
Scalable Safety Verification

of Statechart-like Programs?

Kumar Madhukar

Chennai Mathematical Institute

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

© 2018 Kumar Madhukar

?For the entire work carried out by me during my doctoral research, including this thesis,
I was fully supported by Tata Consultancy Services Ltd.

The views and conclusions contained in this document are those of the author
and should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of Tata Consultancy Services Ltd.

Special thanks to

Thesis Committee

Mandayam Srivas (Co-Supervisor)
Chennai Mathematical Institute, Chennai, India

Peter Schrammel (Co-Supervisor)
University of Sussex, Brighton, United Kingdom

Madhavan Mukund
Chennai Mathematical Institute, Chennai, India

R Venkatesh
TCS Research, Pune, India

To my father

Statement of Attribution

This thesis describes the work from the following conference publications:

1. Kumar Madhukar, Mandayam Srivas, Björn Wachter, Daniel Kroen-

ing, and Ravindra Metta. Verifying synchronous reactive systems

using lazy abstraction. In Wolfgang Nebel and David Atienza, edi-

tors, Design, Automation & Test in Europe Conference & Exhibition

(DATE 2015), Grenoble, France, March 9-13, 2015, pages 1571-1574.

ACM, 2015.

2. Kumar Madhukar, Björn Wachter, Daniel Kroening, Matt Lewis,

and Mandayam Srivas. Accelerating invariant generation. In Roope

Kaivola and Thomas Wahl, editors, Formal Methods in Computer-

Aided Design, FMCAD 2015, Austin, Texas, USA, September 27-30,

2015., pages 105-111. IEEE, 2015.

3. Kumar Madhukar, Peter Schrammel, and Mandayam Srivas. Com-

positional safety refutation techniques. In Deepak D’Souza and K

Narayan Kumar, editors, Automated Technology for Verification and

Analysis – 15th International Symposium, ATVA 2017, Pune, India,

October 3-6, 2017, Springer LNCS Volume 10482, pages 164-183.

Springer, 2017.

I was the lead investigator for the work in the first two. These studies

were conceived and developed jointly by Björn Wachter, Mandayam Srivas

and myself. The implementation and experiments for both (1) and (2)

was carried out by me, with significant guidance from Björn Wachter, in a

framework which was developed by Björn Wachter and Daniel Kroening. I

was primarily responsible for the writing of the manuscripts, to which all

other authors made significant contributions.

The work in the third paper was carried out after Peter Schrammel joined

my doctoral committee as co-supervisor. The ideas, implementation and

experiments for this work were developed and carried out jointly by Peter

Schrammel and myself. The framework in which we implemented our

ideas was developed by Peter Schrammel and Daniel Kroening. Mandayam

Srivas helped in refining the ideas through several discussions. Peter

Schrammel led the writing of the manuscripts, to which Mandayam Srivas

and I contributed significantly.

This thesis also contains some unpublished work that was carried out

towards the end of my doctoral research. The results are due for submission

at a suitable venue in the next few months.

Kumar Madhukar

Statement of Originality

I declare that this dissertation, titled “Scalable Safety Verification of Statechart-like

Programs”, submitted by me for the degree of Doctor of Philosophy in Computer

Science is the record of academic work carried out by me during the period of

August 2012 to November 2018, under the guidance of Mandayam Srivas and Peter

Schrammel, and this work has not formed the basis for the award of any degree,

diploma, associateship, fellowship or other titles in this or any other university or

institution of higher learning.

26 November 2018 Kumar Madhukar

Certificate

I declare that this dissertation, titled “Scalable Safety Verification of

Statechart-like Programs”, submitted by Kumar Madhukar to Chennai

Mathematical Institute (CMI), for the degree of Doctor of Philosophy

in Computer Science, is a record of bona fide research work done during

the period of August 2012 to November 2018, under our guidance and

supervision. The work presented in this thesis has not formed the basis

for the award of any degree, diploma, associateship, fellowship or other

titles at CMI or any other university or institution of higher learning.

It is further certified that the thesis represents independent work by the

candidate and collaboration when existed was necessitated by the nature

and scope of the problems dealt with therein.

26 November 2018 Mandayam Srivas

(Professor, Chennai Mathematical Institute)

Peter Schrammel

(Professor, University of Sussex, UK,

& Co-founder and CTO, Diffblue)

Abstract

Statecharts extend conventional state-transition diagrams with the notion

of hierarchy, concurrency and communication. Their expressiveness makes

them a popular language for modeling synchronous reactive systems, a

crucial step towards design and development of embedded software for

real-life systems. In many instances the system being developed happens

to be safety-critical and formal verification of such systems, before their

deployment, becomes imperative.

In theory, it is possible to verify a synchronous system using model-checkers

that are not tuned for synchronization. The synchrony has to be encoded

as part of the input design in such a case. This can be done by either

adding a scheduler explicitly, so that the processes are given turns to

execute, or implicitly, wherein each process busy-waits to synchronize with

others. While this approach leverages the power of existing model-checking

tools, it is prohibitively inefficient because it fails to exploit the parallelism

and control structure inherent to the input system.

We propose an extension of lazy abstraction based model-checking tech-

nique, to automatically verify reactive synchronous systems, with the

purpose of analyzing synchronous concurrency explicitly rather than en-

coding it. This circumvents the exponential blow-up of the state space

caused by simulating synchronous behaviour using interleavings. Sym-

para, a tool that implements the proposed extension, manifests this state

space reduction as an order of magnitude decrease in the time taken for

verification over alternative approaches.

A notable advantage of this approach is that it effectively addresses the

synchrony and concurrency of systems, without interfering with the core

model checking technique. Consequently, one may lift these specialization

restrictions on input design, or implementation, and look to improve the

verification algorithm itself, with the assurance of a cascade effect to

synchronous systems. Pursuing this ahead, we explore ways to generate

program invariants quicker. The state-of-the-art invariant generation

techniques, in practice, often struggle to find concise loop invariants. As a

result, model checking tools implementing these techniques degrade into

unrolling loops, which is ineffective for non-trivial programs. We evaluate

experimentally whether loop accelerators enable existing program analysis

algorithms to discover loop invariants more reliably and more efficiently.

We confirm this empirically through a comprehensive study over a number

of benchmarks from the literature.

As acceleration harnesses a low-level control structure i.e. loops, it be-

comes natural to ask if the higher-level anatomy of an input system offers

anything for exploitation, e.g. its modularity. In fact, considering proce-

dures as modules, we look at the problem of finding safety-violations of

sequential programs in a compositional way. In this direction, we formalize

a space of property-guided compositional refutation techniques, discuss

their properties with respect to efficiency and completeness, and evaluate

them experimentally.

Towards completion, we build upon our work on compositional refutation

to proving safety using k-induction. k-induction is a well-known technique

for proving programs safe. However, for large programs, the bounded model

checking instances generated to check k-inductive proofs often exceed the

limits of resources available. We propose an interprocedural approach to

modular k-induction, as an instance of a more general refinement approach

to program verification.

Acknowledgments

I would like to express my deep gratitude to my supervisors, Mandayam

Srivas and Peter Schrammel for their patient guidance, enthusiastic en-

couragement and useful critiques in this work. Srivas gave me a lot of

freedom to explore my ideas, and always assisted me in enhancing them

both theoretically as well as practically. He was extremely supportive and

very approachable – qualities that I believe are rare to find in a supervisor.

Even though I was staying in a different city from him, he made sure

that he was always available when I needed him, not only technically, but

otherwise too.

Although it was only in the latter part of my doctoral research that I

started interacting with Peter Schrammel, his methods have inspired me a

great deal. That it is possible to stay motivated so effortlessly, and work

tirelessly towards one’s goal, are things that I have known because of him.

Peter’s ability to sketch the bigger picture at one moment, and then get

into the finest of details at the very next moment, is one of a thousand

things that there are to learn from him.

I wouldn’t have made much progress in the initial years of my PhD, if

it was not with the help of Björn Wachter. Björn often went out of his

way to offer diligent guidance and valuable advice to me. He helped me

clarify my doubts in numerous discussion over calls and ceaseless exchange

of emails, when no doubt he had more important things to do.

I would take this opportunity to thank Madhavan and Venky especially.

It is not just to acknowledge their guidance and support for this thesis; if

I could put an acknowledgement before anything I did that was worthy of

credit, these two names would appear prominently in each one of them.

Interactions with Madhavan, in the last fifteen years, have moulded me in

innumerable ways. Discussions with Venky have been invaluable, and I

was blessed to find him around whenever I needed to have one. No doubt

many of his insights can be found interspersed in the pages of this thesis.

If not for these two people, this thesis would have never become a reality.

The gratitude that I owe them is beyond what words can capture.

I would like to thank Daniel Kroening and the entire Computer Science

Department at the University of Oxford, for allowing me to spend some

very gainful time there. It was a great learning experience to be a part

of their group, notwithstanding the extremely short duration for which

I could physically be there. I would also like to thank my friends and

colleagues at CMI, for being the great company that they were. Even

though I was not a resident student at CMI, I never felt like an outsider

whenever I was there.

I consider myself privileged to have been a part of TRDDC during my

PhD. I cannot imagine a better place to have spent these years of my life.

My friends and colleagues in the VnV group have helped me not only

technically, but also personally whenever I needed them. I can’t thank

them enough for this.

Lastly, I would like to thank my family and friends for their immense love

and support.

Kumar Madhukar

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Context, Problems, and Objectives 2

1.3 Contributions . 5

1.3.1 Verifying Synchronous Reactive Systems 6

1.3.2 Loop Acceleration as a Precursor to Verification 7

1.3.3 Exploiting Modularity of Implementation: Refutations 8

1.3.4 Exploiting Modularity of Implementation: Proofs 9

1.4 Thesis Outline . 9

2 Verifying Synchronous Reactive Systems 10

2.1 Synchronous Reactive Systems and

Lazy Abstraction . 10

2.1.1 Contributions . 11

2.2 Discussion on Related Work . 12

2.3 Preliminaries . 13

2.3.1 Statecharts: Syntax and Semantics 13

2.3.2 Lazy Abstraction with Interpolants 14

2.3.3 Verifying Multi-threaded Software with Impact 15

2.4 Our Encoding . 15

2.4.1 Statecharts to Concurrent C Programs 15

2.4.2 Concurrent SSA for Data Races 16

2.5 Technical Details . 19

2.5.1 The Verification Algorithm . 20

2.5.2 Optimization Strategies . 22

2.6 Implementation and Experiments . 23

2.7 Concluding Remarks . 26

2.7.1 Notes . 26

i

3 Loop Acceleration as a Precursor to Verification 28

3.1 Accelerating Invariant Generation . 28

3.1.1 Contributions . 31

3.2 Background: Acceleration & Trace Automata 32

3.2.1 Acceleration Overview . 32

3.2.2 Accelerating Scalar Variables in a Path 33

3.2.3 Range Constraints . 34

3.2.4 Accelerating Array Assignments 34

3.2.5 Eliminating Redundant Paths using Trace Automata 35

3.3 Experimental Setup: Tools & Benchmarks 36

3.3.1 Overview of the Analysis Tools 36

3.3.2 Benchmarks . 38

3.4 Evaluation: Results & Analysis . 38

3.4.1 Example . 38

3.4.2 Experimental Results . 39

3.5 Concluding Remarks . 42

3.5.1 Notes . 50

4 Exploiting Modularity of Implementation: Refutations 51

4.1 Compositional Safety Refutation . 51

4.1.1 Contributions . 52

4.2 Preliminaries . 52

4.3 Compositional Verification and Refutation

Overview . 55

4.4 Formalising Horizontal Compositional

Refutation . 58

4.4.1 Monolithic Safety Refutation Problem 59

4.4.2 Modular Safety Refutation Problem 60

4.4.3 Modular Safety Refutation with Witnesses 63

4.4.4 Worked Example . 65

4.4.4.1 A note on (potentially) non-terminating programs . . 67

4.5 Examples of Refutation Algorithms 68

4.5.1 Concrete Backward Interpretation 68

4.5.2 Abstract Backward Interpretation 69

4.5.3 Symbolic Backward Interpretation 71

4.6 Experiments . 72

ii

4.7 Extension to Loops . 74

4.8 Discussion on Related Work . 77

4.9 Concluding Remarks . 77

4.9.1 Notes . 79

5 Exploiting Modularity of Implementation: Proofs 80

5.1 Motivating a Compositional Approach 82

5.1.1 Contributions . 83

5.2 Discussion on Related Work . 83

5.3 Preliminaries . 84

5.3.1 Monolithic k-Induction . 86

5.3.2 Interprocedural Analysis . 88

5.4 Informal Overview . 89

5.5 Horizontal: Interprocedural k-Induction 91

5.5.1 Spuriousness Check of Counterexamples 93

5.5.2 Refinement Strategies . 94

5.5.3 Strengthen the Technique by Contexts and Invariants 95

5.6 Concluding Remarks . 97

5.6.1 Notes . 98

6 Conclusion 99

6.1 Prospects . 101

iii

Chapter 1

Introduction

Software systems are ubiquitous; but at the same time, developing good software is

hard. There are a thousand opportunities to make mistakes. More importantly, it is

difficult if not impossible to anticipate all the situations that a software program will

be faced with, more so when it is interacting with other software programs that are not

under one’s control. In other words, exhaustive testing is impracticable due to the size

of the input space. A feasible alternative is that of scenarios based testing. But not

all scenarios may be known. Besides, it is possible that certain cases get overlooked,

or one may fail to consider the corner cases. Therefore it is essential, especially in

safety-critical systems, that a software system is proved correct before it is deployed.

Model Checking is a formal verification technique which allows for desired be-

havioural properties of a given system to be verified. It requires a model of the system

under consideration (for instance, an implementation), and a desired property, and

systematically checks whether or not the given model satisfies this property. The

check may output yes (if there is a proof that the property indeed holds), no (in case

there is a counterexample, i.e. an execution path violating the property), or unknown

(when the check exhausts the physical limits of computer memory available).

Proving correctness of software is one of the most central challenges in computer

science. Modern state-of-the-art verification techniques still fail to scale to large,

real-life systems. Our work is aimed at addressing this problem, under the principal

thesis that it is useful to exploit the source-level syntactic and semantic structure of a

given design, or an implementation, for improving the scalability of safety verification.

1.1 Motivation

While automated verification techniques have progressed significantly in the last several

years, scalable software verification continues to be a challenge. On real-life instances,

1

the existing approaches often exceed the limits of resources available for a given

verification task. We consider safety properties, which assert that the system always

stays within some allowed region in which nothing “bad” happens. We investigate

methods to scale verification of safety properties, with the aim of exploiting the source

level syntactic and semantic structure of a software system.

The initial motivation for this work comes from the desire to verify Electronic

Control Units (ECUs) in the automotive domain. We consider Statecharts [60], the

design language in which these ECUs are given, and explore the possibilities of formally

verifying a rather general system in this language. We address the scalability issue

arising out of three important aspects of automotive ECUs designed as Statecharts: i)

concurrency, ii) loops, and iii) scale (or, in other words, the size of the input software

to be verified). In line with this, there are three major parts of our work, each focusing

on an aspect listed here. In the following section we lay the context in which we study

these aspects, accurately state the problems, and briefly discuss why these problems

are of interest.

1.2 Context, Problems, and Objectives

We begin our study with Statecharts, a visual formalism proposed by David Harel,

and restrict ourselves to the Statemate semantics of Statecharts [61]. Statecharts

are popular as a language for modeling synchronous reactive systems, although the

expressiveness complicates the task of formally verifying these systems. In the first

part of our work we explore the concurrency aspect of this problem. In particular,

we look at the issue of redundant interleavings, brought about by the synchronous

concurrency of Statecharts under Statemate semantics.

Existing approaches to formal verification of Statecharts (or, in fact, most other

formalisms specifying synchronous reactive systems) predominantly rely on extracting

the underlying global transition relation for the system [16,76,105]. This approach

permits the application of a wide range of standard methods for state space explo-

ration such as BDD-based Model Checking, Bounded Model Checking, k-induction or

interpolation, but has the disadvantage of requiring to explicitly construct a scheduler

to account for all possible process interleavings, thereby increasing the complexity of

verification substantially [30, 93].

An alternative is to use a verifier for asynchronously composed threads (e.g. [104])

and instrument the model to enforce synchronization of the processes at their syn-

chronization points. This not only adds further states per thread (owing to the

2

synchronization), but also leads to exploration of many irrelevant states, as interleav-

ings that happen between the synchronization points have no effect.

A crucial limitation of these approaches lies in their failure in harnessing the par-

allelism and control structure inherent to the system’s implementation. In accordance

with our thesis, we attempt to exploit the semantics of Statemate Statecharts to

ease the task of verification. Specifically, we answer the following question:

• For synchronous reactive systems modeled as Statemate Statecharts, is it

possible to analyze synchronous concurrency explicitly, rather than encoding it

as part of the system’s implementation?

We suggest an extension of lazy abstraction based model-checking technique for

automatic verification of synchronous reactive systems [80] to meet the set objective.

Moving further, in the second part of this work we focus on another aspect of such

systems - loops. While the motivation for this comes from Statecharts, loops are very

much a part of any non-trivial system irrespective of the implementation language.

For broader applicability therefore, we look at this aspect in the context of sequential

programs. As concurrent programs have sequential components, a technique for

sequential programs would be imminently extensible to concurrent programs.

The state-of-the-art invariant generation techniques, in practice, often struggle to

find concise loop invariants. Consequently, model checking tools implementing these

techniques degrade into unrolling loops, which is ineffective for non-trivial programs.

Loop unrollings help in obtaining stronger invariants progressively. As an example,

for tools inferring invariants using interpolation, unrollings help in moving from overly

specific interpolants, with respect to a given unrolling, to more general ones. At the

same time, even for tools that do not compute an invariant explicitly, like Cbmc [31],

unrollings help in the implicit discovery of invariants that strengthen the premise, so

that the goals may be discharged.

With the objective of generating program invariants quicker, we explore the option

of loop acceleration [18,19,46,65,68] as a precursor to verification. Acceleration captures

the exact effect of arbitrarily many iterations of an integer relation, by computing its

reflexive transitive closure in one step. A loop accelerator, thus computed, can replace

the loop in the original program without impacting its behaviour. In this context, we

specifically address the following question:

• Do loop accelerators enable existing program analysis algorithms to discover loop

invariants more reliably and more efficiently?

3

Acceleration in the general case is as difficult as the original verification problem.

Practical applications of acceleration are therefore usually restricted to some special

cases. As the transitive closure of the loop body is often not effectively computable,

it is in general not possible to obtain an accelerator that captures the behaviour of

the loop precisely. Thus, acceleration is mostly either over-approximative or under-

approximative [18, 68, 73]. Besides, acceleration frequently specializes in particular

application domains, e.g., control software [1, 43]. Acceleration techniques are also

typically tuned to a given analysis technique (e.g., abstract interpretation or predicate

abstraction [39,55]) that is to be applied subsequently. As a result, it is not immediately

evident if the question posed above can be answered rather generally.

We perform an extensive experimental evaluation [81] and provide strong empirical

evidence to answer the question in the affirmative. This brings us to the final part of

our work where we attend to the issue of scale. We aim at exploiting modularity, a

quality intrinsic to large software systems. Specifically, we investigate the following to

begin with:

• Is it possible to generate counterexamples in a modular way to speed up safety

refutation?

Refutation algorithms are usually based on finding a violating execution trace,

which seems to be inherently non-compositional. Thus, the study of compositional

refutation is an under-explored area of research. Yet, solutions to this problem have

significant impact on other research problems. As a motivation, consider the following

two algorithmic approaches in verification and testing that will be enabled by efficient

compositional refutation algorithms:

• Property-guided abstraction refinement algorithms need to decide whether coun-

terexamples that are found in the abstraction are spurious or true counterexam-

ples. The lack of compositional refutation techniques forces these algorithms to

operate in a monolithic manner and is therefore an obstacle to scaling them to

large programs.

• Automated test generation techniques based on Bounded Model Checking are

successfully used in various industries to generate unit tests. However, they

do not sufficiently scale to accomplish the task of generating integration tests.

Compositional refutation techniques achieve exactly this goal: they efficiently

produce refutations (from which test vectors can be derived) on unit (module)

4

level and enable their composition in order to obtain system level refutations,

i.e. integration tests.

As a first step in this direction, we lay the base for a systematic study of the

problem domain. We start from the monolithic safety verification problem and present

a step-by-step derivation of the compositional safety refutation problem. We also

propose three techniques for compositional safety refutation with different degrees of

completeness [79].

Having looked at refutations, we naturally turn towards the problem of safety

proofs, exploring if these proofs can be constructed in a modular way. We use k-

induction, a popular techniques for proving safety, and formulate the verification

problem using k-induction within a generic refinement algorithm framework. In

particular, we ask the following question:

• Is there a compositional approach to k-induction, in an abstraction-refinement

framework that allows a component-wise refinement instead of a monolithic one?

Analyzing code as a monolithic, usually flattened, entity instead of using a divide-

and-conquer approach prevents one from exploiting the syntactic and semantic struc-

ture, e.g. procedure hierarchy, in the program. Bounded model checking, for instance,

unfolds and inlines procedures in the program while unwinding the loops. Most

leading complete model-checking methods for safety verification, including ones that

use over-approximations, are not compositional [20,82].

Building upon our work on safety refutation, we propose an interprocedural k-

induction approach based on an interprocedural counterexample spuriousness check

and a selective refinement of loop unwindings and procedure inlining. In the next

section we summarize our results, and highlight the core contributions made in this

piece of work.

1.3 Contributions

In conformity with the problem and objectives illustrated in the previous section, we

present the contributions made through our work in the following subsections.

5

1.3.1 Verifying Synchronous Reactive Systems

We explore a novel way of verifying synchronous reactive systems [80] that uses a model

checking algorithm based on Lazy Abstraction with Interpolants (LAwI) [83], also

known as the Impact algorithm. This algorithm unwinds the control-flow graph of

the program into an abstract reachability tree. Each vertex in this tree corresponds to

a program control location, and is labeled with a fact about the program variables that

is true at that point in the execution of the program. When a vertex corresponding to

the error location is reached, the algorithm strengthens the facts along the path to

that vertex, so as to prove the error vertex unreachable. The crux of the algorithm is

a covering criterion that allows it to soundly stop the unwinding and terminate with

a correctness proof of the program. This combination of low-cost program unwindings

combined with path-based refinement and covering checks gives rise to an efficient

software model checking algorithm.

Recently, the Impact algorithm was extended to support asynchronous concurrent

processes using an interleaved semantics and implemented in a tool called Impara [104].

Impara, which analyses concurrent C programs with POSIX or Win32 threads,

combines partial-order reduction with the Impact algorithm. We have tailored and

optimized Impara to implement our new technique, which we call Sympara.

Specifically, we make the following contributions through this work:

• A novel concurrent static-single assignment (SSA) form, which enables using a

fixed schedule for process execution in synchronously composed systems.

• A covering criterion that dictates when the unwinding must stop, while ensuring

correctness of the algorithm in the synchronous setting.

This, in fact, relates to our main result:

Theorem. The proposed covering criterion is sound, i.e. the unwinding stops

only when either a counterexample is found, or the error location has been proved

unreachable.

• A tool, Sympara, that implements this technique in the Cprover [31] frame-

work, and experimental results that show an order of magnitude improvement

over other techniques for several realistic examples.

6

1.3.2 Loop Acceleration as a Precursor to Verification

In this work, we evaluate experimentally whether loop accelerators enable existing

program analysis algorithms to discover loop invariants more reliably and more

efficiently. We do this through a comprehensive study on the synergies between

acceleration and invariant generation.

We use acceleration to summarize loops by computing a closed-form representation

of the loop behaviour [72]. The closed form can be turned into an accelerator, which

is a code snippet that skips over intermediate states of the loop to the end of the loop

in a single step.

We make the following conjectures:

1. Accelerators support the invariant synthesis that is performed by program

analyzers, irrespective of the underlying analysis approach.

2. Analyses supported by acceleration not only do better than the original ones,

they also outperform other state-of-the-art tools performing similar analysis.

We test our hypotheses by performing an evaluation over an extensive set of

benchmarks and a variety of tools. The core contribution of this work is an experimental

study [81].

We use two analyzers in our experiments to substantiate the first claim (that

accelerators aid existing analyzers). Cbmc [31] is the model checker used in [74]; as a

bounded analyzer, it makes no attempt to infer invariants and is only able to conclude

correctness if the program is shallow. Impara [104] is a program verifier based on the

LAwI-paradigm. Impara generates invariants using a very basic approach that relies

on weakest preconditions, and does not employ any powerful interpolation engine.

Both Impara and Cbmc are characterized by very weak invariant inference, and

are thus expected to benefit substantially from acceleration. To relate the outcome

to the best invariant generation techniques, towards validating our second claim, we

include two other analyzers: CPAchecker [13] and Ufo [3]. These tools implement a

broad range of invariant generation methods, including various abstract domains and

interpolation. The comparison is performed on over 200 benchmarks, including those

used in the Software Verification Competition 2015 [11].

Acceleration enabled Cbmc to handle 21% more cases, and Impara to handle

8% more cases. The number of benchmarks correctly proved safe increased by 65%

and 10%, respectively, for Cbmc and Impara. For benchmarks correctly proved

unsafe, acceleration brought about a rise of 28% for Cbmc and 30% for Impara. The

7

experiments also demonstrated that these tools, when combined with acceleration,

outperformed Ufo and CPAchecker in terms of both safe and unsafe instances solved

correctly (cf. Table 3.1).

1.3.3 Exploiting Modularity of Implementation: Refutations

As a first step towards exploiting the modularity of an implementation, we inves-

tigate compositional refutation techniques in hierarchical, e.g. procedure-modular,

decomposition of sequential programs. Unlike verification, refutation algorithms are

usually based on finding a violating execution trace, which seems to be inherently

non-compositional. As a result, the compositional refutation problem is not very well

studied. Through our work [79], we lay the base for a more systematic study of this

problem domain. Specifically, we make the following contributions:

• To place the problem in a wider context, we give an informal overview on

how completeness relates to problem decomposition in safety refutation and

verification.

• We formalize the problem space of safety refutation in hierarchical decompo-

sition and characterize the compositional completeness guarantees of various

algorithmic approaches.

Our main result, in decomposing the refutation problem, states that:

Theorem. For finite state programs, the proposed compositional refutation

algorithm with respect to hierarchical (e.g. procedure-modular) decomposition is

sound and complete.

• We propose three refutation approaches, Concrete Backward Interpretation,

Abstract Backward Interpretation, and Symbolic Backward Interpretation, in

increasing order of completeness.

• We provide an implementation of these safety refutation techniques as an

extension to 2LS [20,96], a verification tool built on the Cprover framework,

and give experimental results comparing their completeness and efficiency.

8

1.3.4 Exploiting Modularity of Implementation: Proofs

In order to exploit the modularity of implementations for safety proofs, we extend

our work on safety refutation to modular safety verification using k-induction [100].

k-induction is one of the most popular techniques for proving safety. However, for

large programs, the bounded model checking instances generated to check k-inductive

proofs often exceed the limits of resources available. In order to address this:

• We formulate verification by k-induction within a generic refinement algorithm

framework.

• We propose an interprocedural k-induction approach based on an interprocedural

counterexample spuriousness check and a selective refinement of loop unwindings

and procedure inlining.

There are two important results that we establish in this context:

Theorem.

i) If monolithic k-induction proves a property for some finite k then the interprocedural

k-induction algorithm will prove it.

ii) If monolithic k-induction finds a counterexample after a finite k number of iterations,

then the interprocedural k-induction algorithm will find it too.

1.4 Thesis Outline

The rest of this thesis is organized as follows. Each subsection of Section 1.3 has been

expanded into one chapter, that states, motivates and presents our solutions to the

problems discussed above. The results shown in Chapters 2-4 have been published

and presented at different peer-reviewed conferences, while those in Chapter 5 are still

unpublished.

The preliminaries needed for each chapter are discussed in that chapter itself, or in

an earlier chapter (and referenced fittingly). The contributions made through different

pieces of work, that this thesis incorporates, are highlighted towards the beginning of

every chapter.

Chapters 2, 3, and 4 have very minimal dependency on one another, and may

in fact be read in any order. Chapter 4, however, is a prerequisite for Chapter 5.

Chapter 6 concludes this thesis, and lists interesting directions of future work.

9

Chapter 2

Verifying Synchronous Reactive
Systems

In this chapter we look at Statecharts, a visual formalism proposed by David Harel,

and interpret them according to Statemate semantics of Statecharts [61]. Statecharts

are popular as a language for modeling synchronous reactive systems, although the

expressiveness complicates the task of formally verifying these systems. We focus on

the issue of redundant interleavings, brought about by the synchronous concurrency

of Statecharts under Statemate semantics.

2.1 Synchronous Reactive Systems and

Lazy Abstraction

Synchronous reactive processes are widely used for modeling and model-based design

of embedded software systems. Processes of this kind synchronize at designated points

in their control flow. Harel’s Statecharts [60] is a popular formalism for specifying such

processes. Statecharts extend conventional state-transition diagrams with the notion

of hierarchy, concurrency and communication. Since we are not concerned about how

the synchronizing components actually execute on a machine, we take the liberty to

use the terms processes, threads and components interchangeably in this chapter.

Existing approaches to formal verification of Statecharts (or, in fact, most other

formalisms specifying synchronous reactive systems) predominantly rely on building a

global transition relation for the system. This permits the application of a wide range

of standard methods for state space exploration such as BDD-based Model Checking,

Bounded Model Checking, and k-induction [27, 103, 106]. The key disadvantage of

the approach is that it requires that a scheduler is added to the model to account for

all possible process interleavings [84], thereby increasing the complexity of the model

10

substantially. Furthermore, the approach fails to exploit the structure inherent in the

control-flow graph of the processes.

An alternative may be to use a verifier for asynchronously composed threads and

instrument the model to enforce synchronization of the processes at their synchro-

nization points. But not only would this add further states per thread (owing to

the synchronization), it will also lead to exploration of many irrelevant states, as

interleavings that happen between the synchronization points have no effect.

In this work, we explore a third, novel way of verifying synchronous reactive

systems. Our approach uses a model checking algorithm based on Lazy Abstraction

with Interpolants (LAwI) [83], also known as the Impact algorithm. It unwinds the

control-flow graph of the program into an abstract reachability tree (ART). Whenever

the exploration arrives at an error state, the nodes on the error path are annotated

with invariants that prove infeasibility of the error path. The crux of the algorithm is

a covering check that allows it to soundly stop the unwinding and terminate with a

correctness proof of the program. This combination of low-cost program unwindings

combined with path-based refinement and covering checks gives rise to an efficient

software model checking algorithm.

Recently, the Impact algorithm was extended to support asynchronous concurrent

processes using an interleaved semantics and implemented in a tool called Impara [104].

Impara, which analyses concurrent C programs with POSIX or Win32 threads,

combines partial-order reduction with the Impact algorithm. We have tailored and

optimized Impara to implement our new technique, which we call Sympara. The

essence of our algorithm is a novel concurrent static-single assignment (SSA) form

which enables us to use a fixed schedule for process execution.

While the motivation for this work has been to formally verify Statemate [61]

Statechart specifications, some of our ideas are imminently applicable to other similar

formalisms like Esterel [10], Lustre [26], and SIGNAL [51].

2.1.1 Contributions

We summarise the contributions of this chapter as follows.

• We present an extension to the IMPACT algorithm to handle concurrent pro-

cesses as per Statemate semantics. Specifically, the new algorithm supports re-

active generation of external events, blocking and non-blocking assignments, and

synchronous scheduling of concurrent processes with checks for non-determinism

11

and race conditions. We prove that our extension, including a change to the

criteria for covering, is sound and complete (Section 2.5).

• We have implemented the new algorithm in a tool, called Sympara, with a C

front-end. We have verified several examples derived from real Statechart models

in Sympara, Impara, and Cbmc to compare their relative performances on

same designs. Our experiments confirm that Sympara performs significantly

better compared to other two approaches (Section 2.6).

2.2 Discussion on Related Work

There have been several attempts at applying formal verification to Statecharts. [15]

gives a good survey of this topic. Most of these efforts [16,34,76,105] have used the

global transition approach, i.e. they involve extracting the global transition relation

implemented by the Statechart system and coding it in the logic/language of a popular

model checker, e.g. SMV [25], VIS [24], and SPIN [66].

Sympara differs from the existing approaches by meeting the following objectives:

i) the verification technique underlying Sympara is based on LAwI, ii) Sympara

supports input in Ansi-C, offering applicability to formalisms that permit code

generation, and iii) Sympara preserves and exploits parallelism, control structure,

and hierarchy inherent to Statecharts. The work in [93] comes closest in terms of

the last objective. The authors of [93] build a compiler for translating Statemate

Statecharts into CSP and then verify it using the FDR model checker for CSP [92].

There have also been other attempts at exploiting behavioural hierarchy, e.g. [5, 7].

However, this has only been demonstrated for hierarchical reactive modules, a variant

of Statecharts.

The most closely related work is by Cimatti et al. [30], who have used a similar

software model checking approach based on lazy abstraction to verify SystemC models.

They also avoid adding a scheduler, however, their analysis explores all possible

interleavings. A distinguishing feature of Sympara is its ability to work with a

fixed schedule of process execution, accounting for synchronous races with an efficient

encoding.

12

C10 C11 C12 C13 C14 . . .

C20 C21 C22 C23 C24 . . .

C30 C31 C32 C33 C34 . . .

t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

...
...

...
...

. . .

step-boundaries

Figure 2.1: Parallel components evolve in steps and synchronize at step-boundaries

2.3 Preliminaries

2.3.1 Statecharts: Syntax and Semantics

Before getting to our technique, we briefly discuss the semantics that we will be using

throughout this chapter.

Following Statemate conventions, a transition labeled e[c]/a is said to be enabled

if the event e (treated as a predicate for the purpose of this discussion) and condition

c evaluate to true. Here, a denotes the action that is performed when the transition

occurs. Statemate requires execution to progress in steps. In each step, a transition,

if one is enabled, is executed in each process. It is this property of synchronous systems

that we exploit in order to fix a schedule. The actions execute atomically and take

effect only at the end of that step. Fig. 2.1 shows the evolution of such a system

through the steps taken by its parallel components (processes). Each component Ci

starts in its initial state, Ci0, and evolves by taking an enabled transition in each

step. The actions performed by one component are invisible to other components

until all the components hit the subsequent step-boundary (the vertical line joining

the components C∗j, as indicated in Fig. 2.1). It is at these step-boundaries that all

the changes, e.g. assignments happening in the actions, take effect. Note that this

may give rise to write-write races, if conflicting values are set to the same variable by

two different components in the preceding step.

The system keeps evolving till it reaches a state where none of the transitions

are enabled. Such a state is called a stable state. At this stage, inputs from the

environment are read and the system evolves further. Evidently, a sound verification

13

technique for synchronous reactive systems must reason over all schedules, which, in

the worst case, requires effort exponential in the number of steps executed by each

thread.

In certain circumstances it is possible to guarantee that there is no race, e.g.,

when the enabled transitions modify disjoint sets of variables. In such a situation

it is possible to execute the transitions sequentially, using any ordering. Our key

observation is that even in a case of a race, it is possible to encode different behaviours,

while still working with a fixed execution order. We illustrate on this observation later

in this section, after an overview of our translation scheme.

2.3.2 Lazy Abstraction with Interpolants

Lazy Abstraction with Interpolants (LAwI) [83], also known as the Impact algorithm,

is one of the most efficient algorithms for addressing the data state explosion problem

for verification of sequential programs. The algorithm returns either a safety invariant

for a given program, finds a counterexample or diverges (the verification problem is

undecidable).

To this end, it constructs an abstraction of the program execution in the form of

a tree, while annotating nodes with invariants. Essentially, the algorithm unwinds

the control-flow graph of the program into an abstract reachability tree (ART). Each

vertex in the tree corresponds to a program control location, and is labeled with a

fact about the program variables that is true at that point in the execution of the

program. Each vertex is initially labeled true. When a vertex corresponding to the

error location is reached, the algorithm strengthens the facts along the path to that

vertex, so as to prove the error vertex unreachable.

This strengthening is done by generating an interpolant for the path to the error

state. An interpolant for a path is a sequence of formulas assigned to the vertices of the

path, such that each formula implies the next after executing the intervening program

operation, and such that the initial vertex is labeled true and the final vertex false.

Interpolants can be derived from the unsatisfiability proofs of infeasibility of paths,

and, therefore, existence of an interpolant implies that the error vertex is unreachable.

To put abstract reachability trees to work for proving program correctness for

unbounded executions, a criterion is needed to prune the tree without missing any

error paths. This role is assumed by a covering relation between the nodes. Intuitively,

the purpose of node labels (denoted by φ) is to represent inductive invariants, i.e.,

over-approximations of sets of states, and the covering relation (denoted by .) is the

equivalent of a subset relation between nodes. Consider two nodes, v and w, which

14

share the same control location (a vector of individual thread locations, which we

denote by l), and φ(v) implies φ(w). If we establish that the superset node w cannot

be on an error path, we do not need to search for an error path from subset node v.

Therefore, if we can find a safety invariant for w, we do not need to explore successors

of v. In this case, we say that the node w covers the node v.

2.3.3 Verifying Multi-threaded Software with Impact

Impara [104] extends the original Impact algorithm [83] to concurrent software.

It constructs an ART, much like Impact, but iterates over all threads to account

for the concurrency. The single control location gets transformed into a vector, and

the expand routine enumerates all possible interleavings. This algorithm is very

inefficient in its basic form; due to the full interleaving semantics, the number of global

control locations grows very quickly. Impara amends this by combining monotonic

partial-order reduction (POR) with Impact.

2.4 Our Encoding

2.4.1 Statecharts to Concurrent C Programs

Given a system consisting of several components, we translate each component into a

separate process. The transition relation is encoded using a program label for every

state and, depending on the guard conditions, a goto jump from one program label to

another. Concurrency is achieved by creating threads and assigning every process to a

thread. Sympara’s construct sync() creates these threads, assigns processes to them

and ensures that every thread, when scheduled, executes exactly one statement of the

process assigned to it. Communication is encoded with the help of global variables.

Hierarchy may be achieved by spawning new threads inside a thread, to represent the

components at the next level of hierarchy. This may lead to multiple levels of nesting.

Sympara, by default, forces a context switch after every statement. It does so to

correctly capture the synchronous semantics of Statemate, which dictates that every

enabled component takes a transition and the variable values get synchronized at the

end of such a step. However, to model a different semantics, or when there are complex

transitions that are written across multiple statements, atomic sections can be used

to control the granularity at which interleavings should be analyzed. The desired

granularity differs depending on the modeling language. We use auxiliary (shadow)

variables to encode actions along a transition, thus preventing them from taking

15

initi runi waiti csi

in csi = 0;

starti req csi entryi

exiti

Figure 2.2: State-transition diagram for ith process

effect immediately. The values of these auxiliary variables are copied to the actual

variables at the end of each step, when the step-boundary is reached (see Fig. 2.1).

The environment is modeled as a separate process, which generates non-deterministic

values for the environmental inputs.

Let us consider an example consisting of two processes, pi and pj, executing

concurrently and synchronously, following a mutual exclusion protocol, as shown in

Fig. 2.2. The processes begin in an init state and then, after receiving the start signal,

move to a loop where they request access to a critical section, wait till the access is

granted, enter the critical section, and finally exit the critical section to get back to the

head of the loop. The system evolves through a sequence of steps, where in each step

both the processes receive the available signals (which may be thought of as external

events, or inputs from the environment) at the same time, and then take an enabled

transition together. The actions that happen as part of the enabled transitions do

not take effect immediately; they come into effect only after all the processes have

completed the step. This is how the processes are synchonously composed in the

system.

The variables starti, req csi and rel csi are inputs (events) supplied by the en-

vironment. The value of in csi indicates whether pi is in state csi or not. It is set

(reset) by all transitions entering (exiting) csi. The symbols entryi and exiti are place

holders for the labels “[(lock = 0) ∧ (⊕k in(waitk))] / lock = 1; in csi = 1;” and

“rel csi / lock = 0; in csi = 0;”, respectively. The variable lock is shared and used

by the processes to mark their entry to cs. The unary predicate in(s) is true if the

corresponding process is in state s. Fig. 2.3 outlines the translation of this protocol.

2.4.2 Concurrent SSA for Data Races

The static single assignment form (often abbreviated as SSA form or simply SSA) [40]

is a way of structuring the intermediate representation so that each variable is assigned

exactly once, and every variable is defined before it is used. We introduce the notion

of a concurrent SSA in this section, and show how it allows us to account for data

16

void p_i () {
init_i :
atomic{

i f (start_i) {
/∗ no a c t i o n s ∗/
goto run_i ;

}
e l s e {

goto init_i ;
}

}

. . .

wait_i :
atomic{

i f ((lock == 0) &&
(in_wait_j == 0)) {

lock_shadow = 1 ;
in_cs_i_shadow = 1 ;
goto cs_i ;

}
e l s e {

goto wait_i ;
}

}

cs_i :
. . .

}

void environment () {
atomic{

/∗ v a r i a b l e updates ∗/
lock = lock_shadow ;
in_cs_i =

in_cs_i_shadow ;
. . .

}
/∗ e x t e r n a l inputs

to be generated i f
system i s i n a c t i v e ∗/

i f (inactive) {
/∗ e x t e r n a l inputs ∗/
start_i = ∗ ;
req_cs_i = ∗ ;
. . .

}
}

void main () {
atomic{

sync () : p_i () ;
sync () : p_j () ;

}
}

Figure 2.3: Code snippet for the protocol in Fig. 2.2

races. A data race, in our context, arises when two or more components modify a

variable in the same step. Since the effect of transitions take place only at the end of

a step, conflicting modifications to a variable by two different threads give rise to a

race. In such cases the variable can take a value assigned by any of the threads as the

final value. In order to avoid the analysis to branch at this stage, accounting for all

possible behaviours, we use concurrent SSAs.

Consider the example in Fig. 2.2, and the code structure corresponding to it

(shown in Fig 2.3). We are interested in verifying the correctness of this protocol, i.e.

in(csi) and in(csj) must never evaluate to 1 simultaneously, as per the Statemate

17

n1 n2 n3 n4 n5 n6 n7 n8 n9
p1 p2 p1 p2 p1 p2 p1 p2

Figure 2.4: An (incomplete) ART corresponding to the example in Fig. 2.2

semantics. Note that if the processes are in states csi and csj (say), and if rel csi and

rel csj evaluate to true, then pi and pj modify the variable lock in the same step.

While both the processes here set lock to 0, the values may differ in general. Instead

of considering both orders of execution (pi followed by pj and vice-versa), based

on a non-deterministically chosen boolean b, Sympara introduces the assignment

“lock = b?v : v′” where v and v′ are the values assigned to lock by different threads.

We term the SSA generated from such a conditional expression as concurrent SSA. It

is concurrent SSAs which allow fixing an execution order. Note that concurrent SSAs

are needed only when v is not equal to v′. During formal analysis, Sympara does

syntactic checks and constant propagation before invoking a decision procedure to

resolve this (in)equality.

Fig. 2.4 shows the first few nodes of an abstract reachability tree (ART) obtained

by unfolding the control-flow graph (CFG) of p1 and p2 along a path. The execution

begins at node n1 where both the processes are in their default state. As the unfolding

progresses, new nodes are formed. For instance, say n2 refers to the state where p1

is in init1 and p2 is still in its default state, n3 refers to the state where both p1 and

p2 are in the init state, and so on. Each node has a label associated with it, that

captures the invariants discovered so far for the corresponding node. Let n7 be the

node where both the processes are in the wait state. Assume the next two steps, to n8

and n9, are the entry i transitions for p1 and p2, respectively. This makes n9 an error

node, as both processes are in the cs state simultaneously. Once this happens, the

algorithm collects the constraints from the initial node, n1, to the error node, n9. If

the constraints are satisfiable, there is a property violation. In our case, the transition

from n7 to n8 requires exactly one process to be in the wait state, which is not the

case at n7. The node labels are then strengthened to eliminate the path by computing

sequential interpolants from the unsatisfiability proof, much like the way it is done

in [83] and [104]. Sympara terminates when all paths leading to the error node have

been eliminated.

18

n1 n2
p1 n3

p2 ...p1 ni
p2 ni+1

p1

idle

false cover

nj
p2 ...p1

Figure 2.5: The original covering criterion may lead to false cover.

2.5 Technical Details

We now present an extension of the Impara algorithm for multi-threaded software,

to synchronously composed concurrent programs. Our algorithm, presented in the

subsection below, differs from that of Impara in primarily two aspects.

• Sympara iterates over the set of processes and computes successors in a fixed

order, tackling races using concurrent SSAs. This fixed order of process execution

is encoded in the ART by augmenting the control information at each node with

the process scheduled next on that node.

• Sympara adds an additional clause in the covering criterion, that the covering

node and the covered node must agree on the process scheduled next.

Intuitively, the purpose of node labels (denoted by φ) is to represent inductive

invariants, i.e. over-approximations of sets of states, and the covering relation (denoted

by .) is the equivalent of a subset relation between nodes. Consider nodes v and w

that share the same control location (a vector of individual thread locations, denoted

by l), and assume that φ(v) implies φ(w). Further, suppose the processes execute in

a fixed order and the next process scheduled at v is the same as one scheduled at

w. It is easy to see that if there was a feasible error path from v, there would be a

feasible error path from w too. Therefore, if we can find a safety invariant for w, we

do not need to explore successors of v. In other words, φ(v) is at least as strong as the

already sufficient invariant φ(w). Hence, if w is safe, so are the nodes in the subtree

rooted at v.

In absence of the third criterion (of the next scheduled process being the same),

above, if a process p becomes idle (does not change the global system state), the node

obtained after executing p could incorrectly be covered by the one before executing p

(see Fig. 2.5). The following definition formalizes cover for Sympara.

Definition 2.5.1. A node v is said to be covered by another node w (denoted as w.v)

if v and w have the same control location, φ(v)→ φ(w) and the next scheduled process

on both the nodes are the same, i.e. sp(v) = sp(w).

19

2.5.1 The Verification Algorithm

The algorithm (Algorithm 1) constructs an ART by alternating three operation on

nodes: Expand, Refine, and Close.

Expand takes an uncovered leaf node and computes its successors along the next

scheduled process. The procedure maintains a set of active processes and schedules

them in a round-robin fashion to generate new successor nodes. The resulting node is

sensitive to the schedule order only when there is a race. We use concurrent SSAs to

model these races, as described in Section 2.4.2. For every enabled transition, Expand

creates a fresh tree node w, schedules the next process on w, updates its location to

the target location of the transition and initializes φ(w) to true. The node w is then

enqueued to a work list Q and a tree edge is added which records the step from v to w,

with the transition constraint R. If w happens to be an error location, the operation

Refine is invoked.

Refine takes an error node v, detects if the error path is feasible and, if not,

updates the node labels in order to eliminate the path. It determines if the unique

path π from the initial node to v is feasible by checking satisfiability of the transition

constraints, F(π), along π. If F(π) is satisfiable, the solution gives a counterexample

in the form of a concrete error trace, proving the program unsafe. Otherwise, an

interpolant is obtained, which is used to refine the labels and update ..

Close takes a node v and checks if v can be added to .. As potential candidates

for pairs w . v, it only considers nodes created before v, denoted by the set V ≺v (V .

This ensures a stable behaviour, as covering a node may uncover other nodes. To

ensure the soundness of ., all pairs (x, y) where y is a descendant of v, denoted by

v y, are removed from . at this point, as v and all its descendants are covered.

Main first initializes the queue with the initial node ε, and the relation . with the

empty set. It then runs the main loop of the algorithm until Q is empty, i.e., until

the ART is complete, unless an error is found which exits the loop. In the main loop,

a node is selected from Q. First, Close is called to try and cover it. If the node is

not covered and it is an error node, Refine is called. Finally, the node is expanded,

unless it was covered, and evicted from Q.

Theorem 2.5.2. The modified cover relation never eliminates any permissible be-

haviours in the synchronous composition.

20

Algorithm 1 Sympara algorithm for verifying synchronous reactive processes

1: procedure main()
2: Q := {ε}, . := ∅
3: while Q 6= ∅ do
4: v := dequeue(Q); Close(v)
5: if v not covered then
6: if error(v) then
7: Refine(v)

8: Expand(v)

9: return P is safe
10:

11: procedure close(v)
12: for w ∈ V ≺v : w uncovered do
13: if l(v) = l(w) ∧ φ(v)⇒ φ(w) then
14: if sp(v) = sp(w) then
15: . := . ∪ {(v, w)}
16: . := . \ {(x, y) ∈ . | v y}

17: procedure expand(v)
18: (l, φ) := v
19: T := sp(v)
20: if T = size(T) then
21: st(v) = 0
22: T = 0
23: for (l, (R, l′)) ∈ A(T) with lT = l do
24: // A(T) := actions of T

25: // R := transition constraint (l→ l′)

26: w := fresh node
27: sp(w) := T + 1
28: l(w) := l[T 7→ l′]
29: φ(w) := true
30: Q := Q ∪ {w}, V := V ∪ {w}
31: →:=→ ∪{(v, T,R,w)}

32: procedure refine(v)
33: if φ(v) ≡ False then
34: return
35: π := v0, . . . vN path from ε to v
36: if F(π) has interpolant A0 . . . AN

then
37: for i = 0 . . . N do
38: φ := Ai

39: if φ(vi) 6� φ then
40: Q := Q ∪ {w | w . vi}
41: . := . \ {(w, vi) | w . vi}
42: φ(vi) := φ(vi) ∧ φ
43: for w ∈ V s.t. w v do
44: Close(w)

45: else
46: abort (program unsafe)

21

Proof. (Sketch) Suppose a permissible behaviour does indeed get eliminated from the

composition. In other words, the path in the ART corresponding to that behaviour

gets prematurely pruned at some node (say, v) during Expand, because of the covering

criteria. We argue that whenever v gets covered, the node w that covers v can lead to

every successor that v could have led to.

Note that the possible successors of a v are entirely determined by its control

location, its label φ(v) and the process scheduled next at v. The coverage criterion

ensures that the node w covering v has the same control location and the same

process scheduled next. Further, the implication relation between the nodes labels,

φ(v)→ φ(w)), guarantees that v can only reach a subset of nodes reachable from w.

Hence, it is safe to not expand v any further.

Clearly, the missing behaviour is possible from w since all successors of v are

reachable from w. In the event that w or one of its successors itself gets covered, we

can use a similar argument to establish that the behaviour would still be permissible

from the covering node.

2.5.2 Optimization Strategies

We have added several optimizations in Sympara to improve its efficiency. We

describe them below.

• Sympara handles synchrony in concurrent processes by scheduling every process

in each step. Note that there are only two “visible” system states for each step

(before any of the threads have executed, and after all the threads have finished

execution). However, the implementation allows intermediate states (when only

a subset of threads have executed) to be a part of the ART as well (for example,

the rectangular nodes in Fig. 2.4). These states are not valid system states,

as the synchronous semantics demands that all threads execute simultaneously.

However, owing to the fixed schedule of process execution, an intermediate state

leads to a unique (non-intermediate) state. Therefore, the effect of covering a

state is eagerly obtained by covering an intermediate state leading to it.

• Sympara tries to replace SMT solver calls by cheaper syntactic checks. First,

we use a light-weight decision procedure for cover checks, which decides logical

implication in a conservative way, i.e., it finds valid implications but may fail to

find an implication that holds. Second, we use syntactic simplification to reduce

the complexity of verification conditions that are passed to the SMT solver.

22

These simplifications may even completely discharge verification conditions in

some cases.

• Sympara does early elimination of infeasible paths during the path exploration,

i.e., the path conditions are decided as they arise, while traditional LAWI

lazily decides path-feasibility only when a program assertion is reached. While

this scheme of infeasible-path elimination produces a larger number of decision

problems, the cascaded approach of cheap checks falling back to SMT, described

above, results in an order of magnitude performance improvement.

• Sympara resolves potential races eagerly to reduce case-splits. An eager analysis

of races allows the option of splitting the problem into doing a race analysis first

and, if the system is race-free, avoiding the need to encode the effect of races as

conditional assignments to efficiently analyze other properties.

2.6 Implementation and Experiments

We have implemented Sympara in the Cprover [31] framework, the same one in

which both Cbmc and Impara have also been implemented. Sympara shares a

large part of its code base with Impara. As described in the section above, there

were three major parts of the implementation: a round-robin iteration strategy for

Expand, the modification to the covering criterion in Cover, and the optimizations

(see Section 2.5.2) in procedures Refine and Expand both. As a backend solver,

Sympara uses MiniSAT [86].

We experimentally compare Sympara with Impara and Cbmc. Since each

of these tools is meant or optimized for a different class of programs, to keep the

comparison fair, we have encoded each example used in our experiments in the form

that is suitable for the tool it is given to. To obtain a correctness proof in the presence

of unbounded control loops, we have used k-induction for our experiments with Cbmc.

The benchmarks used in our experiments, listed in Table 2.1, include Statemate,

Simulink and Lustre programs. The first example, mutex, is a simple three-process

model for implementing a mutual exclusion protocol. The vw alarm example is a

hierarchical eight-process Statechart subsystem extracted from a real model of an

alarm system. This example has a large number of conditional transitions from each

location that stresses Sympara’s simplification capability. We have also taken an

almost sequential model, seq car alarm, reverse-engineered from a Simulink Stateflow

model. We use this example to quantify Sympara’s competitiveness on sequential

23

code. The code has several deeply nested busy-wait timeout loops that are challenging

for path exploration. The final three examples, named dragon, switch and prod cons,

have been taken from a set of benchmarks for Lustre (available at https://bitbucket.

org/lememta/lustrebenchmarks).

Table 2.1 lists the properties checked for these examples. The correctness property

is with respect to a given specification (for example, at most one process in the critical

section, in case of mutex). The property of a system to arrive in a stable state within

a finite number of steps has been defined as stability. The check for non-determinism

verifies that the system never reaches a state where multiple outgoing transitions are

enabled. The properties independent and sensitive are assertions on program variables,

the former independent of the loop in the program, and the latter sensitive to it. All

the properties hold for the respective examples, except for switch, which is faulty.

Table 2.1 also summarizes our results. Apart from the total run-time (in seconds),

we also give the time spent by each tool during SAT solving, and the number of SAT

calls for Sympara and Impara. Our experiments were run on a dual-core machine at

2.73 GHz with 2 GB RAM, using a timeout of 900 s. The executables and examples

are available at http://www.cmi.ac.in/~madhukar/sympara/experiments.

On examples that are either sequential or have a bug (rows 5, 6 and 8), there is

little difference between Sympara and Cbmc (the latter performing better in some

cases). The benefits are far more significant in all other cases, where Impara and

Cbmc fail to generate a proof. The race freedom of Lustre benchmarks also accounts

for Sympara’s quick convergence in case of dragon and prod cons (rows 7 and 9).

The unwind column lists the smallest unwinding for which the tool either timed out,

generated a proof or produced a counterexample. The reasons for this performance

improvement are: (1) Cbmc pessimistically considers all possible schedules, while

Sympara works with a fixed one. Even if the system is race-free in all its reachable

states, k-induction cannot exploit it as the step-case searches from an arbitrary state.

(2) Sympara does well even for cases when the reachable diameter (i.e. the maximal

distance between two reachable states) is larger than the initialized diameter (i.e. the

maximal distance from an initial state to a reachable state), owing to its forward search

strategy. As compared to Impara, Sympara is efficient as it fixes an interleaving.

Another reason for its efficiency is the result of aggressive eager simplifications added

in Sympara.

24

Table 2.1: Experimental Results

Tools → Sympara Impara Cbmc + k-Induction

No. Example Property
SAT

Time
SAT

Time Unwind SAT Time
#calls Time #calls Time

1. mutex correctness 632 3.53 5.77 – – timeout 69 – timeout
2. mutex stability 767 5.26 8.02 – – timeout 62 – timeout
3. vw alarm non-determinism 138 0.64 1.80 – – timeout 18 – timeout
4. vw alarm stability 1897 87.29 214.82 – – timeout 11 – timeout
5. seq car alarm sensitive 202 1.13 1.35 3238 7.23 8.65 2 0.61 2.66
6. seq car alarm independent 193 1.12 1.36 4117 7.96 9.96 2 0.15 0.46
7. dragon correctness 115 0.51 0.64 – – timeout 65 – timeout
8. switch correctness 20 0.00 0.02 930 0.26 0.39 3 0.00 0.12
9. prod cons correctness 30 0.02 0.03 – – timeout 1800 – timeout

25

2.7 Concluding Remarks

In this chapter we proposed a technique tailored for verifying synchronous reactive

systems, as an extension of the LAwI algorithm implemented in Impara. We also

described an implementation of our technique into a tool called Sympara. The

Ansi-C based input format for Sympara allows formal verification of specifications

in a variety of formalisms.

To tune the LAwI algorithm for our context, we introduced several modifications

in Sympara. Statecharts tend to have a huge number of case-splits in each transition

with a lot of potential for infeasible combination due to delayed assignment semantics.

Therefore, we adapted the LAwI algorithm to eliminate infeasible paths early on in

the path exploration, i.e. we decide path conditions as they arise, while traditional

LAwI lazily decides path feasible only when a program assertion is reached. This

scheme of infeasible-path elimination produces a larger number of decision problems

that would traditionally all be discharged by an SMT solver, however the cost of such

a naive scheme would be prohibitive. Instead, we check if an SMT query, e.g. whether

an implication holds, can be resolved by syntactic means, or by using simpler, weaker

decision procedures, which ultimately fall back to an SMT solver if their results are

inconclusive.

A unique feature of Sympara is that it exploits key features of synchronous

parallelism by means of concurrent SSAs, enabling on-the-fly race analysis to prune

the search space during symbolic analysis. Our experiments indicate that Sympara

provides significant performance advantage over Cbmc, which generates a monolithic

constraint corresponding to the global transition relation. Sympara also has the

advantage that it is complete, and that it can potentially discover inductive invariants

faster than k-induction. When compared to Impara, our experiments suggest that

restricting synchrony upfront is far more effective in pruning search space than encoding

the same via locks, even with powerful partial-order reduction techniques.

2.7.1 Notes

In order to be widely applicable, Sympara has been developed as an Ansi-C based

formal verification tool. This allows support for verification of industry-scale models

which are more complex, and often have C code embedded in them. For such complex

models, it may be useful to assist Sympara with special invariant generation techniques

to efficiently construct node labels. This may help Sympara converge with successful

proofs faster and more often.

26

Loops are one of the most common bottlenecks in scaling verification techniques

to complex systems. In the next chapter, we investigate techniques to handle loops,

that may be used in conjunction with existing verification methods.

27

Chapter 3

Loop Acceleration as a Precursor
to Verification

A commonly used technique for reasoning about programs with loops is to unroll the

loops a finite number of times, such that a) the resulting unrolled program can be

analyzed automatically, and b) it can be established that the program never execute

an additional iteration of the loops. However, these conditions may be difficult to

meet at once for large real-life programs. Therefore, program verification relies on

invariants for reasoning about sets of reachable states [48]. A program invariant is

a logical assertion that holds during the execution of the program. Similarly, a loop

invariant is an assertion that holds on entry into the loop, and is preserved in each

iteration of the loop. This chapter experiments with loop acceleration as a precursor

to verification, enabling efficient invariant generation.

Acceleration is a technique for summarizing loops by computing a closed-form

representation of the loop behaviour. The closed form can be turned into an accelerator,

which is a code snippet that skips over intermediate states of the loop to the end

of the loop in a single step. In this work, we evaluate experimentally whether loop

accelerators enable existing program analysis algorithm to discover loop invariants

more reliably and more efficiently.

3.1 Accelerating Invariant Generation

Consider the program in Fig. 3.1. It contains a simple assertion, which follows the

while loop. An automated proof of safety for this assertion requires a technique that

is able to discover the loop invariant (sn = (i− j) ∗ a∧ (i ≤ n))∨ ((i > n)∧ (sn = 0)).

State-of-the-art software model checkers either fail to prove the program or even if

28

they do (for a bounded value of n), they do so by completely unwinding the loop,

which does not scale for large n.

#d e f i n e a 2

i n t main () {
unsigned i n t i , j , n , sn = 0 ;
j = i ;
wh i l e (i < n) {

sn = sn + a ;
i++;

}
assert ((sn == (n−j) ∗a) | | sn == 0) ;

}

Figure 3.1: Sample Safe Program

The simple recurrent nature of the assignments in the loop of the program makes

it amenable to acceleration [18,19,46,68]. Acceleration is a technique used to compute

the effect of repeated iteration of statements. Specifically, the effect of k loop iterations

in the example program is that the variable sn is increased by k ∗ a. The idea is

to replace, wherever possible, a loop with its closed form to obtain an equivalent

accelerated program that is hopefully easier to verify.

Acceleration in the general case is, of course, as difficult as the original verification

problem. Practical applications of acceleration are therefore typically restricted

to particular special cases. For instance, Jeannet et al. [68] consider the case of

deterministic linear loops over continuous variables. As there are very few cases in

which the transitive closure is effectively computable, it is frequently not possible to

obtain an accelerator that captures the behaviour of the loop precisely. Thus, although

acceleration can be precise [9, 46], it is often either over-approximative [18, 68] or

under-approximative [73]. Acceleration frequently specialises in particular application

domains, e.g., control software. Furthermore, acceleration techniques are frequently

tuned to a particular analysis technique (e.g., abstract interpretation or predicate

abstraction) that is applied subsequently.

The conjectures that we make are: 1) accelerators support the invariant synthesis

that is performed by program analysers, irrespective of the underlying analysis ap-

proach, and 2) analysers supported by acceleration not only do better than the original

ones, they also outperform other state-of-the-art tools performing similar analysis.

29

i n t nondet_int () ;
unsigned nondet_unsigned () ;

#d e f i n e a 2

i n t main () {
unsigned i n t i , j , n , sn , k = 0 ;
j = i ;
wh i l e (i < n) {

i f (nondet_int ()) { // a c c e l e r a t e
k = nondet_unsigned () ; sn = sn + k∗a ;
i = i + k ;
assume (i <= n) ; } // no over f l ow

e l s e { // o r i g i n a l body
sn = sn + a ; i++; }

}
assert ((sn == (n−j) ∗a) | | sn == 0) ;

}

Figure 3.2: Program from Fig. 3.1 with accelerator

We aim to test these hypotheses by performing an evaluation over an extensive set

of benchmarks and a variety of tools.

Since all our benchmarks are C programs, we require an acceleration technique that

is applicable to C programs and the fixed-width machine integers that they use. We

use a template-based method published at CAV 2013 [73] to obtain the accelerators,

and add them to the programs as additional paths. This transformation is exact and

thus it preserves safety i.e., the acceleration neither over- nor under-approximates.

The implementation of [73] that we use actually works on a goto-binary, a binary

representation of the program’s control-flow graph as extracted from program source

code using goto-cc [49]. As a result, we get accelerated goto-binaries instead of real

program binaries (say, as gcc [37] would produce). Thus, the accelerated programs

cannot be given to all common off-the-shelf analysers. Nevertheless, we compare with

other tools in our experiments to quantify the advantage that acceleration provides

over the state-of-the-art.

Recall our example program. The program with accelerator added is given as

Fig. 3.2. The instrumented code in Fig. 3.2 can be used instead of the original code

for model checking state properties, as they have equivalent sets of reachable states at

the loop heads. We observe that several model checkers that failing on the original

30

program are able to verify the accelerated program successfully.

The core contribution of this work is an experimental study, with the goal to

validate our conjectures stated earlier. We quantify the benefit of accelerators when

using commodity program analysers. We use two analysers in our experiments to

substantiate the first claim (that accelerators aid existing analyzers). Cbmc [31]

is the model checker used in [74]; as a bounded analyser, it makes no attempt to

infer invariants and is only able to conclude correctness if the program is shallow.

Impara [104] is a C program verifier based on the LAwI-paradigm. Impara generates

invariants using a very basic approach that relies on weakest preconditions, and does

not employ a powerful interpolation engine.

Both Impara and Cbmc are characterised by very weak invariant inference, and

are thus expected to benefit substantially from acceleration. To relate the outcome

to the best invariant generation techniques, towards validating our second claim, we

include two other analysers: CPAchecker [13] and Ufo [3]. These tools implement a

broad range of invariant generation methods, including various abstract domains and

interpolation. The comparison is performed on over 200 benchmarks, including those

used in the Software Verification Competition 2015.

Although acceleration has successfully been combined with interpolation-based

invariant construction [65], to the best of our knowledge, there has not been a

thorough experimental study that quantifies the benefits of using it in tools that

aim to prove correctness. While [73] did integrate acceleration within a framework

where paths in the CFG were explored lazily with refinement, the emphasis of their

experiments was to accelerate bug detection for unsafe programs. Recently, a loop

over-approximation technique based on acceleration was proposed in [41] but this

technique is not applicable to unsafe programs. Moreover, there is no refinement to

eliminate spurious counterexamples arising from the over-approximation in [41]. The

experiments in [74] focus on bounded model checking and do not include state-of-the-art

interpolation-based tools.

3.1.1 Contributions

The contribution of this chapter is an extensive experimental study (Sections 3.3

and 3.4) that quantifies the benefit of acceleration when conjoined with off-the-shelf

analysis tools.

31

3.2 Background: Acceleration & Trace Automata

In this section, we go over the preliminaries that includes acceration, for both scalar

variables and array assignments, and elimination of redundant paths with the help of

trace automata.

3.2.1 Acceleration Overview

The acceleration procedure used in this work is based on the method described in [73].

This method relies on a constraint solver to compute the accelerators. We first

provide an overview of the steps of the acceleration procedure, and subsequently

provide additional detail. From a high-level perspective, the procedure implements

the following steps:

1. Choose a path π through the loop body to be accelerated.

2. Construct a path

π whose behaviour under-approximates the effect of repeatedly

executing π an arbitrary number of times.

3. The construction also generates conditions under which the acceleration is an

under-approximation. These conditions are given in the form of two constraints

– a feasibility constraint, which denotes the condition under which

π can be

applied, and a range constraint, which constrains the number of iterations.

These constraints are included as assume statements in

π.

4. By construction, the assumptions and constraints in

π may contain universal

quantifiers ranging over an auxiliary variable that encodes the number of loop

iterations. The procedure uses a few simple techniques to eliminate these

quantifiers that work under certain restrictions. The path is not accelerated if it

is not able to eliminate the quantifiers.

5. Augment the control flow graph of the original loop body with an additional

branch corresponding to

π with a non-deterministic choice in the branch.

6. The accelerated paths subsume some (or sometimes all) paths in the original

program. The augmented loop structure generated in the previous step is

analyzed to build a trace automaton that filters some of the redundant paths.

The result of this step is used to generate a final program with fewer paths.

32

The acceleration procedure, after executing the above steps, produces an instru-

mented code with the modifications described in the last two steps. For a program

with several loops, possibly nested, the acceleration procedure processes the loops one

at a time, inside-out for nested loops. In our experiments we analyse the instrumented

code that is produced, without further modifications. This process of acceleration

may succeed, fail or time out. The last two outcomes imply that either a closed form

solution with a given template does not exist or acceleration was unable to find one.

In the following, we give a few more details of the procedure, the form of the

accelerated paths produced and explain the conditions under which the procedure

works.

3.2.2 Accelerating Scalar Variables in a Path

For scalar variables, the acceleration is generated by fitting a particular polynomial

template. If X = {x1, . . . ,xk} is the vector of variables in π, then the accelerated

assignment generated for each variable x is represented by the following polynomial

function:

fx(X〈0〉, n)
def
=

k∑
i=1

αi · x〈0〉i

+

(k∑
i=1

α(k+i) · x〈0〉i + α(2·k+1)

)
· n

+ α(2·k+2) · n2

Here, n is the number of loop iterations that are summarized, x
〈0〉
1 , . . . ,x

〈0〉
k are

the initial values for the variables and the αi with 0 ≤ i ≤ 2k + 2 are the unknown

coefficients.

The acceleration for a path is performed in two steps. In the first step, the procedure

solves for the coefficients αi. This is done by considering only the assignments in the

path π, i.e., by ignoring all the conditions, including the loop condition. This employs

a combination of linear algebra techniques to first uniquely solve for the coefficients and

then makes queries to SMT solver to inductively check that the generated polynomial

for each variable is consistent with loop execution for an arbitrary number of iterations.

If, for some xi, the inductive check fails, then it means there is no acceleration possible

that fits the template for this choice of coefficients.

In the second step, the procedure considers the path with all the conditions, and

generates the feasibility constraint, i.e., the condition under which the path is feasible.

33

In order to guarantee that only states that are reachable in the original program

can be reached via accelerated paths, we need to make sure that

π is only feasible

for values of n for which a cumulative path, πn, is also feasible. We achieve this by

computing a pre-condition for

π that rules out values of n for which πn is not feasible.

The feasibility constraint is essentially the negation of wlp(πn; false), where wlp is the

weakest liberal precondition. Intuitively, a cumulative path πn would be infeasible

iff any intervening path π in the n-iteration cycle, starting from the state given by

the accelerator, is infeasible. That is, πn is infeasible if for any j < n the first time

frame of the suffix π(n−j) is infeasible (time frame refers to an instance of π in πn).

Thus, checking whether wlp(πn, false) holds is equivalent to checking if, for some j

between 0 and n, wlp(π, false) holds (after substituting every variable in π by its

accelerated closed form expressions). Thus, the feasibility constraint for πn will, in

general, contain a universal quantifier ranging over the number of loop iterations. This

can be eliminated if the predicate in the body of the formula is monotonic over the

quantified parameter. The procedure reduces the monotonicity check in a conservative

fashion to a SMT query by defining a representing function that returns the size of

the set of states for which a predicate is false. No acceleration is performed if the

monotonicity check fails.

3.2.3 Range Constraints

Since closed-form expressions and the derived feasibility constraints usually contain

the number of iterations n in them, an overflow is likely to break the monotonicity

requirement when bit-vectors or modular arithmetic are used. Also, since the behaviour

of arithmetic over- or under-flow in C is not specified for signed arithmetic, we

conservatively rule out all occurrences thereof in the accelerated path. This is done by

adding range constraints in the form of assume statements, which enforce that none

of the arithmetic expressions that involve n overflow.

3.2.4 Accelerating Array Assignments

Acceleration of array assignments is challenging, as under-approximating closed-form

solutions for them can often only be expressed by formulas that contain quantifier

alternation (existential inside universal) ranging over the number of loop iterations and

the domain (index) of the array. It has been shown in [73] that for array assignments

of the form a[x] := e such a quantifier pattern can be eliminated under the following

sufficient conditions.

34

• There exist accelerated closed-form expressions for the index variable x and the

expression e.

• The function fx defining the closed-form solution for the index variable is linear

in the number of loop iterations.

Under the above conditions one can derive a closed form representing an under-appro-

ximation of the array assignments.

i n t nondet_int () ;
unsigned nondet_unsigned () ;

#d e f i n e a 2
i n t main () {

unsigned i n t i , j , n , sn , k = 0 ;
bool g = ∗ ;
j = i ;
wh i l e (i < n) {

i f (nondet_int ()) { // a c c e l e r a t e
assume (! g) ;
k = nondet_unsigned () ; sn = sn + k∗a ;
i = i + k ;
assume (i <= n) ; // no over f l ow
g = true ;}

e l s e { // o r i g i n a l body
sn = sn + a ; i++;
g = false ;}

}
assert ((sn == (n−j) ∗a) | | sn == 0) ;

}

Figure 3.3: Program from Fig. 3.2 with instrumented trace automaton

3.2.5 Eliminating Redundant Paths using Trace Automata

The instrumentation of the accelerators described in the introduction preserves the

unaccelerated paths in the program along with the newly added accelerated paths –

for instance, the else branch in Fig. 3.2. Note that the added paths subsume some of

the previously existing program paths.

The idea presented in [74] is to eliminate executions that are subsumed by some

other execution of the program. For instance, taking the same accelerated path twice

35

in a row is equivalent to taking it just once (for instance, in Fig. 3.2, executing the if

block twice for values k1 and k2 is the same as executing it once with the value of k

equal to k1 + k2 – which is possible because k is chosen non-deterministically in each

iteration).

Similarly, taking the unaccelerated path immediately after taking the accelerated

path is subsumed by taking the accelerated path just once (with the value of k being

one more than its previously chosen value, in Fig. 3.2). The elimination of these

redundant paths is done by encoding the redundancies as a regular expression, which

is then translated into a trace automaton [63]. When the accelerated program executes,

the states in this automaton are also updated and it is ensured that this automata

never reaches an accept state. Reaching an accept state means that the execution

contains redundant iterations of accelerators and, therefore, is not of interest. An

optimized version of the accelerated code for the running example is given in Fig. 3.3.

This is achieved by introducing an auxiliary variable g that determines whether the

accelerator was traversed in the previous iteration of the loop. This flag is reset in the

non-accelerated branch, which, however, in our example is infeasible.

3.3 Experimental Setup: Tools & Benchmarks

We start this section with a brief informal introduction of the different tools used for

our experiments.

3.3.1 Overview of the Analysis Tools

Ufo [3] combines the efficiency of abstract interpretation with numerical domains

with the ability to generalize by means of interpolation in an abstraction refinement

loop. Ufo starts by computing an inductive invariant for the given program and

checks if the invariant implies the given property. If the implication does not hold,

Ufo employs SMT solvers to check the feasibility of the counterexample produced.

If the error path is found to be infeasible, an interpolation technique guided by the

results of an abstract interpretation is used to strengthen the invariant.

CPAchecker [13] is a tool and framework that aims at easy integration of new

verification components. Every abstract domain, together with the corresponding

operations, implements the interface of configurable program analysis (CPA). The main

algorithm is configurable to perform a reachability analysis on arbitrary combinations

of existing CPAs. The framework provides interfaces to SMT solvers and interpolation

procedures, such that the CPA operators can be written in a concise and convenient

36

way. CPAchecker uses MathSAT [29] as an SMT solver, and CSIsat [14] and

MathSAT as interpolation procedures. It uses Cbmc as a bit-precise checker for the

feasibility of error paths, JavaBDD [67] as the BDD package and provides an interface

to an Octagon representation as well.

Cbmc [31] is a bounded model checker for Ansi-C programs. It works by jointly

unwinding the transition relation encoded in the given program and its specification,

to obtain a first-order formula that is satisfiable if there exists an error trace. The

formula is then checked using a SAT or SMT procedure. If the formula is satisfiable,

a counterexample is extracted from the satisfying assignment provided by the SAT

procedure. The tool also checks that sufficient unwinding is done to ensure that no

longer counterexample can exist by means of unwinding assertions. This enables

Cbmc to prove correctness if the program is shallow.

Impara [104] extends the Impact algorithm to support asynchronous concurrent

processes using an interleaved semantics (cf. Section 2.3.3). Impara, which analyses

concurrent C programs with POSIX or Win32 threads, efficiently combines partial-

order-reduction with the Impact algorithm. This work highlights the benefits of

combining Impara with acceleration for sequential programs.

The Impara algorithm returns either a safety invariant for a given program, finds

a counterexample or diverges. To this end, it constructs an abstraction of the program

execution in the form of an Abstract Reachability Tree (ART), which corresponds to

an unwinding of the control-flow graph of the program, annotated with invariants. To

prove a program correct for unbounded executions, a criterion is needed to prune the

ART without missing any error paths. A covering relation assumes this role.

The tool constructs an ART by alternating three different operations on nodes:

Expand, Refine, and Close. Expand takes an uncovered leaf node and computes

its successors along a randomly chosen thread. Refine takes an error node v, detects

whether the error path is feasible and, if not, restores a safe tree labeling. First, it

determines whether the unique path π from the initial node to v is feasible by checking

satisfiability of the transition constraints along π. If it is satisfiable, the solution gives

a counterexample in the form of a concrete error trace, showing that the program

is unsafe. Otherwise, an interpolant is obtained, which is used to refine the labels

and update the cover relation. Close takes a node v and checks if v can be added to

the covering relation. As potential candidates for pairs to be a part of the covering

relation, it only considers nodes created before v. This is to ensure a stable behaviour,

as covering in arbitrary order may uncover other nodes, which may not terminate.

37

3.3.2 Benchmarks

We ran our experiments on a set of 201 benchmarks (138 safe, 63 unsafe) collected

from the sources listed in [17] (published at CAV 2014) and SV-COMP 2015. We have

eliminated examples that had syntax errors and the ones that were not supported

by the accelerator (array examples, for instance). We used the accelerator provided

by the goto-instrument executable that comes with Cbmc. When run with the

--accelerate option, it takes a goto-binary file as input, and produces an accelerated

binary corresponding to it. The inputs to the accelerator were generated using the

goto-cc executable that also comes with Cbmc. The accelerator does not work on

Ansi-C files directly. Owing to this limitation, we could try only Cbmc and Impara

with acceleration (these tools are built on the same Cprover framework, and both

accept goto-binaries as input). We compare the performance of Ufo, CPAchecker,

Cbmc (with and without acceleration) and Impara (with and without acceleration).

The unwinding depth used for experiments with Cbmc was 100 for unaccelerated

programs and 3 for accelerated programs. All experiments were run on a dual-core

machine running at 2.73 GHz with 2 GB RAM, with a timeout limit of 60 seconds.

We elaborate on the benchmarks and the tools used to aid reproducibility. The

benchmarks were collected from [4,56, 58], the loops category in SV-COMP 2015 and

the acceleration examples in the regression suite of Cbmc (revision 4503). The tools

used in the experiment were Ufo (the SV-COMP 2014 binary), CPAchecker (release

1.3.4, with sv-comp14.properties as the configuration file), Cbmc (built from revision

4503, used with Z3 as the decision procedure) and Impara (version 0.2, used with

MiniSat). The benchmarks, the exact commands used to invoke the tools, and the

full results are available at http://www.cmi.ac.in/~madhukar/fmcad15.

3.4 Evaluation: Results & Analysis

Before we discuss the results, we present an example to demonstrate the effectiveness

of acceleration.

3.4.1 Example

Consider the safe example shown in Fig. 3.4. All the tools involved in our experiments

fail to prove this example safe. Even when the timeout is increased to 15 minutes,

the tools still timeout. In general, one needs a loop invariant strong enough to prove

the assertion outside the loop, to avoid unwinding the loop to the full. None of the

38

tools were able to find such a loop invariant. Upon acceleration, a closed form for

the variable x is generated: x = 1 ∗ k + 2 ∗ l, where k and l are the number of times

that the if and the else branches inside the loop are taken. The additional constraint

generated for k, that k = 65520, along with the closed form for x is sufficient to prove

the property.

In some circumstances, acceleration uses quantifiers in the accelerated programs.

These are not the ones arising from the feasibility or range constraints that we discussed

in Section 3.2 (those get eliminated during the acceleration). These quantifiers appear

while encoding the overflow constraints in the accelerated program. Suppose we want

to construct a closed form for a variable being modified in a loop, by assuming that

the loop executed i times. In this case, we need to assure that there is no overflow

that was caused during any of these i iterations. In some cases, it is sufficient to

assume that iH iteration does not lead to an overflow. An instance is example 3.4, as

the loop condition is (x < 268435454). Thus, if the ith iteration does not lead to an

overflow, none of the previous iterations do. However, if we change the loop condition

to (x 6= 268435454) this does not hold any more. Therefore, it must be ensured

separately for every k ∈ [0, . . . , i] that there is no overflow after k iterations. In our

experiments, there were 40 benchmarks (roughly 25 %) that use quantifiers in their

corresponding accelerated programs. The presence of quantifiers makes the verification

task difficult as none of the tools is able to instantiate the quantifiers correctly. More

effective quantifier handling will yield further results in favor of acceleration.

Table 3.1 summarizes the performance of each of the tools. We record the number

of safe instances reported as safe (correct proofs), the number of safe instances reported

as unsafe (wrong alarms), the number of unsafe instances reported as unsafe (correct

alarms), the number of unsafe instances reported as safe (wrong proofs), the number of

instances which could not be decided by the tool (no result), the number of instances

on which the tool reported the correct result in the least amount of time (fastest), the

number of instances on which the tool was the only one to report the correct result

(unique) and a score for each tool, calculated using the scoring scheme of SV-COMP

2015.1

3.4.2 Experimental Results

Impara + Acceleration clearly outperforms Impara without acceleration, Ufo and

CPAchecker. This underlines the benefit of acceleration as an auxiliary method for

1Score = (2·correct proofs)− (12·wrong proofs)+correct alarms−(6·wrong alarms)

39

i n t main (void) {
unsigned i n t x = 0 ;
whi l e (x < 268435454) {

i f (x < 65520) {
x++;

} e l s e {
x += 2 ;

}
}
assert (! (x % 2)) ;

}

Figure 3.4: A safe benchmark showing the need for acceleration.

Table 3.1: Comparison of tools

Tools
Number of instances

Scorecorrect wrong correct wrong no
fastest unique

proofs proofs alarms alarms results
CPAchecker 1.3.4 83 16 35 14 53 18 11 −75
Ufo SV-COMP 2014 52 2 18 2 127 4 2 86
Cbmc r4503 32 0 35 0 134 16 1 99

+ Acceleration 53 0 45 12 91 28 9 79
Impara 0.2 78 1 36 15 71 73 0 90

+ Acceleration 86 0 47 12 56 36 6 147

invariant generation. Note that we see an increase in the number of correct proofs

as well as correct alarms. CPAchecker comes close in terms of the correct proofs,

which we credit to its broad portfolio of techniques for generating invariants, including

interpolation, abstract interpretation and predicate abstraction. The wrong proofs

CPAchecker generates are partly caused by missing overflow situations.

When compared to Cbmc + Acceleration, Impara + Acceleration does better

for the following reason: The accelerators themselves are not helpful to Cbmc for

generating proofs – it simply unwinds the program CFG and makes a single decisive

query to the solver. A large number of our benchmarks are safe, and Cbmc only

benefits from accelerators if the trace automaton is able to prune the original paths.

By contrast, even without trace automata, acceleration may improve convergence of

Impara, as acceleration can lead to “better” interpolants. Without acceleration an

interpolation procedure is presented an unwinding of the loop body. It is well-known,

see e.g. [12], that this can lead to overly specific interpolants that rule out only this

40

i n t main () {
unsigned i n t n = nondet_uint () ;
i n t x = n ;
i n t y = 0 ;

// loop i n v a r i a n t : x + y == n
whi le (x > 0) {

x = x − 1 ;
y = y + 1 ;

}
assert (y == n) ;

}

Figure 3.5: Acceleration can improve generalisation in LAwI.

particular unwinding. By contrast, in the accelerated program, the interpolation

procedure is presented with the transitive closure of the loop; it thus is forced to

compute an interpolant for a much larger number of unwindings. For instance, Impara

without acceleration fails to generate a loop invariant for Fig. 3.5, and thus falls back

to loop unwinding, whereas, on the accelerated program, unwinding is avoided, and

the tool generates the invariant x+ y = n.

The overall score drops when combining Cbmc with acceleration. This is due to

the wrong alarms generated by the combination, which is heavily penalized according

to the scoring rules at SV-COMP. We suspect that this arises from some practical,

implementation-specific, limitations of the acceleration method. On the other hand,

there is a substantial increase in the number of correct proofs and correct alarms,

however. The advantages of combining acceleration with Cbmc and Impara (note

that Cbmc and Impara are very different tools) strongly suggests that a similar

advantage could be obtained with other tools as well. An investigation of the cause

for the increase in number of wrong alarms for Cbmc and a precise quantification

of the benefit of combining other tools would be worthwhile directions to explore as

future work.

The fact that acceleration helps Cbmc and Impara on unsafe instances is un-

surprising; the technique we use was designed to aid counterexample detection [73].

The experimental results confirm that in addition, acceleration helps to generate

invariants. Invariant generation techniques, in practice, often struggle to find concise

loop invariants, and, instead, degrade into unrolling loops completely, which leads to

poor performance and defeats the purpose of invariant generation. Our experiments

41

demonstrate that there is a synergy between the two techniques. For example, accel-

eration may provide candidate predicates for an adequate abstraction, or as described

above, may simplify the program in a way that more general interpolants are obtained

instead of specific ones. That is why we say that acceleration leads to better invariants.

While CPAchecker employs a bit-accurate tool – by default Cbmc – to verify

counterexamples, its invariant generation engine works over mathematical integers, i.e.

invariants may hold over mathematical integers but are not checked with respect to

integer overflow. Wrong proofs observed with CPAchecker mainly arise from deriving

mathematical-integer invariants that do not hold in presence of overflow. In such

situations acceleration cannot help, i.e. though acceleration may help in obtaining an

invariant faster, CPAchecker would continue to present wrong proofs unless it accounts

for overflows.

Since the accelerator works on goto-binaries, we could not quantify the benefits of

acceleration in terms of the number of loops replaced. Table 3.2 gives the complete

results of our experiments. If a tool worked on a given benchmark and produced

the expected result, we report the time taken by the tool in seconds. The entries to,

inc, err and nr indicate, respectively, that the tool timed out, produced an incorrect

result, terminated with an error or could not decide whether the input benchmark

is safe or unsafe. The winning entry (in terms of the time taken by the tool) for

each row (if there is one) is given in bold font. Note that the time taken by Cbmc +

Acceleration and Impara + Acceleration does not include the time taken to generate

the instrumented program with accelerators. The latter is given separately in the

column Accl.

3.5 Concluding Remarks

In this chapter we have quantified the benefit of acceleration for checking safety

properties. We report the results of a comprehensive comparison over a number of

benchmarks, which shows that the combination of acceleration and a safety checker

indeed outperforms existing techniques. The performance enhancement is visible for

both safe and unsafe benchmarks, shown by an increase in the number of correct

alarms as well as the correct proofs reported by the tool.

42

Table 3.2: Complete Table of Experimental Results

Benchmark T1 T2 T3 T4 T5 T6 Accl
28.c nr to nr nr to to 1.27
25.c nr inc to 0.69 to to 0.52
20.c nr 1.41 7.01 6.54 0.02 0.03 1.17
09.c nr to nr nr to to 1.81
05.c nr to nr nr to to 2.12
f2.c to inc to 40.46 to 10.17 1.65
xyz2.c nr inc nr nr to 0.79 1.14
xy0.c nr inc nr nr to 0.19 0.53
gulv.c to 47.18 nr to 38.83 to 3.6
substring1.c 0.35 to nr 0.08 42.79 0.26 0.26
24.c nr 48.31 to nr 3.52 to 0.49
xy4.c nr inc nr nr to 0.21 0.68
pldi082 unbounded.c nr to nr nr to to 0.78
15.c nr 14.65 nr 0.32 to 0.64 0.48
gulv simp.c 0.57 46.13 nr nr to to 1.14
33.c nr 47.62 to to to to 2.59
xy10.c nr 19.78 0.21 0.35 0.01 0.02 0.45
xyz.c nr inc nr nr to 17.08 1.18
12.c nr to nr nr to to 5.59
31.c nr inc to 1.75 to to 0.18
35.c nr inc nr 0.22 to 0.35 0.29
07.c nr inc nr 0.06 to 0.1 0.26
39.c 0.2 1.22 0.01 err 0.02 err 0.5
19.c nr inc nr 0.62 to to 0.83
37.c nr inc nr 0.24 to 0.7 0.62
simple safe1.c 0.21 to nr 0.06 0.01 0.02 0.23
diamond unsafe2.c nr 1.45 9.44 0.4 0.53 0.84 0.6
underapprox unsafe1.c 0.2 1.23 0.02 nr 0.02 0.03 0.38
nested safe1.c 0.2 to nr nr to to 0.87
diamond safe2.c nr 17.34 2.29 0.2 0.43 0.85 0.57

T1: Ufo; T2: CPAchecker; T3: Cbmc; T4: Cbmc + Accl; T5: Impara; T6: Impara + Accl
nr: no result; err: error; to: timeout; inc: incorrect result; values are in seconds continued on next page

43

Benchmark T1 T2 T3 T4 T5 T6 Accl
const unsafe1.c 0.26 1.5 0.02 0.06 0.03 0.03 0.2
functions safe1.c 0.2 to nr 0.06 0.02 0.03 0.23
nested unsafe1.c 0.27 to nr nr 0.52 0.09 0.2
multivar unsafe1.c 0.32 1.39 0.31 0.1 0.01 0.02 0.27
underapprox safe2.c 0.2 1.39 0.02 nr 0.02 0.05 0.37
simple unsafe1.c 0.2 to nr 0.07 to 0.03 0.23
underapprox unsafe2.c 0.2 1.49 0.03 nr 0.02 0.05 0.39
simple safe4.c 0.2 to nr nr 0.02 0.02 0.2
simple unsafe4.c to to nr nr to to 0.21
simple unsafe2.c 0.39 1.73 0.17 0.07 0.01 0.01 0.22
phases unsafe1.c to to nr 0.1 to 0.63 0.33
diamond safe1.c nr to 0.38 0.11 3.99 1.09 0.3
diamond unsafe1.c nr 2.49 0.31 0.16 54.33 0.04 0.34
simple safe2.c 0.21 1.53 nr 0.07 0.01 0.02 0.19
const safe1.c 0.21 1.28 0.01 0.04 0.02 0.03 0.21
overflow unsafe1.c 0.2 inc nr 0.06 to 0.11 0.19
simple unsafe3.c nr 1.42 0.08 0.08 0.01 0.01 0.23
phases safe1.c to to nr 0.12 to 0.93 0.29
simple safe3.c 0.16 to nr 0.06 0.01 0.03 0.24
multivar safe1.c nr 1.54 nr 0.07 0.01 0.04 0.28
functions unsafe1.c 0.2 to nr 0.06 to 0.02 0.22
underapprox safe1.c 0.19 1.4 0.02 nr 0.02 0.04 0.38
overflow safe1.c 0.21 47.8 nr 0.08 0.01 0.03 0.22
efm.c nr inc to to inc err 3.76
hsortprime.c nr 51.33 to nr inc to 1.03
bk-nat.c nr inc 25.61 39.74 0.43 err 3.38
barbrprime.c nr 1.78 to 12.41 0.06 0.65 5.21
fig1a.c nr to nr nr to to 1.03
swim.c nr 48.9 to to to err 4.2
seesaw.c nr 47.73 to nr to err 1.59

T1: Ufo; T2: CPAchecker; T3: Cbmc; T4: Cbmc + Accl; T5: Impara; T6: Impara + Accl
nr: no result; err: error; to: timeout; inc: incorrect result; values are in seconds continued on next page

44

Benchmark T1 T2 T3 T4 T5 T6 Accl
swim1.c nr 52.44 to to inc inc 4.7
barbr.c nr 1.85 to 22.63 8.38 55.01 7.26
ex1.c nr inc 42.07 nr to to 1.62
cars.c nr to to to to to 13.33
fig2.c inc inc to 24.89 to 11.54 1.59
lifo.c nr 19.61 to to 29.98 40.92 9.43
lifnatprime.c nr inc to to inc 34.76 8.31
ex2.c nr 7.07 0.04 0.05 8.03 8.41 0.09
bkley.c nr inc 23.16 15.03 to err 2.99
hsort.c nr inc to nr inc inc 1.43
lifnat.c nr inc to to inc 58.74 9.73
seq-len.c nr to to nr to to 1.57
svd-some-loop.c nr 2.42 to nr inc 5.74 2.2
split.c nr to nr nr to to 0.12
string concat-noarr.c 0.21 1.25 0.01 0.18 0.01 0.03 0.64
bind expands vars2.c nr 19.08 nr 1.39 to 2.42 0.37
simple if.c nr 37.98 nr nr to to 0.45
nest-if5.c 0.2 19.93 nr nr 0.01 0.01 0.38
up-nested.c 0.21 1.36 nr nr 0.01 0.02 0.25
NetBSD g Ctoc.c 0.2 1.22 0.01 0.02 0.01 0.02 0.93
nested8.c nr 22.81 to nr inc 60.0 1.95
nest-len.c nr 48.98 to nr to 7.33 0.76
nested2.c 0.59 47.6 to nr 0.01 0.03 0.27
heapsort3.c nr inc to nr inc inc 0.33
sendmail-close-angle.c nr to nr 1.2 to inc 0.91
NetBSD glob3 iny.c 0.26 1.26 0.01 err 0.01 err 0.55
nested.c 0.2 47.03 to nr to 0.1 0.24
seq-sim.c nr to to nr to to 1.06
puzzle1.c nr 1.36 to nr 0.01 0.01 0.63
half.c nr to nr 0.76 to 4.28 1.53

T1: Ufo; T2: CPAchecker; T3: Cbmc; T4: Cbmc + Accl; T5: Impara; T6: Impara + Accl
nr: no result; err: error; to: timeout; inc: incorrect result; values are in seconds continued on next page

45

Benchmark T1 T2 T3 T4 T5 T6 Accl
MADWiFi-encode ie ok.c nr 18.98 15.1 0.28 0.06 0.14 0.41
simple.c nr inc nr 0.12 0.02 0.14 0.15
nested1.c 0.63 47.95 to nr 0.01 0.02 0.25
mergesort.c nr 1.57 0.02 0.01 0.02 0.01 1.1
svd4.c nr 3.87 to err inc inc 6.09
spin.c 0.2 1.26 0.01 0.01 0.01 0.01 0.06
svd2.c nr 1.51 to nr 0.01 0.03 0.74
spin1.c 0.21 1.24 0.01 0.01 0.01 0.01 0.07
heapsort.c nr inc to nr inc inc 1.32
nest-if7.c 0.2 48.21 to nr 0.09 0.13 0.48
sendmail-mime7to8 arr three chars no test ok.c 0.2 2.75 to 1.58 0.02 0.01 0.31
nest-if1.c nr inc to nr 0.29 0.84 0.25
simple nest.c nr 1.35 nr nr 0.06 0.29 0.81
NetBSD loop int.c 0.2 1.25 0.01 err 0.01 err 0.34
nested6.c nr 47.26 to nr 7.88 8.07 0.5
down.c nr to nr 0.37 to 1.3 0.58
seq.c nr 1.41 7.26 1.98 0.02 0.04 1.59
seq3.c nr to to nr to to 1.18
nested3.c nr inc to nr to to 0.39
nest-if2.c nr inc to nr 20.95 0.8 0.39
seq-proc.c inc to to 2.98 to to 1.24
nest-if4.c 0.2 19.91 to nr 0.01 0.03 0.27
apache-escape-absolute.c nr to to nr 0.21 3.34 3.68
bound.c nr inc nr 1.87 0.02 0.12 1.76
nest-if.c 0.6 47.82 to nr to 0.13 0.26
svd3.c nr 1.58 to nr 0.02 0.03 0.38
up5.c nr to nr nr to to 0.87
heapsort2.c nr 1.81 to nr to to 0.23
NetBSD loop.c nr 18.68 4.96 0.21 0.01 0.02 0.42
nested9.c nr to to nr inc inc 0.39

T1: Ufo; T2: CPAchecker; T3: Cbmc; T4: Cbmc + Accl; T5: Impara; T6: Impara + Accl
nr: no result; err: error; to: timeout; inc: incorrect result; values are in seconds continued on next page

46

Benchmark T1 T2 T3 T4 T5 T6 Accl
nested4.c nr nr to nr to to 0.38
up3.c nr to nr nr to to 1.03
heapsort1.c nr 1.79 to nr to to 0.25
SpamAssassin-loop.c nr 18.84 to err 0.01 0.05 1.65
seq2.c inc to to nr to inc 0.98
up.c nr to nr 0.34 to 1.25 0.54
nest-if3.c nr inc to nr 0.21 0.64 0.17
apache-get-tag.c nr to to 7.88 to to 1.48
seq-z3.c nr to to 2.9 to to 1.22
fragtest simple.c 0.2 1.22 0.01 0.52 0.02 0.12 0.83
rajamani 1.c 0.2 1.26 0.01 0.16 0.01 0.03 5.13
nest-if8.c nr 47.64 to nr inc 0.02 0.35
sendmail-mime-fromqp.c 0.21 1.71 0.04 0.05 0.02 0.02 0.38
gulwani cegar2.c 0.2 14.62 nr 0.2 0.03 0.95 0.26
test.c 0.2 1.3 0.02 0.01 0.01 0.01 0.01
nested7.c nr inc to nr inc inc 0.98
id build.c nr to to nr 0.11 0.3 0.42
svd1.c nr 3.22 to nr inc 5.65 4.35
id trans.c 0.43 18.43 29.26 0.69 0.01 0.02 0.55
nested5.c nr 48.22 to nr 0.08 to 0.23
gulwani cegar1.c nr inc 0.03 0.21 0.02 0.04 0.43
ken-imp.c 0.19 1.66 nr 0.55 to 0.68 0.42
sort instrumented.c 0.33 1.26 0.01 0.01 0.01 0.01 0.73
SpamAssassin-loop ok.c 0.61 47.11 to nr 0.02 0.08 0.7
up-nd.c inc to 26.74 1.87 0.07 1.17 0.95
compact false.c to to nr to to 21.47 0.29
veris.c OpenSER cases1 stripFullBoth arr true.c 0.2 19.69 to nr 0.02 0.05 0.99
terminator 02 true.c nr 1.59 1.34 0.16 0.01 0.03 0.38
bubble sort false.c nr 6.89 to err err err 1.96
n.c11 true.c nr 1.28 nr nr 0.02 inc 0.2

T1: Ufo; T2: CPAchecker; T3: Cbmc; T4: Cbmc + Accl; T5: Impara; T6: Impara + Accl
nr: no result; err: error; to: timeout; inc: incorrect result; values are in seconds continued on next page

47

Benchmark T1 T2 T3 T4 T5 T6 Accl
ludcmp false.c 0.22 to err err 0.1 err 0.12
trex02 false.c nr 1.36 0.39 0.16 0.02 0.01 0.37
matrix true.c nr 7.48 0.04 nr err err 0.62
vogal false.c nr 1.61 11.03 to err 31.52 1.44
trex03 false.c nr 1.7 8.13 0.06 0.01 0.02 0.85
while infinite loop 2 true.c 0.2 1.29 nr 0.03 0.01 0.02 0.2
insertion sort true.c nr to to nr to inc 0.51
matrix false.c nr 22.86 to to err err 0.74
verisec OpenSER cases1 stripFullBoth arr false.c nr 20.02 to 8.78 0.17 err 1.07
sum01 bug02 false.c 0.72 1.71 0.15 0.29 0.21 6.9 0.83
n.c24 true.c nr to nr to to to 0.6
veris.c NetBSD-libc loop true.c 0.2 1.67 6.48 0.05 0.02 0.01 0.26
insertion sort false.c nr to to nr to 0.26 0.63
sum01 false.c 0.77 1.99 0.12 0.15 0.38 0.72 0.46
for infinite loop 2 true.c 0.2 19.07 nr nr 0.01 0.02 0.29
terminator 02 false.c nr 1.4 3.25 0.2 0.01 0.01 0.42
nec20 false.c nr 1.39 0.13 0.16 0.02 0.12 0.48
verisec sendmail tTflag arr one loop false.c nr 2.09 to nr 0.78 err 0.39
trex02 true.c 0.2 1.56 nr nr 0.01 0.03 0.37
invert string false.c nr to to 3.65 err err 0.6
nec11 false.c nr 1.56 0.14 0.07 0.01 0.02 0.23
bubble sort true.c 0.21 19.83 to to 0.02 0.05 3.46
nec40 true.c 0.21 17.24 0.04 0.07 0.02 0.01 0.2
veris.c sendmail tTflag arr one loop true.c 0.2 2.19 0.24 nr 0.01 0.02 0.44
linear sea.ch true.c nr nr nr 0.18 to err 0.32
verisec NetBSD-libc loop false.c 0.43 1.45 4.95 0.04 inc err 0.25
sum01 true.c nr to nr 0.26 to 1.24 0.5
sum04 true.c 0.2 1.24 0.01 0.08 0.03 0.28 0.31
count up down false.c 0.22 1.41 0.14 0.05 0.01 0.02 0.24
trex03 true.c nr 1.92 nr nr 0.03 0.03 0.82

T1: Ufo; T2: CPAchecker; T3: Cbmc; T4: Cbmc + Accl; T5: Impara; T6: Impara + Accl
nr: no result; err: error; to: timeout; inc: incorrect result; values are in seconds continued on next page

48

Benchmark T1 T2 T3 T4 T5 T6 Accl
for bounded loop1 false.c nr 1.44 16.87 0.8 0.02 0.09 0.67
n.c40 true.c 0.19 18.01 0.03 0.07 0.01 0.02 0.23
heavy true.c to to to to to to 0.39
lu.cmp true.c 0.48 1.45 0.07 err 24.42 err 0.19
terminator 01 false.c nr 1.46 0.22 0.11 0.01 0.01 0.7
sum03 true.c 0.19 46.46 nr 0.15 0.06 0.22 0.38
linear search false.c nr nr 0.25 0.25 1.87 err 0.34
sum04 false.c 0.28 1.46 0.03 0.16 0.07 0.71 0.37
eureka 01 false.c nr to to to 1.34 0.43 1.75
sum01 bug02 sum01 bug02 base.case false.c 0.54 1.7 0.15 0.63 0.12 0.09 0.54
while infinite loop 4 false.c 0.2 1.43 0.91 0.06 0.01 0.01 0.14
eureka 01 true.c nr 1.56 15.39 to to 7.31 1.15
while infinite loop 3 true.c 0.19 1.25 nr nr 0.01 0.01 0.13
vogal true.c nr to 4.09 4.19 54.34 to 1.63
count up down true.c 0.2 to nr nr to to 0.27
while infinite loop 1 true.c 0.2 1.25 nr 0.03 0.01 0.01 0.21
for infinite loop 1 true.c 0.2 19.18 nr nr 0.01 0.02 0.22
sum03 false.c nr 1.52 0.78 0.25 0.22 0.69 0.76
invert string true.c nr 7.16 0.07 0.96 0.14 inc 1.05
eureka 05 true.c nr 1.37 0.08 0.48 0.87 0.1 0.64

T1: Ufo; T2: CPAchecker; T3: Cbmc; T4: Cbmc + Accl; T5: Impara; T6: Impara + Accl
nr: no result; err: error; to: timeout; inc: incorrect result; values are in seconds

49

The source-level transformation of programs enables integration with futher in-

variant generation techniques. As a future work, we plan to investigate the interplay

between acceleration and invariant generation to minimize the number of wrong alarms

and to handle more cases correctly, including those that involve arrays. We also believe

it would be worthwhile to investigate whether the accelerator can be assisted with

additional invariants generated using some other technique (e.g. [20, 96]). Our initial

experiments suggest that some of these invariants, even over the interval domain, may

help us rule out the possibility of overflows, thereby increasing the precision of the

accelerator.

3.5.1 Notes

The ability to accelerate invariant generation for loops enables one to tackle a complex

system more effectively. However, in order to scale for real-world examples, it is

important to address another, equally important, aspect of complex systems - the

number of interacting components in them. There are several ways in which the

components may interact: message passing, generating and sensing events, reading

and writing to shared variables, etc. Moreover, the components may themselves be

defined, or identified, in various ways. We address some of these concerns in the next

chapter, as we develop techniques that can work compositionally.

50

Chapter 4

Exploiting Modularity of
Implementation: Refutations

In software design, modularity refers to a logical partitioning of a system that allows

complex software to be manageable for the purpose of implementation and mainte-

nance. Given a design, or an implementation, this logical separation may either be

apparent, e.g. components in a Statechart design, threads in a multi-threaded program,

procedures in a sequential program, or it might need to be constructed explicitly,

e.g. splitting a control-flow graph into sets of paths. In order to address scalability

limitations of verification stemming from the scale of a system, it helps to analyze

the system’s modules in isolation and compose the results in the end. This chapter

studies one such approach for refuting safety properties in sequential programs.

4.1 Compositional Safety Refutation

Divide-and-conquer approaches are considered to be the blue print solution to scale

algorithms to large problems. Compositionality of proofs is the enabler of a map-reduce

approach to verification. Compositional verification approaches based on contracts

and summaries have been shown to tremendously increase scalability and productivity

in real-world formal verification [6, 47,77,101].

But what about refutation? Unlike verification, refutation algorithms are usually

based on finding a violating execution trace, which seems to be inherently non-

compositional. Consequently, the study of the compositional refutation problem is

an under-explored area of research. Yet, solutions to this problem have significant

impact on other research problems. As a motivation, we give here two algorithmic

approaches in verification and testing that will be enabled by efficient compositional

refutation algorithms:

51

• Property-guided abstraction refinement algorithms like CEGAR [32] need to

decide whether counterexamples that are found in the abstraction are spurious

or true counterexamples. The lack of compositional refutation techniques forces

these algorithms to operate in a monolithic manner and is therefore an obstacle

to scaling them to large programs.

• Automated test generation techniques based on Bounded Model Checking are

successfully used in various industries to generate unit tests (e.g. [97]). However,

they do not sufficiently scale to accomplish the task of generating integration tests.

Compositional refutation techniques achieve exactly this goal: they efficiently

produce refutations (from which test vectors can be derived) on unit (module)

level and enable their composition in order to obtain system level refutations,

i.e. integration tests.

This chapter is a first step in this direction and lays the base for a more systematic

study of the problem domain.

4.1.1 Contributions

We summarise the contributions of this chapter as follows.

• In order to place the problem in a wider context, we give an informal overview

on how completeness relates to problem decomposition in safety refutation and

verification (Section 4.3).

• We formalise the safety refutation problem in horizontal decompositions, e.g.

procedure-modular decompositions, and characterise the compositional com-

pleteness guarantees of various algorithmic approaches (Section 4.4).

• We describe three refutation approaches with different degrees of completeness

(Section 4.5) and give experimental results on C benchmarks, comparing their

completeness and efficiency (Section 4.6).

4.2 Preliminaries

Before we introduce the notation, let us understand the goal that we have. Consider

the program shown in Fig. 4.1. It has an assertion in the procedure bar . We are

interested in finding a path in the program that reaches the assertion, with values of

the variables such that the assertion does not hold. In particular, for this example,

we wish to find a path starting from main, and reaching the assertion in bar with

52

values of z ≤ 10. Note that the assertion may be violated “locally” in bar , but we are

interested in violations that are global, i.e. starting from the entry (main) function.

Program model and notation. We assume that programs are given in terms of

acyclic1 call graphs, where individual procedures f are given in terms of deterministic,

symbolic input/output transition systems. F is the set of all procedures in the program.

Since the handling of loops is orthogonal to the compositional aspect, we consider

only loop-free procedures (respectively bounded unwindings of loops) in this chapter2.

Thus, we simply denote the input/output relation of a procedure f as Tf(xin,xout).

Inputs xin are procedure parameters, global variables, and memory objects that are

read by f . Outputs xout are return values, and potential side effects such as global

variables and memory objects written by f . Boolean guard variables (g) in inputs

and outputs are used to model the control flow. Non-deterministic conditionals and

variable initializations are modeled by a call to a nondet() function which returns a

non-determistic value. During analysis this return value is treated like an additional

input, in order to make the transition system deterministic. The relations Tf are

given as first-order logic formulae over bitvectors and arrays, resulting from the logical

encoding of the program semantics. Fig. 4.1 gives an example of the encoding of a

program into such formulae using the loop-free notation. The inputs xin of foo are

(y, g6) and the outputs xout consist of (r, g7) where r is the return value. In addition

to the inputs and outputs we need boolean guard variables gin, gout (here g6, g7) that

are set to true if the entry (exit) of the procedure is backward (forward) reachable.

They are handled like input/output parameters and have their actual counterparts

in the guard variables in the caller (here, e.g. g1, g2 for the call foo0 in main). Note

that we consider exit in a procedure is not reachable, i.e., ¬gout, if either the program

is non-terminating or an assertion in a procedure is violated. Hence, the exit guard

condition in the definition of a transition function includes assertion checks as in Tbar.

We use a single static assignment (SSA) encoding, which gives a fresh name to each

update of a variable if it is modified multiple times, such as for example in main.

Each call to a procedure h at call site i in a procedure f is modeled by a placeholder

predicate hi(x
p in

i,x
p out

i) occurring in the formula Tf for f . The placeholder predicate

ranges over intermediate variables in the SSA of caller, representing its actual input

and output parameters, xp in
i and xp out

i, respectively. Placeholder predicates evaluate

to true in the beginning, which corresponds to havocing the program variables in

1We consider non-recursive programs with multiple procedures (cf. model in [28]).
2Section 4.7 discusses the extension to programs with loops.

53

void main (i n t x) {
i f (x < 10) {

x = foo (x) ;
x = foo (x) ;
bar (x) ;

}
}

i n t foo (i n t y) {
r e turn y+1;

}
void bar (i n t z) {

assert (z > 10) ;
}

Tmain((x0, g0), (g5)) ≡ g1=(g0 ∧ (x0<10))∧
foo0((x0, g1), (x1, g2))∧
foo1((x1, g2), (x2, g3))∧
bar((x2, g3), (g4))∧
g5=(g0 ∧ ¬(x0<10) ∨ g4)

Propsmain ≡ true

Tfoo((y, g6), (r, g7)) ≡ (r=y+1) ∧ (g6=g7)
Props foo ≡ true

Tbar((z, g8), (g9)) ≡ g9=(g8 ∧ (z>10))
Propsbar ≡ g8 ⇒ (z>10)

Figure 4.1: Example program and its encoding

procedure calls. As the analysis progresses, they get strengthened by summaries.

We later explain how we use the guard variables in performing this propagation.

In procedure main in Fig. 4.1, the placeholder for the first procedure call to foo is

foo0((x0, g1), (x1, g2)) with the actual input and output parameters x0, x1, respectively,

and the corresponding guard variables that encode whether the entry and exit of

foo0 are reachable. Let Propsf denote the conjunction of all properties (assertions) in

procedure f (e.g. the assertion in bar in Fig. 4.1). Note that we view these relations

as predicates, e.g. T (x,x′), with given parameters x,x′, and mean the T [a/x,b/x′]

when we write T (a,b). Moreover, we write x and x with the understanding that the

former is a vector, whereas the latter is a scalar.

CSf is the set of call sites in procedure f , and the set of all call sites in a program,

CS, is
⋃

f∈F CSf . func(i) is the procedure called at call site i. We write Xf for the

variables in Tf (including intermediate variables), and X̂ for the entirety of variables

in Tfunc(i)(x
in

i,x
out

i) for all i ∈ CS.

Summaries, and Calling Contexts Inter-procedural compositional proofs of a

sequential program usually use a set of auxiliary predicates to define abstractions

of loops and procedures. These abstractions are usually formally defined by means

of a set of predicates – invariants, a summary and a calling context (CallCtx func(i))

for every procedure invocation at call site i in a call-graph of the program. These

predicates have the following roles: Invariants abstract the behaviour of loops inside

functions. Summaries abstract the behaviour of called procedures; they are used to

strengthen the placeholder predicates. Calling contexts abstract the caller’s behaviour

w.r.t. the procedure being called. When analyzing the callee, the calling contexts

are used to constrain its inputs and outputs. The set of sub-traces (in the behaviour

54

of a caller), corresponding to execution of a function at a call site, is characterised

by a conjunction of the calling context and summary predicates associated with the

function at that call site. We provide formal definitions for summaries and calling

contexts below (invariants are not needed in this chapter, except for Section 4.7 where

we discuss the extension to programs with loops).

Definition 4.2.1. For a procedure given by Tf we define:

• A summary is a predicate Sumf such that:

∀Xf : Tf (xin,xout) =⇒ Sumf (xin,xout)

• The calling context for a procedure call at call site i in the given procedure is a

predicate CallCtx func(i) such that

∀Xf : Tf (xin,xout) =⇒ CallCtx func(i)(x
p in

i,x
p out

i)

For instance, a summary for procedure foo in Fig. 4.1, is Sum foo((y, g6), (r, g7)) =

(y<MAX ⇒ r>y).3 A (forward) calling context for the first call to procedure foo

in main is CallCtx foo0
((x0, g1), (x1, g2)) = (g1 ⇒ x0<0). We observe that the guard

variables are also used in defining summaries and calling contexts. They have the

same meaning as in transition functions. The reason we have defined CallCtx over

both input and output parameters is so we can propagate it in forward or backward

directions. With a slight abuse of notation, we sometimes use only the call site index

or the function name, if there’s no ambiguity, as a subscript to specify CallCtx .

4.3 Compositional Verification and Refutation

Overview

A decomposition of a verification problem intuitively splits the original problem into

a set of sub-problems that cover the original problem. The decomposition operator

for the problem has a corresponding composition operator for composing the results

obtained from the sub-problems in order to obtain a solution of the original problem.

Compositionality has been naturally studied in the context of the parallel composition

of processes (e.g. [33,35,89]) where the decomposition is performed according to the

process structure and the composition operator is a rely-guarantee proof rule, for

example.

3MAX denotes the maximum possible value in the type of y.

55

In terms of program executions, a decomposition can be viewed as a way a proof

of verification splits the behaviour, i.e. the set of all execution traces of a program, in

constructing the proof. For sequential programs, decompositions can be vertical or

horizontal. Decomposition of a verification problem can be formally defined by means

of a pair of operators – decompose that decomposes a program into modules and a

compose operator that composes proof for a module in terms of its sub-modules.

A vertical decomposition usually focuses on entire execution traces and splits

the behaviour of the program into subsets of end-to-end traces. Program slicing

(e.g. [62]) that splits verification into a set of use-case scenarios and then using symbolic

execution for checking each component is an example of a vertical decomposition.

An automata-based semantic decomposition of programs was proposed by [64]. The

decompose-compose pair of operators for such a vertical decomposition can be defined

as follows.

Definition 4.3.1 (Vertical decomposition-composition). A vertical decomposition of

a program, Prog, is defined as

decompose(Prog) =def P,

where P is a collection of (sets of) program behaviors, i.e. execution paths of the

program. A safety proof of Prog may be obtained with the help of a composition

operator, compose, that combines the individual proofs of every element p ∈ P , i.e.

proof (Prog) = compose(p ∈ P , proof (p))

.

A horizontal decomposition is usually based on a syntactic decomposition of the

program e.g. into procedures or procedures. In terms of traces, horizontal decomposition

splits execution traces into pieces, i.e. each element of the decomposed program captures

a set of sub-traces corresponding to each procedure invocation in the program.

We now define the decomposition and composition operators w.r.t. a horizontal

decomposition based on the procedure call hierarchy in a program.

Definition 4.3.2 (Horizontal decomposition-composition). A horizontal decomposi-

tion of a program Prog is defined as

decompose(Prog) =def M,

where M is a collection of procedures in the call graph of Prog.

56

Algorithm 2 Composition operator for summaries

1: procedure Compose(f)
2: for all i ∈ CSf do . CSf are the call sites in procedure f
3: Sum func(i) ← Compose(func(i)) . func(i) is the procedure at call site i

4: Sumf ← proof (f) . uses Sum func(i), i ∈ CSf and proof composer operator
5: return Sumf . Sumf can be cached

Let CSf(f) denote the set of call sites in a procedure f and func(i) denote the

procedure called at site i.

The safety proof for a procedure f in a horizontal decomposition is defined with

the help of a composition operator as

proof (f) =def compose(i ∈ CSf , func(i))

.

The proof of Prog may be obtained as proof (fentry), where fentry is the entry

procedure of Prog.

Consider a safe version of the code in Fig. 4.1 where the assertion in bar is changed

to z ≤ 10. A safety proof for the program can be constructed hierarchically by using the

following summaries for foo and bar: Sumfoo((y, g6), (r, g7)) = (r=y + 1 ∧ g6=g7) and

Sumbar((z, g8), (g9)) = (g9 ⇒ z ≤ 10). Then, the proof for main can be constructed

using the recursive Algorithm 2. The proof for the leaves (foo and bar) involves

showing their transition functions imply their respective summary. Proof composition

for a non-leaf procedure will use the caller summaries to similarly construct a proof (a

summary) for the caller. In our example, the program is indeed proved safe as the

algorithm constructs a Summain, which, in this case, can be a suitable abstraction of

the transition function for main, that is not false, while checking that the constructed

summaries verify all the embedded properties.

This chapter focuses on solving the refutation problem with horizontal decomposi-

tions.

The challenge in automating horizontal compositional verification lies in synthesis-

ing a set of precise summary predicates for the procedures in the call graph. Note

that in the program in Fig. 4.1, it was essential to constrain the input z to bar as

(z ≤ 1) to get a proof. This effort is made harder if the code has loops, which require

invariants and use of abstractions of loops and procedures. The calling contexts and

summaries can be mutually dependent even for non-recursive programs. In general,

one requires iterative fix-point computation on the call-graph structure, possibly using

57

abstraction and refinement. A pre-requisite for performing abstraction refinement is

the ability to refute safety and check for spurious counterexamples also in a modular

and efficient fashion, which is the goal of this chapter.

A Practical View of the Modular Refutation Problem. Consider the example

in Fig. 4.1 in Section 4.2. This program is unsafe because when bar is called the actual

argument to it that takes the place of z can at most be only 1. The question is if we

can arrive at this refutation modularly. Analysing procedure bar in isolation indeed

gives a counterexample, which could be possibly spurious.

Instantiated on the example in Fig. 4.1, a refutation involves checking ¬∀z, g8 :

g8 ⇒ (z > 10). A counterexample could be g8 ∧ z = 5, for example. The question

is now how to decide whether this counterexample is spurious or not, and to find a

valid counterexample if one exists. For instance, z = 5 turns out to be spurious if we

consider the whole program because it clashes with x0 < 0 in main. However, z = −8

would be a valid counterexample.

The set of local counterexamples found in a procedure f might contain many

counterexamples that are spurious for the whole program, i.e. they are infeasible from

the entry point of the program. That is why a definite answer to this problem of

finding a refutation modularly, if one exists, cannot be given by only analyzing the

procedures in isolation. This is the reason why refutation in horizontal decompositions

is hard — unlike refutation in vertical decompositions where a refutation of the local

problem implies the refutation of the global one.

Intuitively, the negation of the assertion has to be hoisted up along the error

path to the entry point of the program. If the obtained weakest precondition for the

violation of the assertion is not false, then the counterexample is feasible. Propagating

up the counterexample itself is not sufficient to decide spuriousness as illustrated

above.

4.4 Formalising Horizontal Compositional

Refutation

In this section we formalise the problem of safety refutation for sequential programs.

To simplify the presentation we focus on loop-free programs. The formalisation for

programs with loops is structurally similar, but in addition, requires the handling of

invariants (see Section 4.7), which is orthogonal to the compositional aspect.

58

We give three different formalisations – the first corresponds to a monolithic

approach, and the remaining two correspond to compositional approaches.

4.4.1 Monolithic Safety Refutation Problem

For non-recursive programs, since one can always inline every procedure call at its

call site, we can replace every call by recursively inlining its body. Then, to refute

safety we have to show invalidity of the following formula:

∀X̂ :
∧

j∈CS g
in
fentry

∧ Tfunc(j)(xin
j,x

out
j) ∧ InlineSums func(j) ⇒ Props func(j)(xj)

(4.1)

where

• InlineSumsf is
∧

i∈CSf
InlineSum func(i)(x

p in
i,x

p out
i),

• InlineSumf (xin
f ,x

out
f) is Tf (xin

f ,x
out

f) ∧ InlineSumsf ,

• Propsf (xf) is the conjunction of all properties (assertions) in the procedure f ,

• X̂ is the entirety of variables in (4.1),

• and the conjunction with ginfentry states that the entry procedure is reachable.4

In the formula above, we have included the summary of all call sites. It is

noteworthy that if the call sites fall under branches in the program that are mutually

exclusive (e.g. if(*) then foo else bar), not all of them would get exercised at once

in any execution. However, there is no explicit notion of execution in a formula. In

our notation, this is handled by adding the branching condition to the entry guards

for such call sites. Thus, the summary of all call sites will lie there in the formula,

without affecting the semantics of the execution.

Alternatively, we can write:

∃
for all f∈F︷ ︸︸ ︷

Sumf , . . . :
∧

f∈F ∀Xf :(
ginfentry ∧ Tf (xin

f ,x
out

f) ∧ Sumsf =⇒ Propsf (xf)
)

∧
(
Tf (xin

f ,x
out

f) ∧ Sumsf ⇐⇒ Sumf (xin
f ,x

out
f)
) (4.2)

where Sumsf is
∧

i∈CSf
Sum func(i)(x

p in
i,x

p out
i).

This formulation uses a predicate Sumf to exactly express the behaviours of each

procedure f . 4.1 is valid iff 4.2 is valid. The existential quantifier in (4.2) can be

shown to be uniquely eliminated by recursively replacing the Sumf predicates by

left-hand side of the equivalence in the last line in (4.2), obtaining (4.1). Note that

solving (4.1) is NP-complete, whereas solving (4.2) is PSPACE-complete [8]. However,

(4.1) may be exponentially larger (in the number of variables) than (4.2).

4This amounts to using Tfentry [true/ginfentry] as the transition relation of fentry .

59

Both versions are monolithic because they consider the entire program as a whole.

In particular, (4.2) finds summaries globally, i.e. for the whole program.

Also note that, proving invalidity of (4.2) shows the inexistence of a verification

proof, but it does not directly allow us to derive a counterexample in terms of an

execution trace because of the universal quantification of the variables. Moreover,

showing unsatisfiability of (4.2) is difficult because it involves proving the inexistence

of summary predicates. For this reason, many practical techniques, such as SAT-based

Bounded Model Checking use (4.1) (considering bounded unwindings for programs

with loops in order to make them loop-free). Note that negating (4.1) results in an

existentially quantified problem, whose satisfiability witnesses a refutation in the form

of values for the variables X̂.

However, solving (4.1) monolithically is often intractable. Therefore, we want to

decompose the problem into smaller subformulae that are faster to solve. (4.2) is

amenable to decomposition, but it does not allow us to approximate the summaries

with the help of abstractions (because of ⇔ in last line). Therefore we give a third

formulation of the monolithic problem that additionally uses calling contexts. The

calling context for the entry procedure is ginfentry .

∃
for all f∈F︷ ︸︸ ︷

Sumf ,CallCtx f , . . . :
∧

f∈F ∀Xf :(
CallCtx f (xin

f ,x
out

f)∧
Tf (xin

f ,x
out

f) ∧ Sumsf =⇒ Propsf (xf)∧
Sumf (xin

f ,x
out

f)∧∧
j∈CSf

CallCtx func(j)(x
p in

j,x
p out

j)
)

(4.3)

Eq. (4.3) is equisatisfiable with (4.2), although (4.3) admits more solutions to

Sumf including those that are over-approximations adequate to prove the properties.

To see this, if (4.2) is satisfiable, the precise solution of (4.2) for Sumf can be used

to satisfy (4.3) by plugging it in for both CallCtx f and Sumf in (4.3). If (4.2) is

unsatisfiable, then so is (4.3) because one or all behaviours included in Sumf solution

of (4.2) violates one of the properties. Then, every solution to (4.3) would violate the

properties as they are over-approximations of the precise summaries. Note that this

formulation is still monolithic because it requires one to synthesize all the contexts

and summaries simultaneously by solving (4.3) corresponding to the entire program.

4.4.2 Modular Safety Refutation Problem

Let us now have a look at the horizontal decomposition following the procedural

structure of the program. The goal is to compute the summaries Sumf for each f while

60

considering only f and the summaries for the procedures called in f . We can attempt

at achieving this by flipping the existential quantifier (∃Sumf) and the top-level

conjunction (
∧

f∈F in (4.3)). However, this does not result in an equisatisfiable formula

because existential quantification does not distribute over conjunctions. Therefore,

we need an alternative formulation to solve the existential query per procedure. One

approach is to search for a minimal solution for summaries and calling contexts

occurring within each calling site of procedure f for a given context for f that satisfies

all the embedded properties in f as shown in 4.4. I.e. for each f ∈ F we have:

min Sumf ,

for all j∈CSf︷ ︸︸ ︷
CallCtx j, . . . : ∀Xf :(

CallCtx f (xin
f ,x

out
f)∧

Tf (xin
f ,x

out
f) ∧ Sumsf =⇒ Propsf (xf)∧

Sumf (xin
f ,x

out
f)∧∧

j∈CSf
CallCtx j(x

p in
j,x

p out
j)
)

(4.4)

The operator minP : F (P), used in equation 4.4 above, is defined w.r.t. implication

order for a formula F involving predicates P , i.e. as ∃P : F (P) ∧ ∀P ′ : (P ′ ⇒ P)⇒
¬F (P ′). Note that minP is not unique in a partial order on predicates. In (4.4), min

distributes over the conjunction of all ∀ formulae. In other words, for each f ∈ F ,

it gives a solution for Sumf and the calling contexts for all embedded calling sites

relative to a CallCtx f , assuming there is a minimal solution for summaries for all

the embedded procedures. But, we have not broken the dependency between calling

contexts and summaries. Solving this problem requires computing a fixed point in

the composition operator (presented below) and computing minimal solutions for the

summary and calling context predicates. That is, what has been an existential second-

order satisfaction problem in (4.3), has now become a second-order minimisation (∃∀)
problem. The reason for this is that the mere existence of a solution for Sumf and

CallCtx func(j) does not prove that the overall verification problem holds. Therefore,

we pessimistically have to assume that we require the exact calling contexts and

summaries in order to decide the problem during proof composition.

The proposed proof composition operator (compose) with calling contexts is shown

in Alg. 3 and is more complex than Alg. 2. The term “Solve” on line 5 refers to

computing minimal summaries and calling contexts. The idea is to use the call graph

of the program to compute the minimal calling context for each call site of procedure

call of f piecewise in a top-down fashion, and use that calling context to compute a

piecewise minimal summary for f for that call site (note the conjunction on Line 12 of

Alg. 3) consistent with all the properties in f . The piecewise summaries and contexts

61

Algorithm 3 Composition operator with calling contexts

1: global Sumf ← ¬goutf for all f ∈ F
2: CallCtx f ← false for all f ∈ F
3: procedure compose(f , CallCtx ∗f)
4: while true do . Repeat until fixed point reached

5: Solve (4.4) with CallCtx ∗f as CallCtx f .

{
obtain Sumf & CallCtx j

for all j ∈ CSf

6: for all j ∈ CSf do . join calling contexts for func(j)
7: CallCtx func(j) ← CallCtx func(j) ∨ CallCtx j(x

in
func(j),x

out
func(j))

8: if CallCtx func(j) for all j ∈ CSf has not changed then
9: return Sumf

10: for all j ∈ CSf for which CallCtx func(j) has changed do
11: Sumj ← compose(func(j),CallCtx j(x

in
func(j),x

out
func(j)))

12: Sum func(j) ← Sum func(j) ∨ (CallCtx j(x
in

func(j),x
out

func(j)) ∧ Sumj)
13: . join summaries for func(j)

are combined disjunctively as they are built, which takes care of the dependency

between summary and calling contexts. In the algorithm, each time compose is called

recursively for f , it is called with a new piece of entry calling context for f and (4.4)

is solved with summaries computed up to that point for the procedures in the body of

f . Solving the equation may result in new contexts for each call site (if any) inside f

and a new piece of summary for f all of which are accumulated.

For a program with entry function fentry , a proof can be constructed by calling

compose(fentry , g
in
fentry

). The calling context ginfentry means that the entry procedure is

reachable. The calling context of all embedded functions are initialised to false as that

is the least element and also makes everything following the first call site unreachable.

The summary for each f is initialised to ¬goutf , meaning that its exit is not reachable

and hence execution cannot continue beyond any call to f . This initial value for

summary has the effect of blocking analysis of all functions following f in the code

until a piecewise summary is computed for f .

Observe that, as opposed to monolithic (4.3) where the fixed point computation

for resolving the mutually dependent summary and calling context predicates (cf. [95])

is done within the solver for solving the monolithic formula, the fixed point in the

modular version must be computed during the composition of the individual results.

I.e. we have to saturate the Sumf and CallCtx f predicates.

Theorem 4.4.1. We obtain Sumfentry = false using Alg. 3 iff (4.3) is unsatisfiable.

I.e. horizontal decomposition is sound and complete.

62

Proof (sketch): (⇒) The forward direction is easy. Alg. 3 will return a false

summary only if Eq. (4.4) fails to give a minimal solution for summaries and calling

contexts. Since (4.4) is simply a transformation of the existential second-order

satisfaction problem of (4.3) into a second-order minimisation problem, it follows that

if no minimal solutions exist (for 4.4), then (4.3) is also unsatisfiable.

(⇐) We argue by induction on the depth (k) of the top-level procedure in the call

graph of the program.

For the base case (k = 1), there is only one procedure call - the call to the entry

function, fentry . Since the calling context of fentry is ginfentry , and there are no other

procedure calls, it is evident that computing Sumfentry from Alg. 3 effectively reduces

to finding it by solving (4.4) (line 5 of Alg. 3), with Sums and CallCtx j not present.

This makes Eq. (4.4) and (4.3) identical and hence the statement follows trivially.

Assuming that the statement holds for all procedures in the call graph with depth

≤ k, we will argue that it also holds if the entry function is at depth k.

Assume (4.3) is unsatisfiable. Then there must exist a function h which appears

somewhere in the call graph, such that i) when compose is called for h, it returns

Sumh = false (by induction hypothesis, because (4.3) is unsatisfiable for h), or ii)

Sumh conflicts with Tf . In both these cases, Alg. 3 simply returns false. In the first

case, it is due to one of the embedded summaries becoming false, while in the second

case it is just due to the contradiction arising at the current level.

4.4.3 Modular Safety Refutation with Witnesses

(4.4) suffers from the same problem as (4.3) that we cannot extract counterexamples in

terms of an execution trace in case of a refutation because the formulae are unsatisfiable

for refutations (i.e. Alg. 3 just returns false), and thus the solver does not return a

countermodel. Therefore, we give next a formulation and a corresponding composition

operator that produces refutation witnesses. The idea here is to compute piecewise

contexts and summaries backwards starting from exit points of each procedure, much

like a weakest-precondition computation works. Additionally, we start with negation

of properties and compute maximal summary and contexts that possibly lead the

program to an error state. In other words, a summary computed for f represent

maximal symbolic witness to all the states reachable to safety violation. Such a

summary can be obtained as maximal solutions to the equation shown in 4.5.

63

max Sumf ,

for all j∈CSf︷ ︸︸ ︷
CallCtx j, . . . : ∀Xf :

Sumf (xin
f ,x

out
f)∧∧

j∈CSf
CallCtx j(x

p in
j,x

p out
j) =⇒ (CallCtx f (xin

f ,x
out

f) ∨ ¬Propsf)∧
Tf (xin

f ,x
out

f) ∧ Sumsf

(4.5)

where maxP.F (P) is defined as usual: ∃P.F (P) ∧ ∀P ′.(P ⇒ P ′)⇒ ¬F (P ′).

(4.5) describes maximal solutions for the summary and calling contexts that are

contained in the behaviour of the procedure. That is the reason the predicates for the

summary and the calling contexts (for the called functions) appear on the left-hand

side of the implication and the transition relation is on the right-hand side, i.e. reversed

in comparison with (4.4). The disjuncts in the first part of the consequent of (4.5)

are the sources of safety violations: these are safety violations in the caller (which are

propagated by CallCtx f), and safety violations in f itself (¬Propsf). Safety violations

in callees are propagated through the summaries. Both these are constrained to be

consistent with the transition relation of f (with current summaries plugged in for

the called functions), which ensures spurious errors are not propagated upwards.

We use the composition operator as in Alg. 3, but with the following modifications

to the initialization. We call this composition operator compose ′ or Alg. 3’ from now

on.

• Initially, Sumf ← ¬ginf for all f ∈ F , meaning that the entry of f is not

backwards-reachable.

• In Line 5, we solve (4.5).

The calling contexts for all embedded functions are initialized to false as before

except for the top-level function fentry. A refutation is constructed by computing

compose ′(fentry ,¬goutfentry
). The calling context ¬goutfentry

of fentry means that we cannot

reach the regular exit of the entry procedure if there is a property violation. If there

are no property violations at this level (or no properties), then this choice for top-level

context would still work as the second conjunct in equation 4.5, which denotes the

transition relation, would ensure the precise contexts propagated to the first embedded

call site from exit point. The choice of initial summary of ¬ginf for all embedded

functions will ensure that the summaries are generated in order of dependency of

function calls backward from the exit point.

Theorem 4.4.2. We obtain Sumfentry using Alg. 3’ such that ∃xin,xout : ginfentry ∧
Sumfentry (xin,xout) iff (4.3) is unsatisfiable.

64

Note that the conjunction with ginfentry projects the summary on the inputs, which

must be satisfiable to have a refutation.

Proof (sketch): From Theorem 4.4.1, the statement of the theorem above can be

simplified as Sumfentry = false using Alg. 3 iff Sumfentry ∧ ginfentry
is satisfiable using

Alg. 3’. In other words, Sumfentry ∧ ginfentry
is satisfiable using Alg. 3’ iff there is a

refutation. Further, note that the summaries and calling contexts are computed in

Alg. 3’ such that their projection on the input variables of a procedure is the weakest

precondition w.r.t. the negation of the property (¬Props).

(⇒) This direction is easy to see. As the summaries and calling contexts are

extracted from the weakest precondition w.r.t. ¬Props, a satisfying assignment to

Sumfentry is nothing but a refutation witness. Since Sumfentry is satisfiable, it immedi-

ately follows that the property is refutable.

(⇐) We argue this by induction on the number (k) of procedure calls.

For the base case (k = 1), the only function being executed is the entry function,

fentry. Alg. 3’, therefore, simply reduces to solving equation 4.5 and obtaining the

summary from there. From the way we arrived at (4.5), it is clear that the Sumfentry

is satisfiable in case there is a refutation.

Suppose the statement holds for programs with k ≤ n. Consider a program with

(n+ 1) procedure calls. If we look at the entry function of this program, there may be

execution paths starting in fentry having at most n procedure calls. From the induction

hypothesis, it follows that if a refutation is possible along one of these paths, the error

summary for the top-most function along that path is satisfiable. If we propagate the

error summaries along each of these paths by computing the weakest precondition, we

can claim that a refutation is possible only if these piecewise summaries, combined

disjunctively, is satisfiable at the function entry. This is exactly what Alg. 3’ captures.

Thus, even for this program with (n+ 1) calls, it follows that if the entry function is

reachable, a refutation implies that Sumfentry is satisfiable.

4.4.4 Worked Example

Let us consider the example in Fig. 4.1, but with the conditional in line 2 being

x < 10. We start with Summain((x0, g0), (g5)) = ¬g0, Sum foo((y, g6), (r, g7)) = ¬g6,
Sumbar((z, g8), (g9)) = ¬g8, and CallCtx ∗main((x0, g0), (g5)) = ¬g5, CallCtx foo((y,

g6), (r, g7)) = false, CallCtx bar((z, g8), (g9)) = false.

65

The composition operator is called for main. We solve (4.5):

max Summain ,CallCtx foo0
,CallCtx foo1

,CallCtx bar : ∀Xmain :
Summain((x0, g0), (g5))∧
CallCtx foo0

((x0, g1), (x1, g2))∧
CallCtx foo1

((x1, g2), (x2, g3))∧
CallCtx bar((x2, g3), (g4)) =⇒ (¬g5 ∨ ¬true)∧

g1 = (g0 ∧ (x0 < 10))∧
g5 = ((g0 ∧ ¬(x0 < 10)) ∨ g4)∧
¬g1 ∧ ¬g2 ∧ ¬g3

We obtain the following solutions for the predicates: CallCtx bar = ¬g4, CallCtx foo1
=

¬g3, CallCtx foo0
= ¬g2, Summain = ¬g0 ∧ ¬g5.

Then we recur into bar with (4.5) instantiated as:

max Sumbar : ∀z, g8, g9 :
Sumbar((z, g8), (g9)) =⇒ (¬g9 ∨ ¬(g8 ⇒ z > 10))∧

(g9 = (g8 ∧ z > 10))

Hence, we get for Sumbar : (g8 ⇒ ¬(z > 10)) ∧ ¬g9.
In Line 6 of Alg. 3’, (4.5) for main is then:

max Summain ,CallCtx foo0
,CallCtx foo1

,CallCtx bar : ∀Xmain :
Summain((x0, g0), (g5))∧
CallCtx foo0

((x0, g1), (x1, g2))∧
CallCtx foo1

((x1, g2), (x2, g3))∧
CallCtx bar((x2, g3), (g4)) =⇒ (¬g5 ∨ ¬true)∧

g1 = (g0 ∧ (x0 < 10))∧
g5 = ((g0 ∧ ¬(x0 < 10)) ∨ g4)∧
¬g1 ∧ ¬g2∧
(g3 ⇒ ¬(x2 > 10)) ∧ ¬g4

which results in CallCtx bar = ¬g4, CallCtx foo1
= g3 ⇒ ¬(x2 > 10), CallCtx foo0

= ¬g2,
Summain = ¬g5. Hence, CallCtx foo is updated to g7 ⇒ ¬(r > 10).

In the next iteration of compose(main) we recur into foo1 and solve:

max Sum foo : ∀y, g6, r, g7 :
Sum foo((y, g6), (r, g7)) =⇒ ((g7 ⇒ ¬(r > 10)) ∨ ¬true)∧

(g6 = g7) ∧ (r = y + 1)

Thus, Sum foo is updated to (g6 ⇒ ¬(r > 10) ∧ g7) ∧ (r = y + 1).

66

Then in Line 6 in compose(main), we solve

max Summain ,CallCtx foo0
,CallCtx foo1

,CallCtx bar : ∀Xmain :
Summain((x0, g0), (g5))∧
CallCtx foo0

((x1, g2))∧
CallCtx foo1

((x2, g3))∧
CallCtx bar((g4)) =⇒ (¬g5 ∨ ¬true)∧

g1 = (g0 ∧ (x0 < 10))∧
g5 = ((g0 ∧ ¬(x0 < 10)) ∨ g4)∧
(g1 ⇒ ¬(x1 > 10) ∧ g2) ∧ (x1 = x0 + 1)∧
(g2 ⇒ ¬(x2 > 10) ∧ g3) ∧ (x2 = x1 + 1)∧
(g3 ⇒ ¬(x2 > 10)) ∧ ¬g4

which gives us Summain = (g0 ⇒ ¬(x0 > 8)) ∧ ¬g5. The calling contexts CallCtx bar =

¬g4, CallCtx foo0
= g2 ⇒ ¬(x1 > 10), and CallCtx foo1

= g3 ⇒ ¬(x2 > 10) do not result

in an update of the calling contexts for foo and bar (Line 8 in Alg. 3). g0 ∧ Summain

is satisfiable, hence, x ≤ 8 is a (maximal) refutation witness.

4.4.4.1 A note on (potentially) non-terminating programs

i n t main (i n t a) {
whi le (a) {

skip ;
}
assert (0) ;

}

Figure 4.2

The example in Fig. 4.2 shows a potentially non-terminating program. Our

technique is unaffected due to such non-termination as we restrict ourselves to recursion-

free programs with a finite unwinding. Once unwound, this effectively reduces to the

program shown in Fig. 4.3.

Note that there are no function calls in main, and Propsmain = (gin ⇒ ((¬a)⇒
false)). We use Eq. 4.5 to compute the summary of main.

Summain ⇒ (¬(Propsmain)), which reduces to

Summain ⇒ (gin ∧ ¬(a))

Thus, the maximal summary of main w.r.t. the error being reachable is gin ∧¬(a).

In other words, the assertion gets violated if main is reachable, and is executed with

the input a = 0.

67

i n t main (i n t a) {
skip ;
assume (! a) ;
assert (0) ;

}

Figure 4.3

4.5 Examples of Refutation Algorithms

Alg. 3’ is not only applicable to loop-free programs with multiple procedure invocations,

it can still be used for programs with loops by introducing invariants into the formula

for the modular subproblem (4.5). However, in general it is hard to solve the problems

without using approximations by bounding the number of unwindings and/or using

abstractions for computing the predicates involved.

In Section 4.4, we have described the elements necessary for compositional, hor-

izontal refutation proofs. In this section, we will give three examples of algorithms

that instantiate this framework (Alg. 3’), which we have implemented to compare

them experimentally in Section 4.6. We assume that loops have been unwound a finite

number of times before application of these techniques. The difference in the following

three techniques lies in the abstractions that are used to solve for Sumf and CallCtx f

in (4.5). We consider techniques that use constraint solving to find counterexamples.

4.5.1 Concrete Backward Interpretation

This technique is the one sketched in the example at the beginning of Section 4.3.

Formally, we use the domain of predicates that track a single constant value for each

variable, defined as follows: Let P (x) = {false} ∪ {x = d | di ∈ Dom(xi)} with the

domain Dom(xi) of variable xi, then we admit the following predicates for summaries

and calling contexts: Sumf ∈ {ginf ⇒ p | p ∈ P (xin
f)} and CallCtx f ∈ {goutf ⇒ p |

p ∈ P (xout
f)}. We explain now in an example how Alg. 3’ proceeds using this domain.

Example. Let us consider the example in Fig. 4.1 in Section 4.2. We start with

compose ′(main,¬g5). We obtain the calling contexts ¬g2,¬g3,¬g4 for foo0, foo1, bar ,

respectively. We recur into compose ′(bar ,¬g9). We have to solve (4.5) where Sumbar

68

is instantiated with the above domain:

∃d : ∀z, g8, g9 :
(g8 ⇒ z=d) =⇒ (¬g9 ∨ ¬(g8 ⇒ (z > 10)))∧

(g9 = (g8 ∧ z > 10))
(4.6)

The partial order of our domain has only two levels false and the values for d.

Hence, we can implement max by ∃d; if there is no d then p = false. A constraint

solver may return, for example, d=−4; Sumbar is hence g8 ⇒ (z=−4). This is an

under-approximative summary of bar w.r.t. property violation.

In the next iteration of compose ′(main,¬g5) we solve:

∃d0, . . . , d3 : ∀x0, g0, . . . , g5 :
(g0 ⇒ x0=d0)∧
(g2 ⇒ x1=d1)∧
(g3 ⇒ x2=d2)∧
(g4 ⇒ d3) =⇒ (¬g5 ∨ ¬true)∧

g1 = (g0 ∧ (x0 < 10))∧
g5 = ((g0 ∧ ¬(x0 < 10)) ∨ g4)∧
¬g1 ∧ ¬g2∧
(g3 ⇒ (x2=−4)) ∧ ¬g5

(4.7)

and obtain CallCtx foo1
= (g3 ⇒ (x2=−4)). compose ′(foo, g7 ⇒ (r=−4)) returns

g6 ⇒ (y=−5) for Sum foo1
. Note that the boolean variable d3 stands for the reachability

of the exit of bar. Since bar has no return value, this is how its exit is encoded.

Proceeding similarly we get compose ′(foo, g7 ⇒ (r=−5)) = (g6 ⇒ (y=−6)); and

finally Summain = (g0 ⇒ x0=−6). Hence, we have found a true global counterexample.

4.5.2 Abstract Backward Interpretation

Abstract backward interpretation computes sufficient preconditions to safety violations,

i.e. negations of necessary preconditions to safety. The formula representing the

summary may vary from being quite concise to as large as the procedure itself,

depending on the abstraction.

There are a couple of techniques to implement such abstract interpretations that are

distinguished by the way abstract preconditions are inferred, e.g. (classical) abstract

domain transformers (e.g. [85]), template-based synthesis (e.g. [57]) or interpolation (e.g.

[2]).

We are going to use the template-based synthesis technique used in [20] to solve

(4.5). We know how to compute over-approximative abstractions with that technique.

Hence, we use an over-approximation to compute an under-approximation (similar

69

to computing max f by −min(−f)). This means we compute predicates Sum ũ
f and

CallCtx ũ
j whose negations are Sumf and CallCtx j , respectively. This is done by solving

the following formula in place of (4.5) in Alg. 3’.

min Sum ũ
f ,

for all j∈CSf︷ ︸︸ ︷
CallCtx ũ

j , . . . : ∀Xf :(
CallCtx ũ

f (xin
f ,x

out
f) ∧ Sums ũ

f∧
Tf (xin

f ,x
out

f) ∧ Propsf (xf) =⇒ Sum ũ
f (xin

f ,x
out

f)∧∧
j∈CSf

CallCtx ũ
j (xp in

j,x
p out

j)
) (4.8)

This formula is derived from (4.5) by negating (CallCtx f ∨ ¬Props) on the right-

hand side of (4.5), which yields (CallCtx ũ
f ∧ Props), reversing the implication, and

minimising to obtain an over-approximation for Sum ũ and CallCtx ũ. Similar ap-

proaches are used in [28, 38]. Since convex domains are too imprecise for this purpose,

we use a disjunctive domain [94]. For our experiments we used intervals as a base

domain. Formally, let P (x) = {
∨

k d′k ≤ x ≤ dk | di, d′i ∈ Dom(xi), k ≥ 0}, then

Sumf ∈ {ginf ⇒ p | p ∈ P (xin
f)} and CallCtx f ∈ {goutf ⇒ p | p ∈ P (xout

f)}. Our

implementation also ensures that arithmetic overflows create new disjuncts in order

to avoid precision loss. The second source of additional disjuncts that we take into

account are Lines 7 and 12 in Alg. 3’.

Example. For the example in Fig. 4.1, we compute compose ′(main,¬g5). We solve

(4.8) with CallCtx ũ
main = g5 and get CallCtx ũ

bar = g4, i.e. CallCtx bar = ¬g4.
We recur into compose ′(bar ,¬g9), i.e. CallCtx ũ

bar = g9 We have to solve (4.8)

instantiated with our domain.

∃d, d′ : ∀z, g8, g9 :
(g9 ∧ true∧
(g9 = (g8 ∧ z > 10)) ∧ (g8 ⇒ (z > 10)) =⇒ (g8 ⇒ (d ≤ z ≤ d′)))

(4.9)

Note that Sums ũ
f is true because the initial under-approximations are false—the

superscript ũ flags predicates that carry negations of under-approximations. We get

Sum ũ
bar = (g8 ⇒ (11 ≤ z ≤ MAX)), i.e. Sumbar = (g8 ∧ (MIN ≤ z ≤ 10)). MAX and

MIN denote the maximum, resp. minimum, possible value for the type of z.

We proceed similarly. Finally, compose ′(main,¬g5) computes Sum ũ
main = (g0 ⇒

(9 ≤ x0 ≤ MAX)), i.e. Summain = (g0 ∧ (MIN ≤ x0 ≤ 8)).

Note that (4.8) expresses an over-approximation of good states; the complement is

therefore guaranteed not to contain any good states, but only bad and unreachable

states, and hence no strict under-approximation of bad states. However, this does not

70

matter since we project Sumfentry on the initial condition (see Thm. 4.4.2) to obtain a

true under-approximation of inputs that violate a property.

Abstract backward interpretation is not limited to bounded unwindings of the

transition relation, but can also be used for programs with loops (cf. [28,42]) by calling

invariants into play in (4.8).

4.5.3 Symbolic Backward Interpretation

This technique computes the exact weakest precondition for the bounded problem.

The technique is complete for loop-free programs. However, the size of the obtained

summaries (i.e., size of the formula that represents the summary) may be of the order

of the procedure size (i.e., size of the SSA of procedure’s transition relation) in the

worst case.

The domain used are sets of variables, so-called dependency sets. These sets of

variables, X in
f , Xout

f , Xp in
j , Xp out

j , describe which variables should be kept as relevant

part of the summary. We then use them to compute an exact summary as the following

predicate Sumf (xin,xout):

∃Xf \ (X in
f ∪Xout

f ∪

for all j∈CSf︷ ︸︸ ︷
Xp in

j ∪Xp out
j ∪ . . .) :

(CallCtx f (xin,xout) ∨ ¬Propsf) ∧ Tf (xin,xout) ∧ Sumsf

(4.10)

We implement the existential quantification in (4.10) by Gaussian elimination

to eliminate as many of the intermediate or irrelevant variables as possible. After

elimination the summary contains only variables that have a dependency on the

property Propsf , on xout, or on the placeholder predicates, which are going to be

replaced by summaries during the composition. The elimination can have positive

and negative effects on the formula size depending on non-determinism and control

flow paths in the procedure.

The composition operator is the same horizontal composition operator as in the

two previous techniques. Context-sensitivity is exploited exactly in the same way

as in the previous two techniques. The calling context at call site j is the set of

output variables Xp out
j that a procedure call backward-transitively depends on the

given property. The resulting calling context dependency set Xout
f is then used for

eliminating intermediate variables in (4.10) in addition to the dependency sets obtained

from Sumsf , and Propsf . The set of input variables X in
f that have not been eliminated

is the dependency set Xp in
f of the summary Sumf .

Any satisfiable assignment to xin
fentry in the formula obtained by Gaussian elimi-

nation of the summary predicates in the entry function is a feasible global refutation.

71

Example. For example, in Fig. 4.1 the symbolic backward interpreter starts from the

exit of main with Xout
main = ∅ to start with. As it arrives in bar, it retains the negation

of the assertion ¬(g8 ⇒ (z > 10)) and updates the dependency set to X in
bar = {z, g8}.

On simplification, this gives the summary for bar as g8 ∧ ¬(z > 10).

Then the technique proceeds to the caller of bar, replacing the variables in the

dependency set by the parameter passed, i.e. Xp out
foo1

= {x2, g3}. Then it recurs into

the call to foo. The statement r = y + 1 gives the summary of foo as r = y + 1 and

the dependency set {y, g6}. The next call to foo has already been analysed with the

same dependency set, hence there is no need to recur.

Proceeding in the main function, we finally get the summary for main as (g1 =

g0 ∧ (x0 < 0))∧ foo0((x0, g1), (x1, g2))∧ foo1((x1, g2), (x2, g3))∧ bar((x2, g3), (g4)). Sub-

stituting the placeholder predicates by their respective summaries (variables are

renamed) allows us to evaluate the summary for main. Since it is satisfiable, we have

found a global refutation.

4.6 Experiments

We performed a number of experiments to evaluate compositional refutation techniques

in comparison with monolithic approaches.

Implementation We have implemented these safety refutation techniques as an

extension to 2LS [20, 96]. 2LS is a verification tool built on the CPROVER frame-

work [36], using MiniSAT 2.2.1 as the backend solver (although other SAT and SMT

solvers with incremental solving support can also be used). We limit resources to

900 seconds CPU time and 13 GB memory per benchmark. To aid reproducibility,

we provide5 the implementation sources along with the compilation instructions, the

benchmarks, and scripts that can be used to run the tool on the benchmarks. As

explained in Section 4.5, the three techniques are instances of a context-sensitive inter-

procedural analysis that traverses the callgraph backwards and propagates summaries

and calling contexts. For the concrete interpretation, values for non-deterministic

choices are picked by the SAT solver. For the abstract interpretation we use disjunc-

tions of intervals. Note that termination is not an issue in this case because we are

dealing with finite state systems. For infinite-state systems, one may use strategy

iteration [20,88]. We have implemented an algorithm based on strategy iteration, for

finite-state systems.

5https://github.com/kumarmadhukar/2ls/tree/atva17

72

0 10 20 30 40 50

100

101

102

No. of benchmarks

T
im

e
(i

n
se

co
n
d
s)

concrete
abstract
symbolic
monolithic

Figure 4.4: Comparison on Product Line benchmarks

Benchmarks We selected the unsafe examples (265 benchmarks) from the product-

lines collection of the SV-COMP 2017 benchmarks set for our experiments. These

benchmarks have a reasonably complex procedural structure (83 procedures per

benchmark on average), which makes it suitable to test the effectiveness of our

techniques. Our experiments were aimed at proving these benchmarks unsafe, i.e. for

every benchmark program, we stopped at the first assertion violation that was reached.

We set an unwinding depth of 5 for all the benchmarks, across all the techniques. The

chosen depth might have been, in some cases, higher than what would be necessary to

find a refutation. However, the aim of our experiments was to compare the scalability

of the techniques in general, and not to find out the least amount of time needed to

decide if a given benchmark is unsafe.

Results Fig. 4.4 shows the results plotting for each technique the cumulative time (y-

axis) it takes to solve (i.e., to decide that it is unsafe) the given number of benchmarks

(x-axis). The longer the line for a technique extends to the right the more benchmarks

were solved within the resource limits. These results show some interesting tendencies.

We observe that the symbolic backward interpretation performs best. It is complete,

but could potentially degrade into a monolithic analysis if summaries cannot be

sufficiently simplified and reused. But on this benchmark set it works quite well on

73

a certain number of benchmarks. The abstract backward interpretation is very fast

on a couple of benchmarks, but then remains inconclusive. This is supposedly due

to the imprecision introduced by the weak abstract domain that we use. Yet, this is

encouraging that by a clever choice of abstractions one could outperform the symbolic

backward interpretation. The concrete backward interpretation succeeds only on very

few benchmarks and is surprisingly slow. An explanation for this is that it is required

to make non-deterministic choices that may turn out to be bad choices and make

a counterexample infeasible. Moreover, the summaries that it computes usually do

not generalise beyond the procedure invocation they were generated for. Hence, this

technique is likely to degrade into following the entire execution path, spoiling the

benefits of modularity while exhibiting the drawbacks of abstraction. The monolithic

analysis (bounded model checking), which is based on full inlining is slowest but solves

almost as many benchmarks as the abstract one.

4.7 Extension to Loops

This section is an extension of the refutation problem to non-recursive programs with

loops. The formalisation given here introduces inductive invariant predicates (see

Section 4.2), besides summaries in calling contexts, to abstract effect of loops in the

program.

Formalizing the Input/Output Transition System To tackle programs with

loops, we first formalize the input/output transition system a little differently from

what we have seen earlier. Let the input/output transition system of a procedure

f be a triple (Initf ,Tf ,Outf), where Tf(x,x′) is the transition relation, which can

encode both, loop-free procedures as well as procedures with loops; the input relation

Initf(xin,x) defines the initial states of the transition system and relates it to the

inputs xin; the output relation Outf(x,xout) connects the transition system to the

outputs xout of the procedure. Inputs, as earlier, are procedure parameters, global

variables, and memory objects that are read by f . Similarly, outputs are return values,

and potential side effects such as global variables and memory objects written by f .

Internal states x are commonly the values of variables at the loop heads (if any) in

f . Modeling T for procedures with loops is done by simply modeling each loop body

as a piece-wise transition relation. The transition relation for the entire procedure is

obtained by stitching the piece-wise transition relations using boolean guard variables

(g) to model control flow and continuation.

74

Definition 4.7.1 (Invariants). For a procedure given by (Initf ,Tf ,Outf) we define:

• An invariant of f is a predicate Inv f such that:

∀xin,x,x′ :
(
Initf (xin,x) =⇒ Inv f (x)

)
∧
(
Inv f (x) ∧ Tf (x,x′) =⇒ Inv f (x′)

)
Monolithic safety refutation The following formula extends the monolithic safety

verification problem from (4.3) to include invariants.

∃
for all f∈F︷ ︸︸ ︷

Sumf , Inv f ,CallCtx f , . . . :
∧

f∈F ∀Xf :

CallCtx f (xin
f ,x

out
f) =⇒(

Initf (xin
f ,xf) =⇒ Inv f (xf)

)
∧
(
Inv f (xf) ∧ Tf (xf ,x

′
f)∧

Sumsf =⇒ Propsf (xf) ∧ Inv f (x′f)∧∧
j∈CSf

CallCtx func(j)(x
p in

j,x
p out

j)
)

∧
(
Initf (xin

f ,xf) ∧ Inv f (xf)∧
Inv f (x′f) ∧Outf (x′f ,x

out
f) =⇒ Sumf (xin

f ,x
out

f)
)

(4.11)

Here, Xf refers to the variables in Tf , including intermediate and primed variables.

The inputs and outputs are constrained by the calling context CallCtx f ; the first

two conjuncts are the base and step case to define inductiveness of the invariant, and

the last conjunct defines the summary.

Modular safety refutation We use the same approach as in (4.4) to derive a

modular formulation. I.e. for each f ∈ F we have:

min Sumf , Inv f ,

for all j∈CSf︷ ︸︸ ︷
CallCtx j, . . . :∀Xf :

CallCtx f (xin
f ,x

out
f) =⇒(

Initf (xin
f ,xf) =⇒ Inv f (xf)

)
∧
(
Inv f (xf) ∧ Tf (xf ,x

′
f)∧

Sumsf =⇒ Propsf (xf) ∧ Inv f (x′f)∧∧
j∈CSf

CallCtx func(j)(x
p in

j,x
p out

j)
)

∧
(
Initf (xin

f ,xf) ∧ Inv f (xf)∧
Inv f (x′f) ∧Outf (x′f ,x

out
f) =⇒ Sumf (xin

f ,x
out

f)
)

(4.12)

The composition operator is Alg. 3.

75

To obtain witnesses, we extend (4.5) to include invariants.

max Sumf , Inv f ,

for all j∈CSf︷ ︸︸ ︷
CallCtx j, . . . : ∀Xf :(

Inv f (xf) =⇒ (CallCtx f (xin
f ,x

out
f) ∧Out(xout

f ,xf)∨
¬Propsf)

)
∧
(
Inv f (xf)∧∧

j∈CSf
CallCtx j(x

p in
j,x

p out
j) =⇒ Inv f (x′f) ∧ Tf (xf ,x

′
f) ∧ Sumsf

)
∧
(
Sumf (xin

f ,x
out

f) =⇒ CallCtx f (xin
f ,x

out
f) ∧ Initf (xin

f ,xf)∧
Inv f (xf) ∧ Inv f (x′f) ∧Outf (x′f ,x

out
f)
)

(4.13)

As above, the first and second conjuncts are the inductive definition of the invariant,

and the last conjunct is the definition of summary. Note that the base case is slightly

different because we start from property violations that might either come from the

calling context or the properties in f itself. Property violations in the callees are

considered by the step case. The composition operator is Alg. 3’. Note that the

algorithm does not synthesize invariants itself; it assumes that the invariants are

supplied from an external engine. The refutation algorithms with varying degrees of

completeness (discussed in Section 4.5) would continue to work in this case as well, if

we assume that the loops have been replaced with the given loop invariants.

void main ()
{

i n t x ;
whi l e (x < 2) {

x++;
foo (x) ;

}
}

void foo (i n t y)
{

assert (y < 1) ;
}

Tmain((x0, g0), (g3)) ≡ g1=(g0 ∧ (x0<2))∧
(x1=x0+1)∧
foo0((x1, g1), (x2, g2))∧
g3=((g0 ∧ ¬(x0<2))∨

(g2 ∧ ¬(x1<2)))
Propsmain ≡ true

Tfoo((y, g4), (g5)) ≡ g5=(g4 ∧ (y<1))
Props foo ≡ g4 ⇒ (y<1)

Figure 4.5: Example program with loop and its encoding

For example, let us apply the Abstract Backward Interpretation technique 4.5.2 to

the program shown in Fig. 4.5. Proceeding similarly as in the loop-free case, we get

Sum ũ
foo = (g4 ⇒ (MIN ≤ y ≤ 0)), i.e. Sumfoo = (g4 ∧ (1 ≤ y ≤ MAX)). Moreover,

at the beginning of the while loop in main, (MIN ≤ x ≤ 1) is an invariant, assuming

that the input x satisfies x ≤ 1 when main is called. Note that x may get the value 2

inside the loop, but the subsequent call to foo would ensure that an assertion violation

is reached and the value 2 never gets propagated at the loop-head. Therefore, using

76

this invariant and Sumfoo, we deduce that an assertion violation is reachable if x may

lie in the range [0, 1] at the loop-head. Clearly, this is possible for all inputs x that

are in the range [MIN ,1]. Thus, we get the maximal refutation summary for main as

Summain = (g0 ∧ (MIN ≤ x0 ≤ 1)). In other words, the property is refutable if the

initial value of x is in the range [MIN , 1].

Note that we have used loop invariants to replace loops in the program. In general,

this may be done only if loop invariants are precise (and not over-approximate as they

could typically be) to guarantee soundness.

4.8 Discussion on Related Work

Compositional automated verification approaches have been considered in the tools

Whale [2] and FunFrog [99], for example. Horn clause encodings were used in [71].

These tools eventually use interpolation to compute abstractions. Under-approximating

precondition inference techniques have been proposed for polyhedra [85] and with the

help of bit blasting and loop iteration estimation [23]. All these techniques can be

used in our setting, however, their completeness properties remain to be evaluated.

Completeness considerations [89] have been conducted for compositional LTL model

checking [33,35] of (parallel) compositions of (infinite-) state transition systems. Since

the decomposition of sequential programs can be encoded into a composition of

parallel programs (with appropriate synchronisation), their completeness results are

expected to hold in our setting. Compositionality has also been explored in the context

of dynamic test generation to achieve scalability by memoizing symbolic execution

sub-paths as test summaries [53]. This has given rise to an incremental approach

for statically validating symbolic test summaries against code changes [54]. In our

framework memoization is naturally handled by the composition operator.

4.9 Concluding Remarks

We investigated compositional refutation techniques in horizontal, e.g. procedure-

modular, decompositions of sequential programs. We showed how to derive a com-

positional refutation framework step by step from the monolithic problem. We also

compared the completeness properties of concrete, abstract and symbolic modular

refutation approaches. Our experiments show that compositional refutation techniques

have an advantage over monolithic approaches, however, not all tested approaches

perform equally well because of their varying completeness.

77

i n t main () {
i n t x = ∗ ;
foo (x) ;
r e turn 0 ;

}

i n t foo (i n t a) {
i f (a < 10) {
a = bar (a) ;
a = bar (a) ;
baz (a) ;

}
re turn 0 ;

}

i n t bar (i n t b) {
re turn b+1;

}

i n t baz (i n t c) {
assert (c > 16) ;
r e turn 0 ;

}

Figure 4.6: An example program to demonstrate benefits of the compositional approach

There are two reasons why the compositional approach is advantageous. First,

while traversing backward, from an assertion, the spuriousness may often be discovered

without having to go all the way back to the entry point. In fact, reaching the

entry point (from assertion, backward) would mean an actual safety refutation. In

the example shown in Fig. 4.6, c = 14 is a counterexample obtained locally for the

function baz but it is spurious for the entire program. This spuriousness can be

detected at foo itself when the counterexample is propagated backward. Secondly, the

summaries computed once may be cached and reused, under suitable calling contexts.

For example, in the program shown above, the summary of bar may be reused when

it is called for the second time.

Using a portfolio of fast incomplete techniques and slower complete ones may

ensure that modular techniques are always at least as fast as monolithic ones in

practice.

78

Open questions Modular analyses should be independent of a program’s syntactic

structure because real-world programs are not written in a nice and balanced way that

would enable efficient modular analysis. It would be worthwhile to explore semantic

decompositions into modules in order to make these techniques scale on real-world

programs. W.r.t. the inter-procedural backward analysis, it remains to be investigated

how to handle recursion.

Moreover, it would be interesting to look into compositional refutation in termi-

nation analysis. Also there, spuriousness of local refutations can occur due to lack

of context information: To find a counterexample to termination one needs to find a

stem from the entry point. Compositionality in this context has been explored in the

Ultimate tool [64]. We would also consider performance comparisons with testing, i.e.

dynamic refutation techniques (random, directed, concolic, etc.) to be beneficial to

advance research in static refutation techniques.

4.9.1 Notes

The techniques that we have developed for safety refutation can be useful in devel-

oping a framework that handles both safe and unsafe programs. In particular, the

refutation techniques may be thought of as one part of a bigger cycle, of abstraction-

refinement. This would allow one to work with both under-approximations and

over-approximations, and refine both of them as required. The under-approximations

can be refined by moving to a more complete spuriousness check algorithm, as dis-

cussed in this chapter. In the next one, we sketch the larger framework, by combining

compositional verification, inter-procedural analysis, and k-induction.

79

Chapter 5

Exploiting Modularity of
Implementation: Proofs

Refutation techniques discussed in the previous chapter allow us to find safety violations

compositionally. But what if there are no violations to the safety property, i.e. the

property cannot be refuted? In other words, what if the program is safe? This chapter

discusses a refinement based algorithm, using k-induction, to obtain a proof of safety

for such programs.

Fig. 5.1 shows the generic structure of a refinement algorithm framework for

verification. As per this framework, one may begin the search for a proof (or a

counterexample) by starting with an over-approximation, even a coarse one e.g. true.

An over-approximation may be obtained in various ways, e.g. by replacing a called

procedure with an over-approximating summary, by over-approximating the context

in which a procedure is invoked, etc. Since we assume that loops have been unwound

to a fixed depth, this over-approximation is actually that of an under-approximation

of the program, and not of the original program itself. If, at any point during the

verification, it gets established that an over-approximation is safe (or unsafe, with a

non-spurious counterexample) then the original program is also safe (unsafe), and the

search aborts. Otherwise, one may switch to an under-approximation of the program,

and look for counterexamples. If a counterexample is found, the original program is

declared unsafe. Otherwise, a refinement is needed. In this framework, the refinement

for over-approximations is unwinding the program and inlining the procedure calls.

The under-approximation, on the other hand, is refined by using a more complete

algorithm for checking the spuriousness of the abstract counterexample. This happens

in the cycle starting from under-approximation, to check properties, cannot decide,

refine and back to a refined under-approximation (shown on the right in Fig. 5.1).

80

Practical implementations of the refinement procedures are usually incomplete,

which leads to the extension of the algorithm by the dashed elements in Fig. 5.1.

On failure to refine the under-approximation, one can still try to refine the over-

approximation in the hope that this refinement helps avoiding the “cannot decide”

situation in the next iteration. On a subsequent failure to refine the over-approximation

one is forced to give up.

The refinement box on the right could be a more complete algorithm for spuriousness

check (as described in Section 4.5), while the one on the left could be inlining or

strengthening of summaries or even unwinding. Though, traditionally, unwinding is

not viewed as a refinement strategy when doing bounded model checking, in Fig. 5.1

the refinement of over-approximation on the left may be done by using a larger

unwinding.

One could use an entirely different approach for proving correctness, by explicitly

finding an inductive assertion that strengthens the property under consideration.

This may be done through various ways such as abstract interpretation, recurrence

analysis, interpolation, dynamic analysis, learning, etc. Each technique has its own

challenges and limitations. In contrast to these, Bounded Model Checkers exploit the

finiteness of the state graph to enable a complete approach for proving safety, based

on unrolling the transition relation. We explore a similar approach in this chapter as it

naturally fits into our framework, however we do not wish to rely on a property of the

state graph. Therefore, we use k-induction. It is a technique that allows verification

to succeed using weaker loop invariants, than are required, by strengthening the

premise sufficiently so that an inductive argument may successfully be made. This

strengthening is done by considering multiple steps of the transition relation at once

(for instance, by unrolling loops partially and adding the unrolled body to the already

existing premise). Informally, in the framework described in Fig. 5.1 above, the base

case check happens on the right hand side (using under-approximations), while the

inductiveness check happens on the left. Although k-induction is one of the most

popular techniques for proving safety, for large programs, the bounded model checking

instances generated to check k-inductive proofs often exceed the limits of resources

available. Performing k-induction in a modular way could speed up verification. We

propose an interprocedural approach to modular k-induction, as an instance of a more

general refinement approach to program verification.

81

over-approximation

check properties

refine under-approximation refine

check properties

pass fail pass fail cannot decide

safe unsafeunknown

don’t know how to refine

don’t know how to refine

Figure 5.1: Generic Structure of a Refinement Algorithm Framework

5.1 Motivating a Compositional Approach

Despite recent advent of several promising model-checking algorithms [3, 13,82] for

safety verification of software, scaling it to real world programs beyond a few thousand

lines of code remains a serious challenge. Bounded model checking (BMC) [36]

scales better, but is usually incomplete in practice. k-induction extends BMC-based

approaches from falsification to verification. Nevertheless, its scalability remains an

issue as the value of k may become quite large (it increases in every iteration until a

safety proof is obtained for safe programs), resulting in the BMC instances becoming

unmanageable.

One of the main restrictions that limits the scalability of these techniques is

that they are not compositional. That is, they analyze code as a monolithic usually

flattened entity instead of using a divide-and-conquer approach that exploits the

syntactic or semantic structure, e.g. procedure hierarchy, in the program. For example,

BMC inlines all procedures in the program before unwinding the loops. Most leading

complete model-checking methods for safety verification [3, 13,20,82], including ones

that use over-approximations, are not compositional. In this work, we develop a

compositional k-induction technique for safety verification of software. A central

problem that a compositional approach for k-induction brings in is that of selective

refinement (be it unwinding or inlining), which has been addressed in this chapter.

A decomposition of a verification problem intuitively splits the original problem

into a set of subproblems that cover the original problem. The decomposition operator

for the problem has a corresponding composition operator for composing the results

obtained from the subproblems in order to obtain the solution of the original problem.

82

Compositionality has been naturally studied in the context of the parallel compo-

sition of processes (e.g. [33,35,89]) where the decomposition is performed according

the the process structure and the composition operator is a rely-guarantee proof rule,

for example.

For sequential programs, decompositions can be horizontal, e.g. procedure-modular

decompositions. In terms of program executions, a horizontal decomposition cuts

execution traces into pieces, i.e. each element of the decomposed program captures

a set of subtraces. Vertical decomposition focuses on whole execution traces. E.g.

program slices (e.g. [62]) are an example of vertical decompositions.

5.1.1 Contributions

We summarise the contributions of this chapter as follows.

• We begin with an informal overview of our technique (Section 5.4), and then

formulate interprocedural verification by k-induction (Section 5.5).

• We propose a horizontal, i.e. interprocedural k-induction approach based on

an interprocedural counterexample spuriousness check (Section 5.5.1) and a

selective refinement of loop unwindings and procedure inlining (Section 5.5.2).

5.2 Discussion on Related Work

The novelty of our work lies in connecting three well-studied techniques - k-induction,

compositional verification, and inter-procedural analysis. Hence we can only give a

brief overview of the vast amount of relevant literature.

Since it was observed [100] that k-induction for finite state systems (e.g. hardware

circuits) can be done by using an (incremental) SAT solver [45], it has become more

and more popular also in the software community as a tool for safety proofs. Using

SMT solvers, it has been applied to Lustre models [59] (monolithic transition relations)

and C programs [44] (multiple and nested loops).

k-induction often requires additional invariants to succeed, which can be obtained

by abstract interpretation. For example, Garoche et al. [50] use SMT solving to infer

intermediate invariants over templates for the use in k-induction of Lustre models. As

most of these approaches (except [22]), they consider (linear) arithmetic over rational

numbers only, whereas our target are C programs with bit-vectors (representing

machine integers, floating-point numbers, etc). In [20], k-induction framework was

integrated with a template-driven SMT-based loop invariants generation method.

83

This integrated framework exploited k-induction as a refinement strategy for deriving

stronger invariants and using the derived invariants in turn to strengthen induction

hypothesis for improve success of an induction proof. The work presented in this

chapter can be considered as a compositional version of that work by using procedure

summaries derived via integration of an inter-procedural analysis technique.

The idea of synthesizing abstractions with the help of solvers can be traced back

to predicate abstraction [55]; Reps et al. [91] proposed a method for symbolically

computing best abstract transformers; these techniques were later refined [22,70,102]

for application to various template domains. Using binary search for optimization

in this context was proposed by Gulwani et al. [57]. Similar techniques using LP

solving for optimization originate from strategy iteration [52]. Recently, SMT modulo

optimization [78, 98] techniques were proposed that foster application to invariant

generation by optimization. While all of these works show how to perform composi-

tional proofs using abstractions and invariants, the missing pieces are how to check

for a spurious counterexample and how to refine the abstractions once a spurious

counter example is discovered. We take a small step towards plugging this gap. Our

refinement step, through selective unwinding and inlining of procedure calls, delays

the construction of an exponentially-sized formula as much as possible, similar to the

stratified inlining proposed by Lal et al. [75].

An alternative to alleviating the state-space explosion problem compositionally is

through assume-guarantee reasoning [69,87,90]. Under this framework, each component

of a system makes an assumption about the behaviour of other components, and, in

return, guarantees something about its own behaviour. However, generating proper

assumptions remains to be a major issue in the practicability of this.

Interpolation-based algorithms have also been used, in an inter-procedural setting,

to provide modular safety proofs of sequential programs (e.g. Whale [2, 71]). Whale

uses Craig interpolants to compute function summaries by generalizing from under-

approximations of functions. In contrast, our work uses k-induction and involves a

refinement loop instead of generalization.

5.3 Preliminaries

Program model and notation. The program model and the notation that we

use here is the same as in the last chapter (see Sections 4.7 and 4.2). We recall that

we view programs are symbolic transition systems. Its states are described by an

interpretation to the program variables, and formulas may be used to describe a set of

84

void main () {
i n t a , b , c ;
assume (a !=b !=c !=a) ;
whi l e (1) {

// p a r a l l e l ass ignment
a , b , c = c , a , b

i f (b = c)
a = foo (a , b , c) ;

a = bar (a , b , c) ;
// a s s e r t (a != b)

}
}

i n t foo (i n t x , y , z) {
r e turn z ;

}

i n t bar (i n t u , v , w) {
assert (u != v) ;
r e turn u ;

}

Initmain((), (a0, b0, c0, g0)) ≡ (a0 6= b0 6= c0 6= a0) ∧ g0
Tmain((a0, b0, c0, g0),

(a3, b1, c1, g6)) ≡ (g1 = g0 ∧ true)∧
a1 = c0 ∧ b1 = a0 ∧ c1 = b0∧
g2 = (g1 ∧ (b1 = c1))∧
g2 ⇒

foo0(((a1, b1, c1), g2), (a2, g3)))∧
g4 = (g3 ∨ ¬(g2))∧
bar 0(((a2, b1, c1), g4), (a3, g5))∧
g6 = (g5 ∨ ¬(g′1))

Outmain() ≡ true
Propsmain ≡ true

Init foo((x, y, z),
(x0, y0, z0, g7)) ≡ x = x0 ∧ y = y0 ∧ z = z0 ∧ g7

Tfoo(((x0, y0, z0), g7),
(z1, g8)) ≡ g8 = g7

Out foo(((x0, y0, z0), g7),
(z1, g8)) ≡ g8 ⇒ (z1 = z0)
Props foo ≡ true

Initbar((u, v, w),
(u0, v0, w0, g9)) ≡ u = u0 ∧ v = v0 ∧ w = w0 ∧ g9

Tbar(((u0, v0, w0), g9),
(u1, g10)) ≡ g10 = (g9 ∧ ¬(u0 = v0))

Outbar(((u0, v0, w0), g9),
(u1, g10)) ≡ g10 ⇒ (u1 = u0)
Propsbar ≡ (u0 6= v0)

Figure 5.2: Example program and its encoding

states. T is a transition relation between pairs of such interpretations which describes

how the states are transformed by the program. Fig. 5.2 gives an example of the

encoding of a program into such formulae. Before we proceed, note that one may

attempt to find an inductive and adequate invariant for such programs, and thereby

prove the program safe. An inductive invariant is one that holds in the beginning (the

initial state), and assuming that it holds in an arbitrary state, may be proved to hold

in the subsequent state as per the transition relation. The notion of adequacy is only

with respect to the property, i.e. it is adequate if it can discharge the property.

But discovering an adequate inductive invariant is an orthogonal task to what we

are trying here. One may think of these as two ends of a spectrum. On the one end,

85

we speak of fixing k to 1, and search for an inductive strengthening of the property.

While on the other end, k-induction fixes the property to be what it is, and looks

for a k such that it is k-inductive. Further, generating an adequate invariant is a

difficult task. Hence, it certainly makes sense to look at techniques at the opposite

end of the spectrum, or even a combination of the two extremes. The inputs xin of

foo are (x, y, z), and the outputs xout consist of the return value of foo, denoted by

z1 in the program. The transition relation, Tfoo, encodes the procedure body over

the internal state variables (x0, y0, z0). If a procedure modifies the state variables

multiple times, such as in main, then we may need more than the initial variables to

model the T formula using SSA formula to denote each update to a variable. For the

procedure main shown in Fig. 5.2, Tmain essentially contains the transition relation

for the body of the while loop. The loop control is modeled by additional loop control

guard variables, e.g. g1 in main. The guard g1 tell us if the body of the loop in main

is reachable or not. The loop body is reachable if and only if a) the procedure main

is reachable (modeled by the guard g0), and b) the loop condition (which is simply

true in this case). This is why we see the expression (g1 = g0 ∧ true) in Tmain. The

post loop control variable (denoted by a primed version of the corresponding variable)

is set to false to denote exiting from the loop. In procedure main in Fig. 5.2, the

placeholder for the first procedure call to foo is foo0(((a1, b1, c1), g
in
foo), (a2, g

out
foo)) with

the actual inputs and output parameters and the entry/exit guards.

5.3.1 Monolithic k-Induction

As we know, bounded model checking (BMC) focuses on refutation by picking an

unwinding limit k and solving:

∃x0, . . . ,xk : Init(xin,x0) ∧ T [k] ∧ ¬P [k + 1] (5.1)

where

T [k] =
∧

i∈[0,k−1]

T (xi,xi+1) P [k] =
∧

i∈[0,k−1]

¬Err(xi)

and the predicate Err denotes an error state, i.e. a state violating Props .

Incremental BMC avoids the need for a fixed bound by repeatedly using BMC with

increasing bounds, often optimized by using the solver incrementally. If the bound

starts linearly from zero, it may be assumed that there are no errors in the previous

states giving a simpler test:

86

∃x0, . . . ,xk : Init(xin,x0) ∧ T [k] ∧ P [k + 1] ∧ Err(xk) (5.2)

k-induction [100] can be thought of as an extension of incremental BMC that can

show system safety as well as produce counterexamples. It makes use of k-inductive

invariants, which are predicates, KInv , for which the following holds:

∀x0 . . .xk : I[k] ∧ T [k]⇒ KInv(xk) (5.3)

where

I[k] =
∧

i∈[0,k−1]

KInv(xi) (5.4)

k-inductive invariants have the following useful properties:

• Any inductive invariant is a 1-inductive invariant and vice versa.

• Any k-inductive invariant is a (k + 1)-inductive invariant.

• A system is safe if and only if there is a predicate, KInv , which satisfies:

∀x0 . . .xk : (Init(xin,x0) ∧ T [k]⇒ I[k])∧
(I[k] ∧ T [k]⇒ KInv(xk))∧
(KInv(xk)⇒ ¬Err(xk))

(5.5)

In this formula, the first two conjuncts ensure that KInv is a k-inductive invariant.

The first conjunct confirms that KInv holds in the first k-steps of the program (i.e., the

base-case necessary for the inductive argument to work). The second one guarantees

that if KInv holds for any sequence of k-steps, then it holds in the (k+ 1)th-step. The

last conjunct says that KInv is sufficient to establish that the program is safe.

According to Brain et al. [20,21], showing that a k-inductive invariant exists is sufficient

to show that an inductive invariant exists but it does not imply that the k-inductive

invariant is an inductive invariant. Often the corresponding inductive invariant is

significantly more complex. Thus, k-induction can be seen as a trade-off between

generating invariants, and checking them, as it is a means to benefit as much as

possible from simpler invariants by using a more complex property check.

Finding a candidate k-inductive invariant is hard so implementations often use

¬Err(x). Linearly increasing k can be used to simplify the expression by assuming

there are no errors at previous states:

∃x0, . . . ,xk : (Init(xin,x0) ∧ T [k] ∧ P [k] ∧ Err(xk))∨
(T [k] ∧ P [k] ∧ ¬Err(xk))

(5.6)

87

A model of the first part of the disjunct is a concrete counterexample (k-induction

subsumes bounded model checking) and if the whole formula has no models, then

¬Err(x) is a k-inductive invariant and the system is safe.

Applying monolithic k-induction to a program with multiple procedures effectively

involves constructing T corresponding to the flattened program obtained by inlining

all the procedure calls by their body instances. For example, the monolithic version

of T for main in Fig. 5.2 is obtained by inlining the call instances to foo and bar

by their instantiated procedure bodies, and then constructing a T and Init for the

inlined main. The goal of this work is to devise an algorithm to perform k-induction

in a compositional way using summaries for the procedure calls using inlining only as

required.

Theorem 5.3.1 (Monolithic k-induction).

i) If the property is k-inductive for some k then the monolithic k-induction algorithm

will prove it.

ii) If there is a counterexample reachable after k iterations, then the monolithic

k-induction algorithm will find it.

Proof (sketch): Since we are talking about finite state systems, if the program is

safe, ¬Err(x) is itself k-inductive for some k (≤ n). This holds true because if the

program is safe, then Err(x) cannot intersect with the set of reachable states, and the

latter can be precisely computed when the program is fully unrolled (i.e., when k = n).

Thus, since k is incremented in each step, the proof is bound to succeed sometime

unless a counterexample is obtained first.

In case of an unsafe program, where a counterexample is reachable in k-iterations,

the monolithic k-induction will eventually reach that k and obtain a counterexample

(because equation 5.5 would get violated).

5.3.2 Interprocedural Analysis

Moving on to interprocedural analysis, we introduce formal notation for the basic

concepts below:

Definition 5.3.2. For a procedure given by (Init ,T ,Out) we define:

• An invariant is a predicate Inv such that:

∀xin,x,x′ : Init(xin,x) =⇒ Inv(x)
∧ Inv(x) ∧ T (x,x′) =⇒ Inv(x′)

88

• Given an invariant Inv, a summary is a predicate Sum such that:

∀xin,x,x′,xout : Init(xin,x) ∧ T (x,x′) ∧ Inv(x′) ∧Out(x′,xout)
=⇒ Sum(xin,xout)

• Given an invariant Inv, the calling context for a procedure call h at call site i

in the given procedure is a predicate CallCtxhi
such that

∀x,x′,xp in
i,x

p out
i :

Inv(x) ∧ T (x,x′) =⇒ CallCtxhi
(xp in

i,x
p out

i)

These concepts have the following roles. Invariants abstract the behaviour of loops.

Summaries abstract the behaviour of called procedures; they are used to strengthen

the placeholder predicates. Calling contexts abstract the caller’s behaviour w.r.t. the

procedure being called. When analyzing the callee, the calling contexts are used to

constrain its inputs and outputs.

In Fig. 5.2, a candidate Inv(a, b, c) for the loop in main is (a 6= b 6= c 6= a); a

summary for Summain((a, b, c), (a′, b′, c′)) corresponding to this Inv can be (a′ 6= b′ 6=
c′ 6= a′), an over-approximation of the actual program behaviour;

5.4 Informal Overview

The program shown in Fig. 5.2 has a simple loop in main that rotates the values in a,

b, and c, in the beginning of every iteration of the while loop, and then conditionally

makes an assignment to a. First, let us consider a version of the program in which

the update to a with the return value of bar is replaced an assert statement, (a 6= b),

shown in a comment below the call to bar. With this modification, the program checks

for the assertion (a 6= b) in the loop inside main. The assertion is safe as a, b, and

c are initialized to distinct values, and remain distinct with every execution of the

loop. Note that although the conditional assignment to a invoking foo can violate the

assertion, it is never executed as the condition is invariably false.

Verifying this program using bounded model checking, for large loop bounds, would

require the loop to be unwound up to the given bound, which may not be feasible

practically. This program is a good candidate for using k-induction as it can be

successfully verified with three unwindings (i.e., k=3) even though the loop bound is

infinite. To see this, let us go through the program and understand what is happening.

The fact that a, b, and c are all distinct holds in the beginning, and is indeed a loop

invariant, but we are not discovering loop invariants here. We wish to prove the

assertion using an inductive argument. So, let us say that we start with arbitrary

89

values assigned to the variables a, b, and c, subject to the condition given in the

assertion, that a and b must be distinct. Now, if go through the loop body once, a

takes the value that was there in c, and b takes that one of a. This, of course, does not

tell us that the new values of a and b are distinct (because we did not know if c and a

were distinct in the beginning). Therefore, we assume once again that the assertion

holds (i.e., we assume that c and a are distinct) and iterate through the loop once

more. Now, a takes that value that was originally there in b, and b takes the one that

was originally there in c. We still cannot say that a and b are distinct, because we have

made only two assumptions about the arbitrarily chosen values – that a and b are not

the same, and c and a are not the same. We still do not know whether the original

values of b and c are same or not. Once again, therefore, we assume that the assertion

holds (i.e., we assume that b and c are distinct). Together, with all these assumptions,

we have discovered that all the variables have distinct values, and we can prove that

no matter how many times the loop iterates after this, a and b will always be distinct.

Notice that the standard (1-)induction argument would be insufficient here because

the property cannot be discharged at that stage. Therefore, we strengthen the premise

by unrolling the loop and attempt the proof again. Since we had to unwind the loop

a total of three times, we are saying that 3-induction is sufficient here.

It is also noteworthy that if one used monolithic k-induction in which every

procedure call is inlined, the size of inlined code, and hence the size of SAT instances,

can grow exponentially for each unwinding. In compositional verification, we use

over-approximation summaries for procedure calls and refine them, possibly with

inlining as required, along with loop unwindings. In our example, using the summary

true for foo is sufficient to obtain a successful k-induction proof for k=3 without the

need to inline at all, resulting in smaller SAT proof instances.

However, sometimes we may need to refine one or more procedure call instances.

Consider a version of the main program as shown in Fig. 5.2 which includes the call

to bar. The assertion is now checked inside bar. For this program, replacing bar with

an over-approximating summary, true, and unwinding the loop once will give rise to a

spurious counterexample, with (a = b) or (a = c), during the assertion check. In order

to get a successful compositional k-induction proof, we need the ability to check if

a counterexample is spurious, and, if so, use the information in the counterexample

trace to possibly selectively refine some of the call instances. For example, in this

case we can determine only bar needs to be refined as the value returned by bar and

the resulting assignment is the reason for the counterexample. The procedure call

instances that are sufficient and likely candidates for refinement for a successful proof

90

can be determined based on an analysis of the counterexample and the code. There

exists a trade-off between the overhead required for this analysis and the precision

of refinement. In Section 5.5.2, we list three approaches that we have developed for

selecting candidate sets of call instances for refinement. Once bar is refined by inlining

its body, the program is verified to be safe k-induction in the next round of unwinding.

Another dimension for refinement is how to refine the selected call instances. The

simplest refinement is to just inline the procedure body. A more semantic approach is

to sufficiently refine the over- approximation summary. In our example, a sufficient

refinement for bar can be (a 6= b 6= c), or, simply, even (a 6= b). In section 5.5.3, we

discuss some ways for using the spurious counterexample to guide an abstract domain

based summary generation tool 2LS that we use for implementing our compositional

k-induction technique.

Checking if a counterexample is spurious for any given unwinding (an under-

approximation of the program) can be done precisely only if every procedure call

instance in the unwound code is inlined with its body or an over-approximation

summary of it. Such a monolithic approach is fine as the assertion generating the

counterexample is in the main program. However, if the assertion is embedded inside

a procedure deep down the hierarchy, a monolithic method becomes impractical. Our

compositional spurious counterexample checking method allows modular analysis

of each procedure, e.g. foo and bar in Fig. 5.2, during counterexample analysis.

We have implemented a number of compositional counterexample checking methods

that trade-off precision to completeness (see Section 4.5). So, our compositional

verification method requires a refinement step that iterates over these methods within

the phase of counterexample checking for spuriousness. We describe our compositional

counterexample-checking method in Section 5.5.1.

5.5 Horizontal: Interprocedural k-Induction

Horizontal, interprocedural, k-induction (Algorithm 4) differs from the monolithic

one in exactly one aspect - the refinement in case of spurious counterexamples. This

directly relates to the two basic building blocks on which this technique relies: the

spuriousness check of counterexamples (the under-approximative right-hand side of

Fig. 5.1) and the refinement of the over-approximation.

Being an interprocedural approach to k-induction, inlining is also a possible refine-

ment strategy, apart from the usual refinement of monolithic approach, which is loop

91

Algorithm 4 Interprocedural k-Induction

1: while a proof or a counterexample is not obtained do
2: check all properties in each procedure
3: mark proved properties as passed
4: for every failed property do
5: if the failure (i.e. counterexample) is non-spurious then
6: mark the property as failed
7: else
8: spuriousness check return unsat
9: find the unsat core

10: detect the loops and procedures which are a part of the unsat core
11: refine – by unwinding the loops and inlining the procedure calls

unwinding. Besides, since the spuriousness check of counterexample is interprocedural

too, this allows for “selective” loop unwinding. The next two subsections explain

these.

Since the refinements that we perform eventually converge to the monolithic case,

i.e. all procedures inlined and unwound to some finite k, we can therefore state that

interprocedural k-induction is as complete as monolithic k-induction:

Theorem 5.5.1 (Interprocedural k-induction).

i) If monolithic k-induction proves a property for some finite k then the interprocedural

k-induction algorithm will prove it.

ii) If monolithic k-induction finds a counterexample after a finite k number of iterations,

then the interprocedural k-induction algorithm will find it too.

Proof (sketch): We may argue by induction on the number of procedure calls.

Base case: The theorem trivially reduces to the monolithic case if there is just one

procedure call.

Inductive step: Assume it holds for programs with up to n procedure calls. Consider

a program with (n + 1) procedure calls. Suppose we are doing interprocedural k-

induction and we get a counterexample. If the counterexample is valid, then we are

done. If not, while refining we would be unwinding some loops, or inlining some

function calls. Since the loops can only be unwound a finite number of times, a function

call would eventually get inlined as part of the refinement, giving us a program with

n procedure calls. From the induction hypothesis, it follows that the inter-procedural

k-induction will be able to get the same result as the monolithic k-induction.

92

5.5.1 Spuriousness Check of Counterexamples

Consider the example shown in Fig. 5.2 in Section 5.3. Analysing procedure bar in

isolation gives a counterexample, which is spurious in our case as the program in

Fig. 5.2 is safe.

Bounding the number of unwindings by k, a local counterexample for a procedure

f is a solution of the formula:

¬∀

all variables in f︷ ︸︸ ︷
xin

f ,x
out

f , . . . :
Initf ∧ T k

f ∧Outf =⇒ Propsk
f

(5.7)

where T k
f (resp. Propsk

f) is shorthand for∧
1≤i≤k Tf (xj,i−1,xj,i) (resp.

∧
0≤i≤k Propsf (xj,i)).

Instantiated on our example, we have

¬∀ u, v, w, u0, v0, w0, u1 :

((u = u0 ∧ v = v0 ∧ w = w0) ∧ g9∧

(g10 = g9 ∧ ¬(u0 = v0)) ∧ (g10 ⇒ (u1 = u0)))

=⇒ ¬(u0 = v0)

(5.8)

Since we are looking for a local counterexample of bar, we assume that the entry to

bar is reachable, while the exit is unreachable (due to the assertion violation). In other

words, the entry guard g9 is true while the exit guard g10 is false. One counterexample

here could be (u0 = v0 = 5), for example. The question is now how to decide whether

this counterexample is spurious or not, and to find a valid counterexample if one

exists. For instance, (u0 = v0 = 5) turns out to be spurious if we consider the whole

program because it is clear from the context available in main that the values of u

and v would never be equal when bar is called.

The set of local counterexamples found in a procedure f might contain many

counterexamples that are spurious for the whole program, i.e. they are infeasible from

the entry point of the program. A definite answer to this question cannot be given by

looking at the local problems alone, but only by analyzing the global one.

Chapter 4 discusses refutation algorithms of varying degrees of completeness.

Intuitively, the negation of the assertion has to be hoisted up along the error path to

the entry point of the program. If the obtained weakest precondition for the violation

of the assertion is not false, then the counterexample is feasible. Propagating up the

counterexample itself is not sufficient to decide spuriousness as explained above.

93

5.5.2 Refinement Strategies

In the interprocedural setting there are two reasons for a counterexample to be spurious,

namely

1. A loop invariant is too weak.

2. The calling context information for a procedure call is too weak.

The question is which of the loop invariants and calling contexts is to blame.

Information to track down the culprit is obtained from a successful spuriousness check,

i.e. when we have proved a counterexample to be spurious. This corresponds to an

unsatisfiable formula, obtained by propagating the counterexample from the point

of assertion failure to program’s entry, calculating the weakest precondition of every

statement along the path. The unsatisfiability of this weakest precondition formula,

at any point, indicates that the counterexample cannot be propagated beyond that

point, and is therefore spurious. From the (over-approximation of the) UNSAT core

of this formula, we can over-approximate the set of loops and procedure calls that are

involved in showing spuriousness of the counterexample.

The refinement action for a loop in this set is adding another unwinding; for

procedures, it is inlining.

Based on this information, we have developed three different refinement strategies:

• Greedy: we always refine all elements in the set.

• Bottom-up: we prioritize the refinement of loops and procedures that are close

to the spurious assertion violations. If a procedure contains spuriously failing

assertions, all its loops are fully unwound (or it did not have loops), and all its

procedure calls are inlined (or it never called any procedures), then we inline

this procedure because the only reason for spuriousness is the lack of context

information. In order to avoid getting stuck in unwinding deep loops we limit

the number of unwindings that we do before proceeding with inlining.

• Top-down: we perform unwinding and inlining starting from the entry procedure

downwards.

The incomplete spuriousness checks could also be used for refinement. However,

they can only give directions for refinement that may turn out to be random.1 For

1The over-approximation of the UNSAT core adds such randomness in the refinements.

94

example any loop or function call between the failing assertion and the point where

the concrete spuriousness check fails (we obtain precondition false) is a potential

candidate for refinement. Yet, it could be that the counterexample is not spurious at

all, then these refinements are actually unnecessary. Hence, incomplete spuriousness

checks can only help making “refinement guesses” that may not necessarily eliminate

spurious counterexamples.

Example. Consider the program shown in Fig. 5.2. When analyzed separately, the

procedure bar produces an assertion violating run (a counterexample) when u = v.

However, this counterexample is spurious, considering one unwinding2 of the while loop

in main, since (a0 6= b0 6= c0 6= a0), (a1 = c0∧b1 = a0∧c1 = b0), (b1 = c1)⇒ (a2 = c1),

(b1 6= c1)⇒ (a2 = a1), and (a2 = b1) are unsatisfiable. They, in fact, form an UNSAT

core. Note that the subscripts of variables a, b, and c represent the SSA form, so

that each variable gets assigned exactly once (also shown in Fig. 5.2). In this case,

there are no loop invariants that need strengthening. The spuriousness arises from

the constraint (a0 6= b0 6= c0 6= a0), which is a part of the UNSAT core. Therefore,

inlining gets rid of the spurious counterexample by strengthening the context.

5.5.3 Strengthen the Technique by Contexts and Invariants

The strategy used in Section 5.5.2, to refine an over-approximation of a program

during verification, involved unwinding of loops for k-induction in procedures that

were already inlined, and/or inlining procedures that were over-approximated, using

summaries and invariants. One can use a finer refinement strategy by deferring

inlining of the called procedures (or their summaries) by their body as late as required.

Instead, the summaries and invariants for loops in that case are made more precise by

strengthening them. The essential idea for this strengthening is to use the current

over-approximated transition relation of an inlined procedure in the hierarchy to derive

more precise calling context information for each called procedure instance in the

inlined procedure. This calling context can then be used to narrow down the search

for invariants and summaries. This may be done using 2LS [20, 96], a framework

that supports automatic inference of loop invariants and function summaries, with

algorithms for obtaining precise summaries and calling contexts as we discussed in

the last chapter.

2We consider an unwinding of one because it is sufficient to uncover the reason for spuriousness
in this case. Even for a larger unwinding of the while loop, the reason for a spurious counterexample
obtained by analyzing bar in isolation is the same.

95

i n t bar (i n t a , b , c) {
a = ∗ ;
wh i l e (∗) {

i f (b < c) assume (a > c) ;
e l s e assume (a < c) ;
r e turn a ;

}
assert (a != b) ;

}

Figure 5.3

There are two typical situations while performing compositional k-induction where

this strengthening technique is particularly useful. The first situation is depicted in

Fig. 5.3, where we consider a slightly convoluted version of the procedure bar earlier

shown in Fig. 5.2. This version has a while loop but is behaviourally equivalent to

the original one under the calling context (b 6= c). If we are performing k-induction

over the while loop in bar after it has been inlined, then instead of starting from an

arbitrary state in the inductive step, one can refine the arbitrariness to conform to the

calling context information available at the call instance of bar. The precise calling

context for the calling instance of bar in main, of Fig. 5.2, is (b 6= c). With this calling

context information passed, 2LS will be able to generate the invariant (a 6= b ∧ a 6= c)

for the loop in bar and the same formula as summary for bar. This refined summary

can then be used to make the k-induction proof of the main loop to succeed without

inlining bar.

The second situation is illustrated by the while loop in main in Fig. 5.2, when

there is a call to a function from inside the loop. Suppose, for instance, that the initial

condition of a, b, and c being all distinct is not there. I.e., any of these variables may

be equal to any other variable, or even to both the other variables, before entering the

while loop. Now, if we analyze the loop code with the over-approximated summary

true for foo, we would get the context (b = c). In that case, we would generate another

summary of foo by taking this context into account, and thereby obtain a more precise

summary for foo to be used in the next iteration.

There are two steps essential in strengthening summaries and invariants, namely

(i) a forward calling context computing step that computes the calling context by

hierarchically traversing the call graph, and (ii) a backward strengthening step in which

the invariants and summaries are strengthened using the calling contexts generated

96

in the first step. The calling context derivation and strengthening of summaries and

invariants is done by means of generating witnesses to the existentially quantified

formulas, as per the definitions below.

Definition 5.5.2. A forward calling context CallCtxhi
for hi in procedure f in calling

context CallCtx f is a satisfiability witness of the following formula:

∃CallCtxhi
, Inv f : ∀xin,x,x′,xout,xp in

i,x
p out

i :
CallCtxhi

(xin,xout) ∧ Sumsf =⇒ (Initf (xin,x) =⇒ Inv f (x))
∧ (Inv f (x) ∧ Tf (x,x′) =⇒

Inv f (x′) ∧ (ghi
=⇒ CallCtxhi

(xp in
i,x

p out
i))

with

Sumsf =
∧

calls hj in f (ghj
=⇒ Sums [h](xp in

j,x
p out

j))

where ghj
is the guard condition of procedure call hj in f , and Sums [h] is the currently

available summary for h.

Definition 5.5.3. A forward summary Sumf and invariants Inv f for procedure f in

calling context CallCtx f are satisfiability witnesses of the following formula:

∃Sumf , Inv f : ∀xin,x,x′,x′′,xout :
CallCtx f (xin,xout) ∧ Sumsf =⇒

(Initf (xin,x) ∧ Inv f (x′′) ∧Outf (x′′,xout)
=⇒ Inv f (x) ∧ Sumf (xin,xout))

∧ (Inv f (x) ∧ Tf (x,x′) =⇒ Inv f (x′))

These formulae are similar to those in Def 5.5.2, except that now we are not looking

for a predicate over input/output variables of the caller, but over arguments/return

values of a callee. Since Def. 5.5.2 and Def. 5.5.3 are interdependent, we can compute

them iteratively until a fixed point is reached in order to improve the precision of

calling contexts, invariants and summaries. The previous chapter illustrates a forward

summary algorithm, Alg. 3, showing how this may be done for programs with a fixed

unwinding of loops.

5.6 Concluding Remarks

In this chapter we proposed an approach to interprocedural k-induction, based on

interprocedural spuriousness check of counterexamples explained in the last chapter.

We formulated this within a generic refinement framework - one that selectively

unwinds loops and inlines procedures. The interprocedural k-induction is as complete

as the monolithic case, since the refinement eventually converges to all procedures

97

inlined and unwound up to the given k. We also looked at deferring inlining of the

over-approximated procedures by using summaries. The summaries may be imprecise

to begin with, but can be strengthened through the calling context information. This

chapter gives a theoretical illustration of how horizontal decompositions, around which

the compositional safety refutation techniques were devised in Chapter 4, can also

help us obtain safety proofs compositionally. The implementation and experimental

evaluation of this work are not a part of this thesis.

5.6.1 Notes

While this chapter uses k-induction to complete the compositional verification frame-

work with unwinding and inlining as refinement, one might equally well couple a

different abstraction-refinement strategy with the compositional refutation techniques.

The strategy may depend on how the system has been split into components. The

splitting criteria may even be semantic, not just syntactic. As we conclude in the next

chapter, we also discuss some prospects of our work.

98

Chapter 6

Conclusion

In this work, we looked at three important aspects integral to Statechart-like systems,

namely concurrency, cyclicity and size, and came up with techniques to overcome

their effect on scalability of software verifiers. In particular, we were interested in

finding an answer to the following questions:

1. For synchronous reactive systems modeled as Statemate Statecharts, is it

possible to analyze synchronous concurrency explicitly, rather than encoding it

as part of the system’s implementation?

2. Do loop accelerators enable existing program analysis algorithms to discover

loop invariants more reliably and more efficiently?

3. Is it possible to generate counterexamples in a modular way to speed up safety

refutation?

4. Is there a compositional approach to k-induction, in an abstraction-refinement

framework that allows a component-wise refinement instead of a monolithic one?

We list down, and then discuss, the key contributions made by this thesis, in an

attempt to answer these four questions.

• We proposed a technique tailored for verifying synchronous reactive systems, as

an extension of the LAwI algorithm implemented in Impara. We also described

an implementation of our technique into a tool called Sympara.

• We quantified the benefit of acceleration, as a source-level transformation,

for checking safety properties. We reported the results of a comprehensive

comparison over a number of benchmarks, showing that the combination of

acceleration and a safety checker outperforms existing tools and techniques, for

both safe and unsafe benchmarks.

99

• We formalised the problem space of safety refutation in horizontal decomposi-

tions and characterised the compositional completeness guarantees of various

algorithmic approaches. We also described three refutation approaches with

different degrees of completeness, and compared their completeness and efficiency

through experiments.

• We formulated verification by k-induction within a generic refinement algorithm

framework, and proposed a horizontal, i.e. interprocedural k-induction approach

based on an interprocedural counterexample spuriousness check and a selective

refinement of loop unwindings and procedure inlining.

Analyzing synchronous reactive systems, under the semantics that we were looking

at, does not require one to address concurrency in the most general setting. However,

existing verifiers of such systems often flatten them into a global transition system, to

be able to apply off-the-shelf verification methods. This monolithic approach fails to

exploit the lock-step execution of the processes, severely limiting scalability.

We presented a novel formal verification technique that analyses synchronous

concurrency explicitly rather than encoding it. We proposed a variant of Lazy

Abstraction with Interpolants (LAwI), a technique successfully used in software

verification, and tailored it to synchronous reactive concurrency. We were able to

exploit the synchronous communication structure by fixing an execution schedule,

thus circumventing the exponential blow-up of state space caused by simulating

synchronous behaviour by means of interleavings. We also implemented this technique

in a tool called Sympara, and shared experimental results on realistic examples

showing that Sympara outperformed Bounded Model Checking with k-induction,

and a LAwI-based verifier for multi-threaded (asynchronous) software, by an order of

magnitude.

Addressing the issue of cyclicity, we quantified the benefits that acceleration offers

for checking safety properties of programs. Acceleration is a technique for summarising

loops by computing a closed-form representation of the loop behaviour. The closed

form can be turned into an accelerator, which is a code snippet that skips over

intermediate states of the loop to the end of the loop in a single step.

We experimentally evaluated whether loop accelerators enable existing program

analysis algorithm to discover loop invariants more reliably and more efficiently. This

work was the first comprehensive study on the synergies between acceleration and

invariant generation. We reported our experience with a collection of safe and unsafe

programs drawn from the Software Verification Competition and the literature.

100

While attending to the aspect of size, we chose to deal with the problem of

refutation prior to that of proofs. In fact, our approach to finding safety proofs

employs our refutation strategies to solve a sub-problem. We look for a modular

approach as even the most successful techniques for refuting safety properties (finding

counterexamples by bounded model checking) exceed the limit of resources available, on

most model checking instances for large programs. Generating such counterexamples

in a modular way could speed up refutation but the counterexamples are inherently

non-compositional in nature, making it a challenging task. We formalised a space of

property-guided compositional refutation techniques, discussed their properties with

respect to efficiency and completeness, and presented an experimental evaluation of

the techniques.

For proofs, we looked at k-induction – one of the most popular techniques for

proving safety. With the similar motivation that performing k-induction in a modular

way could speed up verification, we proposed an interprocedural approach to modular k-

induction, as an instance of a more general refinement approach to program verification.

Additionally, since all our implementations have been done on the Cprover

framework, if there is practical interest, it would be possible to investigate how a

combination of these techniques fare.

The techniques developed, or proposed, as part of this work are essentially state-

space reduction techniques. This is not surprising – state-space explosion lies at the

core of automated software verification. So any technique that addresses scalability

issues, must reduce the state-space available for exploration. Our approach for verifying

synchronous reactive systems achieves this reduction through concurrent SSAs and

early elimination of infeasible paths. For loop acceleration, this is achieved by skipping

over intermediate states of a loop. Compositional techniques, described in the last

two chapters, accomplish this by analyzing the modules in isolation, as far as possible,

and composing the results in the end. Overall, this piece of work is aimed at scalable

verification, and the techniques have been developed keeping in mind the crucial

aspects of Statechart-like systems.

6.1 Prospects

The work in this thesis has led to some appealing ideas that would be worthwhile to

explore.

• In general, it would be interesting to see if an Impact like algorithm can benefit

from an external module that supplies invariants. Such a module may also

101

accelerate invariant generation, beyond loop acceleration. Our work has laid the

platform needed to experiment with this, and to quantify its benefits.

• It would be rewarding to implement the techniques that we have theoretically

illustrated, in Chapter 5, for obtaining compositional safety proofs using k-

induction.

• For the compositional approaches to safety refutation and proofs, it would

be beneficial to explore different ways of procedure summarization. These

summaries may be of different degrees of precision, and may or may not be

property-directed. The modular framework described in this thesis allows and

assists future work in this direction.

The work in this thesis has also opened up new directions that would be interesting

to explore. For instance, while this thesis studies the modularity of implementations

based on the syntax (i.e., we split a system along procedures boundaries), it would be

gainful to explore if there are semantic boundaries that can be used for decomposing

a system into modules, such that compositional verification becomes easier. This

semantic split could even be motivated by the property to be verified. There seem to

be several ways in which this can be studied and, perhaps, this would be worthy of an

entire doctoral thesis in itself.

A short-term project, although a very useful one, would be to extend our work on

compositional refutation to generate integration test cases from unit tests. It might

be valuable to see if, given a set of unit tests (concrete summaries) for a subset of

functions, it is possible to obtain a set of integration tests (counterexamples) starting

from program entry point that has same coverage as unit tests (or show that some of

these tests are infeasible when starting from the entry point).

102

Bibliography

[1] Parosh Aziz Abdulla, Ahmed Bouajjani, and Bengt Jonsson. On-the-fly analysis

of systems with unbounded, lossy fifo channels. In In CAV’98. LNCS 1427,

pages 305–318. Springer-Verlag, 1998.

[2] Aws Albarghouthi, Arie Gurfinkel, and Marsha Chechik. Whale: An

interpolation-based algorithm for interprocedural verification. In Verification,

Model Checking, and Abstract Interpretation, volume 7148 of Lecture Notes in

Computer Science, pages 39–55. Springer, 2012.

[3] Aws Albarghouthi, Arie Gurfinkel, Yi Li, Sagar Chaki, and Marsha Chechik.

UFO: Verification with interpolants and abstract interpretation. In Tools and

Algorithms for the Construction and Analysis of Systems (TACAS), volume

7795 of LNCS, pages 637–640. Springer, 2013.

[4] Aws Albarghouthi and Kenneth L. McMillan. Beautiful interpolants. In Pro-

ceedings of the 25th International Conference on Computer Aided Verification,

CAV’13, pages 313–329. Springer-Verlag, Berlin, Heidelberg, 2013.

[5] R. Alur, R. Grosu, and M. McDougall. Efficient reachability analysis of hier-

archical reactive machines. In E.Allen Emerson and AravindaPrasad Sistla,

editors, Computer Aided Verification, volume 1855 of Lecture Notes in Computer

Science, pages 280–295. Springer Berlin Heidelberg, 2000.

[6] Rajeev Alur, Luca de Alfaro, Thomas A. Henzinger, and Freddy Y. C. Mang.

Automating modular verification. In Concurrency Theory, pages 82–97, 1999.

[7] Rajeev Alur, Michael McDougall, and Zijiang Yang. Exploiting behavioral

hierarchy for efficient model checking. In Ed Brinksma and KimGuldstrand

Larsen, editors, Computer Aided Verification, volume 2404 of Lecture Notes in

Computer Science, pages 338–342. Springer Berlin Heidelberg, 2002.

[8] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.

Cambridge University Press, New York, NY, USA, 1st edition, 2009.

[9] Sébastien Bardin, Alain Finkel, and Jérôme Leroux. Faster acceleration of counter

automata in practice. In Kurt Jensen and Andreas Podelski, editors, Tools and

Algorithms for the Construction and Analysis of Systems, 10th International

Conference, TACAS 2004, Held as Part of the Joint European Conferences on

Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 -

April 2, 2004, Proceedings, volume 2988 of Lecture Notes in Computer Science,

pages 576–590. Springer, 2004.

[10] Gerard Berry and Georges Gonthier. The esterel synchronous programming

language: Design, semantics, implementation, 1992.

[11] Dirk Beyer. Software verification and verifiable witnesses - (report on SV-COMP

2015). In Christel Baier and Cesare Tinelli, editors, Tools and Algorithms for the

Construction and Analysis of Systems - 21st International Conference, TACAS

2015, Held as Part of the European Joint Conferences on Theory and Practice

of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, volume

9035 of Lecture Notes in Computer Science, pages 401–416. Springer, 2015.

[12] Dirk Beyer, Thomas A. Henzinger, Rupak Majumdar, and Andrey Rybalchenko.

Path invariants. In Jeanne Ferrante and Kathryn S. McKinley, editors, Pro-

ceedings of the ACM SIGPLAN 2007 Conference on Programming Language

Design and Implementation, San Diego, California, USA, June 10-13, 2007,

pages 300–309. ACM, 2007.

[13] Dirk Beyer and M.Erkan Keremoglu. CPAchecker: A tool for configurable

software verification. In Computer Aided Verification (CAV), volume 6806 of

LNCS, pages 184–190. Springer, 2011.

[14] Dirk Beyer, Damien Zufferey, and Rupak Majumdar. CSIsat: Interpolation for

LA+EUF, pages 304–308. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[15] Purandar Bhaduri and S. Ramesh. Model checking of statechart models: Survey

and research directions. CoRR, cs.SE/0407038, 2004.

[16] Tom Bienmüller, Werner Damm, and Hartmut Wittke. The Statemate verifi-

cation environment – making it real. In Computer Aided Verification (CAV),

pages 561–567. Springer, 2000.

[17] Johannes Birgmeier, Aaron R. Bradley, and Georg Weissenbacher. Counterexam-

ple to induction-guided abstraction-refinement (CTIGAR). In Computer Aided

Verification (CAV), volume 8559 of LNCS, pages 831–848. Springer International

Publishing, 2014.

[18] B. Boigelot. Symbolic Methods for Exploring Infinite State Spaces. Collection

des publications. Université de Liège, Faculté des sciences appliquées, 1999.

[19] Marius Bozga, Radu Iosif, and Filip Konecný. Fast acceleration of ultimately

periodic relations. In Computer Aided Verification, volume 6174 of LNCS, pages

227–242. Springer, 2010.

[20] Martin Brain, Saurabh Joshi, Daniel Kroening, and Peter Schrammel. Safety

Verification and Refutation by k-Invariants and k-Induction. In Static Analysis

Symposium, volume 9291 of Lecture Notes in Computer Science, pages 145–161.

Springer, 2015.

[21] Martin Brain, Saurabh Joshi, Daniel Kroening, and Peter Schrammel. Safety

verification and refutation by k-invariants and k-induction (extended version).

Technical report, University of Oxford, UK, 2015. http://arxiv.org/abs/

1506.05671.

[22] Jörg Brauer, Andy King, and Jael Kriener. Existential quantification as incre-

mental SAT. In Computer-Aided Verification, volume 6806 of Lecture Notes in

Computer Science, pages 191–207. Springer, 2011.

[23] Jörg Brauer and Axel Simon. Inferring definite counterexamples through under-

approximation. In NASA Formal Methods, volume 7226 of Lecture Notes in

Computer Science, pages 54–69. Springer, 2012.

[24] RobertK. Brayton, GaryD. Hachtel, Alberto Sangiovanni-Vincentelli, Fabio

Somenzi, Adnan Aziz, Szu-Tsung Cheng, Stephen Edwards, Sunil Khatri, Yuji

Kukimoto, Abelardo Pardo, Shaz Qadeer, RajeevK. Ranjan, Shaker Sarwary,

ThomasR. Staple, Gitanjali Swamy, and Tiziano Villa. Vis: A system for

verification and synthesis. In Rajeev Alur and ThomasA. Henzinger, editors,

Computer Aided Verification, volume 1102 of Lecture Notes in Computer Science,

pages 428–432. Springer Berlin Heidelberg, 1996.

[25] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and

L. J. Hwang. Symbolic model checking: 1020 states and beyond. Inf. Comput.,

98(2):142–170, 1992.

[26] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: A declarative

language for real-time programming. In Proceedings of the 14th ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages, POPL ’87,

pages 178–188, New York, NY, USA, 1987. ACM.

[27] William Chan, Richard J. Anderson, Paul Beame, David Notkin, David H. Jones,

and William E. Warner. Optimizing symbolic model checking for statecharts.

IEEE Trans. Softw. Eng., 27(2):170–190, February 2001.

[28] Hong-Yi Chen, Cristina David, Daniel Kroening, Peter Schrammel, and Björn

Wachter. Synthesising interprocedural bit-precise termination proofs. In Auto-

mated Software Engineering, pages 53–64. ACM, 2015.

[29] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto Se-

bastiani. The MathSAT5 SMT Solver, pages 93–107. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2013.

[30] Alessandro Cimatti, Andrea Micheli, Iman Narasamdya, and Marco Roveri.

Verifying SystemC: A software model checking approach. In Formal Methods in

Computer-Aided Design (FMCAD), pages 51–60, 2010.

[31] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C

programs. In Tools and Algorithms for the Construction and Analysis of Systems,

volume 2988 of LNCS, pages 168–176. Springer, 2004.

[32] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Counterexample-guided abstraction refinement. In Computer-Aided Verification,

volume 1855 of Lecture Notes in Computer Science, pages 154–169. Springer,

2000.

[33] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and

abstraction. Transactions on Programming Languages and Systems, 16(5):1512–

1542, 1994.

[34] Edmund M. Clarke and Wolfgang Heinle. Modular translation of statecharts

to SMV. Technical Report CMU-CS-00-XXX, School of Computer Science,

Carnegie Mellon University, April 2000.

[35] Edmund M. Clarke, David E. Long, and Kenneth L. McMillan. Compositional

model checking. In Logic in Computer Science, pages 353–362. IEEE Computer

Society, 1989.

[36] E.M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs.

In Tools and Algorithms for the Construction and Analysis of Systems, volume

2988 of Lecture Notes in Computer Science, pages 168–176. Springer, 2004.

[37] The GNU Compiler Collection. https://gcc.gnu.org/.

[38] Byron Cook, Sumit Gulwani, Tal Lev-Ami, Andrey Rybalchenko, and Mooly

Sagiv. Proving conditional termination. In Computer-Aided Verification, volume

5123 of Lecture Notes in Computer Science, pages 328–340. Springer, 2008.

[39] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice

model for static analysis of programs by construction or approximation of

fixpoints. In Principles of Programming Languages, pages 238–252, 1977.

[40] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-

neth Zadeck. Efficiently computing static single assignment form and the control

dependence graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, October

1991.

[41] Priyanka Darke, Bharti Chimdyalwar, R. Venkatesh, Ulka Shrotri, and Ravindra

Metta. Over-approximating loops to prove properties using bounded model

checking. In Design, Automation & Test in Europe (DATE), pages 1407–1412.

EDA Consortium, 2015.

[42] Cristina David, Pascal Kesseli, Daniel Kroening, and Matt Lewis. Danger

invariants. In Formal Methods, volume 9995 of Lecture Notes in Computer

Science, pages 182–198. Springer, 2016.

[43] Giorgio Delzanno. Constraint-based verification of parameterized cache coherence

protocols. Form. Methods Syst. Des., 23(3):257–301, November 2003.

[44] A. Donaldson, L. Haller, D. Kroening, and Philipp Rümmer. Software Verifi-

cation Using k-Induction. In SAS, volume 6887 of Lecture Notes in Computer

Science, pages 351–368. Springer, 2011.

[45] N. Eén and N. Sörensson. Temporal induction by incremental SAT solving.

Electronical Notes in Theoretical Computer Science, 89:4:543–560, 2003.

[46] Alain Finkel and Jérôme Leroux. How to compose Presburger-accelerations:

Applications to broadcast protocols. In Foundations of Software Technology

and Theoretical Computer Science (FST TCS), volume 2556 of LNCS, pages

145–156. Springer, 2002.

[47] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.

Saxe, and Raymie Stata. Extended static checking for java. In Programming

Language Design and Implementation, pages 234–245. ACM, 2002.

[48] Robert W. Floyd. Assigning meanings to programs. In Proc. Sympos. Appl.

Math., Vol. XIX, pages 19–32. Amer. Math. Soc., Providence, R.I., 1967.

[49] A C/C++ front-end for Verification. http://www.cprover.org/goto-cc/.

[50] Pierre-Löıc Garoche, Temesghen Kahsai, and Cesare Tinelli. Incremental in-

variant generation using logic-based automatic abstract transformers. In NASA

Formal Methods, volume 7871 of Lecture Notes in Computer Science, pages

139–154. Springer, 2013.

[51] Thierry Gautier, Paul Le Guernic, and Löic Besnard. Signal: A declarative

language for synchronous programming of real-time systems. In Proc. Of a

Conference on Functional Programming Languages and Computer Architecture,

pages 257–277, London, UK, UK, 1987. Springer-Verlag.

[52] Thomas M. Gawlitza and Helmut Seidl. Precise relational invariants through

strategy iteration. In Computer Science Logic, volume 4646 of Lecture Notes in

Computer Science, pages 23–40. Springer, 2007.

[53] Patrice Godefroid. Compositional dynamic test generation. In Proceedings

of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’07, pages 47–54, New York, NY, USA, 2007.

ACM.

[54] Patrice Godefroid, Shuvendu K. Lahiri, and Cindy Rubio-González. Statically

validating must summaries for incremental compositional dynamic test gener-

ation. In Proceedings of the 18th International Conference on Static Analysis,

SAS’11, pages 112–128, Berlin, Heidelberg, 2011. Springer-Verlag.

[55] Susanne Graf and Hassen Säıdi. Construction of abstract state graphs with PVS.

In Computer-Aided Verification, volume 1254 of Lecture Notes in Computer

Science, pages 72–83. Springer, 1997.

[56] Bhargav S. Gulavani, Supratik Chakraborty, Aditya V. Nori, and Sriram K. Ra-

jamani. Dagger Benchmarks Suite. http://www.cfdvs.iitb.ac.in/~bhargav/

dagger.php, 2014.

[57] Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan. Program

analysis as constraint solving. In Programming Language Design and Implemen-

tation, pages 281–292. ACM, 2008.

[58] Ashutosh Gupta and Andrey Rybalchenko. InvGen Benchmarks Suite. http:

//pub.ist.ac.at/~agupta/invgen/, 2014.

[59] G. Hagen and C. Tinelli. Scaling up the formal verification of Lustre programs

with SMT-based techniques. In FMCAD, pages 1–9. IEEE Computer Society,

2008.

[60] David Harel. Statecharts: A visual formalism for complex systems. Sci. Comput.

Program., 8(3):231–274, June 1987.

[61] David Harel and Amnon Naamad. The Statemate semantics of statecharts.

ACM Trans. Softw. Eng. Methodol., 5(4):293–333, October 1996.

[62] Mark Harman and Robert M. Hierons. An overview of program slicing. Software

Focus, 2(3):85–92, 2001.

[63] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Refinement of

trace abstraction. In Static Analysis (SAS), volume 5673 of LNCS, pages 69–85.

Springer, 2009.

[64] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Termination

analysis by learning terminating programs. In Armin Biere and Roderick Bloem,

editors, Computer Aided Verification - 26th International Conference, CAV 2014,

Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July

18-22, 2014. Proceedings, volume 8559 of Lecture Notes in Computer Science,

pages 797–813. Springer, 2014.

[65] Hossein Hojjat, Radu Iosif, Filip Konecný, Viktor Kuncak, and Philipp Rümmer.

Accelerating interpolants. In Automated Technology for Verification and Analysis

(ATVA), LNCS, pages 187–202. Springer, 2012.

[66] Gerard Holzmann. Spin Model Checker, the: Primer and Reference Manual.

Addison-Wesley Professional, first edition, 2003.

[67] JavaBDD. http://javabdd.sourceforge.net/.

[68] Bertrand Jeannet, Peter Schrammel, and Sriram Sankaranarayanan. Abstract

acceleration of general linear loops. In Principles of Programming Languages

(POPL), pages 529–540. ACM, 2014.

[69] Cliff B Jones. Specification and design of (parallel) programs. In IFIP congress,

volume 83, pages 321–332, 1983.

[70] Temesghen Kahsai, Yeting Ge, and Cesare Tinelli. Instantiation-based invariant

discovery. In NASA Formal Methods, volume 6617 of Lecture Notes in Computer

Science, pages 192–206. Springer, 2011.

[71] Anvesh Komuravelli, Nikolaj Bjørner, Arie Gurfinkel, and Kenneth L. McMillan.

Compositional verification of procedural programs using horn clauses over inte-

gers and arrays. In Formal Methods in Computer-Aided Design, pages 89–96.

IEEE Computer Society, 2015.

[72] D. Kroening, M. Lewis, and G. Weissenbacher. Under-approximating loops in C

programs for fast counterexample detection. In Computer-Aided Verification,

volume 8044 of Lecture Notes in Computer Science, pages 381–396. Springer,

2013.

[73] Daniel Kroening, Matt Lewis, and Georg Weissenbacher. Under-approximating

loops in C programs for fast counterexample detection. In Computer Aided

Verification (CAV), pages 381–396. Springer, 2013.

[74] Daniel Kroening, Matt Lewis, and Georg Weissenbacher. Proving safety with

trace automata and bounded model checking. In Formal Methods (FM), volume

9109 of LNCS. Springer, 2015.

[75] Akash Lal and Shaz Qadeer. Reachability Modulo Theories, pages 23–44. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2013.

[76] Diego Latella, Istvan Majzik, and Mieke Massink. Automatic verification of a

behavioural subset of UML statechart diagrams using the Spin model-checker.

Formal Aspects of Computing, 11(6):637–664, 1999.

[77] K. Rustan M. Leino. Dafny: An automatic program verifier for functional

correctness. In Logic for Programming, Artificial Intelligence, and Reasoning,

volume 6355 of Lecture Notes in Computer Science, pages 348–370. Springer,

2010.

[78] Yi Li, Aws Albarghouthi, Zachary Kincaid, Arie Gurfinkel, and Marsha Chechik.

Symbolic optimization with SMT solvers. In Principles of Programming Lan-

guages, pages 607–618. ACM, 2014.

[79] Kumar Madhukar, Peter Schrammel, and Mandayam K. Srivas. Compositional

safety refutation techniques. In Deepak D’Souza and K. Narayan Kumar,

editors, Automated Technology for Verification and Analysis - 15th International

Symposium, ATVA 2017, Pune, India, October 3-6, 2017, Proceedings, volume

10482 of Lecture Notes in Computer Science, pages 164–183. Springer, 2017.

[80] Kumar Madhukar, Mandayam K. Srivas, Björn Wachter, Daniel Kroening, and

Ravindra Metta. Verifying synchronous reactive systems using lazy abstraction.

In Wolfgang Nebel and David Atienza, editors, Proceedings of the 2015 Design,

Automation & Test in Europe Conference & Exhibition, DATE 2015, Grenoble,

France, March 9-13, 2015, pages 1571–1574. ACM, 2015.

[81] Kumar Madhukar, Björn Wachter, Daniel Kroening, Matt Lewis, and Man-

dayam K. Srivas. Accelerating invariant generation. In Roope Kaivola and

Thomas Wahl, editors, Formal Methods in Computer-Aided Design, FMCAD

2015, Austin, Texas, USA, September 27-30, 2015., pages 105–111. IEEE, 2015.

[82] K. L. Mcmillan. Lazy abstraction with interpolants. In Computer-Aided Ver-

ification, volume 4144 of Lecture Notes in Computer Science, pages 123–136.

Springer, 2006.

[83] Kenneth L. McMillan. Lazy abstraction with interpolants. In Computer Aided

Verification (CAV), pages 123–136. Springer, 2006.

[84] Erich Mikk, Yassine Lakhnech, Michael Siegel, and Gerard J. Holzmann. Im-

plementing statecharts in promela/spin. In Proceedings of the Second IEEE

Workshop on Industrial Strength Formal Specification Techniques, WIFT ’98,

pages 90–, Washington, DC, USA, 1998. IEEE Computer Society.

[85] Antoine Miné. Inferring sufficient conditions with backward polyhedral under-

approximations. Electr. Notes Theor. Comput. Sci., 287:89–100, 2012.

[86] MiniSAT. http://minisat.se/MiniSat.html.

[87] J. Misra and K. M. Chandy. Proofs of networks of processes. IEEE Trans. Softw.

Eng., 7(4):417–426, July 1981.

[88] David Monniaux and Peter Schrammel. Speeding up logico-numerical strategy

iteration. In Static Analysis Symposium, volume 8723 of Lecture Notes in

Computer Science, pages 253–267. Springer, 2014.

[89] Kedar S. Namjoshi and Richard J. Trefler. On the completeness of compositional

reasoning methods. ACM Trans. Comput. Log., 11(3), 2010.

[90] A. Pnueli. Logics and models of concurrent systems. chapter In Transition

from Global to Modular Temporal Reasoning About Programs, pages 123–144.

Springer-Verlag New York, Inc., New York, NY, USA, 1985.

[91] Thomas W. Reps, Shmuel Sagiv, and Greta Yorsh. Symbolic implementation

of the best transformer. In Verification, Model Checking, and Abstract Inter-

pretation, volume 2937 of Lecture Notes in Computer Science, pages 252–266.

Springer, 2004.

[92] A. W. Roscoe, C. A. R. Hoare, and Richard Bird. The Theory and Practice of

Concurrency. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1997.

[93] A.W. Roscoe and Z. Wu. Verifying Statemate statecharts using CSP and FDR.

In Formal Methods and Software Engineering, volume 4260 of LNCS, pages

324–341. Springer, 2006.

[94] Sriram Sankaranarayanan, Franjo Ivancic, Ilya Shlyakhter, and Aarti Gupta.

Static analysis in disjunctive numerical domains. In Static Analysis Symposium,

volume 4134 of Lecture Notes in Computer Science, pages 3–17. Springer, 2006.

[95] Peter Schrammel. Challenges in decomposing encodings of verification prob-

lems. In Horn Clauses for Verification and Synthesis, Electronic Proceedings in

Theoretical Computer Science, pages 29–32, 2016.

[96] Peter Schrammel and Daniel Kroening. 2LS for Program Analysis - (Competition

Contribution). In Tools and Algorithms for the Construction and Analysis of

Systems, volume 9636 of Lecture Notes in Computer Science, pages 905–907.

Springer, 2016.

[97] Peter Schrammel, Daniel Kroening, Martin Brain, Ruben Martins, Tino Teige,

and Tom Bienmüller. Successful use of incremental BMC in the automotive

industry. In Formal Methods for Industrial Critical Systems, volume 9128 of

Lecture Notes in Computer Science, pages 62–77. Springer, 2015.

[98] Roberto Sebastiani and Silvia Tomasi. Optimization in SMT with LA cost

functions. In International Joint Conference on Automated Reasoning, volume

7364 of Lecture Notes in Computer Science, pages 484–498. Springer, 2012.

[99] Ondrej Sery, Grigory Fedyukovich, and Natasha Sharygina. Interpolation-based

function summaries in bounded model checking. In Haifa Verification Conference,

volume 7261 of Lecture Notes in Computer Science, pages 160–175. Springer,

2011.

[100] M. Sheeran, S. Singh, and G. St̊almarck. Checking safety properties using

induction and a SAT-solver. In FMCAD, volume 1954 of Lecture Notes in

Computer Science, pages 108–125. Springer, 2000.

[101] SPARK. http://www.spark-2014.org/, 2014.

[102] Aditya V. Thakur and Thomas W. Reps. A method for symbolic computation

of abstract operations. In Computer-Aided Verification, volume 7358 of Lecture

Notes in Computer Science, pages 174–192. Springer, 2012.

[103] Tamás Tóth and András Vörös and István Majzik. K-induction based verification

of real-time safety critical systems. In DepCoS-RELCOMEX, 2013.

[104] Björn Wachter, Daniel Kroening, and Joël Ouaknine. Verifying multi-threaded

software with Impact. In Formal Methods in Computer-Aided Design (FMCAD),

pages 210–217, 2013.

[105] Qianchuan Zhao and B.H. Krogh. Formal verification of statecharts using

finite-state model checkers. Control Systems Technology, IEEE Transactions on,

14(5):943–950, Sept 2006.

[106] Qianchuan Zhao and Bruce H. Krogh. Formal verification of statecharts us-

ing finite-state model checkers. In In American Control Conference, 2001.

Proceedings of the 2001, pages 313–318. IEEE, 2001.

