly, we obtain the projected bounds on κ1 and κ2 simultaneously using third-
generation detectors (keeping the octupole moment coefficients to their BH values).
These bounds can straightforwardly be mapped to the black hole nature of the compact
object constituting the binary system leading to a much stronger test compared to the
one proposed in [302]. In the next section, Sec. 5.3.1, we report the results in detail.

5.3.1 Results and discussions

We perform the parameter estimation analysis for a set of prototypical (stellar mass)
compact binary systems with the assumption that the binaries are optimally oriented
and are located at a fiducial distance of 400 Mpc. The component spin magnitudes are
represented by the dimensionless spin parameter, χ1, 2, where subscripts 1(2) represents
the primary (secondary) binary component. We also follow the convention to assign
higher mass and spin values to the primary component. In addition to this, we also
obtain a distribution of errors of the spin-induced multipole moment parameters for a
simulated population of binary black holes, which act as proxies for the binary black
hole population third generation detectors would observe.

As discussed above, we choose to work with the Cosmic Explorer noise PSD as a
representative noise sensitivity of a third-generation detector configuration [323–325].
The lower (upper) frequency cut-offs appearing in Eq. ((1.10)) are chosen to be 5Hz
(2× fISCO for spinning binary black holes [13, 296]). These results are compared with
the corresponding ones for advanced LIGO and Einstein Telescope for a selected set of
binary configurations.

A summary of our analysis is shown in Fig. 5.1, where the projected errors on the
measurement of the spin-induced multipole moments for the three scenarios discussed
above are shown as a function of total mass for a fixed mass-ratio of 1.2 and dimensionless
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Figure 5.1: Figure displays variation of 1-σ errors in the measurement of
parameters characterizing spin-induced multipole moments as a function of the total
mass of the binary for the three different analyses. Analysis I represents the case
where κs = (κ1 + κ2)/2 is treated as an independent parameter (here κ1,2 are
parameters characterizing the spin-induced quadrupole moment of each binary
component) while the antisymmetric combination of κ1 and κ2 as well as the
symmetric and antisymmetric combination of parameters characterizing the
spin-induced octupole moment, (λ1, λ2), are set to their binary black hole values of
(0, 1, 0), respectively. In Analysis II, both κs and λs = (λ1 + λ2)/2 are measured
simultaneously while the antisymmetric combination κa = (κ1 − κ2)/2 and
λa = (λ1 − λ2)/2 are set to their binary black hole values of 0. Finally in Analysis
III, we obtain errors on κ1 and κ2 while keeping λ1 and λ2 to their BH values of 1.
The binary is assumed to be at a distance of 400Mpc and is optimally oriented. The
binary’s mass-ratio is 1.2 and posses spins of 0.9 and 0.8 respectively for heavier and
lighter components, respectively.

spin parameters (0.9, 0.8). The binary is assumed to be optimally oriented at a luminosity
distance of 400Mpc. The projected bounds on the binary black hole nature range from
1 to about 8 for the choice of mass-ratio and spin values depending on the type of
test performed. We see in Fig. 5.1 that κs , whether measured alone (Analysis I) or
together with λs (Analysis II) is measured with the smallest errors. We also note that
the addition of λs to the parameter space does not affect the errors on κs as they are
relatively less correlated because of the different PN orders at which they appear unlike
κ1 and κ2 which are strongly correlated as they occur together in the phasing.

5.3.1.1 Bounds on binary’s spin-induced quadrupole moment parameter

If we assume the two objects in the binary system suffer equal deformation due to
their individual spins ( i.e., κ1 = κ2), the symmetric combination of the coefficient
of spin-induced quadrupole moments, κs , will be the suitable parameter to constrain
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Figure 5.2: Figure displays variation of 1− σ errors on κs = (κ1 + κ2)/2 (where
κ1,2 are parameters characterizing the spin-induced quadrupole moment of each
binary component) as a function of the binary’s total mass for three representative
mass-ratio cases with fixed component spins (χ1,χ2) of (0.9, 0.8) (top panel) and four
representative spin configurations with fixed mass-ratio (q) of 1.2 (bottom panel).

the binary black hole nature [302]. Any deviation from the binary black hole value of
κs = 1 can be interpreted as a possible constraint on the binary black hole nature of
the compact binary system. The parameter space considered here is the following,

θi = { tc , φc , Mc , η, χ1, χ2, κs}, (5.6)

where tc and φc are the time and phase at coalescence, Mc (Mc = M η3/5) is the chirp
mass, η = m1 m2

(m1+m2)2 is the symmetric mass-ratio, M = m1 + m2 is the total mass and
m1, m2 and χ1, χ2 are the masses and dimensionless spin parameters of the binary
constituents. Note that, here κs is the only spin-induced parameter that is considered
free in the analysis; other combinations, (κa, λs , λa), are set to their binary black hole
values of κa = 0, λs = 1 and λa = 0.

Figure 5.2 shows the variation of the errors in the measurement of the parameter
κs , as a function of the total mass of the binary. These errors also provide us 1−σ
upper bounds on the value of κs . Three different set of markers in the top panel plot
correspond to three different mass-ratios (q=1.2, 3, 5) while the component spins are
fixed to the values of χ1 = 0.9, χ2 = 0.8. On the other hand, the bottom panel assumes
a binary with fixed mass-ratio (q = 1.2) and displays the errors for four different spin
configurations. Each set of markers in both panels suggest that errors decrease as the
binary’s mass increases. This is largely due to larger signal-to-noise ratios associated
with heavier binaries with fixed mass-ratio and component spins. In addition, the trends
displayed in the top panel suggest improved κs estimates for larger mass-ratio cases
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(though the improvement is very minor) while those in the bottom panel show that the
best κs estimates correspond to the case when the two objects have component spins
aligned to the orbital angular momentum. The improved κs estimates with respect to
the mass ratio may be attributed to the larger number of gravitational wave cycles for
asymmetric systems in the detector band. Similarly, as the upper cut-off frequency
for aligned spin configuration is larger, leading to larger number of gravitational wave
cycles, the error estimates for aligned spin configurations are the best.

Figure 5.3 explores κs error estimates in component spin parameter space for a
binary with total mass of 30M� and mass-ratios of 1.2 (top panel) and 3 (bottom
panel). Solid (dashed) contours represent errors on κs in the context of CE (advanced
LIGO) detector. We can compare the performance of advanced LIGO and CE at those
points where their contours intersect. It is obvious from the figure that the typical
improvements in the estimation of κs due to CE is by a factor of ∼ 40 − 50. This
improvement is correlated with the increased signal-to-noise ratio of the sources in
the CE band compared to advanced LIGO. It is worth noting that, even though the
overall improvement in sensitivity of CE over advanced LIGO is roughly a factor of
10, due to the larger band width of CE, the signal-to-noise ratios are higher than
advanced LIGO roughly by ∼ 40− 50 which explains the overall improvement in the
parameter estimation of CE with respect to advanced LIGO.

Another striking feature in Fig. 5.3 is the shape of the contours in the component
spin plane. For nearly equal mass systems (q = 1.2), both advanced LIGO and CE
contours are nearly circular, whereas for q = 3 they are ellipses. This feature may be
explained by a close inspection of the structure of the leading order spin-spin dependence
in the phasing which is proportional to the κs parameter. The term schematically reads
as Ψspin−spin ∼ κs ζ(η, χ1, χ2), where

ζ(η,χ1,χ2) = α(η)χ2
1 + β(η)χ2

2. (5.7)

Here
α(η) =

(
1 +

√
1− 4 η − 2 η

)
(5.8a)

and
β(η) =

(
1−

√
1− 4 η − 2 η

)
. (5.8b)
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The derivative of the waveform with respect to κs now will scale as ∼ ζ and the
corresponding Fisher information matrix element will scale as Γκsκs ∼ ζ2. Intuitively, as
the error on κs is proportional to the square root of the inverse of the Fisher matrix, we
find ∆κs ∼ ζ−1. Now the contours of constant errors in the component spin plane have
the form,

χ2
1 (α∆κs) + χ2

2 (β ∆κs) = 1. (5.9)

It is now obvious that for equal mass systems for which α = β, the contours of constant
errors should be circles whereas for unequal mass systems the contours will be ellipses.
From Eq. (5.8), as 1√

α
≤ 1√

β
, these ellipses will have their semi-major axis along χ2

direction as seen in the bottom panel of Fig. 5.3. Though this scaling completely
neglects the correlation of κs with other parameters, this does give us a qualitative
picture about the shape and orientation of the contours. In the following section we
will discuss bounds obtained on the spin-induced quadrupole moment parameters from
an astrophysical population of compact binary systems.

Finally, Fig. 5.4 compares κs estimates obtained using two different third-generation
detector configurations, Cosmic Explorer (CE) and Einstein Telescope (ET-D). In this
case, errors on κs as a function of total mass for a fixed mass-ratio of 1.2 is shown. We
consider two spin orientations here, both the black holes aligned and both the black holes
anti-aligned to the orbital angular momentum axis. As we expect, the performance of
CE and ET-D detectors are comparable. However, the Cosmic Explorer error estimates
are marginally better than ET-D for all cases except at low masses when component
spins are aligned with respect to the orbital angular momentum. This should be a
reflection of the improved low frequency sensitivity of ET-D at frequencies less than 5
Hz.

5.3.1.2 Bounds on the spin-induced quadrupole moment parameter from

an astrophysical population of binary systems

We also explore the performance of the proposed test on an astrophysical population
of binary black holes that the third-generation detectors may see by simulating two
populations of binary black holes which correspond to different models for the component
mass distribution. In the first model, we distribute the source frame component masses
m1,2 (here m1 > m2) uniformly between 5M� and 20M�. The second model assumes
a power-law distribution with an index α = 2.3 [14, 15] for the primary and uniform
distribution for the secondary, again, with masses between 5M� to 20M�. For both

Page 86



Measurements of spin-induced multipole moments and implications to future
gravitational wave detectors Chapter 5

these cases, we distribute sources with constant comoving number density up to a
redshift of z = 1. The source locations and orientations are uniform on the sky and the
polarization spheres, respectively. In order to account for the cosmological redshift on
the gravitational signal we rescale the source frame masses (ms) to redshifted masses
(md) as, md = ms(1 + z) in the gravitational wave signal while performing parameter
estimation using Fisher matrix. This means that the maximum and minimum component
masses in the detector frame will be 5M� and 40M�, respectively. We randomly draw
2000 sources from this population and perform the Fisher analysis to obtain the errors
on various parameters including κs . Figure 5.5 shows the resulting distribution of errors
on κs for the two populations described above using Einstein Telescope and Cosmic
Explorer. As can be seen in the inset of Fig. 5.5, use of the uniform over power-law
distribution leads to nearly 20% increase in the population of binaries observed with
∆κs ≤ 5 for Cosmic Explorer whereas the errors we get using Einstein Telescope are
largely independent of the mass distribution. Furthermore, we find that errors on κs

are less than 10 for 52% (68%) of the sources for the power-law (uniform) distribution
model if we assume CE sensitivity. The numbers change to 41% and 45% respectively
for power-law and uniform distributions when we consider Einstein Telescope. These
trends can be understood as follows: the mass ratio distribution with primary’s mass
distributed using the power-law leads to fewer sources with larger mass ratios compared
to the case where we assume uniform distribution for component masses. In addition,
the proposed test is more effective when the mass ratios are higher (see Fig. 5.2). These
two factors improve the overall performance of the test for the uniform mass distribution
as can be seen in Fig. 5.5.

5.3.1.3 Simultaneous bounds on binary’s spin-induced quadrupole and oc-

tupole moment parameters

Below we discuss the measurability of both the quadrupolar and octupolar spin-induced
deformations due to individual BH spins, simultaneously. This time we intend to measure
a symmetric combination of coefficients characterizing the spin-induced octupole moment
of the compact binary system: λs = (λ1 + λ2)/2 along with the parameter κs . Again
the anti-symmetric combinations κa and λa are set to their binary black hole value of
zero. Formally, simultaneous bounds on κs and λs are more stringent than the κs alone
as we are sensitive to two of the leading spin-induced multipoles instead of one. The
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Figure 5.3: The errors on κs , the symmetric combination of κ1 and κ2, in the
dimensionless spin parameter plane for the binary system with total mass of 30M�
and mass-ratios of q = 1.2 (top panel) and q = 3 (bottom panel). We assume the
binary to be optimally oriented at a luminosity distance of 400Mpc. In both panels,
the solid curve corresponds to the errors using Cosmic Explorer noise PSD and the
errors using advanced LIGO noise PSD is denoted by dashed contours. As can be
seen from the plots, parameter space explored in the χ1-χ2 plane is much larger for
Cosmic Explorer compared to advanced LIGO.
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Figure 5.4: Errors on the κs as a function of the total mass of the binary system for
two representative 3rd generation detectors, Cosmic Explorer (CE noise PSD) and
Einstein Telescope (ET-D noise PSD). The binary is assumed to be at a distance of
400Mpc and is optimally oriented. The binary’s mass-ratio is 1.2 and spin magnitudes
of 0.9 and 0.8 for heavier and lighter components, respectively. Filled- (empty-)
markers represent spin orientations of each component aligned (anti-aligned) to the
orbital angular momentum while squares (diamonds) represent error estimates for
Cosmic Explorer (Einstein Telescope, ET-D).
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Figure 5.5: The cumulative distribution function of errors on κs for two
prototypical astrophysical populations of binary black holes corresponding to two
different models for the binary’s mass distribution. In the first model we assume both
component masses to be uniformly distributed between 5M� to 20M� while the
second model assumes the primary mass to follow a power-law distribution with an
index α = 2.3 [14, 15] and uniform distribution for the secondary. In both the models
the masses are defined with respect to the source frame and the sources are
distributed uniformly in the comoving volume up to a redshift of 1.
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Figure 5.6: Figure displays variation of 1− σ errors on κs (filled markers) and λs

(unfilled markers) as a function of the binary’s total mass for three representative
mass-ratio cases and four representative spin-orientations with fixed component spin
magnitudes (χ1,χ2) of (0.9, 0.8). The four panels (left to right) represent binaries
where spins of the two BHs are aligned, heavier one aligned and the other
anti-aligned, heavier one anti-aligned and the other aligned and both the spins are
anti-aligned to the orbital angular momentum axis. We assume the binary to be
optimally oriented at a luminosity distance of 400Mpc.
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Figure 5.7: Errors on spin-induced quadrupole and octupole moment parameters of
the binary– κs (top panel) and λs (bottom panel) in the χ1-χ2 plane for a binary
system with total mass 30M�. Solid contours represent mass-ratio of 1.2 and dashed
ones represent mass-ratio 3. Binary system is assumed to be optimally oriented at a
luminosity distance of 400Mpc.

parameter space considered for this analysis is,

θi = { tc , φc , Mc , η, χ1, χ2, κs , λs}, (5.10)

where all the parameters have their usual meaning.

Figure 5.6 shows variations in estimating bounds on κs (filled markers) and λs

(unfilled markers) as a function of the total mass of the binary for three different mass-
ratios (q = 1.2, 3, 5) and for fixed spin magnitudes of 0.9 and 0.8. Spin orientations
chosen are those where both the black hole spins aligned, heavier black hole spin aligned
and other anti-aligned, heavier black hole spin anti-aligned other aligned and both the
spins anti-aligned to the orbital angular momentum axis, respectively from left to right
of Fig. 5.6.

As discussed in Sec. 2.1, spin-induced octupole moment terms start to appear at 3.5
PN order in the PN phasing formula, while the leading spin-induced quadrupole moment
contributes at the 2PN order and hence is a dominant effect in the PN dynamics. Hence,
among κs and λs the better constrained parameter is always κs . From Fig. 5.6, it is
clear that the κs errors are almost an order of magnitude better estimated compared to
λs errors and it is evident from the same figure that, for most of the parameter space,
the errors on κs is unaffected due to the inclusion of λs in the problem.

Figure 5.6 also shows that the bounds on both κs and λs are tightly constrained for
cases where the spin of the heavier black hole aligned to the orbital angular momentum
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Figure 5.8: Figure displays variation of 1− σ errors on κ1 (filled markers) and κ2

(unfilled markers) as a function of the total mass of the binary system for three
representative mass-ratio cases and four representative spin-orientations with fixed
component spin magnitudes (χ1,χ2) of (0.9, 0.8). The four panels (left to right)
represent binaries where spins of the two BH are aligned, heavier one aligned and the
other anti-aligned, heavier one anti-aligned and the other aligned and both the spins
are anti-aligned to the orbital angular momentum axis. Also, note the (up-scaled)
y-axes in last two panels.

axis and if the binary is more asymmetric. When both spins are aligned with respect to
the orbital angular momentum, the effect of mass-ratio is marginal (similar to the case
presented in Sec. 5.3.1.1 where only κs is measured). On the other hand, having the
lighter component anti-aligned with respect to the orbital angular momentum vector only
marginally affects the measurements, with the most affected cases being the symmetric
systems. We also note that the trends are not clear when we deal with cases where
heavier or both components are anti-aligned. In any case, we do not expect the best
results when heavier or both components are anti-aligned.

The effect of spin magnitudes on the error estimates for simultaneous κs (top panel)
and λs (bottom panel) measurements are shown in Fig. 5.7. We choose a total mass
of 30M� and mass ratios of q = 1.2 (solid contours) and q = 3 (dotted contours) for
this case. Broadly the features seen here resemble those of Fig. 5.3 where only κs was
estimated. For nearly equal mass systems, we see that the contours are less circular
when λs is included as a parameter. This may be due to the degeneracies brought in by
the estimation of λs . Regarding the contours of constant error on λs (bottom panel of
Fig. 5.7), following a line of argument similar to the one in Sec. 5.3.1.1, it can be shown
that the equations of the contours should schematically read as aχ3

1 + b χ3
2 = 1, where

a, b are functions of mass-ratio which decide shape and orientation of the contours.

We performed an analysis, similar to the one reported in Sec. 5.3.1.1, where we
simulated two populations of binary black holes following a uniform and power-law
distributions for the mass of the binary’s primary (heavier) component in the source
frame, keeping the secondary component mass to be uniformly distributed such that
the total mass is less than or equal to 40M�. We then compute the distribution of
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the bounds expected from the resulting population. Our analysis show that when κs

and λs are measured simultaneously, errors on λs are less than 10 for about ∼ 6%(4%)
sources when we use power-law (uniform) distribution on component masses for Cosmic
Explorer. As observed earlier κs estimates are marginally affected compared to the
case when κs alone is measured. We find that for nearly 42%(51%) sources ∆κs ≤ 10

with power-law (uniform) distribution when measured along with λs . Again the error
distribution for κs is similar to those in Fig. 5.5.

5.3.1.4 Bounding the black hole nature of the compact binary constituents

In this subsection, we turn to our third and final analysis item – measuring both κ1,
κ2 that characterize the spin-induced quadrupole moment coefficients of the binary
components. Recall that simultaneous measurement of both κ1,κ2 provides a much
stronger test compared to earlier cases where we assumed the spin-induced multipole
coefficients to be the same for both the components of the binary (κ1 = κ2, λ1 = λ2).
The parameter space explored in this case is as follows,

θi = { tc , φc , Mc , η, χ1, χ2, κ1, κ2}, (5.11)

where the parameters have usual meaning.

Figure 5.8 shows variations in errors on κ1 (filled markers) and κ2 (empty markers)
as a function of total mass of the binary for three different mass ratios (q = 1.2, 3, 5)
and four different spin configurations (each with fixed spin magnitudes of 0.9 and 0.8
for the heavier and lighter component, respectively). Here again, the spin orientations
chosen are those where both the black hole spins aligned, heavier component aligned
and other anti-aligned, heavier component anti-aligned other aligned and both the spins
anti-aligned to the orbital angular momentum axis, respectively from left to right of
Fig. 5.8. One of the first things we observe is that estimates of κ1 (which characterizes
spin-induced deformations of the heavier BH) is consistently better than those of κ2

(which characterizes spin-induced deformations of the lighter BH) for all mass-ratios and
spin configurations. We also note that κ1 is measured with smaller errors for systems
which are more asymmetric and if the heavier BH is aligned with the orbital angular
momentum axis.

These trends can be understood from the leading order spin-induced quadrupole
moment term in the gravitational wave phasing formula which is proportional to
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κ1 α(η)χ2
1 + κ2 β(η)χ2

2 as we explained in Sec. 5.3.1.1. As α(η) ≥ β(η) and as we assign
larger spin values to the more massive component, for any given spin configuration the
pre-factor of κ1 is always higher than that of κ2. This explains why κ1 estimates are
better than κ2. Further, as α(η) increases with mass-ratio, the error on κ1 improves with
mass asymmetry. Similarly, the errors on κ2 worsens with increase in the mass-ratio,
since β(η) is a decreasing function of the mass-ratio.

5.4 Testing the Kerr nature of supermassive and

intermediate-mass black hole binaries using spin-

induced multipole moment measurements

In this section, we investigate the measurability of spin-induced quadrupole and octupole
moment parameters of supermassive and intermediate-mass binary black holes using
LISA and DECIGO detector configurations, respectively. Further, we show that the
proposed LISA and DECIGO detectors will allow us to measure both spin-induced
quadrupole and octupole moment parameters with reasonably good statistical errors and
hence are excellent probes for the tests of Kerr nature of the compact binary systems
composed of supermassive and intermediate-mass binary black holes, by considering an
astrophysical population of binary black holes. We show our main results in Table 5.1.
The numbers in Table 5.1 correspond to the percentage of sources that satisfy the
detection threshold of LISA and DECIGO and errors on spin-induced multipole moment
parameters less than a certain value (see Sec. 5.4.1 for more details). From Table 5.1, it
is evident that the gravitational wave observations of spin-induced multipole moment
parameters can give stringent constraints on the allowed parameter space of black hole
mimickers such as the spinning boson star models in Ref. [193].

To study how well one can constrain the spin-induced quadrupole and octupole
moment coefficients using space-based detectors, we perform Fisher information matrix
analysis on compact binaries with different masses and spins, see Sec. 5.2.
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Detector ∆κs ≤ 1 ∆κs ≤ 0.1 ∆κs ≤ 0.01 ∆κs ≤ 1 and ∆λs ≤ 1

LISA 38.4 1.10 - 1.29(Q3-nod)

DECIGO 91.3 40.01 5.2 49.9(model-1)

Table 5.1: The percentage of total population crossing the detection criteria for for
LISA and DECIGO detectors and giving errors on spin-induced quadrupole moment
parameters better than a certain value. Among the population models for
supermassive and intermediate-mass black holes (described in Sec. 5.4.1) we choose
Q3-nod for LISA and model-1 for DECIGO as a representative case here. The
DECIGO numbers are given in brackets.

5.4.1 Testing the nature of intermediate-mass and supermas-

sive binary black holes

In this section, we mainly focus on analysis II described in 5.3 that both the constituents
of the binary have the same multipole coefficient, i .e., κ1 = κ2 and λ1 = λ2. This
implies that the binary constituents are of the same type, for example, a binary system
consisting of two boson stars with a given value of spin-induced multipole moment
coefficients. The waveform model we employ is the same as that of 5.2.1. We consider
two scenarios to demonstrate the method of testing the binary black hole nature of
intermediate-mass and supermassive binary black holes. Firstly, we obtain the errors
on spin-induced quadrupole and octupole moment parameters of the compact binary
as a function of the total mass of the system keeping the spin magnitudes, mass ratio,
location and orientation fixed. Secondly, we investigate the applicability of this test
for an astrophysical population of supermassive and intermediate-mass binary black
holes assuming certain distributions for the source parameters. In our case the set of
parameters in the signal manifold which characterise the compact binary consists of,

−→
θ =

{
M, δ, χ1, χ2, κs , λs , tc , φc

}
, (5.12)

where tc , φc are the time and phase at coalescence andM and δ are the chirp mass and
the asymmetric mass ratio of the system 2 and χ1, χ2 are the magnitudes of dimensionless

2These mass parameters related to individual masses of the compact binary system through the

following relations: M = (m1 + m2)×
(

m1×m2

m1+m2

)3/5

and δ = m1−m2

(m1+m2) .
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Figure 5.9: Errors on spin-induced quadrupole moment parameter (∆κs , solid
curves) and octupole moment parameter (∆λs , dashed curves) as a function of total
mass of the binary system which is assumed to be located at a luminosity distance of
1 Gpc and oriented at a particular point in the sky with spin magnitudes (0.6, 0.3)
and mass ratio of 1.1. Black, orange and red curves respectively show the results
obtained when we consider LISA, DECIGO and DECIGO-B configurations. We
assume 4 yr of observation time for all the three detector configurations.

spin parameters 3. Spin-induced quadrupole and octupole moment parameters of the
binary system are κs and λs , respectively as defined in Sec. 5.3. Notice that while
estimating the errors on the symmetric combination of the spin-induced quadrupole (κs)
and octupole (λs) moment parameters, we set the anti-symmetric combination to be
zero, i.e., κa = λa = 0.

5.4.1.1 Errors as a function of total mass of the binary system

In Fig. 5.9, we show the errors on spin-induced quadrupole (solid curve) and octupole
moment (dashed curve) parameters as a function of the total mass of the system, where
we fix the mass ratio (m1/m2) to be 1.1 and the dimensionless component spins (χ1, χ2)
to be (0.6, 0.3). Black curves in Fig. 5.9 correspond to supermassive black holes (which
LISA is more sensitive to) and, orange and red curves show the errors corresponding
to intermediate-mass black holes (which DECIGO and DECIGO-B are more sensitive
to). As we can see from the figure, errors on both the parameters decrease as a function
of total mass initially (irrespective of the detector configuration assumed) and then
increase. This is because of the combined effect of the signal-to-noise ratio and the

3χ̃i is related to the spin angular momentum as χ̃i= ˜|Si |/m2
i , where ˜|Si | is the spin angular momentum

vector and mi is the mass of the compact object.
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inspiral truncation frequency of the analysis. As the total mass increases, signal strength
for a binary system with fixed location and orientation in the sky increases, but the
number of cycles in the detector band decreases as the upper cut-off frequency decreases,
which is inversely related to the total mass.

5.4.1.2 Errors from an astrophysical population of binary systems

The results shown in Fig. 5.9 are not enough to completely assess the capabilities of LISA
and DECIGO to carry out the test of Kerr nature of the binary black hole system, as
they correspond to certain representative binary configurations. We repeat the analysis
for a simulated population of binary black holes, that may be detected by LISA and
DECIGO, and obtain the fraction of the total population this test would yield good
constraints for. The simulated population in our case assumes that the binary black
hole merger rate per redshift bin in the observer frame follows the relation,

d R(z)

d z
= R(z)

d Vc(z)

d z
, (5.13)

where R(z) is the number of binary coalescence per observation time, R(z) is the
merger rate density in the detector frame and Vc(z) denotes the comoving volume.

For LISA sources, we assume the massive black hole rate evolution follows the models
given in Klein et al. [16]. These semi-analytical massive black hole-galaxy coevolution
models assume two different birth mechanisms for massive black holes and also account
for the time delay between massive black hole merger and galaxy merger [330–337].
Following the R(z) and detector frame total mass distributions given in Fig. [3] of
Ref. [16], we populate binary black holes keeping the component masses nearly equal for
three different formation mechanisms described in [16]4. Among all the three models,
Model popIII, Model Q3-d and Model Q3-nod, we observe that very few sources cross
the detection threshold (SNR≥200) for Model popIII and hence we only show the results
obtained from Model Q3-d and Model Q3-nod here.

4For Q3-nod (Q3-d) we populate up to a redshift of z = 19(10) with total masses range between
8× 103 − 108M�(2.21× 104 − 108M�).
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In order to populate intermediate-mass black holes, which are interesting sources for
the DECIGO configurations, we start with the following the relation [167],

R(z) = R0 (1 + z)λ
Tobs

1 + z
, (5.14)

where R(z) is the rate of binary mergers that occur over the total observation
time Tobs measured in the detector frame. Here, R0 is a constant which gives the rate
density corresponding to a particular value of redshift and we fix it to be 40 Gpc−3yr−1.
We distribute sources upto a redshift of 20 assuming two different population models
for DECIGO configurations, model-1 and model-2. For model-1, we fix λ = 0 (rate
density is assumed to be a constant with respect to the redshift) and the component
masses to be uniformly distributed in the range 102 − 104M�. For model-2, we fix
λ = 6.5 [167] and the primary mass (m1) is drawn from a power law distribution with
index 1.6, in the range 102 − 104M� and secondary mass (m2) is drawn from a uniform
distribution. The dimensionless spin parameters χ1 and χ2 are distributed uniformly
between -1 to 1 for both LISA and DECIGO sources. Notice that, among the total
populated sources positioned isotropically in orientation and polarisation sky, we choose
only those sources which satisfy a detection criteria set by signal-to-noise ratio of 200
for LISA and 100 for DECIGO/DECIGO-B. The cumulative distribution functions of
errors obtained on spin-induced quadrupole and octupole moment coefficients for an
astrophysical population of binary black hole system are shown in Figs. 5.10 and 5.11.

From Figs. 5.10 and 5.11 we find that the errors on the spin-induced quadrupole
moment coefficient are consistently smaller than that of the octupole coefficient for the
entire population and all three detector configurations. This is expected as octupole
is sub-leading with respect to the quadrupole. Among the simulated binaries which
cross the LISA detection threshold, we find that 1.55% (1.29%) of the population has
both ∆κs and ∆λs ≤1 if we assume Model Q3-d (Model Q3-nod) 5. This percentage
will increase to 40% when we consider the case where only the spin-induced quadrupole
moment parameter is measured with a measurement precision ≤1. From the total
population of intermediate-mass BHs detectable by DECIGO configuration with a
lower cut-off frequency of 10−2Hz(f2), 49.97% ( 1.39%) of the sources give errors on
both the spin-induced multipole moments ≤1 when we assume model-1 (model-2).
Assuming model-1 with a lower cut-off frequency of 10−2Hz, we find that 40% (5%) of
the DECIGO sources give errors on spin-induced quadrupole moment parameter with

5∆κs and ∆λs =1 corresponds 100% errors on these parameters.
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Figure 5.10: Cumulative distributions of errors on the spin-induced quadrupole and
octupole moment coefficients for an astrophysical population of compact binary
systems following Ref. [16]. We choose to show results from two models (Model Q3-d
and Model Q3-nod) among the three models given in [16], as from the third model
(Model popIII) we do not have enough sources crossing our detection criteria.
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Figure 5.11: Cumulative distributions of errors on the spin-induced quadrupole and
octupole moment coefficients for an astrophysical population of compact binary
systems (see Sec. 5.4 for more details). Two detector configurations of DECIGO,
DECIGO-B and DECIGO are considered. We choose two different lower cut-off
frequencies for DECIGO-B, 10−1Hz (f1) and 10−2Hz (f2) respectively.

10%( 1%) precison. We see that assuming model-1, 1.04% of the simulated population
has errors on both the spin-induced multipole moments ≤1 for DECIGO-B with a
lower cut-off frequency of 10−1Hz (f1). This percentage increases to 4.8% with the lower
cut-off frequency changing to 10−2Hz (f2). We conclude by noting that the spin-induced
multipole moment coefficients of supermassive and intermediate-mass binary black holes,
can be constrained well for a subpopulation of binary systems using LISA, DECIGO
and DECIGO-B detectors, respectively.
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5.5 Conclusions

In three different sets of numerical experiments discussed above, we find that improved
sensitivities of third-generation detectors (Cosmic Explorer or Einstein Telescope) over
the current advanced LIGO detectors not only allow us to significantly constrain the
leading spin-induced effects in gravitational waveforms but also enable us to explore a
much wider mass and spin parameter space (Sec. 5.3.1.1). Assuming an astrophysical
population of binary black holes, we show that the errors on spin-induced quadrupole
moment parameter is ≤ 5 for 30% of the total population if we assume the primary
component masses follow the power-law distribution when CE configuration is used. This
fraction is roughly 20% larger if the component masses are uniformly distributed while
the errors with Einstein Telescope are largely independent of the mass distribution as
can be seen from Fig. 5.5. As expected, estimated bounds using the two third-generation
detectors (Cosmic Explorer or Einstein Telescope) are comparable with a slight favor
towards Cosmic Explorer configuration for high mass systems whereas the low mass,
aligned spins systems benefit the most from the improved low frequency sensitivity of
ET-D. We also showed that at least for a narrower parameter space it would be possible
to put stringent bounds on the first two spin-induced multipole moments (quadrupolar
and octupolar) simultaneously to assess the nature of the involved compact binary (see
Sec. 5.3.1.3 above). This also means one would be able to constrain four multipole
moments of the compact binary system facilitating a thorough probe of their binary
black hole nature. Finally, the possibility of bounding the leading spin-induced moment
for each binary component was explored in Sec. 5.3.1.4. Results of Fig. 5.8 suggest a set
of possible binary configurations for which at least the nature of the heavier component
can be confirmed. Due to the dependencies of the bounds on component spins, mass
ratios, and masses, it is somewhat difficult to predict the magnitude of the constraints
these measurements will place on the parameter space of BH mimickers. For example,
considering boson star models of Ryan [193], the theoretically allowed lower limit on
the quadrupole parameter is ∼ 10 (see Fig. 4 of [193]) and lower limit on the octupole
parameter is ∼ 20 (Fig. 5 of [193]). These values do depend on parameters such as the
mass of the boson which constitute the boson stars. Figure 5.3 above shows that, unless
component spin values are less than 0.1, the expected bounds on κs will rule out boson
star models which predict κs ∼ 10. Similarly, as can be seen from Fig. 5.7, detecting
moderate to highly spinning systems (χ ∼ 0.4 − 0.9) can help you rule out λs ∼ 20.
However, it has to be borne in mind that the constraints from individual events can
rule out a BH mimicker association only for that system and not a generic constrain
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on the parameter space of BH mimickers. The constraints on gravastars, however, are
likely to be weaker as the spin-induced quadrupole moment parameter of this class of
objects spans a small range of values around the BH value (∼ −0.17 to ∼ 1.8) as can
be seen from Fig. 7 of [273].

We find that the future space-based gravitational wave detectors are excellent probe
for the black hole nature of the compact binary system. We demonstrate this using an
astrophysical population of super massive and intermediate massive binary black holes.
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Appendix A

List of amplitude/phase coefficients with spin-induced

multipole moment dependence

Here we provide expressions for coefficients that contain explicit dependence on κs and
κa. Below we list the amplitude/phase coefficients that do contain explicit dependence
on κs and κa and can be combined to those listed in Ref. [30, 284] to write the final
waveform expression given in the following Eq. (15),

h̃(f ) =
M2

DL

√
5π ν

48

4∑
n=0

6∑
k=1

V
n−7/2
k C

(n)
k e i(k ΨSPA(f /k)−π/4) . (15)
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C(4)
2 =

F+√
2
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113419241

40642560
+

152987

16128
ν − 11099
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ν2

)
+c6

ι
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+
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2016
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2016
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13

12
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)
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32
+ δ

(
1

64
+

3

4
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3

4
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(
κa

(
3

4
− 3

2
ν

)
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(
3

4
− 3

2
ν
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+

47 ν

16
(χ1 · L̂N)(χ2 · L̂N)
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+
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+
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+
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+
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(16)
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The explicit expression for 4PN accurate phase ΨSPA(f ) is given in Eq. 17, where,
αn are (n/2)th PN coefficients and v = Vk(f ) is the post-Newtonian parameter defined
as v = (2πM f /k)1/3 for the kth harmonic 6.

ΨSPA(f ) =
3

256 ν

8∑
n=0

αn v n, (17)

α0 = 1

α1 = 0

α2 =

(
55 ν

9
+

3715

756

)
α3 = −16π +

(
χ1 · L̂N

)(113 δ

6
− 38 ν

3
+

113

6

)
+
(
χ2 · L̂N

)(
−113 δ

6
− 38 ν

3
+

113

6

)

α4 =
15293365

508032
+

27145 ν

504
+

3085 ν2

72
+

395 ν

4
(χ1 · L̂N) (χ2 · L̂N)

+

(
− 5

16
− 5 δ

16
+ κa (−25− 25 δ + 50 ν) + κs (−25− 25 δ + 50 ν)

)
(χ1 · L̂N)2

+

(
− 5

16
+

5 δ

16
+ κa (25− 25 δ − 50 ν) + κs (−25 + 25 δ + 50 ν)

)
5ν

8
+ (χ1 · L̂N)2

6Note, here f is the gravitational wave frequency.
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α8 = (χ1 · L̂N)

(
233915

336
π − 233915

336
π δ − 3970375

4536
π ν +

99185

504
π δ ν

)
+(χ1 · L̂N)

(
19655

378
π ν2 − 233915

112
π log(v)

)
+(χ1 · L̂N)

(
233915

112
π δ log(v)

)
+(χ1 · L̂N)

(
3970375

1512
π ν log(v)− 99185

168
π δ ν log(v)− 19655

126
π ν2 log(v)

)
+(χ2 · L̂N)

(
233915

336
π +

233915

336
π δ − 3970375

4536
π ν − 99185

504
π δ ν

)
+(χ2 · L̂N)

(
19655

378
π ν2 − 233915

112
π log(v)

)
+(χ1 · L̂N)

(
−233915

112
π δ log(v) +

3970375

1512
π ν log(v) +

99185

168
π δ ν log(v)

)
+(χ2 · L̂N)

(
−19655

126
π ν2 log(v)

)
(21)

Page 106



Bibliography

[1] LIGO Scientific Collaboration, https://www.ligo.caltech.edu/gallery.

[2] B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett. 116, 061102 (2016),
1602.03837.

[3] J. Aasi et al. (LIGO Scientific), Class. Quant. Grav. 32, 074001 (2015), 1411.4547.

[4] B. P. Abbott et al. (LIGO Scientific) (2016), 1607.08697.

[5] S. Hild et al., Classical and Quantum Gravity 28, 094013 (2011).

[6] K. Yagi and N. Seto, Phys. Rev. D83, 044011 (2011), [Erratum: Phys.
Rev.D95,no.10,109901(2017)].

[7] S. Isoyama, H. Nakano, and T. Nakamura, PTEP 2018, 073E01 (2018), 1802.
06977.

[8] S. Babak, J. Gair, A. Sesana, E. Barausse, C. F. Sopuerta, C. P. L. Berry, E. Berti,
P. Amaro-Seoane, A. Petiteau, and A. Klein, ArXiv e-prints (2017), 1703.09722.

[9] M. Vallisneri, Phys. Rev. D86, 082001 (2012), 1207.4759.

[10] B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett. 116, 241103 (2016),
1606.04855.

[11] B. P. Abbott et al. (Virgo, LIGO Scientific), Astrophys. J. 851, L35 (2017),
1711.05578.

[12] J. Veitch et al., Phys. Rev. D91, 042003 (2015), 1409.7215.

[13] S. Husa, S. Khan, M. Hannam, M. Pürrer, F. Ohme, X. Jiménez Forteza, and
A. Bohé, Phys. Rev. D93, 044006 (2016), 1508.07250.

[14] B. P. Abbott et al. (LIGO Scientific, Virgo) (2018), 1811.12907.

107

https://www.ligo.caltech.edu/gallery
1602.03837
1411.4547
1607.08697
1802.06977
1802.06977
1703.09722
1207.4759
1606.04855
1711.05578
1409.7215
1508.07250
1811.12907


[15] B. P. Abbott et al. (VIRGO, LIGO Scientific), Phys. Rev. Lett. 118, 221101
(2017), [Erratum: Phys. Rev. Lett.121,no.12,129901(2018)], 1706.01812.

[16] A. Klein et al., Phys. Rev. D93, 024003 (2016), 1511.05581.

[17] A. Einstein and J. J. e. a. Stachel, The collected papers of Albert Einstein: English
translation supplement (Princeton Univ. Press, Princeton, NJ, 1987).

[18] M. Maggiore, in Sense of Beauty in Physics: Miniconference in Honor of Adriano
Di Giacomo on his 70th Birthday Pisa, Italy, January 26-27, 2006 (2006), gr-qc/
0602057.

[19] J. D. E. Creighton and W. G. Anderson, Gravitational-wave physics and astronomy:
An introduction to theory, experiment and data analysis (2011).

[20] S. Klimenko, I. Yakushin, A. Mercer, and G. Mitselmakher, Class. Quant. Grav.
25, 114029 (2008), 0802.3232.

[21] R. Lynch, S. Vitale, R. Essick, E. Katsavounidis, and F. Robinet, Phys. Rev. D95,
104046 (2017), 1511.05955.

[22] B. P. Abbott et al. (LIGO Scientific, Virgo) (2019), 1905.03457.

[23] B. P. Abbott et al. (LIGO Scientific, Virgo), Astrophys. J. 875, 122 (2019),
1812.11656.

[24] N. Christensen, Rept. Prog. Phys. 82, 016903 (2019), 1811.08797.

[25] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 120, 091101 (2018),
1710.05837.

[26] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 116, 131102 (2016),
1602.03847.

[27] L. Blanchet, Living Reviews in Relativity 17, 2 (2014), 1310.1528.

[28] F. Pretorius (2007), 0710.1338.

[29] M. Sasaki and H. Tagoshi, Living Rev. Rel. 6, 6 (2003), gr-qc/0306120.

[30] C. K. Mishra, A. Kela, K. G. Arun, and G. Faye, Phys. Rev. D93, 084054 (2016),
1601.05588.

108

1706.01812
1511.05581
gr-qc/0602057
gr-qc/0602057
0802.3232
1511.05955
1905.03457
1812.11656
1811.08797
1710.05837
1602.03847
1310.1528
0710.1338
gr-qc/0306120
1601.05588


[31] Y. Pan, A. Buonanno, A. Taracchini, L. E. Kidder, A. H. Mroué, H. P. Pfeiffer,
M. A. Scheel, and B. Szilágyi, Phys. Rev. D89, 084006 (2014), 1307.6232.

[32] B. Moore and N. Yunes (2019), 1903.05203.

[33] J. Vines, E. E. Flanagan, and T. Hinderer, Phys.Rev. D 83, 084051 (2011),
1101.1673.

[34] E. Poisson, Phys. Rev. D 57, 5287 (1998), gr-qc/9709032.

[35] T. Abdelsalhin, Ph.D. thesis, INFN, Rome (2019), 1905.00408.

[36] Annals of Physics 29, 304 (1964), ISSN 0003-4916.

[37] R. L. Arnowitt, S. Deser, and C. W. Misner, Gen. Rel. Grav. 40, 1997 (2008),
gr-qc/0405109.

[38] L. Smarr, in Sources of Gravitational Radiation, edited by L. L. Smarr (1979), pp.
245–274.

[39] F. Pretorius, Phys. Rev. Lett. 95, 121101 (2005), gr-qc/0507014.

[40] J. G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, and J. van Meter, Phys. Rev.
Lett. 96, 111102 (2006), gr-qc/0511103.

[41] M. Campanelli, C. O. Lousto, P. Marronetti, and Y. Zlochower, Phys. Rev. Lett.
96, 111101 (2006), gr-qc/0511048.

[42] M. Boyle et al. (2019), 1904.04831.

[43] K. Jani, J. Healy, J. A. Clark, L. London, P. Laguna, and D. Shoemaker, Class.
Quant. Grav. 33, 204001 (2016), 1605.03204.

[44] J. Healy, C. O. Lousto, J. Lange, R. O’Shaughnessy, Y. Zlochower, and M. Cam-
panelli (2019), 1901.02553.

[45] A. Buonanno and T. Damour, Phys. Rev. D62, 064015 (2000), gr-qc/0001013.

[46] Y. Pan, A. Buonanno, A. Taracchini, L. E. Kidder, A. H. Mroué, H. P. Pfeiffer,
M. A. Scheel, and B. Szilágyi, Phys. Rev. D89, 084006 (2014), 1307.6232.

[47] A. Taracchini et al., Phys. Rev. D89, 061502 (2014), 1311.2544.

[48] A. Nagar et al., Phys. Rev. D98, 104052 (2018), 1806.01772.

109

1307.6232
1903.05203
1101.1673
gr-qc/9709032
1905.00408
gr-qc/0405109
gr-qc/0507014
gr-qc/0511103
gr-qc/0511048
1904.04831
1605.03204
1901.02553
gr-qc/0001013
1307.6232
1311.2544
1806.01772


[49] P. Ajith and Babak, Class. Quantum Grav. 24, 689 (2007), 0704.3764.

[50] P. Ajith, S. Babak, Chen, et al., Phys. Rev. D 77, 104017 (2008), 0710.2335.

[51] P. Ajith, M. Hannam, S. Husa, Y. Chen, B. Bruegmann, et al., Phys.Rev.Lett.
106, 241101 (2011), arXiv:0909.2867.

[52] P. Ajith, Phys.Rev. D84, 084037 (2011), 1107.1267.

[53] M. Hannam, Gen. Rel. Grav. 46, 1767 (2014), 1312.3641.

[54] T. Dietrich, A. Samajdar, S. Khan, N. K. Johnson-McDaniel, R. Dudi, and
W. Tichy (2019), 1905.06011.

[55] T. D. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. X6, 041014 (2016),
1606.01210.

[56] S. A. Usman et al., Class. Quant. Grav. 33, 215004 (2016), 1508.02357.

[57] S. Sachdev et al. (2019), 1901.08580.

[58] C. Cutler and E. E. Flanagan, Phys. Rev. D49, 2658 (1994), gr-qc/9402014.

[59] C. Rao, Bullet. Calcutta Math. Soc 37, 81 (1945).

[60] H. Cramer, Mathematical methods in statistics (Pergamon Press, Princeton Uni-
versity Press, NJ, U.S.A., 1946).

[61] W. Del Pozzo, J. Veitch, and A. Vecchio, Phys.Rev. D83, 082002 (2011), 1101.
1391.

[62] M. Agathos, W. Del Pozzo, T. G. F. Li, C. V. D. Broeck, J. Veitch, et al., Phys.Rev.
D89, 082001 (2014), 1311.0420.

[63] J. Veitch and A. Vecchio, Phys.Rev. D 81, 062003 (2010), 0911.3820.

[64] J. Skilling, Bayesian Anal. 1, 833 (2006).

[65] F. Feroz and M. P. Hobson, Mon. Not. Roy. Astron. Soc. 384, 449 (2008),
0704.3704.

[66] F. Feroz, M. P. Hobson, and M. Bridges, Mon. Not. Roy. Astron. Soc. 398, 1601
(2009), 0809.3437.

[67] F. Feroz, M. P. Hobson, E. Cameron, and A. N. Pettitt (2013), 1306.2144.

110

0704.3764
0710.2335
arXiv:0909.2867
1107.1267
1312.3641
1905.06011
1606.01210
1508.02357
1901.08580
gr-qc/9402014
1101.1391
1101.1391
1311.0420
0911.3820
0704.3704
0809.3437
1306.2144


[68] J. Weber, Phys. Rev. Lett. 20, 1307 (1968).

[69] J. Weber, Phys. Rev. Lett. 18, 498 (1967).

[70] J. Weber, Phys. Rev. Lett. 22, 1320 (1969).

[71] J. H. Taylor and J. M. Weisberg, apj 253, 908 (1982).

[72] J. H. Taylor and J. M. Weisberg, apj 345, 434 (1989).

[73] J. M. Weisberg and Y. Huang, Astrophys. J. 829, 55 (2016), 1606.02744.

[74] The Nobel Prize in Physics 1993, https://www.nobelprize.org/prizes/

physics/1993/press-release/ (2018).

[75] G. Weinstein, arXiv e-prints arXiv:1602.04040 (2016), 1602.04040.

[76] P. Saulson, Fundamentals of Interferometric Gravitational Wave Detectors (World
Scientific, 1994), ISBN 9789810218201.

[77] J. Aasi et al. (LIGO Scientific, VIRGO), Phys. Rev. Lett. 113, 231101 (2014),
1406.4556.

[78] P. Fritschel, Proc. SPIE Int. Soc. Opt. Eng. 4856, 282 (2003), gr-qc/0308090.

[79] B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. X6, 041015 (2016),
1606.04856.

[80] N. J. Cornish and T. B. Littenberg, Class. Quant. Grav. 32, 135012 (2015),
1410.3835.

[81] B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett. 116, 221101 (2016),
1602.03841.

[82] B. P. Abbott et al. (LIGO Scientific, Virgo) (2019), 1903.04467.

[83] A. Ghosh, N. K. Johnson-Mcdaniel, A. Ghosh, C. K. Mishra, P. Ajith,
W. Del Pozzo, C. P. L. Berry, A. B. Nielsen, and L. London (2017), 1704.06784.

[84] A. Ghosh, N. K. Johnson-McDaniel, A. Ghosh, C. Kant Mishra, P. Ajith, W. Del
Pozzo, C. P. L. Berry, A. B. Nielsen, and L. London, Classical and Quantum
Gravity 35, 014002 (2018), 1704.06784.

[85] J. Healy, C. O. Lousto, and Y. Zlochower, Phys. Rev. D90, 104004 (2014),
1406.7295.

111

1606.02744
https://www.nobelprize.org/prizes/physics/1993/press-release/
https://www.nobelprize.org/prizes/physics/1993/press-release/
1602.04040
1406.4556
gr-qc/0308090
1606.04856
1410.3835
1602.03841
1903.04467
1704.06784
1704.06784
1406.7295


[86] K. G. Arun, B. R. Iyer, M. S. S. Qusailah, and B. S. Sathyaprakash, Class.
Quantum Grav. 23, L37 (2006), gr-qc/0604018.

[87] K. Yagi, L. C. Stein, N. Yunes, and T. Tanaka, Phys. Rev. D85, 064022 (2012),
[Erratum: Phys. Rev.D93,no.2,029902(2016)], 1110.5950.

[88] K. G. Arun, B. R. Iyer, M. S. S. Qusailah, and B. S. Sathyaprakash, Phys. Rev. D
74, 024006 (2006), gr-qc/0604067.

[89] N. Yunes and F. Pretorius, Phys. Rev. D80, 122003 (2009), 0909.3328.

[90] C. K. Mishra, K. G. Arun, B. R. Iyer, and B. S. Sathyaprakash, Phys. Rev. D 82,
064010 (2010), 1005.0304.

[91] M. Agathos, W. Del Pozzo, T. G. F. Li, C. Van Den Broeck, J. Veitch, and
S. Vitale, Phys. Rev. D89, 082001 (2014), 1311.0420.

[92] B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett. 116, 221101 (2016),
1602.03841.

[93] B. P. Abbott et al. (LIGO Scientific, Virgo) (2018), 1811.00364.

[94] N. Yunes, K. Yagi, and F. Pretorius, Phys. Rev. D94, 084002 (2016), 1603.08955.

[95] C. M. Will, Phys. Rev. D50, 6058 (1994), gr-qc/9406022.

[96] B. P. Abbott et al. (LIGO Scientific, Virgo) (2018), 1811.00364.

[97] D. Mattingly, Living Rev. Rel. 8, 5 (2005), gr-qc/0502097.

[98] A. Samajdar and K. G. Arun, Phys. Rev. D96, 104027 (2017), 1708.00671.

[99] G. Amelino-Camelia, Nature 418, 34 (2002), gr-qc/0207049.

[100] C. M. Will, Living Rev. Rel. 17, 4 (2014), 1403.7377.

[101] G. Calcagni, Phys. Rev. Lett. 104, 251301 (2010), 0912.3142.

[102] S. Mirshekari, N. Yunes, and C. M. Will, Phys. Rev. D85, 024041 (2012), 1110.
2720.

[103] B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett. 119, 141101 (2017),
1709.09660.

112

gr-qc/0604018
1110.5950
gr-qc/0604067
0909.3328
1005.0304
1311.0420
1602.03841
1811.00364
1603.08955
gr-qc/9406022
1811.00364
gr-qc/0502097
1708.00671
gr-qc/0207049
1403.7377
0912.3142
1110.2720
1110.2720
1709.09660


[104] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys.
Rev. Lett. 119, 161101 (2017).

[105] B. P. Abbott et al., Astrophys. J. 848, L12 (2017), 1710.05833.

[106] E. Waxman and J. Bahcall, Phys. Rev. Lett. 78, 2292 (1997).

[107] A. Margiotta (ANTARES), Nucl. Instrum. Meth. A725, 98 (2013).

[108] M. G. Aartsen et al. (IceCube), Astrophys. J. 796, 109 (2014), 1406.6757.

[109] A. Aab et al. (Pierre Auger), Nucl. Instrum. Meth. A798, 172 (2015), 1502.01323.

[110] A. Albert et al. (ANTARES, IceCube, Pierre Auger, LIGO Scientific, Virgo),
Astrophys. J. 850, L35 (2017), 1710.05839.

[111] B. F. Schutz, Nature 323, 310 (1986).

[112] S. Nissanke, D. E. Holz, N. Dalal, S. A. Hughes, J. L. Sievers, and C. M. Hirata
(2013), 1307.2638.

[113] P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A13 (2016), 1502.01589.

[114] A. G. Riess et al., Astrophys. J. 826, 56 (2016), 1604.01424.

[115] A. W. Steiner, S. Gandolfi, F. J. Fattoyev, and W. G. Newton, Phys. Rev. C91,
015804 (2015), 1403.7546.

[116] S. De, D. Finstad, J. M. Lattimer, D. A. Brown, E. Berger, and C. M. Biwer, Phys.
Rev. Lett. 121, 091102 (2018), [Erratum: Phys. Rev. Lett.121,no.25,259902(2018)],
1804.08583.

[117] B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 121, 161101 (2018),
1805.11581.

[118] C. Deffayet and K. Menou, Astrophys. J. 668, L143 (2007), 0709.0003.

[119] K. Pardo, M. Fishbach, D. E. Holz, and D. N. Spergel, JCAP 1807, 048 (2018),
1801.08160.

[120] B. P. Abbott et al. (LIGO Scientific, Virgo, Fermi-GBM, INTEGRAL), Astrophys.
J. 848, L13 (2017), 1710.05834.

[121] T. Akutsu et al. (KAGRA), Class. Quant. Grav. 36, 165008 (2019), 1901.03569.

113

1710.05833
1406.6757
1502.01323
1710.05839
1307.2638
1502.01589
1604.01424
1403.7546
1804.08583
1805.11581
0709.0003
1801.08160
1710.05834
1901.03569


[122] C. S. Unnikrishnan, Int. J. Mod. Phys. D22, 1341010 (2013), 1510.06059.

[123] LSC Instrument Science White Paper Tech. rep. LIGO Scientific Collaboration,
https://dcc.ligo.org/public/0125/T1600119/004/wp2016.pdf.

[124] J. Miller, L. Barsotti, S. Vitale, P. Fritschel, M. Evans, and D. Sigg, Phys. Rev.
D91, 062005 (2015), 1410.5882.

[125] LSC Instrument Science White Paper Tech. rep. LIGO Scientific Collaboration,
The lsc-virgo white paper on instrument science (2016-2017 edition), https://
dcc.ligo.org/LIGO-T1600119/public.

[126] S. A. Hughes and K. S. Thorne, Phys. Rev. D58, 122002 (1998), gr-qc/9806018.

[127] P. R. Saulson, Phys. Rev. D 30, 732 (1984).

[128] G. M. Harry, P. Fritschel, D. A. Shaddock, W. Folkner, and E. S. Phinney, Class.
Quant. Grav. 23, 4887 (2006), [Erratum: Class. Quant. Grav.23,7361(2006)].

[129] P. Amaro-Seoane et al., Classical and Quantum Gravity 29, 124016 (2012).

[130] M. Armano et al., arXiv e-prints arXiv:1903.08924 (2019), 1903.08924.

[131] M. A. et. al., Classical and Quantum Gravity 26, 094019 (2009).

[132] L. P. collaboration, Journal of Physics: Conference Series 840, 012001 (2017).

[133] M. Armano et al., Phys. Rev. Lett. 116, 231101 (2016).

[134] N. Seto, S. Kawamura, and T. Nakamura, Phys. Rev. Lett. 87, 221103 (2001).

[135] S. S. et. al., Journal of Physics: Conference Series 840, 012010 (2017).

[136] C. Cutler and J. Harms, Phys. Rev. D73, 042001 (2006), gr-qc/0511092.

[137] K. Yagi, Class. Quant. Grav. 29, 075005 (2012), 1202.3512.

[138] K. Yagi, Int. J. Mod. Phys. D22, 1341013 (2013), 1302.2388.

[139] D. Gerosa, S. Ma, K. W. K. Wong, E. Berti, R. O’Shaughnessy, Y. Chen, and
K. Belczynski, Phys. Rev. D99, 103004 (2019), 1902.00021.

[140] C. Cutler et al. (2019), 1903.04069.

[141] S. Vitale, Phys. Rev. Lett. 117, 051102 (2016), 1605.01037.

114

1510.06059
https://dcc.ligo.org/public/0125/T1600119/004/wp2016.pdf
1410.5882
https://dcc.ligo.org/LIGO-T1600119/public
https://dcc.ligo.org/LIGO-T1600119/public
gr-qc/9806018
1903.08924
gr-qc/0511092
1202.3512
1302.2388
1902.00021
1903.04069
1605.01037


[142] A. Sesana, Phys. Rev. Lett. 116, 231102 (2016), 1602.06951.

[143] K. W. K. Wong, E. D. Kovetz, C. Cutler, and E. Berti, Phys. Rev. Lett. 121,
251102 (2018), 1808.08247.

[144] E. Barausse, N. Yunes, and K. Chamberlain, Phys. Rev. Lett. 116, 241104 (2016),
1603.04075.

[145] Z. Carson and K. Yagi (2019), 1905.13155.

[146] T. Robson, N. Cornish, and C. Liu, Class. Quant. Grav. 36, 105011 (2019),
1803.01944.

[147] C. Shi, J. Bao, H. Wang, J.-d. Zhang, Y. Hu, A. Sesana, E. Barausse, J. Mei, and
J. Luo (2019), 1902.08922.

[148] J. Aasi et al. (LIGO Scientific), Class. Quant. Grav. 32, 074001 (2015), 1411.4547.

[149] P. O. Mazur and E. Mottola, Proc. Nat. Acad. Sci. 101, 9545 (2004), gr-qc/
0407075.

[150] M. Colpi, S. L. Shapiro, and I. Wasserman, Phys. Rev. Lett. 57, 2485 (1986).

[151] G. F. Giudice, M. McCullough, and A. Urbano, JCAP 1610, 001 (2016), 1605.
01209.

[152] V. Cardoso and P. Pani (2019), 1904.05363.

[153] S. O. Kepler, S. J. Kleinman, A. Nitta, D. Koester, B. G. Castanheira, O. Gio-
vannini, A. F. M. Costa, and L. Althaus, Mon. Not. Roy. Astron. Soc. 375, 1315
(2007), astro-ph/0612277.

[154] J. Antoniadis et al., Science 340, 6131 (2013), 1304.6875.

[155] K. Yagi and N. Yunes, Phys. Rev. D88, 023009 (2013), 1303.1528.

[156] R. O. Hansen, Journal of Mathematical Physics 15, 46 (1974).

[157] B. Carter, Phys. Rev. Lett. 26, 331 (1971).

[158] N. Gürlebeck, Phys. Rev. Lett. 114, 151102 (2015), 1503.03240.

[159] F. D. Ryan, Phys. Rev. D52, 5707 (1995).

[160] R. Geroch, Journal of Mathematical Physics 11, 2580 (1970).

115

1602.06951
1808.08247
1603.04075
1905.13155
1803.01944
1902.08922
1411.4547
gr-qc/0407075
gr-qc/0407075
1605.01209
1605.01209
1904.05363
astro-ph/0612277
1304.6875
1303.1528
1503.03240


[161] R. Geroch, Journal of Mathematical Physics 11, 1955 (1970).

[162] R. Narayan and J. E. McClintock (2013), 1312.6698.

[163] C. Bambi (2019), 1906.03871.

[164] J. Georg and S. Watson, JHEP 09, 138 (2017), 1703.04825.

[165] S. Shandera, D. Jeong, and H. S. G. Gebhardt, Phys. Rev. Lett. 120, 241102
(2018), 1802.08206.

[166] A. Authors (LIGO Scientific, Virgo) (2019), 1904.08976.

[167] B. P. Abbott et al. (LIGO Scientific, Virgo) (2018), 1811.12940.

[168] J. Casares, IAU Symp. 238, 3 (2007), astro-ph/0612312.

[169] M. Mezcua, International Journal of Modern Physics D 26, 1730021 (2017),
1705.09667.

[170] R. P. van der Marel, in Carnegie Observatories Centennial Symposium. 1. Co-
evolution of Black Holes and Galaxies Pasadena, California, October 20-25, 2002
(2003), astro-ph/0302101.

[171] S. A. Farrell, N. A. Webb, D. Barret, O. Godet, and J. M. Rodrigues, nat 460,
73 (2009), 1001.0567.

[172] D. R. Pasham, T. E. Strohmayer, and R. F. Mushotzky (2015), [Na-
ture513,74(2014)], 1501.03180.

[173] B. Kiziltan, H. Baumgardt, and A. Loeb, nat 542, 203 (2017), 1702.02149.

[174] L. Ferrarese and H. Ford, Space Sci. Rev. 116, 523 (2005), astro-ph/0411247.

[175] M. C. Begelman, R. D. Blandford, and M. J. Rees, nat 287, 307 (1980).

[176] Event Horizon Telescope Collaboration, K. Akiyama, A. Alberdi, W. Alef,
K. Asada, R. Azulay, A.-K. Baczko, D. Ball, M. Baloković, J. Barrett, et al., apjl
875, L1 (2019).

[177] A. Boehle, A. M. Ghez, R. Schödel, L. Meyer, S. Yelda, S. Albers, G. D. Martinez,
E. E. Becklin, T. Do, and J. R. Lu, apj 830, 17 (2016), 1607.05726.

[178] S. Gillessen, P. M. Plewa, F. Eisenhauer, R. Sari, I. Waisberg, M. Habibi, O. Pfuhl,
E. George, J. Dexter, and S. von Fellenberg, apj 837, 30 (2017), 1611.09144.

116

1312.6698
1906.03871
1703.04825
1802.08206
1904.08976
1811.12940
astro-ph/0612312
1705.09667
astro-ph/0302101
1001.0567
1501.03180
1702.02149
astro-ph/0411247
1607.05726
1611.09144


[179] X.-H. Fan et al. (SDSS), Astron. J. 131, 1203 (2006), astro-ph/0512080.

[180] X.-B. Wu, F. Wang, X. Fan, W. Yi, W. Zuo, F. Bian, L. Jiang, I. D. McGreer,
R. Wang, J. Yang, et al., nat 518, 512 (2015), 1502.07418.

[181] D. J. Mortlock, S. J. Warren, B. P. Venemans, M. Patel, P. C. Hewett, R. G.
McMahon, C. Simpson, T. Theuns, E. A. Gonzáles-Solares, A. Adamson, et al.,
nat 474, 616 (2011), 1106.6088.

[182] S. L. Liebling and C. Palenzuela, Living Rev. Rel. 15, 6 (2012), [Living Rev.
Rel.20,no.1,5(2017)], 1202.5809.

[183] J. Eby, C. Kouvaris, N. G. Nielsen, and L. C. R. Wijewardhana, JHEP 02, 028
(2016), 1511.04474.

[184] E. Berti and V. Cardoso, Int. J. Mod. Phys. D15, 2209 (2006), gr-qc/0605101.

[185] D. F. Torres, S. Capozziello, and G. Lambiase, Phys. Rev. D62, 104012 (2000),
astro-ph/0004064.

[186] F. H. Vincent, Z. Meliani, P. Grandclement, E. Gourgoulhon, and O. Straub,
Class. Quant. Grav. 33, 105015 (2016), 1510.04170.

[187] D. J. Kaup, Phys. Rev. 172, 1331 (1968).

[188] R. Friedberg, T. D. Lee, and Y. Pang, prd 35, 3658 (1987).

[189] M. Colpi, S. L. Shapiro, and I. Wasserman, Phys. Rev. Lett. 57, 2485 (1986).

[190] V. Cardoso, E. Franzin, A. Maselli, P. Pani, and G. Raposo (2017), 1701.01116.

[191] B. Kleihaus, J. Kunz, and M. List, Phys. Rev. D72, 064002 (2005), gr-qc/
0505143.

[192] E. W. Mielke, Fundam. Theor. Phys. 183, 115 (2016).

[193] F. D. Ryan, Phys. Rev. D. 55, 6081 (1997).

[194] M. A. Gunderson and L. G. Jensen, Phys. Rev. D48, 5628 (1993), astro-ph/
9308014.

[195] D. F. Torres, Phys. Rev. D56, 3478 (1997), gr-qc/9704006.

[196] Z.-J. Tao and X. Xue, Phys. Rev. D45, 1878 (1992).

117

astro-ph/0512080
1502.07418
1106.6088
1202.5809
1511.04474
gr-qc/0605101
astro-ph/0004064
1510.04170
1701.01116
gr-qc/0505143
gr-qc/0505143
astro-ph/9308014
astro-ph/9308014
gr-qc/9704006


[197] M. Bezares, C. Palenzuela, and C. Bona, Phys. Rev. D95, 124005 (2017), 1705.
01071.

[198] C. Palenzuela, P. Pani, M. Bezares, V. Cardoso, L. Lehner, and S. Liebling, Phys.
Rev. D96, 104058 (2017), 1710.09432.

[199] V. Cardoso, E. Franzin, and P. Pani, Phys. Rev. Lett. 116, 171101 (2016),
[Erratum: Phys. Rev. Lett.117,no.8,089902(2016)], 1602.07309.

[200] C. Palenzuela, L. Lehner, and S. L. Liebling, Phys. Rev. D77, 044036 (2008),
0706.2435.

[201] M. Visser and D. L. Wiltshire, Class. Quant. Grav. 21, 1135 (2004), gr-qc/
0310107.

[202] K. Yagi and L. C. Stein, Class. Quant. Grav. 33, 054001 (2016), 1602.02413.

[203] N. A. Collins and S. A. Hughes, Phys. Rev. D69, 124022 (2004), gr-qc/0402063.

[204] S. J. Vigeland and S. A. Hughes, Phys. Rev. D81, 024030 (2010), 0911.1756.

[205] C. J. Moore, A. J. K. Chua, and J. R. Gair, Class. Quant. Grav. 34, 195009
(2017), 1707.00712.

[206] L. Barack and C. Cutler, Phys. Rev. D69, 082005 (2004), gr-qc/0310125.

[207] F. Ryan, Phys. Rev. D 56, 1845 (1997).

[208] K. Glampedakis and S. Babak, Class. Quant. Grav. 23, 4167 (2006), gr-qc/
0510057.

[209] T. Johannsen and D. Psaltis, Astrophys. J. 726, 11 (2011), 1010.1000.

[210] T. Johannsen and D. Psaltis, Astrophys. J. 716, 187 (2010), 1003.3415.

[211] T. Johannsen and D. Psaltis, Astrophys. J. 718, 446 (2010), 1005.1931.

[212] C. A. R. Herdeiro and E. Radu, Phys. Rev. Lett. 112, 221101 (2014), 1403.2757.

[213] Y.-Q. Wang, Y.-X. Liu, and S.-W. Wei, Phys. Rev. D99, 064036 (2019), 1811.
08795.

[214] S. Sen and N. Banerjee, Pramana 56, 487 (2001), gr-qc/9809064.

[215] C. Herdeiro and E. Radu, Phys. Rev. D89, 124018 (2014), 1406.1225.

118

1705.01071
1705.01071
1710.09432
1602.07309
0706.2435
gr-qc/0310107
gr-qc/0310107
1602.02413
gr-qc/0402063
0911.1756
1707.00712
gr-qc/0310125
gr-qc/0510057
gr-qc/0510057
1010.1000
1003.3415
1005.1931
1403.2757
1811.08795
1811.08795
gr-qc/9809064
1406.1225


[216] J. F. M. Delgado, C. A. R. Herdeiro, and E. Radu (2019), 1903.01488.

[217] S. N. Zhang, W. Cui, and W. Chen, Astrophys. J. 482, L155 (1997), astro-ph/
9704072.

[218] D. F. Torres, Nucl. Phys. B626, 377 (2002), hep-ph/0201154.

[219] F. S. Guzman, Phys. Rev. D73, 021501 (2006), gr-qc/0512081.

[220] Y. Lu and D. F. Torres, Int. J. Mod. Phys. D12, 63 (2003), astro-ph/0205418.

[221] C. Bambi and D. Malafarina, Phys. Rev. D88, 064022 (2013), 1307.2106.

[222] L. Kong, Z. Li, and C. Bambi, Astrophys. J. 797, 78 (2014), 1405.1508.

[223] A. C. Fabian, K. Iwasawa, C. S. Reynolds, and A. J. Young, Publ. Astron. Soc.
Pac. 112, 1145 (2000), astro-ph/0004366.

[224] L. W. Brenneman and C. S. Reynolds, Astrophys. J. 652, 1028 (2006), astro-ph/
0608502.

[225] C. S. Reynolds, Space Sci. Rev. 183, 277 (2014), 1302.3260.

[226] J. Jiang, C. Bambi, and J. F. Steiner, Astrophys. J. 811, 130 (2015), 1504.01970.

[227] J. Jiang, C. Bambi, and J. F. Steiner, Phys. Rev.D93, 123008 (2016), 1601.00838.

[228] A. Maselli, L. Gualtieri, P. Pani, L. Stella, and V. Ferrari, Astrophys. J. 801, 115
(2015), 1412.3473.

[229] H. Falcke, F. Melia, and E. Agol, Astrophys. J. 528, L13 (2000), astro-ph/
9912263.

[230] A. E. Broderick, T. Johannsen, A. Loeb, and D. Psaltis, Astrophys. J. 784, 7
(2014), 1311.5564.

[231] Event Horizon Telescope Collaboration, K. Akiyama, A. Alberdi, W. Alef,
K. Asada, R. Azulay, A.-K. Baczko, D. Ball, M. Baloković, J. Barrett, et al., apjl
875, L1 (2019).

[232] T. Binnington and E. Poisson, Phys. Rev. D80, 084018 (2009), 0906.1366.

[233] N. Gürlebeck, Physical Review Letters 114, 151102 (2015), 1503.03240.

[234] É. É. Flanagan and T. Hinderer, Phys. Rev. D 77, 021502 (2008), 0709.1915.

119

1903.01488
astro-ph/9704072
astro-ph/9704072
hep-ph/0201154
gr-qc/0512081
astro-ph/0205418
1307.2106
1405.1508
astro-ph/0004366
astro-ph/0608502
astro-ph/0608502
1302.3260
1504.01970
1601.00838
1412.3473
astro-ph/9912263
astro-ph/9912263
1311.5564
0906.1366
1503.03240
0709.1915


[235] J. Vines, É. É. Flanagan, and T. Hinderer, Phys. Rev. D83, 084051 (2011),
1101.1673.

[236] N. Sennett, T. Hinderer, J. Steinhoff, A. Buonanno, and S. Ossokine, Phys. Rev.
D96, 024002 (2017), 1704.08651.

[237] N. K. Johnson-Mcdaniel, A. Mukherjee, R. Kashyap, P. Ajith, W. Del Pozzo, and
S. Vitale (2018), 1804.08026.

[238] N. Sennett, T. Hinderer, J. Steinhoff, A. Buonanno, and S. Ossokine, Phys. Rev.
D96, 024002 (2017), 1704.08651.

[239] A. Maselli, P. Pnigouras, N. G. Nielsen, C. Kouvaris, and K. D. Kokkotas, Phys.
Rev. D96, 023005 (2017), 1704.07286.

[240] N. Uchikata, S. Yoshida, and P. Pani, Phys. Rev.D94, 064015 (2016), 1607.03593.

[241] C. V. Vishveshwara, Nature 227, 936 (1970).

[242] O. Dreyer et al., Class. Quantum Grav. 21, 787 (2004), gr-qc/0309007.

[243] E. Berti, V. Cardoso, and A. O. Starinets, Class. Quant. Grav. 26, 163001 (2009),
0905.2975.

[244] J. Meidam, M. Agathos, C. Van Den Broeck, J. Veitch, and B. S. Sathyaprakash,
Phys. Rev. D90, 064009 (2014), 1406.3201.

[245] S. Gossan, J. Veitch, and B. S. Sathyaprakash, Phys. Rev. D85, 124056 (2012).

[246] C. F. B. Macedo, V. Cardoso, L. C. B. Crispino, and P. Pani, Phys. Rev. D93,
064053 (2016), 1603.02095.

[247] E. Berti and V. Cardoso, Int. J. Mod. Phys. D15, 2209 (2006), gr-qc/0605101.

[248] C. F. B. Macedo, P. Pani, V. Cardoso, and L. C. B. Crispino, Phys. Rev. D88,
064046 (2013), 1307.4812.

[249] C. B. M. H. Chirenti and L. Rezzolla, Classical and Quantum Gravity 24, 4191
(2007).

[250] P. Pani, E. Berti, V. Cardoso, Y. Chen, and R. Norte, PhysRevD.90.104004prd
80, 124047 (2009), 0909.0287.

120

1101.1673
1704.08651
1804.08026
1704.08651
1704.07286
1607.03593
gr-qc/0309007
0905.2975
1406.3201
1603.02095
gr-qc/0605101
1307.4812
0909.0287


[251] C. B. M. H. Chirenti and L. Rezzolla, Class. Quant. Grav. 24, 4191 (2007),
0706.1513.

[252] S. Yoshida, Y. Eriguchi, and T. Futamase, Phys. Rev. D50, 6235 (1994).

[253] C. F. B. Macedo, P. Pani, V. Cardoso, and L. C. B. Crispino, Phys. Rev. D88,
064046 (2013), 1307.4812.

[254] P. Pani, E. Berti, V. Cardoso, Y. Chen, and R. Norte, Phys. Rev. D81, 084011
(2010), 1001.3031.

[255] P. Pani, E. Berti, V. Cardoso, Y. Chen, and R. Norte, Phys. Rev. D80, 124047
(2009), 0909.0287.

[256] J. B. Hartle, Phys. Rev. D8, 1010 (1973).

[257] K. Chatziioannou, E. Poisson, and N. Yunes, Phys. Rev. D87, 044022 (2013),
1211.1686.

[258] K. Chatziioannou, E. Poisson, and N. Yunes, Phys. Rev. D94, 084043 (2016),
1608.02899.

[259] A. Maselli, P. Pani, V. Cardoso, T. Abdelsalhin, L. Gualtieri, and V. Ferrari
(2017), 1703.10612.

[260] V. Cardoso, S. Hopper, C. F. B. Macedo, C. Palenzuela, and P. Pani, Phys. Rev.
D94, 084031 (2016), 1608.08637.

[261] R. K. L. Lo, T. G. F. Li, and A. J. Weinstein, Phys. Rev. D99, 084052 (2019),
1811.07431.

[262] E. Berti, V. Cardoso, and C. M. Will, Phys. Rev. D 73, 064030 (2006), gr-qc/
0512160.

[263] D. Brown et al., Phys. Rev. Lett. 99, 201102 (2007).

[264] S. A. Hughes, Phys. Rev. D 64, 064004 (2001).

[265] V. Cardoso, E. Franzin, A. Maselli, P. Pani, and G. Raposo (2017), 1701.01116.

[266] A. Maselli, P. Pani, V. Cardoso, T. Abdelsalhin, L. Gualtieri, and V. Ferrari
(2017), 1703.10612.

121

0706.1513
1307.4812
1001.3031
0909.0287
1211.1686
1608.02899
1703.10612
1608.08637
1811.07431
gr-qc/0512160
gr-qc/0512160
1701.01116
1703.10612


[267] N. Sennett, T. Hinderer, J. Steinhoff, A. Buonanno, and S. Ossokine (2017),
1704.08651.

[268] W. G. Laarakkers and E. Poisson, Astrophys. J. 512, 282 (1999), gr-qc/9709033.

[269] G. Pappas and T. A. Apostolatos, Phys. Rev. Lett. 108, 231104 (2012), 1201.6067.

[270] W. G. Laarakkers and E. Poisson, Astrophys. J. 512, 282 (1999), gr-qc/9709033.

[271] G. Pappas and T. A. Apostolatos (2012), 1211.6299.

[272] G. Pappas and T. A. Apostolatos, Physical Review Letters 108, 231104 (2012),
1201.6067.

[273] N. Uchikata and S. Yoshida, Class. Quant. Grav. 33, 025005 (2016), 1506.06485.

[274] L. Blanchet, Living Rev. Rel. 17, 2 (2014), 1310.1528.

[275] L. Blanchet, T. Damour, G. Esposito-Farèse, and B. R. Iyer, Phys. Rev. Lett. 93,
091101 (2004), gr-qc/0406012.

[276] L. Blanchet, G. Faye, B. R. Iyer, and B. Joguet, Phys. Rev. D 65, 061501(R)
(2002), Erratum-ibid 71, 129902(E) (2005), gr-qc/0105099.

[277] L. Blanchet, T. Damour, B. R. Iyer, C. M. Will, and A. G. Wiseman, Phys. Rev.
Lett. 74, 3515 (1995), gr-qc/9501027.

[278] S. Marsat, A. Bohé, G. Faye, and L. Blanchet, Class. Quant. Grav. 30, 055007
(2013), 1210.4143.

[279] A. Bohé, S. Marsat, G. Faye, and L. Blanchet, Class. Quant. Grav. 30, 075017
(2013), 1212.5520.

[280] A. Bohé, S. Marsat, and L. Blanchet, Class. Quant. Grav. 30, 135009 (2013),
1303.7412.

[281] S. Marsat, A. Bohé, L. Blanchet, and A. Buonanno, Class. Quant. Grav. 31,
025023 (2014), 1307.6793.

[282] A. Bohé, G. Faye, S. Marsat, and E. K. Porter, Class. Quant. Grav. 32, 195010
(2015), 1501.01529.

[283] S. Marsat, Class. Quant. Grav. 32, 085008 (2015), 1411.4118.

122

1704.08651
gr-qc/9709033
1201.6067
gr-qc/9709033
1211.6299
1201.6067
1506.06485
1310.1528
gr-qc/0406012
gr-qc/0105099
gr-qc/9501027
1210.4143
1212.5520
1303.7412
1307.6793
1501.01529
1411.4118


[284] K. G. Arun, A. Buonanno, G. Faye, and E. Ochsner, Phys. Rev. D 79, 104023
(2009), 0810.5336.

[285] L. E. Kidder, Phys. Rev. D52, 821 (1995), gr-qc/9506022.

[286] C. M. Will and A. G. Wiseman, Phys. Rev. D54, 4813 (1996), gr-qc/9608012.

[287] A. Buonanno, G. Faye, and T. Hinderer, Phys. Rev. D87, 044009 (2013), 1209.
6349.

[288] C. K. Mishra, A. Kela, K. G. Arun, and G. Faye, Phys. Rev. D93, 084054 (2016),
1601.05588.

[289] E. Poisson, Phys. Rev. D57, 5287 (1998), gr-qc/9709032.

[290] S. Marsat, Class. Quant. Grav. 32, 085008 (2015), 1411.4118.

[291] C. Cutler and E. Flanagan, Phys. Rev. D 49, 2658 (1994).

[292] M. Vallisneri, Phys. Rev. D 77, 042001 (2008), gr-qc/0703086.

[293] C. Van Den Broeck and A. S. Sengupta, Class. Quantum Grav. 24, 1089 (2007),
gr-qc/0610126.

[294] K. G. Arun, B. R. Iyer, B. S. Sathyaprakash, S. Sinha, and C. Van Den Broeck,
Phys. Rev. D 76, 104016 (2007), 0707.3920.

[295] S. Husa et al., Phys. Rev. D93, 044006 (2016), 1508.07250.

[296] M. Favata, K. G. Arun, C. Kim, J. Kim, and H. W.Lee (In preparation).

[297] R. Balasubramanian and S. V. Dhurandhar, Phys. Rev. D 57, 3408 (1998).

[298] M. Armano et al., Phys. Rev. Lett. 116, 231101 (2016).

[299] N. Uchikata and S. Yoshida, Class. Quant. Grav. 33, 025005 (2016), 1506.06485.

[300] N. V. Krishnendu et al. (In preparation).

[301] M. Campanelli, C. O. Lousto, and Y. Zlochower, Phys. Rev. D79, 084012 (2009),
0811.3006.

[302] N. V. Krishnendu, K. G. Arun, and C. K. Mishra, Phys. Rev. Lett. 119, 091101
(2017), 1701.06318.

123

0810.5336
gr-qc/9506022
gr-qc/9608012
1209.6349
1209.6349
1601.05588
gr-qc/9709032
1411.4118
gr-qc/0703086
gr-qc/0610126
0707.3920
1508.07250
1506.06485
0811.3006
1701.06318


[303] LIGO Scientific Collaboration, https://wiki.ligo.org/DASWG/LALSuite

(2018).

[304] K. G. Arun, A. Buonanno, G. Faye, and E. Ochsner, Phys. Rev. D79, 104023
(2009), [Erratum: Phys. Rev.D84,049901(2011)], 0810.5336.

[305] A. Buonanno and T. Damour, Phys. Rev. D59, 084006 (1999), gr-qc/9811091.

[306] M. Hannam, P. Schmidt, A. Bohé, L. Haegel, S. Husa, F. Ohme, G. Pratten, and
M. Pürrer, Phys. Rev. Lett. 113, 151101 (2014), 1308.3271.

[307] A. Taracchini et al., Phys. Rev. D89, 061502 (2014), 1311.2544.

[308] A. Buonanno and T. Damour, Phys. Rev. D62, 064015 (2000), gr-qc/0001013.

[309] P. Ajith et al., Phys. Rev. Lett. 106, 241101 (2011).

[310] N. V. Krishnendu, C. K. Mishra, and K. G. Arun, Phys. Rev. D99, 064008 (2019),
1811.00317.

[311] LIGO Scientific Collaboration, https://www.advancedligo.mit.edu/ (2018).

[312] G. M. Harry (LIGO Scientific), Class. Quant. Grav. 27, 084006 (2010).

[313] LIGO Scientific Collaboration, https://dcc.ligo.org/LIGO-M060056/public
(2009).

[314] F. Acernese and P. A. et.al., Classical and Quantum Gravity 23, S635 (2006).

[315] F. Acernese et al. (VIRGO), Class. Quant. Grav. 32, 024001 (2015), 1408.3978.

[316] LIGO Scientific Collaboration, https://dcc.ligo.org/cgi-bin/private/

DocDB/ShowDocument?docid=T1800044&version=5 (2018).

[317] LIGO Scientific Collaboration, https://dcc.ligo.org/LIGO-T1000218/public
(2018).

[318] E. Baird, S. Fairhurst, M. Hannam, and P. Murphy, Phys. Rev. D87, 024035
(2013), 1211.0546.

[319] N. Cornish, L. Sampson, N. Yunes, and F. Pretorius, Phys. Rev. D84, 062003
(2011), 1105.2088.

[320] W. Del Pozzo, K. Grover, I. Mandel, and A. Vecchio, Class. Quant. Grav. 31,
205006 (2014), 1408.2356.

124

https://wiki.ligo.org/DASWG/LALSuite
0810.5336
gr-qc/9811091
1308.3271
1311.2544
gr-qc/0001013
1811.00317
https://www.advancedligo.mit.edu/
https://dcc.ligo.org/LIGO-M060056/public
1408.3978
https://dcc.ligo.org/cgi-bin/private/DocDB/ShowDocument?docid=T1800044&version=5
https://dcc.ligo.org/cgi-bin/private/DocDB/ShowDocument?docid=T1800044&version=5
https://dcc.ligo.org/LIGO-T1000218/public
1211.0546
1105.2088
1408.2356


[321] LIGO Scientific Collaboration, https://www.gw-openscience.org/data/

(2009).

[322] B. Sathyaprakash et al., in Proceedings, 46th Rencontres de Moriond on Gravi-
tational Waves and Experimental Gravity: La Thuile, Italy, March 20-27, 2011
(2011), pp. 127–136, 1108.1423.

[323] T. Regimbau et al., Phys. Rev. D86, 122001 (2012), 1201.3563.

[324] S. Hild et al., Class. Quant. Grav. 28, 094013 (2011), 1012.0908.

[325] S. Hild, S. Chelkowski, and A. Freise (2008), 0810.0604.

[326] M. Vallisneri, Phys. Rev. D77, 042001 (2008).

[327] E. Weinstein and A. J. Weiss, IEEE Transactions on Information Theory 34, 338
(1988), ISSN 0018-9448.

[328] K. G. Arun, B. R. Iyer, B. S. Sathyaprakash, and S. Sinha, Phys. Rev. D75,
124002 (2007).

[329] S. Dwyer, D. Sigg, S. W. Ballmer, L. Barsotti, N. Mavalvala, and M. Evans, prd
91, 082001 (2015), 1410.0612.

[330] E. Barausse, Mon. Not. Roy. Astron. Soc. 423, 2533 (2012), 1201.5888.

[331] A. Sesana, E. Barausse, M. Dotti, and E. M. Rossi, Astrophys. J. 794, 104 (2014),
1402.7088.

[332] F. Antonini, E. Barausse, and J. Silk, Astrophys. J. 806, L8 (2015), 1504.04033.

[333] F. Antonini, E. Barausse, and J. Silk, Astrophys. J. 812, 72 (2015), 1506.02050.

[334] M. Bonetti, A. Sesana, F. Haardt, E. Barausse, and M. Colpi, Mon. Not. Roy.
Astron. Soc. 486, 4044 (2019), 1812.01011.

[335] M. Volonteri, F. Haardt, and P. Madau, Astrophys. J. 582, 559 (2003), astro-ph/
0207276.

[336] A. Sesana, M. Volonteri, and F. Haardt, Class. Quant. Grav. 26, 094033 (2009),
0810.5554.

[337] M. Volonteri, F. Haardt, P. Madau, and A. Sesana (2003), [Astrophys. Space Sci.
Libr.301,227(2004)], astro-ph/0310211.

125

https://www.gw-openscience.org/data/
1108.1423
1201.3563
1012.0908
0810.0604
1410.0612
1201.5888
1402.7088
1504.04033
1506.02050
1812.01011
astro-ph/0207276
astro-ph/0207276
0810.5554
astro-ph/0310211

	Acknowledgements
	Abstract
	Contents
	List of Figures
	1 Introduction
	1.1 Basics of gravitational waves
	1.2 Astrophysical sources of gravitational waves
	1.2.1 Gravitational wave burst sources
	1.2.2 Continuous gravitational wave sources
	1.2.3 Stochastic gravitational wave sources
	1.2.4 Compact binary coalescence

	1.3 Gravitational wave data analysis techniques and parameter estimation for compact binaries
	1.3.1 GW signal extraction from the data
	1.3.1.1 Matched filter analysis for compact binaries

	1.3.2 Parameter estimation techniques for compact binary coalescence
	1.3.2.1 Parameter estimation using the Fisher Information Matrix analysis
	1.3.2.2 Bayesian inference for parameter estimation and model selection


	1.4 Towards the detection of gravitational waves
	1.4.1 Early efforts: Bar detectors and binary pulsar observations
	1.4.2 Interferometric detectors and the first direct detection of gravitational waves
	1.4.2.1 Interferometric gravitational wave detectors: working principle
	1.4.2.2 Noise sources for interferometric gravitational wave detectors

	1.4.3 Direct detection of gravitational waves

	1.5 Implications of gravitational wave detection to astrophysics, fundamental physics and cosmology
	1.5.1 Probing the strong field gravity
	1.5.1.1 Tests of consistency with GR
	1.5.1.2 Tests related to the source dynamics/Tests of gravity from GW generation
	1.5.1.3 Tests of gravity from GW propagation

	1.5.2 Binary neutron star detection and gravitational wave multi-messenger astronomy
	1.5.2.1 Measuring the Hubble constant from gravitational wave standard siren
	1.5.2.2 Extreme matter physics
	1.5.2.3 Constraints on the number of space time dimensions
	1.5.2.4 Fundamental physics and other astrophysical implications


	1.6 Future gravitational wave detectors
	1.7 Topic of the thesis

	2 Black hole mimickers and tests of black hole nature
	2.1 Introduction
	2.2 Compact objects: `conventional' and `exotic' 
	2.3 Models for black hole mimickers
	2.3.1 Exotic compact object models
	2.3.1.1 Boson stars
	2.3.1.2 Gravastars

	2.3.2 Parametric models of non-Kerr geometry
	2.3.2.1 Bumpy black hole models
	2.3.2.2 Quasi-Kerr BHs
	2.3.2.3 Kerr black holes with scalar hair


	2.4 Model independent null tests and black hole nature of the object
	2.4.1 Gravitational wave based tests of BH mimickers
	2.4.1.1 Tidal deformability parameter estimation
	2.4.1.2 The quasi-normal mode measurements
	2.4.1.3 Tidal heating estimation
	2.4.1.4 From the echoes


	2.5 A new method to test the binary black hole nature using gravitational wave observations

	3 Testing the binary black hole nature using spin-induced multipole moment measurements
	3.1 Spin-induced multipole moment terms in the post-Newtonian waveforms
	3.2 Demonstration of the method
	3.2.1 Details of the analysis
	3.2.2 Estimation of s
	3.2.3 Results and Discussions

	3.3 Conclusions

	4 Application of the method to real gravitational wave events
	4.1 Introduction
	4.2 Method
	4.2.1 The waveform model
	4.2.2 Choice of test parameters
	4.2.3 Overview of Bayesian inference

	4.3 Studies using simulated data and results
	4.3.1 Details of simulations
	4.3.2 Bounds on s parameter
	4.3.2.1 Role of effective spin parameter

	4.3.3 Model selection between BH and non-BH models
	4.3.3.1 Further investigations using Fitting Factor


	4.4 Testing the binary black hole nature of GW151226 and GW170608
	4.5 Conclusions

	5 Measurements of spin-induced multipole moments and implications to future gravitational wave detectors
	5.1 Introduction
	5.2 Details of the analysis
	5.2.1 Spin-induced quadrupole and octupole moment parameters in the post-Newtonian waveform
	5.2.2 Parameter estimation and detector configurations

	5.3 Spin-induced deformations and tests of binary black hole nature using third-generation detectors
	5.3.1 Results and discussions
	5.3.1.1 Bounds on binary's spin-induced quadrupole moment parameter
	5.3.1.2 Bounds on the spin-induced quadrupole moment parameter from an astrophysical population of binary systems
	5.3.1.3 Simultaneous bounds on binary's spin-induced quadrupole and octupole moment parameters
	5.3.1.4 Bounding the black hole nature of the compact binary constituents


	5.4 Testing the Kerr nature of supermassive and intermediate-mass black hole binaries using spin-induced multipole moment measurements
	5.4.1 Testing the nature of intermediate-mass and supermassive binary black holes
	5.4.1.1 Errors as a function of total mass of the binary system
	5.4.1.2 Errors from an astrophysical population of binary systems


	5.5 Conclusions


