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Abstract

Optimization problems on graphs are central to theoretical computer science and have many

practical applications. Of special interest are optimization problems that are computationally

hard. Since NP-hard optimization problems aren’t expected to be solved efficiently, many

approaches have emerged in tackling them. Obtaining approximate solutions to these NP-hard

problems is a central challenge in this field. When it’s not easy to obtain a deterministic algo-

rithm for approximation, we use randomized algorithms. While NP-hardness captures the

complexity of problems that have a ‘yes’ or ‘no’ answer, the class #P-hard encompasses prob-

lems where one counts the number of solutions itself. Obtaining randomized approximation

algorithms is also the main goal in the field of counting problems.

Another approach is to give an exact algorithm with some parameter of the problem fixed.

The goal here is to design algorithms which run in time polynomial in parameter which is

assumed to be fixed. Such problems are called fixed-parameter tractable.

The first part of the thesis is concerned with optimization problems arising out of transitivity

in binary relations. The binary relation is naturally viewed as a directed graph and the

associated optimization problems can then be posed in terms of graph theoretic problems

on the underlying graph. The transitivity structure in a binary relation is a fundamental

object that has a rich history in multiple areas of mathematics and computer science. Since

transitivity is a desired structure, it is approached in multiple ways. Two most common are

transitive closures and transitive subgraphs. The problems can then be posed in the form of

an optimal or approximate solution. Problems have also been studied under the notion of

distance from a transitive structure.

We present an algorithm that, given a directed graph on n vertices and m arcs outputs

a maximal transitive subgraph in time O(n2 + nm). In the case of Maximum Transitive

Subgraph (MTS) problem, we give a 0.25-approximation for the general problem and a

0.874-approximation for the triangle-free case (underlying graph being triangle-free). We

also give an upper bound on the size of MTS being m/4+ cm4/5 for some c > 0. Further,

we give exact algorithms for the MTS problem in different settings. We prove that the MTS

problem is Fixed-parameter tractable when parameterized by treewidth.

In the later part of the thesis, we study the problem of Popular Matchings. Here our goal is to

count the number of popular matchings in a given instance. We give some hardness and

approximation results for the same.
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Chapter 1

Introduction

Optimization problems on graphs are central to theoretical computer science and have many

practical applications. Of special interest are optimization problems that are computationally

hard. Since NP-hard optimization problems aren’t expected to be solved efficiently, many

approaches have emerged in tackling them. Obtaining approximate solutions to these NP-hard

problems is a central challenge in this field. When it’s not easy to obtain a deterministic

algorithm for approximation, we use randomized algorithms. While NP-hardness captures

the complexity of problems that have a ‘yes’ or ‘no’ answer, the class #P-hard encompasses

problems where one counts the number of solutions itself. Obtaining randomized approxi-

mation algorithms is also the main goal in the field of counting problems. An important

class of such algorithms is fully polynomial-time randomized approximation scheme or FPRAS.

Jerrum and Sinclair [JS89] gave the first such algorithm for approximately-counting the

number of perfect matchings in a graph (of high average degree). Later Jerrum et al [JSV01]

generalized this to graph with vertices of any degrees. This problem is equivalent to the

problem of approximating the permanent.

Another approach is to give an exact algorithm with some parameter of the problem fixed.

The goal here is to design algorithms which run in time polynomial in parameter which is

assumed to be fixed. Such problems are called fixed-parameter tractable. First systematic

study of parameterized complexity was done by Downey and Fellows [DF99]. More recent

account of the field can be found in the texts [FG06, Nie06, CFK+
15].

The first part of the thesis is concerned with optimization problems arising out of transitivity

in binary relations. The binary relation is naturally viewed as a directed graph and the

associated optimization problems can then be posed in terms of graph theoretic problems

on the underlying graph. The transitivity structure in a binary relation is a fundamental

object that has a rich history in multiple areas of mathematics and computer science. Since

transitivity is a desired structure, it is approached in multiple ways. Two most common are

1



Chapter 1 Introduction

transitive closures and transitive subgraphs. The problems can then be posed in the form of

an optimal or approximate solution. Problems have also been studied under the notion of

distance from a transitive structure.

In the later part of the thesis, we study the problem of Popular Matchings. Here our goal is to

count the number of popular matchings in a given instance. We give some hardness and

approximation results for the same.

Transitivity

Given a directed graph G = (V ,E), a subgraph S of G is called transitive if for every a,b, c ∈ V ,

if S contains the edges a→ b and b→ c, then it also contains the edge a→ c. Our goal is to

maximize the number of edges present in a transitive subgraph. For this we consider two

questions – maximal and maximum transitive subgraphs.

Maximal Transitive Subgraph

In [CGJR15], we consider the problem of maximal transitive subgraph – output a transitive

subgraph of maximal size (in terms of number of edges) contained in a given directed graph.

Let’s consider two related problems first. Let G be a directed graph with n vertices and

m edges. Given a transitive subgraph S of G, can we add any more edges to S and still

maintain transitivity? We can check the maximality of S in time O(nw+1) using a standard

algorithm (where O(nw) is the complexity of multiplying two n× n matrices.) A related

problem is – given a transitive subgraph S of G, compute a maximal transitive subgraph of

G that contains S. The naive algorithm takes O(nw+2) time.

In [CGJR15], we give an algorithm that computes a maximal transitive subgraph in O(n2 +

nm) time. The interesting part of our algorithm is that we avoid checking for maximality

explicitly but output is still maximal. This is the first such algorithm that improves upon the

standard techniques which have a complexity of O(nw+1).

Maximum Transitive Subgraph

We then study the maximum transitive subgraph (MTS) problem – compute a transitive

subgraph of largest size contained in a given directed graph. This problem was proven to be

NP-complete by Yannakakis in [Yan78]. We start by studying approximation algorithms for

this problem.
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The MTS problem is a generalization of well-studied hard problems. For the class of triangle-

free graphs, the problem of finding a maximum transitive subgraph in a directed graph is

the same problem as the MAX-DICUT problem. MAX-DICUT has well known hardness and

inapproximability results.

Approximation: In [CGJR15], we give a simple 0.25-approximation algorithm of obtaining

an MTS in a general graph. For the case where the underlying undirected graph is triangle

free, we give a 0.874-approximation for the MTS problem. The idea there is to look at the

related problem of directed maximum cuts in the same graph. To the best of our knowledge,

no approximation algorithms are present in the literature which present any ratio better

than 0.25.

Upper Bound: Another interesting questions is how large the MTS can theoretically be. We

study this problem in [CJ16b]. In a triangle-free (underlying undirected) graph, we know

that there is a one-to-one correspondence between directed-cuts and transitive subgraphs.

We prove that in triangle free graphs with m edges, any directed cut is of size at most

m/4+ cm4/5 for some c > 0. This gives the same bound for the size of an MTS. This also

shows that the approach of finding MTS approximations via bipartite subgraphs can’t have

better constant approximation ratio than 1/4.

Parameterization: Further we investigate the parameterized complexity of the MTS problem in

[CJ16a]. A parameterization of a problem assigns an integer k to each input instance I and

we say that a the problem is fixed-parameter tractable if there is an algorithm that solves the

problem in time f(k) · |I|O(1). Here, f is any computable function.

Arnborg et al. [ALS88] showed that the problem of MTS is fixed parameter tractable. They

give an alternate proof of Courcelle’s theorem [Cou90] and express the MTS problem in

Extended Monadic Second Order, thus giving a meta-algorithm for the problem. This algorithm

is not explicit and f is known to be only a computable function.

The MTS problem has been studied in a more general setting as the Transitivity Editing

problem where the goal is to compute the minimum number of edge insertions or deletions

in order to make the input digraph transitive. Weller et al [WKNU12] prove its NP-hardness

and give a fixed-parameter algorithm that runs in time O(2.57k+n3) for an n-vertex digraph

if k edge modifications are sufficient to make the digraph transitive. This result also applies

to the case where only edge deletions are allowed – the MTS problem. Our result differs

from [WKNU12] because we parameterize by treewidth.
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Raman et al [RS07] show that the problem of deciding whether a directed graph has a

transitive induced subgraph of size k is fixed-parameter tractable.

We first give a poly-time algorithm for computing an MTS in a directed tree. We generalize

this algorithm. For a given directed graph with treewidth at most k, we give an algorithm

which is runs in time O(nk2). The idea here is to recursively use separators and combine the

solutions of the two parts. We improve this algorithm by performing dynamic programming

on a tree-decomposition of the input and present an algorithm that runs in time O(4k2n2).

Popular Matchings

A popular matching problem instance I comprises a set A of agents and a set H of houses. Each

agent a in A ranks (numbers) a subset of houses in H (lower rank specify higher preference).

The ordered list of houses ranked by a ∈ A is called a’s preference list. For an agent a, let

Ea be the set of pairs (a,h) such that the house h appears on a’s preference list. Define

E = ∪a∈AEa. The problem instance I is then represented by a bipartite graph G = (A∪H,E)

and a preference list for each a ∈ A. A matching M of I is a matching of the bipartite graph

G. We use M(a) to denote the house assigned to agent a in M and M(h) to denote the agent

that is assigned house h in M. An agent prefers a matching M to a matching M ′ if (i) a is

matched in M and unmatched in M ′, or (ii) a is matched in both M and M ′ but a prefers

the house M(a) to M ′(a). Let φ(M,M ′) denote the number of agents that prefer M to M ′.

We say M is more popular than M ′ if φ(M,M ′) > φ(M ′,M), and denote it by M � M ′. A

matching M is called popular if there exists no matching M ′ such that M ′ �M.

The popular matching problem was introduced by Gärdenfors in [Gär75] as a variation of the

stable marriage problem1 [GS62]. The idea of popular matching has been studied extensively

in various settings in recent times [AIKM07, SM10, MI11, Mah06, KMN11, McC08, Nas14],

mostly in the context where only one side has preference of the other side but the other side

has no preference at all. We will also focus on this setting. Much of the earlier work focuses

on finding efficient algorithms to output a popular matching, if one exists. Problems have

also been studied where both sides have preferences [BIM10, Kav14].

The problem of counting the number of “solutions" to a combinatorial question falls into

the complexity class #P. An area of interest that has recently gathered a certain amount of

attention is the problem of counting stable matchings in graphs. The Gale-Shapely algorithm

[GS62] gives a simple and efficient algorithm to output a stable matching, but counting

1Given n men and n women, where each person has ranked all members of the opposite sex in order of
preference, marry the men and women together such that there are no two people of opposite sex who would
both rather have each other than their current partners. When there are no such pairs of people, the set of
marriages is deemed stable.
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them was proved to be #P-hard by Irving and Leather in [IL86]. Bhatnagar et al. [BGR08]

showed that the random walks on the stable marriage lattice are slowly mixing, even in very

restricted versions of the problem. Chebolu et al. [CGM10] give further evidence towards

the conjecture that there may not exist an FPRAS at all for this problem.

We look at generalizations of the standard version - preferences with ties and houses with

capacities. In the case where preferences could have ties, it is already known that the

counting version is #P-hard as shown by Nasre in [Nas14]. We give an FPRAS for this

problem. In the case where houses have capacities2 , we prove that the counting version

is #P-hard. While the FPRAS for the case of ties is achieved via a reduction to a well

known algorithm, the #P-hardness for the capacitated case is involved, making it the more

interesting setting of the problem.

2A house could have multiple rooms which can be occupied by different people, some of whom may have a
different preference for the same house.





Part I

Transitivity in Relations
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Chapter 2

Introduction to Transitivity

Transitivity is a fundamental property of relations. Given the importance of relations and

the transitivity property, it is not surprising that various related problems have been studied

in detail and have found widespread application in different fields of study.

Some of the fundamental problems related to transitivity that have been long studied are

- given a relation ρ, checking whether ρ is transitive, finding the transitive closure of ρ,

finding the maximum transitive relation contained in ρ, partitioning ρ into smallest number

of transitive relations. Various algorithms have been proposed for these problems and some

hardness results have also been proved.

In this paper, we study two related problems on transitivity. First - given a relation, obtain

a maximal transitive relation contained in it. It is straight-forward to see that this can be

solved in poly-time, hence our goal is to do this as efficiently as possible. Second - given a

relation, obtain a maximum transitive relation contained it. This problem was proven to be

NP-complete in [Yan78]. Here our approach is to find approximate solutions.

The problem of finding a maximum transitive relation contained in a given relation is a

generalisation of well-studied hard problems. For the class of triangle-free graphs, the

problem of finding a maximum transitive subgraph in a directed graph is the same problem

as the MAX-DICUT1 problem. MAX-DICUT has well known inapproximability results.

We can also relate it to a problem2 of optimization on a 3SAT instance. We look at the

relation as a directed graph G = (V ,E), where |V | = n. For every pair for distinct vertices

1Given a directed graph G and an arc weight function w : E(G)→ R+, the maximum directed cut problem
(max-dicut) is that of finding a directed cut with maximum total weight.

2This is different from MAX-3SAT problem

9



Chapter 2 Introduction to Transitivity

(i, j) in V , create a boolean variable xij. Consider the following 3SAT formula.

C =
∧

16i<j<k6n

(xij ∨ xik ∨ xkj)

Let C ′ be a formula derived from C such that any literal with variable xij is removed if

(i, j) /∈ E. It is easy to see that a solution to C ′ represents a subgraph of G. Specifically,

a solution to C ′ is also transitive. To see this, observe that for every triplet (i, j,k), if a

clause (xij ∨ xik ∨ xkj) is satisfied, then either the edge (i, j) is included or at least one of the

edges (i,k) or (k, j) is excluded. To get the maximum transitive subgraph, the solution must

maximize the number of variables set to 1. To conclude, the maximum transitive subgraph

problem is same as the problem of finding a satisfying solution to a 3SAT formula that also

maximizes the number of variables assigned the value ‘true’.



Chapter 3

Maximal Transitive Subgraph

3.1 Maximal transitive relation finding algorithms

The usual greedy algorithm for finding a maximal substructure - satisfying a given property

P - starts with the empty set and incrementally grows the substructure while maintaining the

property P. Finally it ends when the set becomes maximal. Thus checking for maximality is

a subroutine for the usual greedy algorithm.

In the case of finding a maximal transitive relation contained in a given relation the usual

greedy algorithm takes O(n5) time, where n is the size of the set on which the binary

relation is defined. Using matrix multiplication as a subroutine for checking maximality

one can improve the running time of the greedy algorithm to O(nω+2), where the matrix-

multiplication of two n×n matrices takes O(nω) time.

The other greedy approach for finding a maximal substructure could be to start with an

object O and slowly shrink the object until it satisfies the property P. Unfortunately, this

technique may not yield a maximal substructure - the maximality may not be satisfied at the

end.

In this paper we design an algorithm, for finding a maximal transitive sub-relation in a given

relation ρ. Our algorithm runs in time O(n3) where n is the size of set on which the relation

ρ is defined. Our algorithm does not use any subroutine for checking for maximality. In fact

the best known algorithm for checking maximality in this case has running time O(nω+1)

which is clearly more than the running time of our algorithm.

Instead our algorithm follows the approach of the second kind of greedy algorithms dis-

cussed above. Given the fact that usually this approach does not guarantee that the output

is maximal, we have to make some clever modification. The algorithm as such is simple but

the key is the proof of correctness, which is quite involved.

11



Chapter 3 Maximal Transitive Subgraph

In fact we present an algorithm that runs in time O(nm+ n2) where, n is the size of the

set on which the relation is defined and m is the size of the relation ρ. To the best of our

knowledge, no better algorithm for finding a maximal transitive sub-relation is known.

3.1.1 O(n3) algorithm for finding maximal transitive sub-relation

Algorithm 1: Finding a maximal transitive sub-relation
Input : An n×n matrix A = (aij) representing a relation.
Output : A matrix T = (tij) which is a maximal transitive sub-relation contained in A.

1 for i← 1 to n do
2 for j← 1 to n, j 6= i do
3 if aij = 1 then
4 for k = 1 to n do
5 if k 6= j and aik = 0 then
6 set ajk = 0

7 end
8 if k 6= i and akj = 0 then
9 set aki = 0

10 end
11 end
12 end
13 end
14 end
15 T ← A

16 return A

Theorem 3.1. Algorithm 1 correctly finds a maximal transitive sub-relation in a given relation in

time O(n3).

Proof. It is easy to see that the time complexity of the algorithm is O(n3). For the proof

of correctness, all we need to prove is that the output T of the algorithm is transitive and

maximal. The transitivity of the output T is proved in Lemma 3.5 and the maximality of T is

proved in Lemma 3.6.

3.1.2 Proof of Correctness of Algorithm 1

Before we prove the correctness of Algorithm 1, let us make some simple observations about

the algorithm. In this section we will treat the binary relation on a set S as a directed graph

with vertex set S. So the Algorithm 1 takes a directed graph A on n vertices (labelled 1 to n)

and outputs a directed transitive subgraph T that is maximal, that is, one cannot add arcs
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from G to T to obtain a bigger transitive graph. In the algorithm, note that changing an entry

aij from 1 to 0 implies deletion of the arc (i, j).

Definition 3.2. At any stage of the Algorithm 1 we say the arc (a,b) is visited if at some

earlier stage of the algorithm when i = a in Line 1 and j = b in Line 2 we had aij = 1.

Remark 3.3. We first note the following obvious but important facts of the Algorithm 1

(1) No new arc is created during the algorithm because it never changes an entry aij in

the matrix A from 0 to 1. It only deletes arcs.

(2) Line 1, 2 and 3 of the algorithm implies that the algorithm visits the arcs one by one

(in a particular order). And while visiting an arc it decides whether or not to delete

some arcs.

(3) Since in Line 1 the i increases from 1 to n so the algorithm first visits the arcs starting

from vertex 1 and then the arcs starting from vertex 2 and then the arcs starting from

vertex 3 and so on.

(4) Arcs are deleted only in Line 6 and Line 9 in the algorithm.

(5) While the for loop in Line 1 is in the i-th iteration (that is when the algorithm is visiting

an arc starting at i) no arc starting from the i is deleted. In Line 6 only arcs starting

from j are deleted and j 6= i from Line 2. And in Line 9 only arcs ending in i are

deleted.

(6) In Line 2 the condition j 6= i is given just for ease of understanding the algorithm. As

such even if the condition was not there the algorithm would have the same output

because if j = i in Line 2 and the algorithm pass line 3 (that is aii = 1) then Line 6

would read as “if aik = 0 write aik = 0” and Line 9 would read as “if aki = 0 write

aki = 0”, both of which are no action statement.

(7) Similarly, in Line 5 the condition k = j is given just for ease of understanding of the

algorithm. If the condition was not there even then the algorithm would have produced

the same result because from Line 3 we already have aij = 1 and thus if k = j then

aik = aij 6= 0.

(8) Similarly, the condition k 6= i in Line 9 has no particular role in the algorithm.

One important lemma for the proof of correctness is the following:

Lemma 3.4. An arc once visited in Algorithm 1 cannot be deleted later on.
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Proof. Let us prove by contradiction.

Suppose at a certain point in the algorithm’s run the arc (i, j) has already been visited, and

then when the algorithm is visiting some other arc starting from vertex r the algorithm

decides to delete the arc (i, j).

If such an arc (i, j) which is deleted after being visited exists then there must a first one

also. Without loss of generality we can assume that the arc (i, j) is the first such arc: that is

when the algorithm decides to delete the arc (i, j) no other arc that has been visited by the

algorithm has been deleted.

By point number 3 in Remark 3.3, r > i. From point number 5 in Remark 3.3 we can say that

r 6= i. So we have r > i.

We now consider two cases depending on whether the algorithm decides to delete the arc

(i, j) is Line 6 or Line 9.

r

i

j i

j

k

Case I Case II

Figure 3.1: Diagrams of the two cases for Lemma 3.4

Case I. Suppose (i, j) is deleted in Line 6, when the algorithm was visiting an arc starting

from vertex r. Since the algorithm is deleting (i, j) in Line 6 so from Line 3 and Line 5 we

have, at that stage, ari = 1 and arj = 0 (just like in Figure 3.1(left)).

Since no arc is ever created by the algorithm (point 1 in Remark 3.3), ari was 1 when the

arc (i, j) was visited. So at the stage when the algorithm was visiting arc (i, j), arj must be 1,

otherwise (r, i) would be deleted by Line 9. Thus (r, j) was deleted after visiting the arc (i, j)

and but before time (i, j) is being deleted.

By Remark 3.3(5), (r, j) cannot be deleted when visiting an arc starting from r. So (r, j) must

have been deleted when visiting an arc starting from vertex r1 and r1 < r.

We now split this case into two cases depending on whether r1 = j or r1 6= j.

Case Ia: (r1 6= j)
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r

i

j

r1

r

i

j

k

Case Ia Case Ib

Figure 3.2: Diagram for subcases of Case 1 for Lemma 3.4

By Remark 3.3(5) we know at the set of arcs starting from vertex r1 must have remained

unchanged during the r1-th iteration of Line 1.

But since in the r1-th iteration of Line 1 the arc (r, j) was deleted so (r1, r) must have been

present while (r1, j) was absent. Also if ar1i = 0 when visiting the arc (r1, r), the algorithm

would have found ar1r = 1 and ar1i = 0 and in that case would have deleted (r, i) is Line 6.

That would contradict that fact the the arc (r, i) was present when the arc (i, j) was being

deleted. Thus at the start of the r1-th iteration of Line 1 the situation would have been like

in Figure 3.2(left)).

But in that case, when visiting (r1, i) the algorithm would have found ar1i = 1 and ar1j = 0

and then would have deleted the arc (i, j). But by assumption the arc (i, j) is deleted when

visiting arc (r, i) and not an arc starting at r1. So we get a contradiction. And thus if s 6= j
we have a contradiction.

Case Ib: (r1 = j)

Let the arc (r, j) be deleted when the algorithm was visiting the arc (r1,k) (that is (j,k)) for

some k. Since the arc (j,k) is deleted after the arc (i, j) is visited and before the arc (r, i) is

visited, so i < j < r.

Now consider the stage when the arc (j,k) is visited by the algorithm. If arc (i, j) is not

present at that time then the arc (i, j) would have been deleted which would contradict the

assumption that the arc (i, j) is deleted when the algorithm was visiting (r, i). So just before

the stage when the algorithm was visiting arc (j,k) the situation would have been like in

Figure 3.2(right)).

So the arc (i,k) was present when the algorithm was visiting the arc (j,k). But since i < j so

the arc (i,k) must have been visited already. By the minimality condition that (i, j) is the

first arc that is visited and then deleted and since the arc (i, j) is deleted when visiting arc
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(r, i), so when the algorithm just started visiting the arc (r, i) the arc (i,k) must be present.

Also at that stage the arc (r,k) was absent as it was absent when visiting the arc (j,k) and

j < r. So when the algorithm just started to visit (r, i) the situation would have been like in

Figure 3.2(right)) except the arc (r, j) would also have been missing.

When the algorithm was visiting the arc (j,k) the arc (r,k) was not there. But when the

algorithm visited the arc (i, j) the arc (r,k) must have been there, else the arc (r, i) would have

been deleted at that stage, which would contradict our assumption that (i, j) was deleted

when visiting (r, i). So the arc (r,k) must have been deleted after the arc (i,k) was visited

but before the arc (j,k) was visited.

If the arc is deleted when visiting some arc starting with k then it means that i < k < j. Now

consider the stage when the algorithm was visiting (r, i). As described earlier the situation

would have been like in Figure 3.2(right)) except the arc (r, j) would also have been missing.

Since k < j so the algorithm would have deleted (i,k) before it deleted (i, j). And since the

algorithm has also visited (i, k) earlier so this contradicts the the minimality condition of

(i, j) being the first visited arc to be deleted.

The other case being the arc deleted when visiting the some arc ending in r, say (t, r), where

i < t < j. Thus during the t-th iteration of Line 1 the arcs (t, r) is present while the arc (t,k)

is absent. Now, since in the t-th iteration the arc (r, j) is not deleted thus it means that the

arc (t, j) was present during the t-th iteration of Line 1. But in that case since arcs (t, j) and

(j,k) are present while (t,k) is not present the algorithm would have deleted the arc (j,k) in

the t-th iteration of Line 1, this contradicts the assumption that the arc (r, j) is deleted in the

j-th iteration of Line 1 when visiting the arc (j,k).

Thus the arc (i, j) cannot be deleted by the algorithm in Line 6 when visiting an arc starting

from r.

Case II. Suppose (i, j) is deleted in Line 9, when the algorithm was visiting an arc starting

from vertex r. In this case j = r. And since r > i so j > i. Say the arc (i, j) is deleted when

visiting arc (j,k), for some vertex k. Since the algorithm is deleting (i, j) in Line 9 so from

Line 3 and Line 8 we have, at that stage, ajk = 1 and aik = 0 (cf. Figure 3.1(left)).

Now if aik was 0 when the algorithm visited the arc (i, j) then the algorithm would have

found aik = 0 and ai,j = 1 and in that case would have deleted the arc (j, k) in Line 6. That

would give a contradiction as in a later stage of the algorithm (in particular in the j-th

iteration of Line 1, with j > i) the arc (j,k) is present. So when the arc (i, j) was visited the

arc (i,k) was present.
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Since by Remark 3.3(5) the arc (i,k) cannot be deleted in the ith iteration of Line 1, so the

arc (i, j) must have been visited in the i-th iteration of Line 1 and must have been deleted by

the algorithm at a later time but before the arc (i, j) is deleted. But this would contradict the

minimality of the arc (i, j).

Hence even in this case also we get a contradiction. So this completes the proof.

The second lemma we need is the following.

Lemma 3.5. The matrix T output by the Algorithm 1 is transitive.

Proof. Suppose tij = 1 = tjk. By Remark 3.3(1) no arc is created. So at all stages and in

particular, at the initial stage aij = ajk = 1. Suppose aik = 0 at the initial stage. Then when

the algorithm visited (i, j) or (j, i) (whichever comes first), the arc (j,k) or (i, j) (respectively)

will be deleted for the lack of the arc (i,k), as aij = ajk = 1 throughout (cf. Figure 3.3).

Thus suppose the arc (i,k) is deleted at some stage, say, r-th iteration of Line 1. Now r > i, j

for otherwise the arc (i,k) would be deleted before the i-th or j-th iteration of Line 1. And

in that case in the i-th or j-th iteration of Line 1 (depending on which of i and j is smaller)

either (j,k) or (i, j) would be deleted. And then at the end at least one of tij and tik must be

0.

But then the arc (i,k) is deleted during the i-th iteration of Line 1 (as i < r). Since no arc is

deleted once it is visited by Lemma 3.4, we have tik = 1. Therefore T is transitive.

i

j

k

Figure 3.3: Diagram for Lemma 3.5

Using Lemma 3.5 and Lemma 3.4 we can finally prove the correctness of the algorithm.

Lemma 3.6. The matrix T output by the Algorithm 1 is a maximal transitive relation contained in

A.

Proof. Now if T is not a maximal transitive sub-relation then there must be some arc (say

(a,b)) such that the transitive closure of T ∪ {(a,b)} is also contained in A.
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Now by Lemma 3.4, an arc once visited can never be deleted. Also the algorithm is visiting

every undeleted arc. Thus T is the collection of visited arcs and these arcs are present at

every stage of the algorithm.

Thus, every arc in the transitive closure of T ∪ {(a,b)} that is not in T must have been deleted

in some iteration of Line 1. Let (i, j) be the first arc to be deleted among all the arcs that are

in the of transitive closure of T ∪ {(a,b)} but not in T .

Clearly the transitive closure of T ∪ {(i, j)} is also contained in A, and all the arcs in the

transitive closure of T ∪ {(i, j)} either is never deleted or is deleted after the arc (i, j) is deleted.

Suppose the arc (i, j) is deleted in the r-th iteration of Line 1. We have r 6= i by Remark 3.3(5)

and by Lemma 3.4 we have r < i.

We now consider two cases depending on whether r is j or not.

r

i

j i

j

k

Case I Case II

Figure 3.4: Diagrams of the two cases for Lemma 3.6

Case I: r 6= j

In this case, since the arc (i, j) was deleted in the r-iteration of Line 1, the arc (i, j) must have

been deleted when the algorithm was visiting the arc (r, i). So at the stage when the arc (i, j)

was deleted, the arc (r, j) must not have been there (else the algorithm wouldn’t have deleted

the arc (i, j)).

If arj = 0 in A, then trj = 0 (by Remark 3.3(1)). But by Lemma 3.4 tri = 1 as the arc (r, i) is

being visited. So T ∪ {(i, j)} is not transitive (cf. Figure 3.4(left)), and the transitive closure of

T ∪ {(i, j)} must contain the arc (r, j). Thus arj = 1 in A, but the arc (r, j) is deleted in some

stage of the algorithm but before the visit of the r-th iteration of Line 1, say, at r1-th iteration

of Line 1, with r1 < r.

Thus the arc (r, j) is in the transitive closure of T ∪ {(i, j)} and it got deleted before the deletion

of arc (i, j). This is a contradiction to the fact that the arc (i, j) was the first arc to be deleted.

So when r 6= j we have a contradiction.

Case II: r = j
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In this case, since the arc (i, j) was deleted in the j-iteration of Line 1, the arc (i, j) must

have been deleted when the algorithm was visiting some arc (j,k), for some vertex k. So at

the stage when the arc (i, j) was deleted, the arc (i,k) must not have been there (else the

algorithm wouldn’t have deleted the arc (i, j)).

If aik = 0 in A, then tik = 0 (by Remark 3.3(1)). But by Lemma 3.4 tjk = 1 as the arc (j,k) is

being visited. So T ∪ {(i, j)} is not transitive (cf. Figure 3.4(right)), and the transitive closure

of T ∪ {(i, j)} must contain the arc (i,k). Thus aik = 1 in A, but the arc (i,k) is deleted in some

stage of the algorithm but before the visit of the j-th iteration of Line 1, say, at r1-th iteration

of Line 1, with r1 < j.

Thus the arc (i,k) is in the transitive closure of T ∪ {(i, j)} and it got deleted before the deletion

of arc (i, j). This is a contradiction to the fact that the arc (i, j) was the first arc to be deleted.

So when r = j we have a contradiction.

Since in both the case we face a contradiction so we have that the output T is a maximal

transitive relation contained in A.

3.1.3 Better running time analysis of Algorithm 1

If we do a better analysis of the running time of the Algorithm 1 we can see that the

algorithm has running time O(n2+nm). To see it more formally consider a new pseudocode

of the algorithm that we present as Algorithm 2. It is not hard to see that both the algorithms

are basically same.

Theorem 3.7. Algorithm 2 correctly finds a maximal transitive relation contained in a given binary

relation in O(n2 +mn), where m is the number of 1’s in A.

Proof. The proof for correctness is same as in Theorem 3.1. We calculate only the time

complexity of the algorithm and it is given by

n∑
i=1

(n+ kin), (where ki is the number of 1’s in the ith row)

= n2 +n

n∑
i=1

ki = n
2 +mn.
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Algorithm 2: Finding a maximal transitive sub-relation
Input : An n×n matrix A = (aij) representing a binary relation.
Output : A matrix T = (tij) which is a maximal transitive relation contained in the given binary

relation A.

1 for i← 1 to n do
2 Initialize Bi = ∅
3 for each s← 1 to n, j 6= i do
4 if aij = 1 then
5 Include j in Bi
6 end
7 end
8 for each j ∈ Bi do
9 for each k = 1 to n do

10 if k 6= j and aik = 0 then
11 Make ajk = 0

12 end
13 if k 6= i and akj = 0 then
14 Make aki = 0
15 end
16 end
17 end
18 end
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Maximum Transitive Relation

In this chapter, we continue the study of transitive structures in a directed graph. Our goal

is to compute the largest transitive subgraph (in terms of number of edges) contained within

a digraph.

4.1 Approximation

In this section, we study the problem of obtaining a maximum transitive relation contained

in a binary relation. We will be using the notation of directed graphs for binary relations. As

before, let’s assume that input directed graph has m edges. Denote by UG(D) the underlying

graph of digraph D.

First, we state a well known result from graph theory.

Lemma 4.1. There exists a bipartite subgraph of size m/2 in any undirected graph with m edges.

Obtaining such a bipartite graph deterministically in poly-time is a folklore result. We outline

a proof here. Let G = (V ,E) be an undirected graph. Let’s make an arbitrary partitioning

V = X] Y. For any vertex v ∈ X such that dX(v) > dY(v), moving v from X to Y will increase

the size of E(X, Y). We keep doing this switching operation on vertices in both X and Y until

it is not possible anymore. This process has to stop within m steps as |E(X, Y)| can not keep

on increasing infinitely. At this point, we estimate |E(X, Y)|.

|E(X, Y)| =
1

2

(∑
u∈X

dY(u) +
∑
v∈Y

dX(v)

)
>
1

2

(∑
u∈X

d(u)/2+
∑
v∈Y

d(v)/2

)
= m/2

This gives the following.

21
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Theorem 4.2. There exists a poly-time algorithm to obtain an m/4 sized transitive subgraph in any

directed graph D with m edges. This gives a 1/4-approximation algorithm for maximum transitive

subgraph problem.

Proof. From Lemma 4.1, we get a bipartite subgraph of UG(D) of size at least m/2. Now

consider the original orientations on this bipartite subgraph. We collect all the edges in

the direction that has more number of edges. This set of arcs is of size at least m/4 and is

transitive as there are no directed paths of length two in the set.

The obvious question is – given a digraph with m edges, is there a transitive subgraph of

size tm such that t > 1/4? We claim that this is not possible. We prove the following theorem

in [CJ16b].

Theorem 4.3. For every m, there exists a digraph D with m edges such that UG(D) is triangle-free

and the size of any directed cut in D is at most m/4+ cm4/5 for some c > 0.

We observe in Lemma 4.5 that in a digraph D such that UG(D) is triangle-free, there is a

one-to-one correspondence between directed cuts and transitive subgraphs in a digraph.

Hence, obtaining a transitive subgraph of size better than m/4 (in the constant multiple)

would contradict this theorem - since this would break the upper bound on the size of any

directed cut. We return to proving Theorem 4.3 in the next section.

In order to improve upon the approximation factor, we focus on the class of triangle-free

directed graphs.

Let G be a graph and U, V be a partition of the vertex set of H. A directed cut (U,V) is the

set of edges with a starting in U and ending point in V . The MAX-DICUT problem is the

problem of obtaining a largest directed cut in a graph. This is NP-hard. [LLZ02] gives an

approximation algorithm for the MAX-DICUT problem.

Theorem 4.4 (see [LLZ02]). There exists a 0.874-approximation algorithm for the MAX-DICUT

problem.

As a corollary of Lemma ??, we have the following.

Lemma 4.5. In a digraph D such that UG(D) is triangle-free, there is a bijection between directed

cuts of D and the set of transitive subgraph of D.

Proof. First we prove that every transitive subgraph T of D is also a directed cut. Since

UG(D) is triangle-free, T does not have any directed 2-path. Hence no vertex in D has both

a head-edge and a tail-edge from the set T . We place all the vertices at the tails in one set,
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and all the vertices on the heads in another set. This partitioning along with the edge set T

defines a directed-cut of D.

To see how every directed-cut C is also a transitive, notice that there are no directed 2-paths

in C.

This implies that finding the maximum transitive subgraph is same as the MAX-DICUT

problem for digraphs D with UG(D) being triangle free.

Theorem 4.6. There exists a 0.874-approximation algorithm for finding the maximum transitive

subgraph in a digraph D such that UG(D) is triangle-free.

4.2 Maximum directed cuts in triangle free graphs

The max-cut problem is an extensively well studied problem both in terms of finding good

approximation algorithms and estimating its bounds combinatorially. Both its undirected

and directed versions are NP-complete. Here we give an upper bound on the size of directed

max-cut using the probabilistic method.

The following notation is borrowed from [ABG+
07]. Let G be an undirected graph and U,V

be a partition of the vertex set of G. A cut (U,V) is the set of edges with one endpoint in U

and other endpoint in V . Call e(U,V) the size of cut (U,V). Define

f(G) = max
(U,V)

e(U,V) and, f(m) = min
G:|E(G)|=m

f(G)

Finding a max-cut was proved to be NP-complete in [GJS76]. Goemans and Williamson

give a semidefinite programming based algorithm in [GW95] to achieve an approximation

ratio of 0.878. Under the Unique Games Conjecture, this is the best possible [KKMO07].

But a 0.5-approximation algorithm is straight forward - randomly put each vertex in U or

V , leading to an expected cut size of m/2. Hence, f(m) > m/2. Various bounds have been

proposed for f(m), most notably in [EFPS88, Alo96]. Following is an upper bound for f(m)

in triangle free graph.

Theorem 4.7 (Alon [Alo96]). There exists a constant c ′ > 0 such that for every m there exists a

triangle-free graph G with m edges satisfying f(G) 6 m/2+ c ′m4/5.

Let H be a directed graph and U,V be a partition of vertex set of H. A cut of H is similarly

defined as before. A directed cut (U,V) is the set of edges with starting point in U and ending



Chapter 4 Maximum Transitive Relation

point in V . Call e(U,V) the size of cut (U,V). Define

g(H) = max
(U,V)

e(U,V) and, g(m) = min
H:|E(H)|=m

g(H)

Finding a directed cut of maximum size is NP-complete (via a simple reduction from the

max-cut problem). [GW95] gave a 0.796 approximation for this problem. Again, a 0.25

approximation is simple, given the 0.5-approximation of max-cut. Since it is easy to find a

cut of size m/2 in undirected graphs and a directed cut of size m/4 in directed graphs, an

obvious question is how much better one can do as a fraction of m. Alon proved in [Alo96]

that the factor 1/2 can not be improved for max-cuts. We prove that the factor 1/4 can’t be

improved for directed max-cuts.

4.3 Upper Bound on Directed Max-Cut

In this section we prove the following bound. For any m, there exists a directed graph with

m edges such that for some c > 0,

g(H) 6 m/4+ cm4/5

The proof idea is as follows. From Theorem 4.7, we know that for every m there exists an

undirected graph with m edges, all whose cuts are bounded by m/2+ o(m) in size. For any

given m in our case, we start with the undirected graph of Theorem 4.7 satisfying the above

bound. We orient this graph uniformly at random. We then prove that every cut of size

more than m/4 will be highly balanced, in the sense that - the cut will have almost the same

number of edges going from left to right and right to left. We formalise these ideas below.

We define a notion of balanced cuts of a directed graph and balanced directed graphs.

Definition 4.8 (δ-balanced cut). For a directed graph, consider a cut (U,V). The cut is

δ-balanced if

|e(U,V) − e(V ,U)| 6 δ
(
e(U,V) + e(V ,U)

2

)
Definition 4.9 ((k, δ)-balanced graph). A directed graph H is (k, δ)-balanced if every cut of

H of size at least k is δ-balanced.

Lemma 4.10. For any m, δ > 0 and k 6 m, there exists a directed graph H on n vertices and m

edges such that H is (k, δ)-balanced if n < kδ2/6.
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Proof. For the given m, we start with an undirected graph G satisfying the condition in

Theorem 4.7. We orient the edges of G uniformly at random and independently and call it

H.

Let C = (U,V) be a cut in the undirected graph G of size at least k. We first calculate the

probability (over the random orientations of G) that C is not δ-balanced in H.

P[C is not δ-balanced] = P[|e(U,V) − e(V ,U)| > δ(e(U,V) + e(V ,U))/2] (4.1)

= 2P[e(U,V) > (1+ δ)|C|/2] (4.2)

For each edge ei in the cut (U,V), define a random variable Xi as follows,

Xi =

1 if ei is directed from U to V

0 otherwise

Xi’s are i.i.d. random variables with probability 1/2. Then, e(U,V) =
∑
ei∈(U,V) Xi with mean

|C|/2. We apply the standard Chernoff bound to get an upper bound for the probability in

Equation (4.2),

P[C is not δ-balanced] 6 2 exp(−δ2|C|/6)

6 2 exp(−δ2k/6)

We now calculate the probability that the graph H is (k, δ)-balanced.

P[H is (k, δ)-balanced]

= 1− P[there exists a cut C in H of size at least k which is not δ balanced]

= 1− P

 ⋃
cut C,|C|>k

C is not δ-balanced


> 1− 2n(2 exp(−δ2k/6))

> 0, if n < kδ2/6

The following lemma gives us a directed graph H, such that any cut of size at least m/4 in H

is ‘well’ balanced. This result is used in proving the final theorem.

Lemma 4.11. For anym, there exists a directed graph H withm edges such that H is (m/4,α/m1/5)-

balanced for some α > 0.
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Proof. By choosing k = m/4 and δ = α/m1/5 in Lemma 4.10, we get H if

n 6 (m/4)(α/m1/5)2/6

or, m > (24/α2)5/3n5/3

The counterexample in Theorem 4.7 requires that m = (1/8+ o(1))n5/3. Hence we need

α >
√
24/(1/8+ o(1))3/10.

We now prove our main claim.

Theorem 4.12. For every m, there exists a digraph D with m edges such that UG(D) is triangle-free

and the size of any directed cut in D is at most m/4+ cm4/5 for some c > 0.

Proof. For the given m, Lemma 4.11 gives a graph H that is (m/4,α/m1/5)-balanced, which

would imply that every cut of size at least m/4 is α/m1/5-balanced. Consider any cut (U,V)

in H. We have,

|e(U,V) − e(V ,U)| 6 α/m1/5|(U,V)|

|e(U,V)|, |e(V ,U)| 6 |(U,V)|/2+ (α/m1/5)|(U,V)|/4

6 (m/2+ c ′m4/5)/2+ (α/4m1/5)m

6 m/4+ (c ′/2+α/4)m4/5

In the second last inequality we use the fact that |(U,V)| 6 m/2+ c ′m4/5 from Theorem 4.7.

This completes the proof with the choice of c = (c ′/2+α/4).
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Exact Algorithms for Maximum

Transitive Subgraph Problem

5.1 Introduction

Our main goal in this chapter is to understand the parameterized complexity of the MTS

problem. A parameterization of a problem assigns an integer k to each input instance I and

we say that a the problem is fixed-parameter tractable if there is an algorithm that solves the

problem in time f(k) · |I|O(1). Here, f is any computable function. First systematic study of

parameterized complexity was done by Downey and Fellows [DF99]. More recent account

of the field can be found in the texts [FG06, Nie06, CFK+
15].

The MTS problem has been studied in a more general setting as the Transitivity Editing

problem where the goal is to compute the minimum number of edge insertions or deletions

in order to make the input digraph transitive. Weller et al [WKNU12] prove its NP-hardness

and give a fixed-parameter algorithm that runs in time O(2.57k+n3) for an n-vertex digraph

if k edge modifications are sufficient to make the digraph transitive. This result also applies

to the case where only edge deletions are allowed – the MTS problem. Our result differs

from [WKNU12] because we parameterize by treewidth.

Raman et al [RS07] show that the problem of deciding whether a directed graph has a

transitive induced subgraph of size k is fixed-parameter tractable.

In Section 5.2, we give a poly-time algorithm for computing an MTS in a directed tree. In

Section 5.3, we give our first generalisation. For a given directed graph with treewidth at

most k, we give an algorithm which is runs in time O(nk2). The idea here is to recursively use

separators and combine the solutions of the two parts. We improve this algorithm in Section

27
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5.4, where we show that this problem is fixed-parameter tractable when parameterized by

treewidth. The main result is stated below.

Theorem 5.1. There exists an algorithm that runs in time O(4k2n2) to output an MTS for a graph

with treewidth k.

Notation

For any set S and x ∈ S, define S− x = S \ {x}. Let G = (V ,E) be a given directed graph. For

v ∈ V , e ∈ E, define G− v to be the graph obtained by removing the vertex v from G and G \ e

represents the graph obtained by deleting the edge e from G. The notation F ⊆ G defines a

subgraph F of G. For any subgraph F of G, V(F) defines the vertex set of F and E(F) defines

the edge set of F. For U ⊆ V , G(U) defines the induced subgraph on U.

For A,B ⊆ V , define E(A,B) = {u → v : u ∈ A, v ∈ B} and E(A,B) = E(A,B) ∪ E(B,A). In the

context of transitivity, we say that the two-path u → v → w is complete if u → w ∈ E. If

u→ w /∈ E, the two-path is called incomplete.

5.2 MTS in Trees

In the following discussion, an edge-rooted tree is a rooted tree in which the root has only

one child. We identify the root of an edge-rooted tree with a root edge e and denote the tree

as Te.

The problem is to compute an MTS of a given directed tree T (the underlying undirected

graph is a tree). We can root the tree at a vertex which has only outgoing edges. Let this

root be r and e1, . . . , el denote the outgoing edges from r. Denote the edge-rooted trees at r

by Te1 , . . . , Tel .

Note that the Tei
′s are completely independent of each other and hence their MTS can be

computed independently.

Since there are only outgoing edges from the root r,

MTS(T) =
⋃
i∈[l]

MTS(Tei)

We now describe how to compute MTS(Tei). We can divide the set of transitive subgraphs

of Tei into two subsets and compute their maximums:
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1. MTS+(Tei): maximum over transitive subgraphs that include the edge ei,

2. MTS−(Tei): maximum over transitive subgraphs that exclude the edge ei.

Then,

MTS(Tei) = max{MTS+(Tei),MTS
−(Tei)}

The maximum here is over the size of the transitive sets.

Computing MTS+(Tei)

This is further divided into two cases.

Case 1: ei is a ‘down’ edge

Figure 5.1: Computation of MTS+(Tei) ‘down’ edge case: we only include the MTS of
rooted trees in the dashed rectangles

ei

u

v

c01
c0t

Let ei be the edge u→ v such that the tree Tei is rooted at the vertex u. Let the vertex v has

outgoing edges c1, . . . , cs and incoming edges c ′1, . . . , c ′t. Then,

MTS+(Tei) =
[
∪i∈[s]MTS

−(Tci)
] ⋃ [

∪i∈[t]MTS(Tc ′i)
]
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The reason we do not include the edges ci in the first union in this calculation is because

this will lead to a possible inclusion of 2-path (whose first edge is ei) in the MTS set.

Case 2: ei is an ‘up’ edge

Here ei = v→ u is in ‘upward’ direction of the rooted tree Tei . The algorithm is symmetrical

to Case 1.

Computing MTS−(Tei)

Here, the direction of ei is not important. Let the tree Tei be rooted at u and v be the other

vertex of edge ei. Let the vertex v has outgoing edges c1, . . . , cs and incoming edges c ′1, . . . , c ′t.

Let,

M1 =
[
∪i∈[s]MTS(Tci)

] ⋃ [
∪i∈[t]MTS

−(Tc ′i)
]

M2 =
[
∪i∈[s]MTS

−(Tci)
] ⋃ [

∪i∈[t]MTS(Tc ′i)
]

Then, we have,

MTS−(Tei) = max{M1,M2}

The base cases are defined naturally.

Dynamic programming over edge-rooted trees

Though we defined the solution using a top-down approach, we observe that the subprob-

lems are calculated every time there is a call of type T(ei). The same subproblem is called

many times as part of computation of other subproblems. To avoid this, we do the actual

computation in bottom up manner. For each edge-rooted tree Te, we keep in memory the

set MTS(Te). The order of computation of is as follows. We do a breadth-first search at root

vertex r. We compute all the MTS(Te) for edges at the largest level first. These sets are just

the edges themselves. In next stage, we decrease the level by 1. We go on doing this until we

compute the MTS(Te) values for edges at the level 0.

Complexity: We work with edge-rooted trees in a reverse BFS order, where each edge is

considered at most three times. This is because an edge can appear in computations at

three different levels – its own level, as a child-edge or as a grandchild edge. This gives a

liner-time algorithm for MTS in a tree.
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5.3 MTS in Bounded Treewidth Graphs: First Attempt

We try to generalize the idea used in case of trees to compute the MTS for graphs. In

particular, we want to compute the MTS for weighted-directed graphs whose underlying

undirected graph has bounded treewidth. We allow weights here because it allows us to

artificially force the selection of any transitive subset in a solution set. What we are effectively

solving here is the problem of finding the MTS containing a given transitive set.

In the case of trees, at every step, we use a vertex that separates a graph into two (or more)

disjoint subgraphs. We could then apply the algorithm recursively on these subgraphs and

combine the results to compute the MTS for the current tree. For this, we will need the

following lemma which ensures that small treewidth implies small balanced separators. We

apply the separator idea on the underlying undirected graph of our input.

Lemma 5.2. If G is a graph with treewidth at most d, then we can find a 1/2-balanced separator S of

G in polynomial time, such that |S| 6 d+ 1.

The proof of Lemma 5.2 can be found in Lemma 7.19 in [CFK+
15]. Let G = (V ,E) be a

graph with treewidth at most d− 1. Then we can find a separator S that separates the graph

into vertex sets L and R (left and right sets) such that, V = S] L] R, S 6 d, and L,R 6 |V |/2.

We need the following subgraph notation to define a useful structure which we use in our

algorithm. For A,S ⊆ V such that A∩S = φ, T be a transitive subgraph of E(S) and (I,O,U, Y)

be vertex partitioning of S, define G(A,S, T , (I,O,U, Y)) to be a subgraph of G such that,

• all the edges in E(A) are included,

• only the edges in T are included from E(S),

• for the edges between the sets A and S, all the edges in E(A, I),E(O,A), E(A,U),E(U,A)

are included and no edges between A an Y are included.

Here, the sets intuitively mean the following: O – only outgoing edges, I – only incoming

edges, U – completely unrestricted and Y – no edges allowed. We describe Algorithm 3 in

detail now. The high level idea is described in Figure 5.2. After we compute the balanced-

separator S, we work separately on L∪ S and R∪ S and combine the MTS calculated from

these two subproblems to compute the MTS for the main problem. In order to be able to

combine the two solutions, we force the transitive set from S to be same in both the solutions.

We go over every possible subset T of S and recurse on both left and right side such that the

solution from both the sides must contain exactly the set T from the edges on set S. To do

this, we assign the weight ∞ to the edges of T in the recursive calls.
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Algorithm 3: MTS(G,w): Maximum Transitive Subgraph of weighted digraph G
Input : A directed graph G = (V ,E) with edge weights w : E→N+ such that the underlying

undirected graph of G has treewidth at most d− 1
Output : An MTS of G

1 max←
∑
e∈Ew(e)

2 compute a 1/2-separator S of G of size at most d, with components L and R

3 M← φ

4 foreach transitive T ⊆ E(S) do
5 w ′ ← w

6 foreach e ∈ T do
7 w ′(e)← max

8 end
9 foreach partition (I,O,U, Y) of S do

10 foreach U ′ ⊆ U do
11 M ′ ←MTS(G(L,S, T , (I,O,U ′, Y ∪ (U \U ′))),w ′)
12 ∪MTS(G(R,S, T , (I,O,U \U ′, Y ∪U ′)),w ′)
13 if w(M ′) > w(M) then
14 M←M ′

15 end
16 end
17 end
18 end
19 return M

Notice that combining a solution from left and right (even with a common set T in the

separator) may bring in discrepancies in transitivity. For example, a two-path a → b → c

with a ∈ L,b ∈ S, c ∈ R may creep in. There can be no completing edge a→ c since vertices a

and c are separated by set S. To take care of this, we partition S into four parts (I,O,U, Y).

The subgraph that we pass as argument to the recursive calls has the useful features, such as:

only incoming edges are present on vertices in set I. This allows us to combine the results

from left and right as no two-paths can have a vertex of I at its center. Similarly we restrict

only outgoing edges from the vertices in O. We restrict the vertices in Y to have no edges

since a solution may not use all the vertices in S. Finally, we allow a part U ′ of U to have all

the original edges on one side and have no edges on the other side. One can think of U ′ as

being unrestricted on one side and restricted to have no participation on the other side.

Theorem 5.3. Given (G,w), algorithm MTS(G,w) outputs an MTS of G.

Proof. We prove it by induction on the number of vertices. For base case, we consider graphs

on 3 vertices. It is straightforward to see that the statement is true in this case.

Let H be an MTS of G. Consider any separator S that separates the graph G into L and R

(vertex sets). Let T ′ = H∩G(S). Notice that (H∩G(L))∪ T ′ is an MTS for G(L∪ S).
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Figure 5.2: A high level description of Algorithm 3

I

o

Y

U

L RS

T

Define partition (I ′,O ′,U ′ = (U ′
1,U ′

2), Y
′) of S based on the edges in E(S,V(H) ∩ L) and

E(S,V(H)∩ R) and our definition of such a partitioning earlier. Here U ′
1 is unrestricted on

the left side and U ′
2 is unrestricted on the right side.

Now since Algorithm 3 loops over all partitions (I,O,U = (U1,U2), Y) of S, it will also

hit the particular partition (I ′,O ′,U ′ = (U ′
1,U ′

2), Y
′) at one point. At this point a call to

MTS(G(L,S, T , (I ′,O ′,U ′
1, Y ′),w)) is made. Using induction, MTS(G(L,S, T , (I ′,O ′,U ′

1, Y ′),w))

returns the MTS of the graph G(L,S, T , (I ′,O ′,U ′
1, Y ′). This would mean that

w(MTS(G(L,S, T , (I ′,O ′,U ′
1, Y ′),w))) = w(H∩G(L))∪ T ′)

A similar argument can be given for,

w(MTS(G(R,S, T , (I ′,O ′,U ′
2, Y ′),w))) = w((H∩G(R))∪ T ′)

Since we combine the MTS for G(L ∪ S) and G(R ∪ S) via the same transitive set T ′ in the

both the cases, we conclude that,

w(MTS(G,w)) = w(H)

We now consider the complexity of Algorithm 3. From Lemma 5.2, we can assume that each

partition is of size at most half of original number of vertices. For each T ⊆ E(S) (at most

2k
2), for each 4-partition of S (at most 4k), for each U ′ ⊆ U (at most 2k), we make two calls of

each size at most T(n/2) and combine the solutions in time O(n2). This give the recurrence:

T(n) 6 2k
2
4k2k(T(n/2) +O(n2)). Solving this, we get a running time of O(nk2).
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5.4 MTS is FPT Parameterised by Treewidth

For a given digraph with treewidth at most k, we give an algorithm, for finding MTS, which

runs in time O(4k2n2). To keep the presentation simple, we work on unweighted digraphs,

though the same ideas can be used to obtain an MTS for weighted digraphs.

We first introduce the basics of tree decomposition of an undirected graph G = (V ,E). We

borrow the notations from [CFK+
15]. Let T = (T , {Xt}t∈V(T)) be a tree decomposition, where

T is a tree whose every node t is assigned a vertex subset Xt ⊆ V(G), called a bag, such that

the following three conditions hold:

1. ∪t∈V(T)Xt = V(G).

2. ∀ edge (u, v) ∈ E(G), ∃t ∈ T with u, v ∈ Xt.

3. ∀u ∈ V(G), the set Tu = {t ∈ V(T) : u ∈ Xt} induces a connected subtree of T .

Further, we use what is called a nice tree decomposition T = (T , {Xt}t∈V(T)) of G. Such a

decomposition has the following properties.

1. The leaf and the root nodes are empty.

2. For every non-leaf node t is one of the following types:

(a) Introduce: t has exactly one child t ′ with Xt = Xt ′ ∪ {u} for some u /∈ Xt ′

(b) Forget: t has exactly one child t ′ with Xt = Xt ′ \ {u} for some u ∈ Xt ′

(c) Join: t has two children t ′ and t ′′ with Xt = Xt ′ = Xt ′′ .

We perform a bottom up dynamic programming on T starting from the leaves and ending at

the root. We describe the calculations performed at a node of any type (categorised above)

using the computation performed at the children nodes. For any node t ∈ T, denote by Vt
the union of the bags associated with all the nodes in the subtree rooted at t, including Xt.

Let Gt define the induced graph on Vt.

We define a table entry m[t, F, I,O,U, Y] for each node t ∈ T, for each transitive subgraph

F ⊆ E(Xt) and for each partition (I,O,U, Y) of Xt. The entry M = m[t, F, I,O,U, Y] contains

the MTS on G(Vt) with the restriction that G(Xt)∩M = F and in M,

• no edges from the set E(I,Vt \Xt) are allowed,

• no edges from the set E(Vt \Xt,O) are allowed,
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• any edge from the set E(Vt \Xt,U) is allowed, and

• no edges from the set E(Vt \Xt, Y) are allowed.

Vertices in U are said to be unrestricted. This partitioning has been defined to support the

Join operation at a join node in the tree decomposition. The idea is same as before - avoid

two-paths across separated partitions and avoid incomplete two-paths in the separator.

We present a rough sketch of the algorithm first.

Algorithm 4: MTS(G): Maximum Transitive Subgraph of digraph G
Input : A directed graph G = (V ,E)
Output : An MTS of G

1 T ← a nice tree decomposition of G
2 m[t, ∗, ∗, ∗, ∗, ∗]← φ

3 // perform a bottom-up dynamic programming on t
4 foreach t in T in bottom-up queue do
5 if t is root then
6 output m[t,φ,φ,φ,φ,φ]
7 exit
8 end
9 if t is ‘leaf’ then

10 m[t,φ,φ,φ,φ,φ] = φ
11 end
12 if t is ‘introduce’ then
13 Update m[·] according to Introduce algorithm
14 end
15 if t is ‘forget’ then
16 Update m[·] according to Forget algorithm
17 end
18 if t is ‘join’ then
19 Update m[·] according to Join algorithm
20 end
21 end

Leaf node: The only valid cell entry here is m[t,φ,φ,φ,φ,φ] = φ.

Introduce node: Suppose node t has child node t ′ such that Xt = Xt ′ ∪ {v}. For any given

partition (I,O,U, Y) of Xt and F ⊆ G(Xt), we need to compute m[t, F, I,O,U, Y].

First notice that the introduced vertex v can have edges to only the vertices in the set Xt ′ .

Also, by definition, MTS(Gt) ∩G(Xt) = F. Applying both these conditions together, if v is
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not in V(F), no edge incident on v can be included in the MTS of Gt. Hence, for v /∈ V(F),

m[t, F, I,O,U, Y] = m[t ′, F, I− v,O− v,U− v, Y − v]

Now we consider the case where v ∈ V(F). For a vertex r ∈ V(G) and X ⊆ E(G), define

the in-neighbours of r in X as NiX(r) = {s : s → r ∈ X} and the out-neighbours of r in X as

NoX(r) = {s : r→ s ∈ X}. Define NX(r) = NiX(r)∪NoX(r).

Consider the set NXt(v) \NF(v). These neighbours of v in Xt, wherever they may lie in

the partition (I,O,U, Y), can be kept as is in their designated partitions for recursion. The

argument is as follows. Consider u ∈ NXt(v) \NF(v). We want to check if any edge through

u breaks transitivity. If u /∈ V(F), then u does not interact with any other vertex in Xt by

definition and hence transitivity is maintained as before. If u ∈ V(F), any edge in F incident

on vertex u is already a part of a transitive set since F is transitive by definition.

We now deal with the set NF(v). Consider a vertex u ∈ NF(v). Following useful cases arise.

1. u ∈ I ∩NiF(v): Here, an edge passing through u may break the transitivity. Such a

vertex u must be removed from I and placed in O.

2. u ∈ O∩NoF(v): This is similar to the last case. We should move u from O to I.

3. u ∈ U∩NF(v): Since the edges E(u,Vt \Xt) are unrestricted to participate in an MTS,

transitivity may break in two ways. Incomplete two-path of the form r → u → v or

v→ u→ r where r ∈ Vt \Xt may result. We should disallow these cases.

4. u ∈ Y ∩NF(v): This case is fine as E(u,Vt \Xt) = φ.

We incorporate all these restrictions in the following computation.

F ′ = F− v

I ′ = (I \NiF(v))∪ (O∩NoF(v))∪ (U∩NoF(v))

O ′ = (O \NoF(v))∪ (I∩NiF(v))∪ (U∩NiF(v))

U ′ = U \NF(v)

Y ′ = Y

The update method is then m[t, F, I,O,U, Y] = m[t ′, F ′, I ′,O ′,U ′, Y ′]∪ F.

Forget Node: Suppose node t has child t ′ such that Xt = Xt ′ \ {v}. We update the current

entry as follows:

m[t, F, I,O,U, Y] = maxm[t ′, F ′, I ′,O ′,U ′, Y ′]
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where the maximum is over the following conditions:

F ′|Xt = F

I ′ = I,O ′ = O, Y ′ = Y

U ′ = U∪ {v}

Here, the transitive set F ′ is allowed to include the vertex v resulting in the condition

F ′|Xt = F. We also allow v to have unrestricted edges since this effectively covers all the cases

- only incoming edges on v, or only outgoing edges from v, or the case where v has both

incoming and outgoing edges.

Join Node: Suppose node t has children t1 and t2 such that Xt = Xt1 = Xt2 . Define arbitrary

partitions (to be fixed below) Xt1 = I ′ ]O ′ ]U ′ ] Y ′ and Xt2 = I ′′ ]O ′′ ]U ′′ ] Y ′′. We have

the following rule for updating the current entry:

m[t, F, I,O,U, Y] = max(m[t1, F, I ′,O ′,U ′, Y ′]∪m[t1, F, I ′′,O ′′,U ′′, Y ′′])

under the restriction that:

I ′ ⊇ I, I ′′ ⊇ I

O ′ ⊇ O,O ′′ ⊇ O

For each vertex v ∈ U, one of the following is true:

• v ∈ I ′ ∩ I ′′

• v ∈ O ′ ∩O ′′

• v ∈ U ′ ∩ Y ′′

• v ∈ Y ′ ∩U ′′

Here, we keep the F same in both t1 and t2 as required. In order to join at any vertex v

in I, we demand such a vertex must be present in both I ′ and I ′′ but we also allow these

sets to be larger. This is required as this leaves the possibility of a larger combination while

transitivity is still maintained. A similar restriction is employed on O ′ and O ′′.

The vertices v in U are unrestricted but we need to be careful while using unrestricted

vertices in the join operation. Such a vertex should only be allowed to be unrestricted on

one side but completely isolated on the other side. This gives us the possibilities v ∈ U ′ ∩ Y ′′
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or v ∈ Y ′ ∩U ′′. But this restriction forbids the possibility of edges being used on both sides

of v. Such a case could occur if v uses only incoming (or outgoing) edges on both the sides.

To accommodate this, we have the options of v ∈ I ′ ∩ I ′′ or v ∈ O ′ ∩O ′′. Finally, we take the

maximum over all the legitimate join operations.

We now estimate the running time of our algorithm. Assuming the input graph has treewidth

k, each node Xt is of size at most k+ 1. The number of partitions of type (I,O,U, Y) of Xt is

at most 2k+4. The number of transitive subgraphs F of Xt is at most 2k2 . A single update

of m[·] at any node can be done in at most n2 steps. So a simple upper bound to the time

complexity is 4k2n2.

5.5 Conclusion

In this chapter, we have continued the systematic study of computing a Maximum Transitive

Subgraph of a given directed graph addressed recently in [CGJR15]. We show that this

problem is fixed-parameter tractable when parameterized by treewidth. In particular, we

give an algorithm that runs in time O(4k2n2) to output an MTS for a graph with treewidth k.

An immediate question that arises is – whether we can reduce the exponent k2 to O(k).

Another interesting question that we have not addressed here is a lower bound for this

problem. It would be interesting to arrive at any lower bound under the standard assumption

of ETH.
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Popular Matchings
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Chapter 6

Introduction to Popular Matchings

A popular matching problem instance I comprises a set A of agents and a set H of houses. Each

agent a in A ranks (numbers) a subset of houses in H (lower rank specify higher preference).

The ordered list of houses ranked by a ∈ A is called a’s preference list. For an agent a, let

Ea be the set of pairs (a,h) such that the house h appears on a’s preference list. Define

E = ∪a∈AEa. The problem instance I is then represented by a bipartite graph G = (A∪H,E).

A matching M of I is a matching of the bipartite graph G. We use M(a) to denote the house

assigned to agent a in M and M(h) to denote the agent that is assigned house h in M. An

agent prefers a matching M to a matching M ′ if (i) a is matched in M and unmatched in

M ′, or (ii) a is matched in both M and M ′ but a prefers the house M(a) to M ′(a). Let

φ(M,M ′) denote the number of agents that prefer M to M ′. We say M is more popular than

M ′ if φ(M,M ′) > φ(M ′,M), and denote it by M � M ′. A matching M is called popular if

there exists no matching M ′ such that M ′ �M.

The popular matching problem was introduced in [Gär75] as a variation of the stable

marriage problem [GS62]. The idea of popular matching has been studied extensively in

various settings in recent times [AIKM07, SM10, MI11, Mah06, KMN11, McC08, Nas14],

mostly in the context where only one side has preference of the other side but the other side

has no preference at all. We will also focus on this setting. Much of the earlier work focuses

on finding efficient algorithms to output a popular matching, if one exists.

The problem of counting the number of “solutions" to a combinatorial question falls into

the complexity class #P. An area of interest that has recently gathered a certain amount of

attention is the problem of counting stable matchings in graphs. The Gale-Shapely algorithm

[GS62] gives a simple and efficient algorithm to output a stable matching, but counting them

was proved to be #P-hard in [IL86]. Bhatnagar, Greenberg and Randall [BGR08] showed that

the random walks on the stable marriage lattice are slowly mixing, even in very restricted
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versions of the problem. [CGM10] gives further evidence towards the conjecture that there

may not exist an FPRAS at all for this problem.

Our motivation for this study is largely due to the similarity of structures between stable

matchings and popular matchings. The one-sided preferences list setting does not have

stability defined. However, in the case where both sides have preference lists (with no ties),

both stable and popular matchings are defined. It is also well known that a stable matching

is popular and in fact a minimum cardinality popular matching.

The interest is further fueled by the existence of a linear time algorithm to exactly count the

number of popular matchings in the standard setting [MI11]. We look at generalizations of

the standard version - preferences with ties and houses with capacities. In the case where

preferences could have ties, it is already known that the counting version is #P-hard [Nas14].

We give an FPRAS for this problem. In the case where houses have capacities, we prove

that the counting version is #P-hard. While the FPRAS for the case of ties is achieved via

a reduction to a well known algorithm, the #P-hardness for the capacitated case is more

involved, making it the more interesting setting of the problem.

We now formally describe the different variants of the popular matching problem (borrowing

the notation from [SM10]) and also describe our results alongside.

House Allocation problem (HA) These are the instances G = (A ∪H,E) where the prefer-

ence list of each agent a ∈ A is a linear order. Let n = |A|+ |H| and m = |E|. In [AIKM07],

Abraham et al. give a complete characterization of popular matchings in an HA instance,

using which they give an O(m+n) time algorithm to check if the instance admits a popular

matching and to obtain the largest such matching, if one exists. The question of counting

popular matchings was first addressed in [MI11], where McDermid et al. give a new charac-

terization by introducing a powerful structure called the switching graph of an instance. The

switching graph encodes all the popular matchings via switching paths and switching cycles.

Using this structure, they give a linear time algorithm to count the number of popular

matchings.

House Allocation problem with Ties (HAT) An instance G = (A ∪H,E) of HAT can have

applicants whose preference list contains ties. For example, the preference list of an agent

could be [h3, (h1,h4),h2], meaning, house h3 gets rank 1, houses h1 and h4 get a tied rank 2

and house h2 gets the rank 3. A characterization for popular matchings in HAT was given

in [AIKM07]. The characterization is used to give an O(
√
nm) time algorithm to solve the

maximum cardinality popular matching problem. We outline their characterization briefly

in Chapter 7 where we consider the problem of counting popular matchings in HAT. In
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[Nas14], Nasre gives a proof of #P-hardness of this problem. We give an FPRAS for this

problem by reducing it to the problem of counting perfect matchings in a bipartite graph.

Capacitated House Allocation Problem (CHA) A popular matching instance in CHA has a

capacity ci associated with each house hi ∈ H, allowing at most ci agents to be matched to

house hi. The preference list of each agent is strictly ordered. A characterization for popular

matchings in CHA was given in [SM10], along with an algorithm to find the largest popular

matching (if one exists) in time O(
√
Cn1 +m), where n1 = |A|, m = |E| and C is the total

capacity of the houses. In Chapter 8, we consider the problem counting popular matchings

in CHA. We give a switching graph characterization of popular matchings in CHA. This

is similar to the switching graph characterization for HA in [MI11]. Our construction is

also motivated from [Nas14], which gives a switching graph characterization of HAT. We

use our characterization to prove that it is #P-Complete to compute the number of popular

matchings in CHA.

Remark: A natural reduction exists from a CHA instance G = (A∪H,E) to an HAT instance.

The reduction is as follows. Treat each house hi ∈ H with capacity c as c different houses

h1i , . . . ,hci of unit capacity, which are always tied together and appear together wherever

hi appears in any agent’s preference list. Let the HAT instance thus obtained be G ′. It is

clear that every popular matching of G is a popular matching of G ′. Hence, for example,

an algorithm which finds a maximum cardinality popular matching for HAT can be used

to find a maximum cardinality popular matching for the CHA instance G. In the context

of counting, it is important to note that one popular matching of G may translate to many

popular matchings in G ′. It is not clear if there is a useful map between these two sets that

may help in obtaining either hardness or algorithmic results for counting problems.





Chapter 7

Counting in House Allocation

Problem with Ties

In this chapter, we consider the problem of counting the number of popular matchings in

House Allocation problem with Ties (HAT). We first describe the characterization given

in [AIKM07] here using similar notations. Let G = (A ∪H,E) be an HAT instance. For

any agent a ∈ A, let f(a) denote the set of first choices of a. For any house h ∈ H, define

f(h) := {a ∈ A, f(a) = h}. A house h for which f(h) 6= φ is called an f-house. To simplify the

definitions, we add a unique last-resort house l(a) with lowest priority for each agent a ∈ A.

This forces every popular matching to be an applicant complete matching.

Definition 7.1. (Section 3.1 in [AIKM07]). The first choice graph of G is defined to be

G1 = (A∪H,E1), where E1 is the set of all rank one edges.

Lemma 7.2. (Lemma 3.1 in [AIKM07]). If M is a popular matching of G, then M ∩ E1 is a

maximum matching of G1.

Let M1 be any maximum matching of G1. The matching M1 can be used to identify the

houses h that are always matched to an agent in the set f(h). In this direction, we observe

that M1 defines a partition of the vertices A ∪H into three disjoint sets - even, odd and

unreachable: a vertex is even (resp. odd) if there is an even (resp. odd) length alternating path

from an unmatched vertex (with respect to M1) to v; a vertex v is unreachable if there is no

alternating path from an unmatched vertex to v. Denote the sets even, odd and unreachable by

E, O and U respectively. The following is a well-known theorem in matching theory [LP86].

Lemma 7.3 (Gallai-Edmonds Decomposition). Let G1 and M1 define the partition E, O and U as

above. Then,

(a) The sets E, O and U are pairwise disjoint, and every maximum matching in G1 partitions the

vertices of G1 into the same partition of even, odd and unreachable vertices.

45



Chapter 7 Counting in House Allocation Problem with Ties
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Figure 7.1: Gallai-Edmonds decomposition of the first-choice graph of G

(b) In any maximum matching of G1, every vertex in U is matched with another vertex in U, and

every vertex in O is matched with some vertex in E. No maximum matching contains an edge

between a vertex in O and a vertex in O∪U. The size of a maximum matching is |O|+ |U|/2.

(c) G1 contains no edge connecting a vertex in E with a vertex in U.

We show the decomposition of G1 in Figure 7.1, where we look at the bipartitions of U, O,

and E into their left and right parts, denoted by subscripts l and r respectively. Since G1 only

contained edges resulting from first-choices, every house in Ur and Or is an f-house. From

Lemma 7.3, each such house h ∈ Ur ∪Or is matched with an agent in f(h) in every maximum

matching of G1, and correspondingly in every popular matching of G (Lemma 7.2).

For each agent a, define s(a) to be a’s most preferred house(s) in Er. Note that s(a) always

exists after the inclusion of last-resort houses l(a). The following is proved in [AIKM07].

Lemma 7.4. (Lemma 3.5 in [AIKM07]). A matching M is popular in G if and only if

1. M∩ E1 is a maximum matching of G1, and

2. for each applicant a, M(a) ∈ f(a)∪ s(a).

The following hardness result is from [Nas14].

Lemma 7.5. (Theorem 3 in [Nas14]). Counting the number of popular matchings in HAT is

#P-hard.

We now give an FPRAS for counting the number of popular matchings in the case of ties. As

before, let G = (A∪H,E) be our HAT instance. We assume that that G admits at least one

popular matching (this can be tested using the characterization). We reduce our problem to

the problem of counting perfect matchings in a bipartite graph. We start with the first-choice

graph G1 of G, and perform a Gallai-Edmonds decomposition of G1 using any maximum
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matching of G1. In order to get a perfect matching instance, we extend the structure obtained

from Gallai-Edmonds decomposition described in Figure 7.1. Let F be the set of f-houses and

S be the set of s-houses. We make use of the following observations in the decomposition.

— Every agent in Ul and Ol gets one of their first-choice houses in every popular matching.

— Er can be further partitioned into useful sets. Define Efr to be the set of f-houses but

not s-houses, Esr to be the set of s-houses but not f-houses, Ef/sr to be the set of houses

which are both f-houses and s-houses and finally define E?
r to be the set of houses that

are neither f-houses or s-houses.

— Ol can only match with houses in Efr ∪ E
f/s
r in every popular matching.

These observations are described in Figure 7.2(a).

Next, we observe that every agent in El that is already not matched to a house in Or, must

match to a house in Esr ∪E
f/s
r . We facilitate this by adding all edges (a, s(a)) for each agent in

El. Finally, we add a set of dummy agent vertices D on the left side to balance the bipartition.

The size of D is |A|− (|H|− |E?
r |). This difference is non-negative since we assumed every

agent has a last-resort house. We make the bipartition (D,Efr ∪E
f/s
r ∪Esr) a complete bipartite

graph by adding the appropriate edges. This allows us to move from one popular matching

to another by switching between first and second-choices and, among second choices of

agents. Finally, we remove set E?
r from the right side. The new structure is described in

Figure 7.2(b). Denote the new graph by G ′. By an application of Hall’s theorem, we note

that G ′ admits a perfect matching.

Lemma 7.6. The number of popular matchings in G is |D|! times the number of perfect matchings in

G ′.

Proof. Consider a perfect matching M of G ′. Let the matching M ′ be obtained by removing

from M all the edges coming out of the set D. Observe that M ′ ∩ E1 is a maximum

matching of G1. This is because the sets Ul, Ol and Or are always matched in M ′ (or else M

would not be a perfect matching of G ′) and that the size of a maximum matching in G1 is

(|Ul|+ |Ol|+ |Or|) by Lemma 7.3. Also, each agent in A is matched to either a house in F or

in S by the construction of graph G ′. Using Lemma 7.4, we conclude that M is a popular

matching of G. Finally, observe that every popular matching in M in G can be augmented to

a perfect matching of G ′ by adding exactly |D| edges. This follows again from Lemma 7.3

and Lemma 7.4.

We now make use of the following result of Jerrum et al. from [JSV01].
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Figure 7.2: Reduction to a perfect-matching instance by extending the Gallai-Edmonds
decomposition of G1.

Lemma 7.7. (Theorem 1.1 in [JSV01]). There exists an FPRAS for the problem of counting number

of perfect matchings a bipartite graph.

From Lemma 7.6 and Lemma 7.7, we have the following.

Theorem 7.8. There exists an FPRAS for counting the number of popular matchings in the House

Allocation problem with Ties.



Chapter 8

Counting in Capacitated House

Allocation Problem

In this chapter, we consider the structure of popular matchings in Capacitated House

Allocation problem (CHA). A CHA instance I consists of agents A and houses H. Let |A| = n

and |H| = m. Let c : H → Z>0 be the capacity function for houses. Each agent orders a

subset of the houses in a strict order creating its preference list. The preference list of ai ∈ A

defines a set of edges Ei from ai to houses in H. Define E = ∪i∈[n]Ei. The problem instance

I can then be represented by a bipartite graph G = (A∪H,E).

For the instance I, a matching M is a subset of E such that each agent appears in at most

one edge in M and each house h appears in at most c(h) edges in M. The definitions

of more popular than relationship between two matchings and popular matching is same as

described earlier in Chapter 6.

We now outline a characterization of popular matchings in CHA from [SM10]. As before,

denote by f(a) the first choice of an agent a ∈ A. A house which is the first choice of at least

one agent is called an f-house. For each house h ∈ H, define f(h) = {a ∈ A, f(a) = h}. For

each agent a ∈ A, we add a unique last-resort house l(a) with least priority and capacity 1.

Lemma 8.1. (Lemma 1 in [SM10]) If M is a popular matching then for each f-house h, |M(h)∩
f(h)| = min{c(h), |f(h)|}.

For each agent a ∈ A, define s(a) to be the highest ranked house h on a’s preference list

such that one of the following is true:

• h is not an f-house, or,

• h is an f-house but h 6= f(a) and |f(h)| < c(h).
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Notice that s(a) always exists after the inclusion of last-resort houses l(a). The following

lemma gives the characterization of popular matchings in G.

Lemma 8.2. (Theorem 1 in [SM10]) A matching M is popular if and only if

1. for every f-house h ∈ H,

– if |f(h)| 6 c(h), then every agent in f(h) is matched to the house h,

– else, house h is matched to exactly c(h) agents, all belonging to f(h),

2. M is an agent complete matching such that for each agent a ∈ A, M(a) ∈ {f(a), s(a)}.

8.1 Switching Graph Characterization of CHA

We now give a switching graph characterization of popular matchings for instances from this

class. Our results are motivated from similar characterizations for HA in [MI11] and for

HAT in [Nas14]. A switching graph for an instance allows us to move from one popular

matching to another by making well defined walks on the switching graph.

Consider a popular matching M of an instance G of CHA. The switching graph of G with

respect to M is a directed weighted graph GM = (H,EM), with the edge set EM defined as

follows. For every agent a ∈ A,

• add a directed edge from M(a) to {f(a), s(a)} \M(a),

• if M(a) = f(a), assign a weight of −1 on this edge, otherwise assign a weight of +1.

Associated with the switching graph GM, we have an unsaturation degree function uM : H→
Z>0, defined uM(h) = c(h) − |M(h)|. A vertex h is called saturated if its unsaturation degree

is 0, i.e. uM(h) = 0. If uM(h) > 0, h is called unsaturated. We make use of the following

terminology in the foregoing discussion. We now describe some useful properties of the

switching graph GM.

� Property 1: Each vertex h can have out-degree at most c(h).

Proof. A house h has a maximum capacity c(h), it can only get matched to at most c(h)

agents.

� Property 2: Let M and M ′ be two different popular matchings in G and let GM and GM ′

denote the switching graphs respectively. For any vertex house h, the number of −1

outgoing edges from h is invariant across GM and GM ′ . The number of +1 incoming
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edges on h is also invariant across GM and GM ′ .

Proof. From Lemma 8.1, in any popular matching, each f-house h is matched to exactly

min{|f(h)|, c(h)} agents and this is also the number of outgoing edges with weight −1.

A similar argument can be made for +1 weighted incoming edges.

� Property 3: No +1 weighted edge can end at an unsaturated vertex.

Proof. If a +1 weighted edge is incident on a vertex h, this means that the house h is an

f-house for some agent a that is still not matched to it in M. But if h is unsaturated

then it still has some unused capacity. The matching M ′ obtained by just promoting a

to h is popular than M, which is a contradiction.

� Property 4: There can be no incoming −1 weighted edge on a saturated vertex if all its

outgoing edges have weight −1.

Proof. A −1 weighted edge on a vertex h implies that the house h is an s-house for

some agent a. But if h is saturated with all outgoing edges having a weight of −1, then

all the capacity of h has been used up by agents who had h as their first choice. But by

definition, h can not be an s-house for any other agent.

� Property 5: For a given vertex h, if there exists at least one +1 weighted incoming edge,

then all outgoing edges are of weight −1 and there can be no −1 weighted incoming

edge on h.

Proof. Let agent a correspond to any +1 weighted incoming edge. Suppose h has an

outgoing +1 edge ending at a vertex h ′ and agent a ′ corresponds to this edge. We can

promote agents a and a ′ to their first choices and demote any agent which is assigned

house h ′. This leads to a matching more popular than M. Hence all outgoing edges

from h must be of weight −1. Further, Property 3 and Property 4 together imply that

there can be no incoming edge on h of weight −1.

Switching Moves

We now describe the operation on the switching graph which takes us from one popular

matching to another. We make use of the following terminology with reference to the

switching graph GM. Note that the term “path” (“cycle”) implies a “directed path” (“directed

cycle”). A “+1 edge”(“−1 edge”) means an “edge with weight +1” (“edge with weight −1”).

• A path is called an alternating path if it starts with a +1 edge, ends at a −1 edge and

alternates between +1 and −1 edges.

• A switching path is an alternating path that ends at an unsaturated vertex.
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• A switching cycle is an even length cycle of alternating −1 and +1 weighted edges.

• A switching set is a union of edge-disjoint switching cycles and switching paths, such

that at most k switching paths end a vertex of unsaturation degree k.

• A switching move is an operation on GM by a switching set S in which, for every edge e

in S, we reversed the direction of e and flip the weight of e (+1↔ −1).

Observe that every switching graph inherently implies a matching (in the context of CHA)

of G.

Let GM = (H,EM) and GM ′ = (H,EM ′) be the switching graphs associated with popular

matchings M and M ′ of the CHA instance G = (A ∪H,E). Observe that the underlying

undirected graph of GM and GM ′ are same. We have the following.

Theorem 8.3. Let S be the set of edges in GM that get reversed in GM ′ . Then, S is a switching set

for GM.

We prove this algorithmically in stages.

Lemma 8.4. Every directed cycle in S is a switching cycle of GM.

Proof. Let C be any cycle in S. From Property 5 of switching graphs, we know that no vertex

in C can have an incoming edge and an outgoing edge of same weight +1. Similarly, since S

is the set of edges in GM which have opposite directions and opposite weights in GM ′ , we

observe that S can not contain any vertex with incoming and outgoing edges both having

weight −1 (again from Property 5). This forces the weights of cycle C to alternate between

+1 and −1. Moreover, this alternation forces the cycle to be of even length.

At this stage we apply the following algorithm to the set S.

Reduction(S):

1. while (there exists a switching cycle C in S):

let S := S \C

2. while (S is non-empty):

(a) find a maximal path P in S which alternates between weights +1 and −1

(b) let S := S \ P

At the end of every iteration of the while loop in Step 1, Lemma 8.4 still holds true. We now

prove a very crucial invariant of the while loop in Step 2.
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Lemma 8.5. In every iteration of the while loop in Step 2 of the algorithm Reduction, the longest

path in step 2(a) is a switching path for GM.

Proof. Let us denote the stages of the run of algorithm Reduction by t. Initially, at t = 0,

before any of the while loops run, S is exactly the difference of edges in EM and E ′
M. Let the

while loop in Step 1 runs t1 times and the while loop in Step 2 runs t2 times.

Let the current stage be t = t1 + i. Let P be the maximal path in step 2(a) at this stage. We

show that P starts with an edge of weight +1. For contradiction, let (hi,hj) be an edge of

weight −1 and that this is the first edge of path P. Let aij be the agent associated with the

edge (hi,hj).

The Property 5 of switching sets precludes any incoming edge of weight −1 on the vertex

hi. Hence, no switching path could have ended at hi at any stage t < t1 + i. Similarly, no

switching cycle with an incoming edge −1 was incident on hi at an earlier stage.

Let us assume that there were r cycles that were incident at hi at t = 0. At stage t = t1 + i,

let the number of outgoing −1 edges be m. Hence at t = 0, hi had r incoming +1 edges and

r+m outgoing −1 edges. But this would also imply that at t = 0, hi had r+m incoming +1

edges in GM ′ . This contradicts Property 2, requiring the number of incoming +1 edges to be

constant in the switching graphs corresponding to different popular matchings.

A similar argument can be made for the fact that the path P can only end at an edge with

weight −1 and that P ends at an unsaturated vertex.

The following theorem establishes the characterization for popular matchings in CHA.

Theorem 8.6. If GM is the switching graph of the CHA instance G with respect to a popular

matching M, then

(i) every switching move on GM generates another popular matching, and

(ii) every popular matching of G can be generated by a switching move on M.

Proof.

(i) We verify that the new matching generated by applying a switching move on GM
satisfies the characterization in Lemma 8.2. Call the new switching graph GM ′ and the

associated matching M ′. First, observe that M ′ is indeed an agent complete matching

since GM ′ still has a directed edge for each agent in A. Next, each agent a is still

matched to f(a) or s(a) as the switching move either reverses an edge of GM or leaves

it as it is. Finally, for each house h, f(h) ⊆ M ′(h) if |f(h)| < c(h) and |M ′(h)| = c(h)

with M ′(h) ⊆ f(h) otherwise. This is true because |M ′(h)| = |M(h)|, by the definition of

switching moves.
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(ii) This is implied by Theorem 8.3.

8.2 Hardness of Counting

In this section we prove the #P-hardness of counting popular matchings in CHA. We reduce

the problem of counting the number of matchings in a bipartite graph to our problem.

Let G = (A∪B,E) be a bipartite matching instance in which we want to count the number of

matchings. From G we create a CHA instance I such that the number of popular matchings

of I is same as the number of matchings of G.

Observe that a description of a switching graph gives the following information about its

instance:

• the set of agents A,

• for each agent a ∈ A, it gives f(a) and s(a), and

• for each s-house or f-house h, the unsaturation degree gives the capacity c(h).

Using this information, we can create the description of the instance I so that it meets

our requirement. For simplicity, we assume G to be connected (as isolated vertices do not

affect the count). We orient all the edges of G from A to B and call the directed graph

G ′ = (A∪B,E ′). Using G ′, we construct a graph S, which will be the switching graph.

Let |A| = n1, |B| = n2 and |E ′| = m. S is constructed by augmenting G ′. We keep all the

vertices and edges of G ′ in S and assign each edge a weight of −1. Further, for each vertex

u ∈ A, add a copy u ′ and add a directed edge from u ′ to u, and assign a weight of +1 to

the edge. Call the new set of vertices A ′. The sets A ′ and B contain s-houses and the set

A contains f-houses. We label every vertex in A ′ and A as saturated and for each vertex v

in B, we label v as unsaturated with unsaturation degree 1. Hence, the switching graph S has

2n1 +n2 vertices and n1 +m edges.

The CHA instance I corresponding to the switching graph S has 2n1 +n2 houses and n1 +m

agents. Each agent has a preference list of length 2 that is naturally defined by the weight of

edges in S.

Let the popular matching represented by S be Mφ. This corresponds to the empty matching

of G. Every non-empty matching of G can be obtained by a switching move on S. We make

this more explicit in the following theorem.
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Theorem 8.7. The number of matchings in G is same as the number of popular matchings in I.

Proof. We prove this by showing that each matching in G corresponds to a unique set of

edge disjoint switching paths in the switching graph S of I.

Consider a matching M of G and let (u, v) ∈M. We look at the length 2 directed path in S

that is obtained by extending (u, v) in the reverse direction: u ′ → u → v with u ′ ∈ A ′. It’s

easy to see that this is a switching path for I. Moreover, the set of switching paths obtained

from any matching of G forms a valid switching set (as every pair of such paths arising from

a matching are always edge disjoint).

For the converse, observe that S can only have switching paths of length 2 and it has no

switching cycles. An edge disjoint set of such paths corresponds to a matching of G. By the

definition of S, it’s easy to see every matching in M can be obtained by a switching set of

S.





Chapter 9

Conclusion

9.1 Transitivity

We have presented an algorithm that given a directed graph on n vertices and m arcs

outputs a maximal transitive sub-graph is time O(n2 +nm). This is the first algorithm for

finding maximal transitive subgraph that we know of, that does better than the usual greedy

algorithm. Although it might be the case that this is an optimal algorithm, we are unable to

prove a lower bound for this problem.

There are many related problems for which one might expect similar kind of algorithm -

that is O(n3) time algorithm that does better than the usual greedy algorithm. We would

like to present them as open problems:

1. Given a directed graph G on n vertices and a transitive subgraph H of G, check if H is

a maximal transitive subgraph of G.

2. Given a directed graph G on n vertices and a subgraph H of G, find a maximal transitive

subgraph of G that also contains H.

Obviously an algorithm for the second problem would also give an algorithm for the first

problem.

In the case of Maximum Transitive Subgraph (MTS) problem, we give a 0.25-approximation

for the general problem and 0.874-approximation for the triangle-free case (underlying

graph being triangle-free). The obvious question that arrises here is that of improving these

approximation ratios. We also give an upper bound on the size of MTS being m/4+ cm4/5

for some c > 0. Since this bound is achieved via showing upper bounds to max-cut, it
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further shows that the approach of using max-cut approximation can’t have a better constant

approximation ratio than 1/4.

9.2 Popular Matching

We looked at the different versions of the popular matching problem from a counting and

approximation perspective. Specifically, we look at the cases of preferences with ties and

houses with capacities. In the case where preferences could have ties, it was already known

that the counting version is #P-hard. We complemented this by obtaining an FPRAS for this

problem.

In the case where houses have capacities, we prove that the counting version is #P-hard. The

question of obtaining an FPRAS for this case still remains open. Such an algorithm will

complete the picture of approximate-counting in the different settings of popular matching

problems.
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