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Abstract

In the first part of the thesis, we consider various type-IIA supergravity solutions that origi-
nated by applying non-Abelian T-duality on well-known type- 1 B supergravity backgrounds.
Abelian T-duality is an exact symmetry of the string theory of all orders of o'. However,
non-Abelian T-duality works as a solution-generating technique at the supergravity level. We
present the non-Abelian T-dual supergravity solutions originating from AdSsx S° geometry,
Klebanov-Witten geometry, Klebanov-Tseytlin background and the D1 — D5 system, where
T-duality acts on an appropriate non-Abelian isometry group SU(2).

We study the Penrose limits in these T-dual backgrounds. In most cases, the Penrose
limits lead to pp-wave geometries in the neighbourhood of appropriate null geodesics. The
quantization of closed string on the resulting pp-wave has also been discussed. We also study
the supersymmetry analysis of these type-IIA pp-wave geometries and draw some comments
on the dual gauge theory.

In the remaining part of the thesis, we discuss some aspects of Double Field Theory
(DET). Double Field Theory is constructed to incorporate T-duality as a manifested sym-
metry of string theory. In the thesis, we explore the Heterotic version of it. We introduce the
relaxed version of the generalized Kerr-Schild ansatz (GKSA) to study perturbations of the
fundamental fields in the theory. We also discuss the classical double copy correspondence
in this framework.
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Chapter 1

Introduction

Duality plays a significant role in understanding a large class of Physical systems. The notion
of duality in Physics is quite familiar since the 1800’s through Maxwell’s equations. The
Maxwell’s equations describe the duality between the electric field and the magnetic field. In
mid-seventies 't Hooft proposed a duality between a gauge theory and string theory [1]. The
gauge theory consists of SU(N) gauge group with large N. The perturbations of the theory
is governed by the expansion parameter A(= gi-,,N), known as the ’t Hooft parameter. The
perturbation of the SU(N) gauge theory is a double expansion of the parameters A\ and
1/N?% [1]. In the proposal of 't Hooft, there exists a precise correspondence between these
parameters in gauge theory with the expansion parameter gs ~ 1/N and the world-sheet
expansion parameter o’ ~ 1/v/\ in string theory [1].

The precise duality between gauge theory and string theory came out from the seminal
work by Maldacena through his AdS/CFT conjecture [2]. The conjecture states a duality
between gravity in Anti de-sitter (AdS) spacetime and operators in a Conformal Field Theory
(CFT) that resides at the boundary of the AdS spacetime. Conformal Field Theory is a very
special kind of Quantum Field Theory that exhibits conformal symmetry [3]. The original
conjecture of AdS/CFT correspondence establishes the relation between type-IIB string
theory in AdSs; x S° and the N' = 4 supersymmetric Yang-Mills (SYM) theory in four
spacetime dimensions [2]. Moreover, this correspondence has been generalized to a very wide
range of physical systems, the simplest ones among them consist of type-IIB string theory
in other spacetimes in the form AdSs x X?; where X? is a five-dimensional internal manifold
[4,5,6]. The correspondence in the low energy limit is known as gauge/gravity duality which
relates supergravity (the low energy excitation of string theory) with strongly coupled gauge
theory. This is one of the most interesting and useful aspects of the correspondence.

Symmetry plays a key role in any physical theory to understand the fundamental nature
of the theory. In string theory there exists several dualities: S-duality and T-duality. The
former relates the theory at various orders of the string-coupling. T-Duality relates low energy
effective actions of various string theories among each other [7,8]. For the closed string case,
T-duality exchanges the momentum and winding modes of the closed string compactified
in the circles with radius R and o//R respectively. It also connects the type-I/B and
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the type-I1IA versions of the superstring theories. The familiar description of T-duality
concerns U(1)-isometry and it is known as the Abelian T-duality. Abelian T-duality is an
exact symmetry of the full string theory [9,10]. A non-trivial generalization of this Abelian
T-duality exists for the non-Abelian isometric groups [11]. However, this non-Abelian T-
duality is not a symmetry of the full string theory. It is an elegant solution-generating
technique at the supergravity level. Initially, this duality was formulated in the NS-NS
sector of the supergravity theory. For quite some time it was not known how to incorporate
the Ramond-Ramond sector in the context of non-Abelian T-Duality. The remarkable works
by Sfetsos and Thompson gave insights along this line [12]. For a decade, these techniques
have been applied to known supergravity backgrounds to construct several new supergravity
backgrounds [13,14,15,16,17,18,19,20]. These new T-dual backgrounds give various insights
in the context of AdS/CFT correspondence to construct new CFT duals [21,22,23,24,25,26,
27,28].

For several supergravity backgrounds, the Penrose limits lead to pp-wave geometry. String
theory on the pp-wave wave background has been analysed in detail for more than a decade
for its interesting features [29,30,31,32,33]. These pp-wave solutions originated by applying
Penrose limits in supergravity backgrounds and M-theory backgrounds [34, 35, 36]. The
most interesting feature of the pp-wave geometries is that they provide exact string theory
backgrounds to all orders in o' as well as g5 [37,38]. It was a path-breaking work by
Berenstein, Maldacena and Nastase (BMN) that shed new insights to do stringy calculations
from gauge theory perspective [35]. In this work, BMN showed that pp-waves in the gravity
side correspond to operators with large R-charge in N/ =4 SYM in four dimensions [35].
Here the pp-wave originated by considering Penrose limits in AdSs x S® background. In later
works, the Penrose limits and pp-wave geometries have been studied for other supergravity
backgrounds as well [39,40,41,42]. The corresponding BMN sector has also been discussed.
Recently, the Penrose limits in non-Abelian T-dual of AdSs x S° background have been
studied in detail [26]. The Penrose limits along non-singular null geodesic lead to pp-wave
geometry in the T-dual background. The closed string quantization and the BMN sector in
the dual gauge theory have been discussed in detail for the above case. The work in [26]
is the main motivation for this thesis. In the core part of the thesis, we generalised the
ideas of [26] in other non-Abelian T-dual supergravity backgrounds. In the thesis first, we
review the Penrose limits and pp-waves in the non-Abelian T-dual geometry of AdSs x S°
background and then we consider the non-Abelian T-dual corresponding to the compaction
of string theory on Klebanov-Witten background, Klebanov-Tseytlin background and the
D1 — D5 system. The Klebanov-Witten background arises upon placing a large number of
D3 branes on a conifold singularity [5]. The corresponding dual gauge theory is N/ = 1 super
Yang-Mills theory in four spacetime dimensions [6]. The Penrose limits in this background
and the BMN operators in the dual gauge theory have been studied in detail in [39,40,41].
The non-Abelian T-duality along SU(2) isometry of this background has been analysed
in [15,23]. The T-dual geometry is a solution in type-IIA supergravity. In our work [43]
and in this thesis we consider this T-dual background and examine the Penrose limits. We
also make comments on gauge theory dual of the resulting pp-wave geometries. Adding M



fractional D3-branes together with N regular D3-branes at conifold singularity leads to
N =1 supersymmetric SU(N + M) x SU(N) gauge theory in four spacetime dimensions.
Due to the presence of fractional branes, the theory is no longer conformal and the gravity
dual is a modification of the Klebanov-Witten background and is known Klebanov-Tseytlin
background [44]. This background admits an SU(2)-isometry which is used for non-Abelian
T-dualization. The resulting solution is a massive type-IIA supergravity background with
N =1 supersymmetry [15,23]. In one of our works as well in this thesis we consider the
non-Abelian T-dual background and investigate the Penrose limits. We show that the T-
dual geometry admits pp-wave solution around suitable null geodesics [45]. The non-Abelian
T-dual solutions that we considered here all are N’ = 1 supersymmetric. Along this line of
investigation, we consider the non-Abelian T-dual of the near horizon geometry D1 — D5
system. The near horizon geometry is described by AdSs x S® x T background. The Penrose
limits in this background as well as its Abelian T-dual background have been studied in [42].
The non-Abelian T-dualization of this background along an SU(2) isometry has been first
carried out in [12] and studied in detail in [46]. The non-Abelian T-dual background is a
massive type-ITA supergravity solution with A' = 1 supersymmetry. In our work [47] we
consider this non-Abelian T-dual background and examine variation Penrose limits in it. We
show that the T-dual background admits pp-wave solution around some non-singular null
geodesic [47]. We make some comments on the probable field theory duals.

In the remaining part of the thesis, we discuss some aspects of Double Field Theory
(DFT). Abelian T-duality is an exact symmetry of string theory [9,10]. In low energy limit,
the theory can be written in a duality invariant fashion before compactification with the
framework of Double Field Theory (DFT) [48,49]. It is shown that non-Abelian T-duality
can be described in the language of double field theory [50]. Among the different formulations
of string theory, heterotic double field theory focuses on the low energy limit of heterotic
string and its embedding into the double geometry [51]. The standard construction is built
on the D-dimensional metric tensor, two-form and a non-Abelian gauge field. The underline
symmetry group of heterotic double field theory is O(D, D+ K); where K is the gauge group
for the gauge field.

The Kerr-Schild formalism is a powerful tool to construct exact solutions in general rela-
tivity [52]. In beginning, it was formulated for the perturbations around the Minkowski space
and later it has been generalized to any on-shell spacetime geometry. However, the standard
Kerr-Schild (KS) formalism does not describe the entire NS-NS sector of the closed string.
Recently the remarkable work by Lee establishes that it is possible to generalized the con-
ventional Kerr-Schild formalism to the double field theory and supergravities by introducing
a pair of null vectors [53]. The classical double copy structure of this generalized Kerr-Schild
formalism describes the entire NS-NS sector of massless string [53]. But this formalism also
does not consider the Ramond-Ramond sector of massless string. Then a subsequent devel-
opment by Cho and Lee introduced a generalized Kerr-Schild ansatz (GKSA) in the context
of heterotic double field theory and supergravity to incorporate the Ramond-Ramond sec-
tor [54]. Here, the pair of null vectors are represented by a pair of null O(d, d+G) generalized
tangent vectors. In the picture of GKSA, the null condition can be partially relaxed in a
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consistent way [54]. The classical double copy structure of GKSA describes the heterotic
supergravity [54]. However, to study perturbations of the gauge field within this framework
was still lacking [55, 56].

In our work [57] and in this thesis we shed some insights into the study of gauge field
perturbation in heterotic double field theory. We present a formulation of heterotic double
field theory where the fundamental fields are in O(D, D) representations [57]. We obtain
the theory by splitting an O(D, D + K) duality invariant DFT. Within this framework,
we explore the perturbative properties of heterotic DF'T. We use a relaxed version of the
generalized Kerr-Schild ansatz which is known as relaxed generalized Kerr-Schild ansatz
(R-GKSA). The R-GKSA was first introduced in [58] to study the classical double copy
correspondence of point charge. The R-GKSA in our context consists of the perturbation of
the generalized background metric up to quadratic order considering a single null vector and
the gauge field is linearly perturbed before parametrization [57]. We also study the classical
double copy correspondence at the DFT level in our picture.

The thesis is organized as follows.

e In Chapter 2 we discuss the basic notion of T-duality. Starting from the duality of
string compactification on circles of radius R and «'/R we discuss the Buscher formulation
of T-duality for the generic background which admits U(1) isometry together with back-
ground fields. This construction is known as the Abelian T-duality. In the same chapter,
we discuss the generalisation of Abelian T-duality for non-Abelian isometries, where in most
cases the symmetry group is SU(2). We discuss the construction of the NS-NS sector and
RR-sector of dualization in detail. To give some examples we consider some supergrav-
ity solutions that originate by applying Abelian and non-Abelian T-duality on well-known
type-IIB supergravity backgrounds: AdSs x S° geometry, Klebanov-Witten background,
Klebanov-Tseytlin background and the near horizon geometry of D1 — D5 system.

e In Chapter 3 we discuss the AdS/CFT correspondence. First, we revisit Maldacena’s
work for the AdSs x S° background and its correspondence with N' = 4 supersymmetric
Yang-Mills theory that resides at the boundary of AdSs followed by the work of Klebanov
and Witten for the AdSs x TH! geometry. Together with the above, the Penrose limits of
the type-I1B supergravity backgrounds have also been discussed. Starting from the seminal
work by BMN for the AdSs x S% background, the Penrose limits in the Klebanov-Witten
background, Klebanov-Tseytlin background and the Penrose limits of near horizon geometry
of D1 — D5 system have been discussed. For all the above cases, Penrose limits lead to
pp-wave geometry. Field theory duals of the corresponding pp-wave geometries have also
been discussed.

e In Chapter 4 we review the recent work on Penrose limits in T-dual backgrounds origi-
nated from the AdSs x S° geometry. We discuss the pp-wave geometries both in the Abelian
as well as the non-Abelian case with corresponding field theory duals. The supersymmetry
discussion of the pp-wave geometry is also provided.



e Chapter 5 is the core part of this thesis. In this chapter, we discussed the Penrose limits
in the non-Abelian T-dual of the Klebanov-Witten and Klebanov-Tseytlin background. We
discuss various null geodesics in the non-Abelian T-dual geometry, some of them lead to
pp-wave geometries. The closed string quantization and the supersymmetry analysis of these
pp-wave geometries have been discussed. We briefly mention the dual field theory for these
pp-wave geometries.

e Finally in Chapter 6 we consider the T-dual backgrounds originated from the near
horizon geometry of D1 — D5 system. The near horizon geometry is described by the
background AdS; x S® x T* . We discuss the Penrose limits and pp-waves in the T-dual
backgrounds. The supersymmetry analysis states that the pp-wave geometry preserves 16
supercharges in the non-Abelian case. The corresponding field theory discussion is also
provided.

e In Chapter 7 we first review the basic notation of Double Field Theory and the Kerr-
Schild ansatz in this context. We discuss both in metric formalism as well as in frame
formulation. We introduce the double Yang-Mills formulation of heterotic DFT and explore
the relaxed version of generalized Kerr-Schild ansatz to study perturbations of the funda-
mental fields in the theory. We also discuss the classical double copy correspondence in this
framework.

e Finally we summarise the result and discuss some future directions in Chapter 8.



Chapter 2

Abelian and non-Abelian T-duality

In this chapter we will first introduce the nuts and bolts of the familiar T-duality along with
the extended version of it. For the perturbation of closed bosonic strings, T-duality is the
simplest version of string duality. The familiar notation of T-duality, it relates the string
theories with a large spacetime radius R and with a small spacetime radius //R. In the
following we will review the basics of this T-duality together with some examples.

2.1 Abelian T-duality

In this section we will consider the closed bosonic string and show how T-duality acts on
it. Consider the bosonic string compactified in Minkowski spacetime with 26 spacetime
dimensions. Out of 26 spacetime directions, one direction is a circle S! with radius R.
Here the string propagates in the space defined by R?*! x S'. Let X?° be the compactified
coordinate which satisfies the periodic boundary condition

X®(o+7m,7) = X*(0,7) + 20RW | (2.1)

where (o,7) are the worldsheet coordinates and W is known as the winding number that
measures the number of times the closed string winds around the compact direction S!.
Considering the familiar left mover and right mover decomposition of the mode expansion of
the closed string modes, from (2.1) we have

XB(0,7) = XB(1 4+ 0) + XZ(7 — 0) , (2.2)
with the leading order expansion
1
X12%5(7__U): §(x25—j25)+(o/%—WR)(T—U)"‘ ...... ,
1
XP(r+o)= (@™ +37)+ (a’% + WR) (T+0) + e (2:3)

Here k is the Kaluza-Klein excitation number and it originates from the quantized momentum
associated with direction X?°. Because X?° is identified with the circle S', hence the
associated momentum is quantized with the expression pss = k/R .

6
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Now the mass spectrum of the closed string is given by

= (3 + (012

(NL + NR) . 2] , (2.4)

where Ny, r denotes the number of left-moving and right-moving modes respectively and they
satisfy the level matching condition Ng — N;, = Wk. The expression of the mass spectrum
(2.4) is invariant under the exchange of R < o//R followed by W < k. This duality
symmetry is known as T-duality for closed bosonic string. Under T-duality the closed string
momentum modes become the winding modes and vice versa. In terms of the mode expansion
the T-duality acts as

XP = —X7; XP = XP. (2.5)

In the case of superstring, the T-duality acts in the fermionic sector as well. The action of
the T-duality is as follows

X% = X3 X = X7, (2.6)

where X? is the compactified coordinate in the ten-dimensional type-I1 theories. Together
with the bosonic modes the fermonic modes exchange as

Vi = —Vh s VL UL (2.7)

It is shown that under this transformation the chirality of the theory changes from type-I1B
to type-ITA and vice versa.

Now in the following we will examine T-duality in the presence of background fields in
the NS-NS sector as well as in the RR sector. In the NS-NS sector we have the background
metric g,,, NS-NS two form B, and the background dilaton ®. The RR sector is contained
with p-forms gauge field. Here the background metric g,, admits at least one U(1) isometric
direction along which the T-duality acts. In this case the construction is the following three
steps procedure known as the Buscher Rules [7,8]. First consider a sigma model action in
this background which supports the U(1)-isometry. Then gauge the isometry and impose a
constraint by introducing a set of Lagrange multipliers such that the field strength will remain
zero. This leads to state that the degrees of freedom of the system will remain unchanged
during dualization.

Now the duality picture is the following. If we solve the equation of motions of the
Lagrange multipliers and substitute in the original action we recover the original sigma model
action. In order to construct the T-dual sigma model, instead of the Lagrange multipliers
we integrate out the gauge fields and gauge fix the remaining part. Then the Lagrange
multipliers become the coordinates in the dual sigma model.

Consider the worldsheet action of the string together with the background fields as follows

1
Yt

S=-

/ d*c [\/—hhaﬁgwaa)(ﬂaﬁxv — € B, 0. X"0:X" | | (2.8)



8 CHAPTER 2. ABELIAN AND NON-ABELIAN T-DUALITY
where, h,g is the metric on the worldsheet and consider the background has manifest U(1)-

isometry along X? direction. Following Buscher rules, we introduce a Lagrange multiplier
X? and then the worldsheet action in (2.8) takes the form

drad S = /d20

\/—hhaﬁ( — 990V Vs — 2,0V 0 X" — gWé?aX”agX”)

+eP <BguvaaﬂX” + B,ﬂ,aaX“agX”) + X% 9,V (2.9)

Solving the Lagrange multiplier X° in (2.9) we have ¢*?9,V; = 0. Upon solving this we find
V., = 0,X?. Substituting the solution in (2.9) one recovers the original sigma model action
(2.8). Instead of that, upon solving V,, to integrate the Lagrange multiplier X° we find the
dual sigma model action as

1

G-
Y

/ d*o [\/—hh“ﬁguyaaX"@ﬁX” - eaﬂéﬂyaaxwﬁx”] : (2.10)

where the T-dual fields are given by

N I By, . By, Boy, — go,.99v
Goo = — 3 Jop = — 3 Guv = G + — =
999 999 999
r I B v B v
By, = You . By, = B + Gopu D9 9199 ’
999 999
(%) _ o0 (2.11)
To construct the T-dual dilaton @, we considered the invariance of the quantity /—ge 2% —

V—=g¢72® in T-duality. The transformation rules in (2.11) is known as Buscher Rules of T-
duality.

Now we shall consider the action of T-duality on the RR p-forms. One can construct the
T-dual RR forms by various approaches: spacetime perspective, worldsheet perspective and
the bispinor formulation. In the following we will discuss the bispinor formulation introduced
in [59]. Consider the bispinor in type-1/B theory as

o 4
e
P== ;F%H . (2.12)
Similarly in type-IIA theory we have
~ eq> 5
p— 0 2.13
where ¥ = %!FM__.MPFZ’;”"”’LP. Now the dual fluxes can be obtained from

P=P Q' (2.14)
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where the () is given by
1
V999

At the end of this chapter we consider some of the well-known supergravity backgrounds and
study the application of T-duality on it.

Q == FHFg . (215)

2.2 Non-Abelian T-duality

In the previous section we showed how T-duality works on the background that admits
an U(1)-isometry. The procedures are described in three steps are known as the Buscher
Rules. Now Buscher’s formulation can be extended to the supergravity background where
the corresponding isometric group is non-Abelian [11]. The procedure follows the same steps
as in the Abelian case, although the gauge field we introduce here is a non-Abelian group
valued quantity. However, unlike its Abelian counterpart, the non-Abelian T-duality is not a
symmetry of the full string theory. The non-Abelian T-duality works as a solution generating
technique at the supergravity level and maps one supergravity solution to another. Also, in
this case, during dualization the isometry of the seed background is partially lost but it can
be recovered as a non-local symmetry in the corresponding sigma model. Initially, the non-
Abelian T-duality was formulated for purely NS-NS backgrounds. In a remarkable work, the
authors in [12] incorporated the RR sector in non-Abelian T-duality. The new supergravity
backgrounds correspond to new CFT duals and give new insights into the context of the
AdS/CFT correspondence. One interesting example is the dualization of an SU(2) subgroup
of the AdSs x S° geometry. The T-dual background is a solution in type-IIA supergravity
and its M-lift is very close to Giaotto-Maldacena geometry that arises from M5-branes on
Riemann surfaces. Now in the following we will discuss the Buscher Rules in non-Abelian
T-duality where the corresponding isometry group is SU(2).

First we write the background metric in the form
ds® = G, (z)datdx” + 2G i (x)da" L' + gij(x)L'L (2.16)

where the index g runs from 1,2,..7 and describes the spectator part denoted by the coordi-
nate x#. In the above, L%;i = 1,2,3 are the SU(2) left invariant Maurer-Cartan one forms
and are expressed in terms of the SU(2) Euler angles 0, ¢ and . Together with metric, we
have the same decomposition of the NS-NS two-form gauge field given by

By = B, (z)dz" A dx” + B(x)dz" A L'+ %bij(x)ﬁ NI (2.17)
In addition to the metric and NS-NS two-form we have background dilaton ® depends on
the spectator directions, ® = &(z).
Now we assign the frames associated with the metric (2.16) as follows
e = eﬁd:ﬂ“ c A=1,2,....,7
e = KL+ Nda"; a=1,2,3. (2.18)
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Imposing the metric in the form
ds* = napetel 4 e | (2.19)
and then from (2.16)-(2.19) we find
G = nABef}ef + K 5 k{N, = Gui 5 K{ES = gij (2.20)

where we define A\JA7 = K),,. Now in the following we will consider the construction of the
NS-NS sector of the T-dual background. We will follow the worldsheet formulation introduced
in [15,23]. The Lagrangian density for the bosonic sector takes the form

Lo = Q0  X"0_X" + Q01 X" L' + Qi L' 0_X" + E;L' 17, (2.21)
where 0, are the conventional worldsheet derivatives and L} = —i Tr(t'g7'd.g); t' are the
generators of the isometry group SU(2). The @’s are defined as

Qu =G+ By s Qui=Gui+Bui; Q=G+ By ;s Eij = gij + byj . (2.22)

Now we replace the ordinary derivative 0. by the covariant derivatives in the expression of
Ly
0rg — Dig=0.9— Aig . (2.23)
In addition we add the Lagrangian multiplier term given by
i Tr(vFy) s Fo=0,A- —0_A, — [AL A] . (2.24)

Equation of motion of the Lagrangian multipliers drives back to the original Lagrangian L,
whereas integrating out the gauge fields and gauge fixing the group part (here we consider
g = II) we obtain the T-dual Lagrangian

;CA = QW@_X”@_XV + (&J)i + @+X“Qm~)Mi;1(8_vj — qua_X“) s (225)
where M;; = gi;+ fijrvr and fi;;, are the structure constants of the corresponding Lie-Algebra.

From (2.25) the dual @Q’s read as

Qw/ = Q/u/ - Q/M;MingjV ) Q,ui = Qungzl )
Qiu = _Mingj/L ) Eij = Mz;1 . (226)

Now the symmetric combination of )’s generate the components of the T-dual metric and
the antisymmetric part leads to NS-NS two-form in the T-dual geometry

N 1 _ _
G/u/ = G/u/ - §(QuiM7jlejy + QuiMilejy) )
1 _ _ R 1 _ _
wi = §(Quijz‘1 - quMijl) y 9ij = §(Mij1 + Mjil) )
R 1 _ _
B;w = B, — §<QuiMig‘lev - QViMilejV) )

A

1 ~ 1
By = §(Qung;1 + quMz‘gl) » bij = §<Mz;1 T Mj;l) : (2.27)

o
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Considering the above metric components the line element of the T-dual geometry is given
by

N A . 1 o
d3* = G, do"dz” + V26 datdv’ + Sdidv'dv’ (2.28)
Similarly for the NS-NS two-form we have

~ N 1 - . 1~ . .
By = B, da" N dx” + —=B;da" N\ dv' + Zbijdv’ A dv’ . (2.29)

V2

In addition the dual dilaton takes the form
2= — det M . (2.30)

This completes the discussion about the NS-NS sector. Now we will turn our focus on the
construction of T-duality in the RR sector. It is straightforward to see from (2.21) and (2.25)
that the left and right movers transform differently under the T-dual transformations

[A/:_ = —(M_l)ji(&rvj + Quja+XM) ; [A/Z_ = Migl(a_vj + qua_XM) . (2.31)

These lead to two different frames ¢4 and é? in the T-dual background. Both the frames
describe the same geometry hence they must be related by a Lorentz transformation

et = Ay &b (2.32)
The Lorentz transformation A acts on the spinor representation of the Lorentz group as
Qe = A (2.33)

In this case also we consider the bi-spinor formalism (2.12)-(2.14) as we discussed in the
Abelian part to construct the RR-form in the T-dual theory. In the original background we
write the RR field strengths in basis of e and e? as

F, = GI(DO) + Gy Nt + %ngQ Ae Ael+ G;?’_)g ANet Ne* AeP . (2.34)
Similarly the T-dual RR strength takes the form
F, = C;’éo) + Gg_l A€+ %@ZEQ Ae* Ne @1(33_)3 ANeT NP NP (2.35)
where

G = e*? ( — AGP + AaGg) ,

p
~ . A abe b a
Go_ = o2 ® ( _ 7o b Gf,_l + Aprb_1 + AaGﬁ,O_)l) ,
Goo, = PP |t (ACGS’_)Q +AOG;_2) - <AaGg_2 - A,,G;_z) :

. + (A,
G(3) — €<I>f<1> (Teachgc_g"i_AOGg)—)S) ) (236)
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The coefficients in the above transformation are given by
Vdet g Ky
0= .
\/det g+ (/i;lyi)Q \/det g+ (mgyi)Z

where y; = b; +v; and b; arises from the b;; as b;; = €;;,by .

A ; Ay = (2.37)

In the next section we consider some well-known supergravity solutions and study their
T-dual backgrounds.

2.3 Abelian and non-Abelian T-dual supergravity back-
grounds

Finally, in this section we will consider some of the type-IIB supergravity backgrounds and
apply the Abelian as well as non-Abelian T-duality to these backgrounds. The Abelian T-
duality acts on a U(1)-isometry of the type-I1B backgrounds. The resulting backgrounds
are the solutions in type- I A supergravity. The background we consider in the following also
admits non-Abelian isometries. We consider an SU(2) subgroup for the dualization. The
T-dual backgrounds solve supergravity equations in type-IIA supergravity. In the following
we will review the T-dual background presented in [12,15,21,23,27,42,46].

T-dual backgrounds with AdS; factor

First we will consider the type-IIB supergravity backgrounds of the form AdSs x X3,
where X? is some five-dimensional Einstein manifold. We start our discussion with AdSs x S®
geometry. The geometry describes the near horizon geometry of a stack of N D3-branes
placed on top of each other [2,4]. The corresponding metric of the geometry is given by

ds? = 4L2ds*(AdSs) + AL2dO2(a, B) + L2 cos? a<d92 +dg? + dib? + 2 cos 9d¢dw) , (2.38)

where
ds?(AdSs) = — cosh? pdt* 4 dp?® + sinh? pd23
dQ%(a, B) = da® +sin® adB? . (2.39)
The RR sector of the background is described by the self dual five-form field strength as
o gfL(l + 416) Vol(AdSs) . (2.40)

The metric in (2.38) has manifest U(1)-isometries along 3, ¢ directions as well as in the fibre
direction ¢ in the transverse S® manifold. The Abelian T-duality along the v -direction has
been studied in detail in [21]. The T-dual background is specified by the metric

dyp?

L2 cos? o«

dsirp = 4L7ds*(AdSs) + 4L*dQ5 (o, B) + + L? cos® a d03(x, €) (2.41)
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where we still denote the T-dual coordinate as 1 and the remaining S? coordinates as
(X, 5) . In the T-dual geometry, the range of the ¢ -coordinate becomes (0,7). In the above
we consider o/ = 1 for convenience. Now we focus on the remaining background fields of the
T-dual geometry.

The background fields in NS-NS sector takes the form

By = sinydy AdE
g0 Leosta (2.42)
Js
The Ramond-Ramond sector of the T-dual background is supported by the four-form field
strength
8L4
Js

Fy =

cos® acsin asin ydoe A d A dy A dE . (2.43)

The metric component gy, in (2.41) is singular at a = 7/2 and also the background dilaton
(2.42) blows up. Hence the T-dual background is no longer maximally supersymmetric. It
turns out that the above background (2.41)-(2.43) preserves 16 supercharges and solves the
equations of motion of type-ITA supergravity [21].

Now we will turn our attention to the non-Abelian T-dual solution originated from (2.38).
The non-Abelian T-duality on SU(2) subgroup of the internal manifold S® has been carried
out first in [12] and then studied in detail in [21,25]. The T-dual background is described by
the metric

dp? L?p? cos? a
L?cos’a  p?+ L*costa

ds¥iarp = 4L*ds*(AdSs) + 4L*dQ3 (o, B) + dQ3(x, &) . (2.44)

In addition, the NS-NS sector of the background is contained by two-form and dilaton as

3 2
pPeosta .
By= ——m dx N\d
2 p2+L4cos4a8mX XA,
L2 2
e 2® = ﬂ <p2 + L*cos? a> : (2.45)
9s

The RR sector of the background is described by two-form and four-form field strengths

8L*
= sin acos® adex A df3
gs
8L4 3 3
F, = PE% @ inasin xda ANdp N dx A dE . (2.46)

gs p*+ LAcos* a

As in the Abelian T-dual background, the metric of the non-Abelian T-dual background
(2.44) is singular at o = § where the g,,-component and dilaton blow up. It is shown in [21]
that the background (2.44)-(2.46) is a solution in type-I/A supergravity and preserves 16
supercharges.
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Now we shall consider the Klebanov-Witten background and the geometries that origi-
nated from it by applying Abelian and non-Abelian T-duality. This type-IIB background
corresponds to the near horizon limit of parallel D3 branes at conical singularities [5,6]. The
metric of the background has the following form

ds® = L*ds% s, + L?dsian (2.47)
where the AdSs metric is given in (2.39) and metric of the 7! is given by
ds2T1,1 = )\% ng (91, qbl) + )\g ng (92, ¢2) + )\2 (d%b + cos 91d¢1 + cos 02d¢2>2 . (248)

In (2.47), L is the size of AdSs and the \;’s are constant parameters with the numerical
values \; = Ay = \/ié and A\ = % The RR sector of the background is described by the self
dual five-form field strengths

Fy =

4
7 Vol(AdSs) — L*Vol(T 1) |. (2.49)

s

The background (2.47)-(2.49) has U(1) isometries along ¢1, ¢ and v directions in the trans-
verse TH! part. Also, the metric is symmetric under the exchange of the two azimuthal
coordinates (¢1, ¢2) followed by (61,6s). First we will consider Abelian T-duality along the
¢o-direction. The geometry of the dual background is given by the metric [27]

d¢3
A P(62)

)\2 Sirl2 02

P(0s)

ds’p = L2ds? s, + L322 | d2(04, 1) +d02+ (di+ cos Oyde)* + . (2.50)

where P(fy) = A2 cos? 0, + A\2sin?6, . The background dilaton and the NS-NS two-form
admits by the T-dual background are given by

. L? R L?)\2 cos )
-2 i _ _ 2
= P(6y) ; By T <d¢2 A dib + cos B, dé /\d¢1> . (2.51)
The RR four form F} for the T-dual background has the following expression
R 4L4 4
Fy = i 01 sinfy dby A déy A dby A dip . (2.52)
UE

Now we will focus on the other isometry direction 1 of the geometry given in (2.48). By
applying standard rules of T-duality we have the following dual background

dsirp = L?dshgs, + L°

1
ANdQ3 (61, ¢1) + A3dQ5 (02, d2) + FW] : (2.53)

In the metric (2.53) we rescaled the i-coordinate as ¢ — §¢ to get L? as a common factor
in the metric and as like in the previous case here also we set o/ = 1 for convenience. In the
dual solution the NS-NS sector contains constant dilaton together with the two-form field

Y _ )\2_[/2 A

(& B BQ = —L2
9s

Y

cos By d¢py + cos 92d¢2] Adi (2.54)
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The NS-NS three-form flux corresponding to the two-form B, takes the form
Hsy = L*| sin6,df; A dgy + sin05dfy A depy | A dip . (2.55)

The RR sector of the dual background described by a non-vanishing four-form flux as

. ALAAN2N2
F4 =2 sin 01 sin 92 dqbl A d@l N d¢2 VAN d@g . (256)
9s

Now in the following we will consider the non-Abelian T-dual background originating from
the geometry (2.47)-(2.49). The non-Abelian T-duality on an SU(2) subgroup of the sym-
metry group of the internal manifold 7! was first carried out in [15] and studied extensively
in [23,27]. The geometry of the T-dual solution is specified by the metric [15,16,17,18,23,24]

ds* = L?ds% g, + L?d&5m s (2.57)
where
2)2
d§F. = X135 (01, ¢1)+ A —==ato} +A (23 +X°A3)dat+ (23+X3) do3 4221 modzrdas |, (2.58)
and
A= Na3 + N (23 + ;) , 03 = dip + cosOidg, . (2.59)

In the dual metric we rescaled the coordinates z; and w, to get an overall L? factor. The
dual background is supported by a NS-NS two-form along with the dilaton as follows

- A2L2 . 8LS
By = — A [xlxgdxl + <x§ + Xé) dI2i| Aoy e = A . (2.60)
The NS-NS three form flux for the B, is given by
2 2| 2 4 2 2 2, \4
Ay = " [Nl + 3 <x2 A ) N2z a2 + 202, (:cQ + Ag) dry A dws A o
A2 | s .
- X T1Todxy + (xz + )\2>de sin 01df, A doy . (2.61)

The RR sector of the background is described by the two-form and four-form field strengths

Py = 8;/_)\>\4L4 sin@;dg, A db; |

[y = 8\/_L6M4 X L sin Oydgy A dby A oy A (A%xldxz — A2x2da:1) : (2.62)
gs
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Unlike the AdSs x S° case, it is shown that this T-dual background (2.57)-(2.62) preserves
N =1 supersymmetry and solves the equations of motion in type-ITA supergravity [15,23].

Now we consider the Klebanov-Tseytlin background. This background arises upon placing
a stack of N regular and M fractional branes at a conifold singularity. The corresponding
gauge theory is governed by N = 1 supersymmetric SU(N + M) x SU(N) gauge theory
introduced in [44]. The geometry of the background is given by the metric

ds* = H(r)_% N datdz” + H(r)% (dr2 + T2ds%1,1> : (2.63)

where 7, is the metric denoting the stranded (34 1)-dimensional Minkowski space and 7!
metric is given in (2.48). The expression of the warp factor H(r) is given by [60]

1 4 4 T 1

H(r) = (2.64)

In addition to the metric, the background NS-NS two-form field By has the expression

B, = %(sin 01d01 N\ doy — sin 0ydfy A d¢2> . (2.65)

The corresponding NS-NS three form takes the form

2

L
H; = 3 (sin Ordr A doy N dgy — sin Oxdr A dOy N d¢2> : (2.66)

Due to the presence of fractional branes, in the RR sector we have three-form field
strengths F3 along with the five form field strengths Fy as

F3 = ]_8\/_ (dw ~+ cos 91d¢1 —+ cos 92d¢2) (Sin 91d91 A d¢1 — sin 02d92 A\ d¢2> ,

Fs = (14 10)K(r)Vol(T"") . (2.67)

Here, %19 denotes the Hodge dual with respect to the background metric (2.63). In the above
we follow the notations [44]

L2
P= = 2V2,

gs

T(r) = 2v2L%In (r%) ,

K(r)= 5 H() [1 - 27”4L—H(r)

It turns out that the constant P is proportional to the number M of fractional D3 branes
present in the type-1IB background.

(2.68)
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Now in the following we consider the non-Abelian T-dual of the background (2.63)-(2.68).
The non-Abelian T-duality acts on an SU(2) isometry of the background metric and has
been studied in [15,23]. The metric of the T-dual geometry is given by

1
Ao = H(r) " nudetda” + B (arf + o030, 01) )

1
+ 12 H (202 + 12(r4H(r) + 27v§)dv§
2r2A H(r)z
+ 9<2r4H(r) + V2)dv§ +108Vuy dUQdu3] , (2.69)
where, o3 has the expression
o3 = dip + cosO1dpy (2.70)
together with the functions A and V takes the form
A:z#H0y+W+ﬁm§,V:6m+2¢ﬁﬂm(i). (2.71)
To

The NS-NS sector of the background is described by the following NS-NS two-form B, and
dilaton @

. L2 r 3v2 1
By, =—1In|—)sin#;df; Ad == 2 A d —(2r*H 2)os A d
2 3 n (7"0) Sin v av ¢1 -+ A V'UQO'S Vg + \/§A< r (7") +V )0'3 V3,

TN (2.72)

-2&
8192

The field strengths corresponding to the RR sector are given by

. 2v2
F() — _L2 \/_ 3
995
B — " g (1 b ) + 12 6\/5(611 +2v2L%n (i)) sin 0,d6; A do
, 23| SFH () 3 - 1avy 1
&;+2¢ﬂ?m(l> 2
4 3 r 12v
_L23_gs A 2 vy oy A dvg + L? Ei o5 N\ dvs
P - Y2 01d6; A dopy A dip A — 18V2L%( 6v; + 2v2L%In (1)
18A g, "o

4

3rt L! 5 4 r
_? H(T)(l—m>>vzdv3+ 2(—2\/§L’I" H(T)—f-%(@vg

+2v2L21n (%))H(T) (1 - %4L—[%> - 54\/§L21)§) d@] . (2.73)
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The presence of Fy in the RR sector indicates that the T-dual background is a solution
(2.69)-(2.73) in massive type-I11A supergravity. As like the Klebanov-Witten case, here also
the non-Abelian T-dual solution preserves N' =1 supersymmetry [15,23].

non-Abelian T-dual backgrounds with AdS; factor

Finally we turn on our interest in a background that contains an AdS3 factor. We consider
the type- 1B supergravity on the background with AdSs;x CY,x S? geometry. The geometry
describes the near horizon limit of a stake intersecting D1 — D5 branes configuration. The
metric of the corresponding background is given by

ds® = AL*ds* (AdS3) + L*ds*(CYa) + 4L%ds*(S°) . (2.74)
where
ds*(AdS;) = — cosh’ rdt? 4+ dr® + sinh®r dy* ,
ds*(S%) = da’® +dp* + dy* + 2 cos adBdy . (2.75)

Together with the above ds?(C'Y;) represents the metric of a Calabi-Yau twofold, i.e. it can
be a K3 or a T.

In the above, the parameter L describes the size of the internal manifold C'Y5. For the
case of T%, the metric is given by

4
ds’(T*) = dz} . i=1,2,3,4. (2.76)

i=1
In addition to the background metric, the above type-I1B background is supported by the
dilaton field €?®* =1 in the NS-NS sector and the RR sector is described by three-form field
strengths as

3 = 2 (6] . .
F3 = 8L Vol(S?) (2.77)

The presence of the S factor in the metric (2.74) indicates that the background admits
an SO(4) R-symmetry. The non-Abelian T-duality along an SU(2) subgroup of it is studied
n [12], where CY, = T*. The T-dual metric reads
dp? L2p?

% = A0S (AdSy) + DA (1) + 50+ TP a0d(00) . (@7)

Together with the metric the NS-NS sector of the background is contained with a dilaton
and two-form gauge field

3

—2& 1 6 2 2 Do P
‘ _4g§(4L HL) s Ba= 2(4L* + p?)

sinfdo A do . (2.79)
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The RR sector is described by the following zero form, two-form and four-field strengths

. 12 R 12,3 R L6
Fy=" Fy=—— P _Gn0do ndg, Fy=——Vol(T") . (2.80)
9 29 (4L* + p?) gs

The T-dual geometry describes a massive type-IIA supergravity on AdSs x T* x Ms. It
turns out that the background (2.78)-(2.80) preserves only half the supersymmetry of the
original background [12,46].



Chapter 3

Gauge-Gravity duality, Penrose limits,
PP-wave and BMN correspondence

In this chapter first we will review the revolutionary AdS/CFT correspondence and then we
will discuss some aspects of this correspondence in the Penrose limits. The AdS/CFT cor-
respondence draws a clear picture between a gravitational theory with certain gauge theory.
In the following we will discuss some aspects of this correspondence.

3.1 Gauge-Gravity duality

The AdS/CFT correspondence was introduced by Maldacena in his groundbreaking work
in [2]. It provides a correspondence between a certain Quantum Field Theory and a theory
of gravity. The original correspondence states that type-IIB string theory on AdSs x S°
is equivalent to SU(N) super Yang-Mills theory in four spacetime dimensions that resides
at the boundary of AdSs. Here the Yang-Mills theory is N/ = 4 supersymmetric with large
colour group N. In the correspondence the 't Hooft coupling holds fixed; A = g¢N = fixed,
where g, is the type-IIB string coupling. The correspondence relates a strongly coupled
gauge theory with a weakly coupled gravity theory in AdS spacetime. On the string theory
side, we have two expansion parameters o and gs;. On the other hand, the gauge theory
contains two parameters N and the t’"Hooft expansion parameter A\. They are related among
each other as

ol e N (3.1)

There are various description exists to study the AdS/CFT correspondence. In the following
we will discuss the correspondence in the Dp-brane scenario.

In the string theory Dp-branes are defined as hypersurfaces where the open string end.
Dp-branes are extended objects in p + 1 spacetime dimensions. Due to the existence of
the Dp-branes, string theory inhibits a non-perturbative expansion. The motion and the

20
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deformation of the Dp-brane is parametrized by the scalar fields ¢* ; i = 1,..,9 — p, which
reside on the world-volume of the Dp-brane. The associate’s action is known as the Born-
Infeld action and is given by the expression

Spr = —Tpp/dp+1$ — det\/<guy + 27ra’FW> (3.2)

where F),, is the field strength of the gauge field A, , and g,, is the induced metric on the
worldvolume geometry. Considering the flat space background the induced metric takes the
form

Guw = N + (270!)*0,0°0,6" . (3.3)

Now one can expand the action in powers of F},, and d,¢". In the leading order we have
1 uv 1 7 %
S =-Tp, ZFWF + 53,@ O, + ... | . (3.4)

Now by rewriting the T, as 1/¢%,,, it turns out that the first term in the above equation
describes an U(N) gauge theory. The above analysis states that the N Dp-branes have a
SU(N) gauge theory description in p+ 1 dimensions. The closed strings in the bulk give us
supergravity.

Now we consider another set-up governed by this Dp-brane. Consider a stack of N D3-
branes take place on top of each other. The classical ten-dimensional supergravity solution
obtained from this system is given by

ds® = H(r) 2 ( — dt* + daciz,3> + H(r)2 (dr2 + 7’2d§2§> : (3.5)

where

Lt
H(r)=1+—; L'~N, (3.6)
T

and dQ? is the metric of the five-dimensional round sphere.

Together with the metric, the background contains a five-form field strengths given by
P = (1 + *) dH()"Y Adt A dey A das A das . (3.7)

Considering the near horizon limit i.e. 7 << L, the H(r) becomes H(r) ~ L*/r*. Then the
metric in (3.5) takes the form

ds? = ﬁ( — A+ da ) + L 4 12402 (3.8)
- L2 1,2,3 T2 5 .

The above geometry describes the AdSs x S5 background in Poincare coordinates.
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Considering the asymptotic limit, » >> L of the metric (3.5) we have
ds? = (= di? + dat ) + dr® + 12402 (3.9)

The above is just the metric of flat Minkowski space in ten spacetime dimensions.

Hence at the near horizon limit the geometry (3.5) describes the AdSs x S° background
and at asymptotic limit it is just the geometry of the flat ten-dimensional space. Now we
have two description of the Dp-brane picture. First one corresponds to the system that
is decoupled into supergravity of the bulk and N = 4 super Yang-Mills. The second one
corresponds to a system in bulk supergravity together with the near horizon geometry that
describes type-IIB string theory in AdSs x S® . In both the descriptions the bulk part is
common; this lead to state that the A" = 4 super Yang-Mills theory is equivalent to the
gravity theory on AdSs; x S° with the following identification of the couplings of the two
theories

L4
9s = Gy ;ﬁ = gyuN =X . (3.10)

Moreover, there is some consistency present in the symmetry description in both sides of the
correspondence. Considering the hyperboloid coordinates the global AdS can be written

—(XTP (X (X + L+ (X = -1, (3.11)

where L is the size of the AdS space. It is straightforward to see that the isometry of the
AdSs geometry is SO(2,4). In addition to AdSs, we have the S° part that admits an SO(6)
isometry. Hence the background exhibits a global SO(2,4) x SO(6) symmetry. Now the field
theory shows the same global isometry as follows. In four-dimensional the conformal group is
SO(2,4). Together with in N/ = 4 super Yang-Mills theory we have six scalars ¢' ;i = 1,...,6
that admit an SO(6) isometry. This SO(6) isometry rotates the ¢’s. Hence the field theory
also exhibits a global SO(2,4) x SO(6) symmetry.

Now in the following we will discuss the mapping of the fundamental observables on both
sides of the correspondence. Let O be an operator in the boundary super Yang-Mills theory
and the field ¢ is in the bulk of AdS. The field ¢ takes the value ¢, at the boundary of
AdS'. Then the correspondence states that

Zo|60)

B / D [Super Yang-Mills ﬁelds} ¢~ Ssuper YangMills fielas [ d*2O(x)o()
CFT

= Ziclassical |:¢0:| = 6SSUGRA [¢[¢Oﬂ (312)
AdS

where large- N and large- A limit are taken into account. From (3.12) one can calculate the
correlation functions for the conformal operators in boundary gauge theory [4]

(51’1

(O(21)....0(z,)) = 5o (x1)-..000 (2,

70 [¢O] o (3.13)

0=0
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This correspondence has been generalized for the various AdS spaces with a compact
manifold. In general the correspondence states that string theory in the bulk of any AdSy;
spacetime is equivalent to a conformal gauge theory with d dimension which resides at the
boundary of the AdS;; spacetime.

String theory on AdSy.; <— Conformal gauge theory CFTy on 0AdSy. 1 . (3.14)

The correspondence is also generalized for the cases where the compact manifold is some X°
rather than S°. Namely in those cases the correspondence is known as gauge / gravity duality.
One simplest example of such geometry is AdSs x T%!. The background arises upon placing
N D3 branes at conifold singularity [6]. The corresponding gauge theory was introduced by
Klebanov and Witten in [6]. The metric of T™! admits an SU(2) x SU(2) x U(1) isometry
that is also present in the dual N'=1 SYM theory.

In the various literature the correspondence has been investigated for the AdS; back-
grounds where d = 2,3,4,5,6,7. However, the direct proof of this correspondence is still
lacking. For the T-dual backgrounds we discussed in the last chapter, the corresponding
gauge theories have been discussed in [21,22,23,24,25,26,27,28|.

3.2 Penrose limits, PP-wave and BMN correspondence

Penrose limits have been studied in great detail for a large class of supergravity backgrounds
for more than a decade [32,34]. Supergravity backgrounds for which the Penrose limits lead
to pp-wave geometries play a significant role to construct interacting string states through
AdS/CFT correspondence [35,36]. The most interesting feature of the PP-wave geometries
is that they provide exact backgrounds to all orders in o and g, in string theory including
the Ramond-Ramond sector of the closed string [37,38]. PP-wave geometries are obtained
by considering the Penrose limit along appropriate null geodesic [33]. Those null geodesic are
singularity free. The Penrose limits, PP-wave together with BMN sector in the dual gauge
theory have been studied in various type-IIB supergravity solutions [39,40,41,42]. In the
following sections we will review some of them.

We will start our discussion by considering the pioneering work by Berenstein, Maldacena
and Nastase in the maximally supersymmetric background AdSs x S®. For this background,
it the work by BMN has opened up new insights in stringy calculations in gauge theories [35].
We have presented the geometry of the AdSs x S° background together with the background
fields in (2.38)-(2.40). The gauge theory dual of the type-II/B string modes in the above
background has one-to-one correspondence with a set of operators in N' = 4 super Yang-Mills
theory that resides at the boundary of the AdSs-spacetime [2,4]. Now in the following we
will review the work by BMN [35]. Consider the motion of a particle with very high speed
along -direction and sitting at the equator of S° manifold: o = 5,0 = 0. In addition,
the null geodesic resides at the origin of the AdS; background i.e. p =0 . We expand the
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background metric (2.38) in the vicinity of this null geodesic with the following form

T =
p—L,a—2+L,x—2(t+B),:c 2(t 8), (3.15)

and subsequently take the L — oo limit. In this limit, the leading order terms provide

2

ds?, = dda*de™ — p* (75 + 43 da™? + dr; + dyy (3.16)
In this limit the self-dual five-form field strength in (2.40) takes the form

Fii234 = Flisers = b - (3'17>

Here the 74 and 74 parametrizes the transverse R® geometry in the metric (3.16) and the
parameter j is introduced by rescaling the % coordinates: #* — px* and 2= — % :

The BMN proposal [35] states that the Penrose limit on the gravity side restricts the
dual gauge theory to a certain sector that carries large U(1) R-symmetry charge. The dual
gauge theory corresponding to AdSs x S° background is governed by N = 4 supersymmetric
Yang-Mills theory in four spacetime dimensions on R x S?. The gauge theory dual for the
pp-wave geometry (3.16)-(3.17) is the set of operators with large U(1)g-symmetry charge .J
in N = 4 supersymmetric Yang-Mills theory together with large- N limit [35]. This large R
sector in the dual gauge theory is known as the ‘BMN’ sector of the super-Yang-Mills theory:

’pp—wave in gravity Side‘ — ’BMN operators in the dual gauge theory‘ . (3.18)

In the BMN proposal J( = i8¢) is the angular momentum operator that rotates the (1-2)
plane of transverse R®. In addition to the angular momentum operator .J, we have energy
operator F in the theory which is the same as the conformal dimension A of the operators
in R* and it is given by E = i0, = A . In the Penrose limits, the operators A and J take
the form

—=A—-J=fixed , aup’ = ———— = fixed ,
iz VAagZ N
J2
g%M:ﬁxed,N:ﬁxed,N—)oo,J%oo. (3.19)

Here p~ is the light-cone Hamiltonian in string theory and the BMN proposal it measures
the difference between conformal dimension (A) and the R-charge (J) of the operators in
dual /' =4 SYM gauge theory.

The BMN correspondence states that the interacting string states give rise to the Hilbert
space of N’ = 4 SYM generated by the BMN operators acting on the CFT vacuum state.
The string theory vacuum state has correspondence with the BMN operator acting on the
CFT vacuum state

|07 p+>string vacuum state — N TT (ZJ) |O> CFT vacuum state » (32())
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where N is the normalization factor and Z is a chiral multiplet in /' = 4 SYM with
R-charge J[Z] = 1. For the excited string states, BMN proposed that the corresponding
field theory operators are nearly BPS: A — J ~ O(1). The state described in (3.20) has
A — J = 0. The first excited string state is defined by A — J = 1. The corresponding
states in the gauge theory are obtained by acting the BMN operators on the CFT vacuum
state. On the field theory side there are eight bosonic modes together with eight fermionic
modes corresponding to the first excited string state A —.J = 1. These bosonic and fermionic
modes in the dual N'=4 SYM are obtained as follows. In the gauge theory, there are four
scalars (¢’ ; i = 1,2,3,4) in the directions not rotated by J. We also have derivatives of
the field Z as D;Z = 0;Z + [A;, Z], where i = 1,2, 3, 4; orientated along R*. Together with

the above bosonic operators, there are eight fermionic operators x9_, with J = % and other
2

eight with J = —% of the sixteen component gaugino x in the super Yang-Mills theory. The
eight components of the gaugino transform in the spinor representation of SO(4) x SO(4),
which is also the symmetry of the background metric (3.16).

Now in the following we will discuss the Penrose limits and PP-waves in Klebanov-
Witten background. The background provides one of the earliest and interesting examples
of AdS/CFT correspondence. The dual gauge theory of the type-IIB string in this back-
ground is N =1 SYM in four spacetime dimensions [5,6]. The background metric and the
background gauge fields are given in (2.47)-(2.49). The Penrose limits of this background
have been studied in detail in [39,40,41]. The corresponding BMN operators have also been
presented in the literature. In the following we will review the work in [40].

Consider the motion of a particle with a very high speed along the direction given by
(w + o1+ Qﬁg) in the 7Y geometry. The geodesic resides at the origin of AdSs i.e. p =0
together with 6; = 0. Before considering the Penrose limits we rewrite the coordinates of
TH! as

it = %[t+%(¢+¢1+¢2)],
- 1 1
T = 5[ —§(¢+¢1+¢2)],
¢, = —%[t ¢+¢1+¢2)}7
D, = —%[H w+¢1+¢2)} (3.21)
and
$+:.5:+,x_:L2£_,p:%and9i: % (3.22)

In the large L limit, the leading order of the expansion provides

ds’ = —Adrda” — p? (7"2 + 77+ 7‘§)da:Jr2 + dr® + r*dQ3
+dr} + r2d®F + dri + r3d®; . (3.23)
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Here we introduce the parameter g via rescaling the % coordinates as ¥ — pzt and
2~ — Z-. In the above metric the (ri,i)i); i = 1,2 part parametrizes an R? space. The
transverse part of (3.23) defines an R® space. Parametrized the transverse R® space by the
coordinates z;; i = 1,2,...,8 the metric in (3.23) takes the form

ds* = —4dx"dr~ — 22 da™? + dz? (3.24)

7 9

_ 8 _
where 22 =57 | Z7 .

The expression of five-form field strength in this limit is given as

Fii934 = Flsers ~ b (3'25>

The above pp-wave background (3.24)-(3.25) provides an exactly solvable string theory in-
cluding fields in RR sector [61,62].

The gravity dual for the above PP-wave background is described in [40]. The conifold is
described by a quadric in C* as Zle w? =0 . It can also be written as

d@tWZO; Z1Z2—Z3Z4:O,

W:i w3+iw4 U)l—iwg — Zl Z3 (3 26)
\/§ w1 + iwg —Ws + iw4 - Z4 Z2 ' '

The above quadric equation exhibits an SO(4) isometry that can be written as SU(2)4 X
SU(2)p together with an U(1) symmetry: w; — ¢“®w;. This U(1) symmetry is identified
with U(1) R-symmetry in the dual gauge theory.

Now we will discuss the BMN sector in the gauge theory corresponding to the pp-wave
geometry studied in (3.23)-(3.25). In the Klebanov-Witten theory the lowest components of
chiral operators are identified with the conifold coordinates as

Z1 = A+B+ ; ZQ =A_B_ ) Zg = A+B_ X Z4 = A_B+ . (327)

Here the fields AL and By form doublets under SU(2)4 and SU(2)p respectively and carry
U(1) R-charge of 1/2. In the BMN correspondence, the light-cone Hamiltonian of the string
is identified with A — J of the operators in the field theory, where J = —i0, is the angular
momentum operator [35]. For the Klebanov-Witten background, the angular momentum
operator J takes the form

1
J = —1 581/, + 8¢1 + 8(;52 (3.28)

In the following table we represent the fields in the dual SU(N) x SU(N) gauge theory
together with their gauge transformation. In the table, U(1)4 and U(1)p are identified with
the T3 generators of SU(2)4 and SU(2)p respectively and J is given by J = sU(1)g +
U(l)A—}-U(l)B.
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SUL(N) SUR(N) Ua(1) Ug(l)  Ug(1) J A A—J
(Asyd) N N2 0 (1/2,-1/2) (3/4,1/4) (3/45/4) (0,1)
(A_y?) N N -1/2 0 (1/2,-1/2) (-1/4,-3/4) (3/4,5/4) (1,2)
(By0'?) N N 0 1/2 (1/2,-1/2) (3/4,1/4) (3/4,5/4) (0, 1)
(B_¢5B) N N 0 1720 (1/2,-1/2)  (-1/4,-3/4) (3/4,5/4) (1, 2)

Z=A.B, adi@®1 adi@l 1/2 12 32 3/2

=AB. adj @1 adiPl 1/2 -1/2 1/2 3/2

v =AY adi Pl adj Pl 1/2  -1/2 1 2

1
1

o=A_B, adj@®1 adj@P1l -1/2 1/2 1 1/2 3/2
0
0

Yo = Byd adi@l adj Pl -1/2 1/2 1 2

From the above table, it is straightforward to see that the BMN operator corresponds to the
ground state of the string is Z ( = A+B+) with proper normalization factor as

1 J
|07p+>string vacuum state <7 } Tr |:(A+B+> ] . (329)

VJINz

The operator Z carries A—J = 0. The bosonic operators correspond to A—.J =1 are given
by D;Z together with ¢; and ¢5. In the fermionic sector we have ; and 1, associated
with A — J = 1. These states correspond to higher energy string states.

The BMN correspondence in the Klebanov-Witten geometry is:

A —J=0— Z <— ground state of string ,
A—-—J=1—{D;Z, ¢1, ¢2, 1, o} «— first excited state of string .(3.30)

There are two operators which are missing in the bosonic sector. They are associated with
non-chiral operators build out by basic bosonic fields as described in [63].

Now we will turn our attention to the non-conformal Klebanov-Tseytlin background [44].
The type-I11B metric together with the background fields are given in (2.63)-(2.68). The
Penrose limits in the background have been studied in detail in [40]. However, unlike the
AdSs x S® case and the Klebanov-Witten background here the Penrose limits do not lead to
the PP-wave background. In the following we will discuss the work of [40].

To inspect the Penrose limits, we consider the motion of a particle along the geodesic given
by (w + o1+ ¢2) in the transverse space 75! and we concentrate the region around 6; = 0.
Consider the motion of a massless particle in the (r,¢) plane that resides at ¢; = 0 = 0,.
The Lagrangian that describes the system is given by

2 .
L=— s el i pm(D)y g 1 P (D) g2 (3.31)
1+Phn(z) 7 o ro

r
7o
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The Lagrangian (3.31) does not depend on the generalized coordinates t and 1) explicitly.
Hence, the conjugate momenta associated with ¢ and 1 coordinates will be conserved. De-
noting them as F and pu respectively we get

. E .
t= 1+P1n( ) and ¢ = a . (3.32)
r ro 1+ Pl (Z)
The null geodesic condition i.e. £ =0 leads to
2,.2
%) T 2
+ ——=F". 3.33
T P (D) (3.33)
Following [40], consider the following expansion
. . 1
Oy =10, + 10, + Y0y , 0, = —Eat , Op = p0y + E0y (3.34)
and set £ =1 for convenience.
Now rescale the coordinates of the background geometry as
v r; x
u—>u;v—>ﬁ;0i:\/gz;x—>z (3.35)

and subsequently take L — oo limit. In the expansion, leading order of the metric provides

d 1+ Pl 1— 42’

,/1+P1n st n o [ 1+P1ﬂ( )] ’
2

+”1+Pln(r0)

- a (rf + r§>du2. (3.36)
Together with the above metric the NS-NS sector and the RR sector fields in this limit take
the form

ds® = 2dudv +

drl + r1d¢1 + dr2 + T2dgz§2

1—|—Pln(%)

BQ ~ Pln (T‘ )(d?"l N Tldgbl d?“g N T2d¢2> s
Fy~ P duA (d’rl A ridéy — dry A r2d¢2> ,

B~ (14%)(14Pm (TL)>¢ du A dry Arydgy A drs A rades (3.37)
0

It is shown that the above background leads to pp-wave geometry by setting P = 0 [40]. As
mentioned earlier, P measures the number of fractional D3-brane. Hence P = 0 leads to the
removal of fractional D3-brane and restoring the undeformed Klebanov-Witten background.
This analysis showed that the Klebanov-Tsyetlin background does not provide PP-wave
geometry [40].
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Finally we will discuss the Penrose limits in the AdS3; background. Due to the lack of
an explicit expression for the metric of K3, we consider the geometry to be AdSs; x S x T*
with the metric

%45, x 59 xs = R2ds*(AdSs) + R*ds?(S%) + R*ds* (1) (3.38)
where
ds*(AdSs) = —cosh? pdt® + dp® + sinh® p dy* |
ds*(S%) = d6” + cos® 0dy)® + sin® Ody* |
ds?(T?) = % (d:cf +dad + da? + dxi) . (3.39)

Here R is the size of the manifold S® and ¢ is the size of the four-dimensional torus 7*. In
addition, the RR sector of the type-I1B background is described by the following three-form
field strength

Fy =Vol(S?) . (3.40)

The Penrose limits of the background have been studied in [42]. In the following we review
the work of [42]. First we redefine background coordinates in the following way

1@ [ cosa —sina B v
( Z1/R ) \ sina cosa “\=/R ) (3.41)
Now we consider the motion of a particle with a very high speed along the direction @[)

The null geodesic resides at the origin of AdS3 i.e. p =0 and at § = 0. We expand the
background by defining the coordinates

ro7 T _E2 Y
t:l’—i_—'—ﬁ,w:l’—‘r—ﬁ,p—ﬁ,e—}—% (342)
and subsequently take R — oo limit while keeping {* = R?*(s — 1) finite. The leading order

of the expansion of background metric provides
ds* = —4ddxdr — (z2 + y? cos® a + [ sin® a) de™? 4+ d2* + dy* + 2% + y2dx>
- < sin a 4 ¢ cos? a) dis + (d:c% + da3 + da:i) : (3.43)
In the limit the RR three-form takes the form
F3 = 2N5 dat A (%dz A dp + cos a%dy A dx) , (3.44)

where Nj is the D5-brane charge and we consider o = g, = 1 for convenience.

The supersymmetry analysis for this PP-wave geometry has also been worked out in [42].
It is shown that the background preserves 16 supercharges.



Chapter 4

Penrose limits in non-Abelian T-dual
of AdS;x S° background

This chapter is one of the most important chapters in this thesis. Here we will describe some
of the recent works on pp-wave geometries in the T-dual backgrounds. The Penrose limits
in Abelian and non-Abelian T-duals of AdSs x S® geometries have been studied in detail
in [26]. The Penrose limits around the smooth null geodesic lead to pp-wave geometries
both in Abelian as well as the non-Abelian case. The authors in [26] considered the closed
string quantization in these PP-wave backgrounds and the corresponding BMN sector has
been constructed. The supersymmetry discussion of these pp-wave geometries has also been
carried out in the literature. In the following two sections we will review the work of [26] in
detail. First we will discuss the Penrose limits in the Abelian T-dual background followed
by the non-Abelian T-dual geometry.

4.1 Penrose limits in Abelian T-dual background

In this section we will discuss the Penrose limits in the Abelian T-dual geometry of string
theory on AdSs x S® background. The Abelian T-duality acts on the U(1)-fibre direction of
the transverse S° manifold. Before considering the Penrose limits, we first recall the T-dual
background as follows.

The background metric of the T-dual geometry is given by
L2
cos? a

ds%op = 4L*ds*(AdSs) + 4L*dQ% (o, B) + dy® + L cos® a d5(x, €) - (4.1)
Here we rescaled the T-dual coordinate ¢ as v — L?1) to get L? common factor in the metric
and we consider o/ = 1 for convenience. After rescaling the 1-coordinate the background
fields in the NS-NS sector take the form
L2 2
By = L*sin ydy A d€ ; e2® = L (4.2)
UE
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Similarly, the RR field strength becomes
8L4
Js

F, = cos® acsin asin ydar A dB A dx A dE . (4.3)

Now we consider the Penrose limits in the T-dual solution mentioned above. Denoting
the spacetime coordinates as {z*}, the geodesic equation is expressed as
d*axt dz¥ dx?
" —=0. (4.4)
du? P du du

Here w is the affine parameter along the geodesic. We will consider the motion of a parti-

cle along various U(1)-isometry directions in the T-dual background. Denote z* one such
isometry direction and the velocity and acceleration along any direction z*, u # \ zero, we
have
drzt 0= d*at
du — du®’
Substituting the above in (4.4), the geodesic equation for motion along an isometry direction
provides

for pp# A\ . (4.5)

Mg =0 (4.6)

In additon to the above condition, we need to impose ds? = 0 to obtain null geodesics for
our purpose.

The T-dual background (4.1) has isometry along & |5 and % directions. For motion
along ¢ direction, the geodesic condition (4.6) leads to a = {0,5,7} = x . For the values
x = {0, 7} the ge-component of the metric vanishes so we ruled out these values. The same
is true for o = 7. So we have two smooth null geodesic: one resides at {a =0, x = 5} and
the second one at {a =7, x = 7} . Both null geodesics lead to the same pp-wave geometry
as discussed in [26]. We will expand the background metric around {a = 0, x = 5} with
the following expansion

r:é,a:%,w:%,ng—k%,t:x*,£:2x+—|—%. (4.7)

We keep the 8 coordinate unchanged and rescale the string coupling g, as g; = Lg, in order
to get finite dilaton at Penrose limits. Substituting the expansion into the background metric
(4.1), the leading order geometry provides

ds® = 4dxtdx™ + dr® + 72dQ3 + do® + 22 dB* + d2? + dy? — <f2 + 2% + 422> dzt? . (4.8)

In the Penrose limits, the background fields in the NS-NS sector and the RR sector take the

form
1
By =2y dzNdzt ; e = — |
gs
dx
and Fy = — do AdS Adz Ndz™ . (4.9)

s
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The metric in (4.8) is in Brinkmann form with R = 0 and satisfies the type-I1A equation
of motions as described in Appendix (A). So the geometry is indeed a pp-wave solution in
type-I1A supergravity.

Now we will consider the other isometric directions of the T-dual geometry. First consider
the direction 3. By imposing the geodesic condition (4.6) we have o = {0, 7, 7}. However,
all of them give singular values for the T-dual geometry (4.1). Hence, motion along the
[S-direction does not lead to PP-wave geometries.

In the Abelian T-dual geometry finally we consider the null geodesic that carries non-zero
angular momentum. For this we consider motion along ¢ and & directions. The geodesic
equation now implies that « = 0, x = m/2. Consider the Lagrangian for a massless particle
moving along this geodesic

1 L
L= 59X X" (4.10)

Here we choose u to be the affine parameter and the dots denote derivative with respect to
it. Substituting the explicit expression in the T-dual metric (4.1) in the above Lagrangian
we have
L2 . . .

£:7<—4t2+w2+£2> : (4.11)
The Lagrangian does depend on the generalized coordinates t,& and v conjugate momenta
corresponding to the generalized coordinates ¢,¢; and 1. The corresponding momentum
will be conserved. By choosing the affine parameter u suitably we have

oL oL

D= 4Lt =1, S =1%=—JL*. (4.12)
ot o¢

Here we fixed the energy L%p, appropriately and .J is the conserved angular momentum
along the ¢ direction. The conserved angular momentum along the generalized coordinate
1 is fixed by considering the geodesic to be null, i.e., we set £ = 0. We have

9 1

¥ Z(1-4J2) —>¢:%\/1—4J2u. (4.13)

Here we set the additive constant to zero. From the above expression we find that J must

be bounded by

0<J< (4.14)

1
5 -
Now we expand the background metric around the null geodesic 7 = a = 0, x = 7/2 and
carries angular momentum J. First we redefine the coordinates

r x

4.1
7o A= o7 (4.15)

T =

[\
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together with

dw dw dv
dt = cidu, d§ = codu + 037, dp = cydu + C5f + CG§ , (4.16)

and subsequently take L — oo limit.

The null geodesic condition sets the constant coefficients ¢y, ¢y and ¢4 as

1 1
Clzz,CQZ—J,C4:§V1—4J2. (417)
In the expansion of the metric there will be some O(L) terms that can be removed by setting
cac3+cycs = 0. Normalizing the coefficient of dw? to unity provides ¢3+c? = 1. Imposing the
coefficients of light-cone terms in the metric as 2dudv we obtain cycg = 1. These conditions
solve to obtain the remaining coefficients c3, c5 and cg as

2
c3=V1—-4J%?, c5=2J, ¢cg = —=—. 4.18
: : N (19
The resulting PP-wave metric in this case has the expression
ds2, = 2dudv + dr* + 7dQ3 4 d2° + da® + 2%d3?
) 2
2 r 8J° -1 , 2 2| ;2
—|=4+—— : 4.1
+ dw 16+ 16 x4+ J°2% | du (4.19)
In the Penrose limits, the background fields in the NS-NS sector are found to be
1
e 2 = = Bam g dz A dw . (4.20)
The RR sector field strength at Penrose limits becomes
2J
Fr=""2 dundsNdeAdp . (4.21)
Js

Now we shall consider the closed string quantization moving in the above pp-wave back-
ground (4.19)-(4.21). Consider the world-sheet action

1
S = "hra dmo[ﬁgaﬁauyaax“aw+eaﬁBmaX“aBX”+aw RED| . (4.22)

In the action, {«a, $} denote the worldsheet coordinates (7,0) and {u, v} denote the space-
time coordinates. G, is the metric of the background, B, is the NS-NS two-form and ® is
the dilaton. We fixed the convention as €™ = —e¢°” = 1 and gauge fix the worldsheet metric
Jap such that \/Egaﬁ = with —1,, = 1y = 1. We assigned the string coordinates as

U=u, V=uv (X" X*X*X")erQ; (X, X% €x,8, and (X", X®) € z,w . (4.23)
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In quantization, we consider the light cone gauge U = 7 with p* = 1 . Then worldsheet
action for the pp wave background (4.19) takes the form

4

S—— [ irdo iaxi axi+i2(l 8‘]2 Z
 Ano! ’ 16

i=1 i=1 i=5

+J2(XT)? — <1%1X760X8 — k2X880X7)] : (4.24)
where in the action we choose the gauge fixed of NS-NS two-form as
1/~ - ..
By = 5 (l{;gw duNdz — k1z du N\ dw) with (kl + k‘g) =1. (4.25)

The equations of motion the transverse coordinates X' ; ¢ = 1,...,8 generated from the
action (4.24) are given by

Oxi— Lxi =1,2,3,4
16 O Z 7737 )
821,
Ox' — Xi=0:i=
= 0:i=5,6,

1
OX"— J2X" + 5aC,XS =0,

1
Ox® — 5&,)(7 =0. (4.26)

Consider an ansatz of the form X°¢ ~ e~ the frequencies of the transverse modes are
given by

1
W= nt+—;i=1,234,

n,i 16
8J% —1
2 2 .
L= :1=25,6
wm n® + 16 ; b y YUy

w2, = n’ + — i \/n2 + J4. (4.27)

These modes have a correspondence with the set of operators (BMN operators) in the dual
gauge theory. In the dual field theory section we shall discuss the corresponding BMN
operators.

4.2 Penrose limits in non-Abelian T-dual background

In this section we turn on our interest in the Penrose limits in non-Abelian T-dual of AdS5x S°
geometry. The non-Abelian T-duality acts on an SU(2) subgroup of the S° manifold. Before
discussing the Penrose limits we first recall the T-dual solution as presented in [21].
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The metric is given by

L?dp*>  L?p?cos®
£ =f dB(x.6),  (4.28)

2 _ 27,2 2 2

here we rescale the T-dual coordinate p as p — L?p to get L? common factor in the metric
and we set o/ = 1 for convenience.

The background is supported by a two-form and a non-zero dilaton in the NS-NS sector

L?p?cos® v .
BQ = msmxdx/\df y
LG 2
e 2% = % (p* + cos* a) . (4.29)

The RR sector of the background consists of a two-form and a four-form field strengths

8L*
= sin acos® adar A\ df |
Gs
8L6 3 3
F, = PEB % inasin xda AdB N dx N dE . (4.30)

gs p?+costa

Now we discuss the Penrose limits in T-dual geometry (4.28)-(4.30). The background has
an U(1)-isometry along 5 as well as £ directions. For motion along f-direction the geodesic
condition (4.6) leads to a = m/2, however, for a = 7/2 the background metric (4.28) is
singular and does not lead to pp-wave geometry [26]. Considering the other U(1)-isometric
direction &, the geodesic condition provides

m
:0 = —

p=0,a=5,

X:{O7g77r}7

T _ 4 2
a—{0,§,7r},x—{0,7r} or cos” o= p° . (4.31)

From the above values, a = 7 together x = {0, 7} are ruled out as the first one corresponds
to a singular point in the T-dual geometry and for x = {0,7} the metric component g
vanishes. Hence, motion along the &-direction does not provide any smooth null geodesic to
examine the Penrose limits.

As in the Abelian case, we finally consider the geodesic that carries angular momentum.
Such a geodesic exists for motion along p and £ directions. The geodesic equation now
implies that o = 0,x = 7/2. Now consider the Lagrangian of a massless particle moving
along this geodesic

L? 2 2 P
= —( —4i*+p —) 4.32
£==( Pt 7€) (4.32)
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as also mentioned earlier the dot is referred to derivative with respect to the affine parameter
u. In the above Lagrangian ¢ and ¢ are cyclic coordinates. The corresponding momenta will
be conserved. By choosing the affine parameter u suitably we have

8_42 '8£_L2 0>

ALY =17, S =12 f=—_JL?, 4.33
ot 103 p? + 1f (4.33)

where .J is the conserved angular momentum along the £ direction. The null geodesic
condition i.e. £ =0 gives the solution of p?
91 P

- . 4.34
=7 ,02+1J (4.34)

Now we expand the background metric (4.28) around the null geodesic r = a =0, x = 7/2
and carries angular momentum J by proposing the following expansion

T T ™ z
T—ﬁ’o‘_ﬁ”(—§+ﬁ’ (4.35)
together with
dt = cldu s
dw 3\ dv
d£ = ngu—f— (1 +4JCQ>T + <02 — E)ﬁ s
4] dv

dp = c5(du + —dw + ﬁ) (4.36)

and subsequently take L — oo limit. We redefine the string coupling g, as g, = L%g, in
order to get finite dilaton at Penrose limits.

The null geodesic condition determines the coefficients ¢;’s of the above expansion as

1 PP +1 1 p2+1
C1 = Z , Co = — p2 , C3 = Z - p2 J2 . (437)
The leading order expansion of the background provides
0 0
ds® = 2dudv + dr* + P2dQ3 + da® + 22 df? + 5—d=* + — 47 | dw®
p*+1 p?+1
r  8J%2—1 9 p? 41
— = 2% du®. 4.
16+ G x4 p Z:|’LL (4.38)

The metric is not yet in the Brinkmann form, we shall transform it into Brinkmann form
later. The NS-NS two-form and the dilaton for the background are given by

p’ p*+1

L,20
BQZP2+1 dz Ndw ; e =% = 72 (4.39)
In Penrose limits only RR four-form field strength survives
2J
Fi=2222 qundz ndendB . (4.40)

9s
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In order to bring the above pp-wave background (4.38)-(4.40) in Brinkmann form, we follow
the formalism presented in [26]. Following [26], consider a line element of the form

ds* = 2dudv + ZAZ(U) dx? . (4.41)
Now, replace the transverse coordinates z; and one light-cone coordinate v as
The line element in (4.41) now takes the Brinkmann form
ds® = 2dudv +_ da? + (Z Fi(u) x?) du? | (4.43)
where the functions F; are given by
1A2 1d (A
FF=-"24 - —(2]. 4.44
For the pp-wave metric (4.38) we have

2 2

P P 2

A, = C Ay = —4J% . 4.45
1+ p? 14 p? (4.45)
After making the replacement

oz o2 d

2= ——=, W— ——= an

VA, VA
1A, A,
U—>U+Z A_Zzz+A_ww2 , (446)
we find
ds? = 2dudv + di* + 7203 + da® + 2*dB* + d2° + dw?
o a?r (* + 1)2 2_2 2 2| 5 2
- E+E<8J - 1) PP S B Bl | (447)
The functions F;’s can be read from the expression (4.44) as:
4 (4p2 + 1) + 3(4J2 - 1) P 3
- SR = (4.48)

F, = 5
4p* <p2 + 1)



38CHAPTER 4. PENROSE LIMITS IN NON-ABELIAN T-DUAL OF ADS5x S° BACKGROUND

Together with the metric, the background fields in the NS-NS sector take the following forms
in the Brinkmann representation

72¢:PZ+1. _

1p*+3
92 Y 2 — a

22+ 1

e (/ﬁz du N dw — kew du N dz) , (4.49)

where ki + ko = 1. The RR four-form field strengths in Brinkmann representation takes the
form

2Ja\/p? + 1
Fo= 2NV e adendp (4.50)
Js

Before going to the dual field theory description, we consider closed string eigenmodes in the
pp-wave background (4.47)-(4.50). We use the same gauge fixing and same notation for the
string coordinates as we discussed in the Abelian T-dual case (4.23).

In this case worldsheet action for the pp wave background (4.47)-(4.50) takes the form

8 4 6 2
1 v ] e, 8J2—1 e, (PP 1)
—_ Xt 9X* el Xt 2 X 2 2 X7 2
S 4m,/dma [;a OX' + 16;( R NT: ;( ) S JA(XT)
P’ +3

CF(XTY? - Fy(X®)? - (k1X780X8 - k2X88UX7)](4.51)

p?+1

The equations of motion of the transverse scalars X* ; ¢ = 1,...,8 by varying the action
(4.51) are given by

. 1 .
DXZ—l—GXZZO;izl,Q,g,4,
- 8J2—1_,
OX' = = —X'=0;i=56,
2 2 3
+1 1
Ox7 — uﬂ—Fz XT3 g s g
p! 2p°+1
1p3+3
OX® + F, X% — = 0,X"=0. 4.52
* 2p24+1 (4:52)

Considering the solution of the form X? ~ e~ the frequencies of some of the modes
are given by

1
2 2 :
w2 = + 1 =1,2,3,4
7,7 16 ;2 ) ’37 )
8J%—1
wh ;= n? + T i=5,6. (4.53)

Finally, we will discuss the supersymmetry preserved by the pp-wave solution in the non-
Abelian T-dual geometry. The non-Abelian T-dual of AdSs x S° background preserves the
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half of the supersymmetries of the original seed background due to the Killing spinors of the
AdS5 x S° background are not fully invariant under the SU(2); symmetry that is considered
for the dualization [12,21]. In the following we will discuss the supersymmetry the PP-wave
background originated from the non-Abelian T-dual solution.
First we assign the Brinkmann coordinates y° of the PP-wave geometry as
dr? 4+ 72d0% = (dy')’

=y L w=19y".

L i=1,2,3,4, da® + 225 = (dy®)” + (dy°)”

(4.54)
In this representation the pp-wave background (4.47)-(4.50) takes the form
8
ds® = 2dudv+ Y dy? +H du’
i=1
o= d(u),
Hs = fi(u) duAdy” Ady®,
Fy = folu) dundy® Ady® Ady" | (4.55)
where we introduced the notation
8
H= Y Fy'y . Fy=F,
ij=1
1. |p*+1
O(u) = ~3 In |=——|,
9s
1p*+3
M= 5
2Jxr\/p? + 1
f2(u) - T =
Js
(4.56)
and Fj; are defined by
Py =Fy =F33=Fy = L
1= Fop = Fag = faa = =92
1—8J?
Fro — Flo —
55 66 6
1 2\2
PR R (4.57)
p

all other Fj;’s are zero. Now we introduce the frame {e®} as

1 ) )
e =du, e” =dv+ §Hdu , et =dy', (4.58)
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then the PP-wave metric (4.55) can be written as

8
ds® =2ete + ) (€)= nue’e” (4.59)
i=1
with 4 =n_4 =1 and 7,; = d;; . The non-zero components of spin-connections are given
by
+i v _ 1
Wy = —wie =w = —w" = 58{]—[ du . (4.60)

In terms of the frame (4.58), the background fields (4.55) take the form

o= P(u),
Hs= fi(u)e Ae"Ae®,
Fy= folu) e AP Aebne . (4.61)

The supersymmetric variations of the dilatino and gravitino in type-IIA supergravity are
given by

O\ = 1H(IDE — iHO’gE + i}ﬂale
2 24 8 x 24 ’
5, = Dy — LI, %056 + —C FaonTe (4.62)
12 H 8 nvp 8 % 24 ©

The conventions we used here presented in Appendix (A). The Killing spinor € consists of
Majorana-Weyl spinors €4, such that

€= ( : ) . (4.63)

In type-I1A supergravity, the chirality of the spinor € satisfies I'y;¢ = —o3¢ . Together with
above we define I'* as
1
e = —(r+r°). 4.64
v (4.69)

Now we substitute the background fields in (4.62), and setting the dilatino variation to zero,
we have

I [cb — % fi(u)™o3 + § fg(u)F56701] e=0. (4.65)

The above holds only I'"¢ = 0, which states the PP-wave solution we studied in (4.47)-(4.50)
preserves 16 supercharges.

Now we consider the spinor condition arising from the variation of the gravitino. First
consider the d1, variation. The NS-NS three-form Hj does not have any leg along e™ and



4.3. DUAL FIELD THEORY 41

I''e =T7€=0. Hence ¢, = 0 leads to d,¢ = 0. It provides that the Killing spinor € is
independent of v, i.e. €= ¢(u,y’).

Now we consider the variation of the transverse components of gravitino d¢; , i =1, ..., 8.
Setting it to zero we have

de=T"Re, (4.66)
where
1 7 8 e? 5671
R = Z_Lfl(u) <518F — 5Z7F )0'3 — gfg(u)r r o1 . (467)
As I'" anticommutes with R and from the dilatino variation we have I'"¢ = 0. Hence,

0;¢e =0 leads to € = x(u) with I'"x(u) = 0.

Finally, consider the variation d¢)_ = 0, in this case the covariant derivative D_ becomes
1 L
D_=0_+ §Fijy7F_’ ) (4.68)

The above gives rise to

Oux(u) — ifl(U)WSUsX(U) - %fz(U)FFJT%?UlX(U) =0.
(4.69)

The above equation is the form 0, x(u) — A(u)x(u) = 0, which can be integrated as follows

_ ef duA(u)

X(U) X0 5

with I'"yg = 0. This concludes that the PP-wave geometry we studied in non-Abelian T-dual
solution preserves 16 supercharges.

4.3 Dual Field theory

We will now discuss the corresponding field theory dual for the pp-wave geometries studied
both in Abelian and non-Abelian T-dual solutions. The gauge theory dual corresponding
to the T-dual background has been discussed in [21]. The dual quiver theory with & nodes
contained with A/ = 2 vector multiplet and N = 2 bifundamental hypermultiplet. It turns
out that the holographic central charge matches with the field-theoretic central charge [21].
In this section we will discuss the BMN sector of the quiver gauge theory. First we consider
the PP-wave geometries originated from the Abelian T-dual background (4.1)-(4.3).

In the quiver [21], there is an adjoint complex scalar presents at each node i together
with two bifundamental complex scalar fields residing in the next node i.e. 7 to 1 + 1. We
denote these scalars as: X; and the remaining two as V; and W;. Among V; and W;, one of
them is in the representation of (i,7 + 1) another one in the complex conjugate (i,i+ 1) in
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the corresponding gauge group. Now in the following we shall consider the global symmetries
of the T-dual background in (4.1) and match them with the corresponding symmetries in
the dual gauge theory. In the gauge theory an SU(2)g rotates the V; and W;. The fields
(V;,W;) and (V;,W;) forms a doublet under this SU(2)z. We denote the Cartan generator
Jy for the U(1)-symmetry resides inside the SU(2)g. Together with the above, there is an
U(1)r symmetry that acts only the chiral field X; and the d?6 as

X; = €X; ; d*0 — e"d?0 . (4.70)

In addition, there is an extra U(1) symmetry that rotates the V; and W; in opposite directions
one of other by the same amount of phase

Vi — €V Wi — e W . (4.71)

This is not an R-symmetry and we denote the corresponding Cartan generator in this case
is JQ.

Now we will identify the above symmetries in the gravity background studied in (4.1)-
(4.3). It is straightforward to see that the T-dual background metric (4.1) shows the global
SU(2) x U(1) x U(1) isometry. The SU(2) symmetry corresponds to the round 2-sphere
parametrized by (X, 5) in (4.1). Together with the U(1)r symmetry is identified with the
isometry along the f[-direction in the T-dual geometry. The extra U(1)-symmetry in the
dual field theory is associated with the shift symmetry along the compact direction v in the
T-dual metric (4.1). Following [26], the dual Gravity coordinates can be expressed as field
theory scalars by parametrize the six-dimension space with three complex scalars as

Zy = Lsina e ; Zy = Lceosacosy &), Zg = Leosasiny /¢ (4.72)

Here L? = Y .|Z:|* is the size of the space C*. In this notation, we identify Z; as the
multiplet X along with Z, and Z3; as V and W respectively. The SU(2)g acts on the
scalars Zy and Zs and the corresponding Cartan U(1)-symmetry charge is J;. Similarly,
the U(1)g acts on the scalar Z; giving a phase €' and the corresponding Cartan generator
denoted by J,. In addition, the extra U(1) rotates Z, and Z3 as Zy — €'*Z, along with
Zs — e Zs. In the following table we represent the multiplets and the corresponding
charge under the symmetry transformation. Here the total angular momentum is given by
J = J; + kJy and the light cone Hamiltonian is identified with the BMN operators given by
the expression H = A — (Jl + k‘Jz)

X v w X vV W
A 1 1 1 1 1 1

Ji 0 1/2 1/2 0 -1/2 -1/2

k. Js 0 1/2 -1/2 0 -1/2 1/2
H=A—klh—J, 1 0 1 1 2 1

From the above table it is straightforward to see that H = 0 for V;, defines the ground
state and X; together with W, corresponds to the oscillator modes of the string. Hence, the
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vacuum is contained with only V; fields and wraps the circular quiver. The vacuum state
has zero winding mode(m = 0) and one unit of momentum (p = 1). The vacuum is given
by the operator

1
=05 p=1)=0p= = Tr [vlvg...vk} . (4.73)

The higher energy states are constructed by the action of the derivative operator D, ;a =
0,1,2,3. on vacuum along with the fields X; and W; and their conjugates [26]. Now at n =0
the corresponding frequencies of the closed string (4.27) are given by

1
Wn=0, a = Z;a:17273747

8J%2 —1
Wn=0, i = 4 77’:576a
w721:07 + — J,
Wy .= 0. (4.74)

The H = 1 corresponds wy,—g , but it does not match with the light cone energy. Same
phenomenon is present in the insertions of X, X, W, W the corresponding energy does not
match with H = 1. This is because the term ¢2,,N/k is divergent in this case and the same

term is also present in the superpotential as W ~ gy Tri1 |V, X;W;| . Hence, the effective

coupling is large so interaction effects are no longer negligible and change the eigenenergies
of the corresponding states.

In the non-Abelian T-dual case, the frequencies of corresponding pp-wave geometry de-
pend on the radial coordinate (4.52). Interestingly, in the limit of large radial coordinate
p the PP-wave geometry in non-Abelian T-dual solution takes the form of PP-wave in the
Abelian T-dual geometry, apart from the expression of dilaton ® . It turns out that the
eigenenergies for the closed string modes flow in the lightcone time v = 0 to u = oo [26].
These flows can be identified with the RG flow between UV to IR of the string modes fre-
quencies. Where the UV corresponds to p,u — oo and the IR limit is identified with © — 0.
However, in this case, further investigation is needed to precisely find the BMN operators.



Chapter 5

Penrose limits in non-Abelian T-dual
of Klebanov-Witten and
Klebanov-Tseytlin background

This chapter is the core part of the thesis. In this chapter we will present a series of works
where we studied the Penrose limits in non-Abelian T-dual supergravity backgrounds [43,45].
In our work we first considered the Klebanov-Witten background followed by the Klebanov-
Tseytlin background. In the following we will present the Penrose limits in these T-dual
geometries.

5.1 Penrose limits in non-Abelian T-dual of Klebanov-
Witten background

In this section we will discuss the Penrose limits in T-dual geometries originating from
Klebanov-Witten background. First we consider the Abelian T-dual solution and subse-
quently examine the Penrose limits in it. We have presented the T-dual backgrounds in
Chapter 2, where the T-duality acts along ¢,-direction as well as -direction in the 7!
geometry. For convenience, we reproduce the geometry here.

First we consider the isometric ¢o, by applying Buscher rules the T-dual background
reads
A2 sin? 6,

P(0-)

dd
) | Y

dsirp = L2d5?4d55 + L2793 (917 ¢1) +d63 + (dl/f + cos 91d¢1)2 +

where P(6) = A2 cos? 0y + \sin? 0, .
The NS-NS sector of the T-dual background is contained with a background dilaton the

44
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two-form gauge field given by

. L2 A L?)\? cos
e 2 ( 2) 3 2 P(02)

s

<d¢2 A di + cos Byddy A d¢1> . (5.2)

The RR sector is described by the four-form field strength

L 4L
F, = !
s

sin 01 sin 92 d@l VAN dgbl VAN d@g A d@/] . (53)

Now we will turn our attention to the isometry direction ¢ of the geometry given in
(2.48). In this case the T-dual background described by the metric

dsirp = L*dshgs, + L°

1
N2 (0, ¢ ) + A2dQE (62, 62) + Edz/ﬂ] . (5.4)

In the above metric we rescaled the 1-coordinate as ¢ — i—?w to get L? as a common factor
in the metric. Now recall the background gauge fields for the T-dual background as follows.
The NS-NS sector of the background is supported by a non-vanishing dilaton and a NS-NS
two-form given by

2% _ )\2L2 '

(& 5 EQ = —L2
UE

cos 01 d¢p; + cos digbg] ANdy (5.5)
The NS-NS three-form flux arises from the two-form B, is given by
Iflg = LQ [sin gldel VAN d¢1 + sin 92d92 A d¢2] VAN d¢ . (56)

In the RR sector we have a non-vanishing four-form flux

A ALAANN2
Fy= """ 2 in6, sin 0y déy A dby A doy A dbs (5.7)
9s
We consider the motion of a particle along various U(1)-isometry directions of the T-dual
geometry (5.1) and obtain the corresponding Penrose limits. Consider first the ¢; isometry.
The relevant metric component is

A2A2 sin? 0,

=L? | N?sin? 6, +
Jonn ! " N2cos? 6, + A2 sin? 0,

cos? 0y | . (5.8)

Applying the geodesic condition (4.6) we have 6, = (0, 7, 7) together with 6, = (0,7, 7).

This leads to four geodesics: {0, = 0,0, = 7/2}, {61 = 7,0, = 7/2}, {0, = /2,0, = 0}
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and {0; = 7/2,0, = w}. We first consider the geodesic {#; = 0,6, = 7} and propose a large
L expansion around that:

r z T X b o))

L y V1 2 + ; ar gbl x + 12 ) ¢2 I ) ( )
and keeping the 1)-coordinate unchanged. In the expansion a and b are unknown parameters.
Ignoring the subleading terms in L — oo limit, the expansion of the T-dual metric provides

r =

ds? = di® + P02 + N2d2? + N2da? — [f%ﬂ B2 (A2 - A%)] (dat)?
A 1
\? [bzzdwdaﬁ —2dydr — 2bdx+dx’} _ 73‘752 (dp + bdx*)” + )\—%dd)g

— L2a¥(dat)? = X2 (dy + bdxt)’] (5.10)

Due to the presence of O(L?) terms the metric diverges in the L — oo limit . This divergence
occurs because, in this case we have not been able to impose the geodesic to be null. This
amounts to setting

a*(da™)? — N (dy + bdx+)2 =0.

For the geodesic {#; = m, 0y = 7/2}, leads to a divergent metric in the large L expansion.
So it also doesn’t provide any PP-wave geometry.

The remaining two geodesics give rise to PP-wave geometry as follows. Consider the
geodesic {0, = 7/2,60, = 0} with the expansion
x

T oz
761:§+Z762:Z7t:ax+7 ¢r = bx" +

T

L

x ®2
§7¢2:fa

r =

(5.11)

while keeping the v -coordinate unchanged. Like the earlier case here also a and b are
unknown parameters to be chosen suitable! in order to obtain

ds2, = 2dz*da™ + di* + P2dQ3 + d2* + da® + 22 dp® + dpy — 6 (7 + 62° — 627) (da ™) . (5.12)

The metric is indeed a pp-wave solution in the standard Brinkmann form. In the limit, the
dilaton has the expression

s 1
e 2 = ?v : (5.13)

together with NS-NS three-form field strength
Hy = 2V6 dz A dgs A dat . (5.14)
The RR sector of the background is described by two-form and four-form field strengths

. . 4/6
Fre0, By VO
39s

rdzANdxt Ndx N di . (5.15)

!To get the metric in standard form, we set a = 1/A;,b = 1/A\? and, in addition, we rescale some of the
coordinates as © — V6z, z — V62, ¢y — %@.
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For the remaining geodesic {#; = 7/2,0; = 7} also leads to a pp wave geometry which is
identical to (5.12) with the background fields.

The T-dual background (5.1) has also isometry along the ¢o-direction. In the following
we discuss the motion along ¢,-direction and examine Penrose limits. First consider the
metric component gg,e, :

L2

. 5.16
A2 cos? 0y + A2 sin? 0, (5.16)

a2 =

The geodesic condition (4.6) leads to 6 = (0,7/2,7). Consider the following expansion
around the geodesic {#; = 0,6, = 0} with large L limit:

T z x

L, 91:5, ngz, t:(lZL‘+, ¢2:bl‘++x— (517)

L?’

r =

keeping ¢; and ¢ unchanged. At prior, there is an O(L?) divergent term present in the
metric. In order to remove we need to choose @ = X\,b = A? . This leads to a null geodesic.
By redefining the x and 2 coordinates, we find

1
ds® = 2dxdr™ +dr* +FdQE 4 d2 4 22d¢ 4 da? + 2P (dop +dy ) — §(f2+3x2)(dx+)2. (5.18)

Although there are no more diverging terms present in the metric, but the scalar curvature
R for the metric is non-vanishing and hence it does not correspond to a pp-wave geometry.
This is because the metric component gg4,4, vanishes for the values {#; = 0,60, = 0}.

Finally we consider the isometric direction ) in the T-dual metric. The corresponding
metric component is given by
A2\2 sin? 6,

=1? : 5.19
vy A2 cos? 0y + A3 sin® 6, (5.19)

From the geodesic condition (4.6) we have 6, = (0,7/2, 7). We will not consider the values
0, = (0,7) as for those values the gy,-component vanishes. Consider the geodesic 6, = 0

and ¢ = 7 with the following expansion:

X

T T 2 I —_— P2
r La 91 L7 92 2+La 13 axr ¢ bx +L27 ¢2 L’ (5 O)
and keeping the ¢;-coordinate unchanged.
In the limit L — oo limit the leading order terms provide
2 222702 27,2 1 \2,7.2 2 N2 Noyo 1o,
ds? = di* + P2d05 + Xda® + Nz + (W = N?)a? - % [ aet + 0%
2 2
A4 22
[%2 v pb%?} (det)? + A2 [2bd:c+dx’ _ b<x2 v ﬁzzz)dx*dgél n 2dx*d¢1]
2 2

L2 [a2(dm+)2 — 2 (bdat + dgzﬁl)Z} . (5.21)
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This metric contains a divergent term of O(L?) that cannot be removed by fixing the param-
eters a and b. This is because, in this case also, there is no null geodesic for any choice of
the parameters a and b. Hence in this case the background does not give PP-wave geometry.

Now we consider the second T-dual background, where T-duality acts along 1 -direction.
The geometry of the background is given by the metric (5.4). The background has U(1)-
isometries along ¢, ¢o and 1 directions. The Motion along the 1 -direction does not give any
non-trivial constraint because the gy,,-component of the metric is constant. As the metric
is symmetric under the exchange of ¢, and ¢, followed by 6; and 6, it will be sufficient to
consider geodesics along one of these directions. For the ¢; isometry direction the geodesic
condition leads to ¢, = (0, 5, 7). However, for the values 6, = 0 and 7 the g4, 4, -component
of the metric vanishes. Hence, we have only #; = 7/2. In order to examine the Penrose
limit, we consider the large L expansion of the T-dual metric (5.4) and retain the leading
terms as:

T

S V=2 =5, (5.22)

’I":Z, 91:Z—|—

z T
5 z,e_— t:ax+,¢1:bm++

2 — La
and redefine the string coupling as g = L g5 to make dilaton finite in Penrose limits. To
get a null geodesic we must impose the condition a = A\;b together with A\?b = 1 and make
the co-ordinate redefinitions =+ = u, = = v, z — V62, = — 6z, Yy — %y to bring the
PP-wave metric into the standard form:

ds® = 2dudv + di* + 72dQj + dz* + da® + 2*dB* + dy* — 6(F° + 62°)du’. (5.23)

The expressions for the background fields in the NS-NS sector in this limit are given by:

. 22
e =, (5.24)
s
and
Hy = 2V6 dz Ndu A dy . (5.25)
In the Penrose limits the field strengths for the RR fluxes have the expression:
. L4
Fy,=0, F, = \/695 du Ndz NdB A dx . (5.26)

37s

As in the AdSs x S° case, now we will consider the null geodesic that carries angular
momentum. To find such a geodesic, we consider motion along ¢; and v directions. From
the geodesic equation we have 6; = 7/2,05 = 0. Considering the Lagrangian of a massless
particle as (4.10) and substituting the explicit expression for the background metric (5.4) we
have

L2

L 7( — 4 24t + 90?) . (5.27)
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The Lagrangian does not depend on the coordinates t,¢; and . Hence, the conjugate
momenta corresponding to these generalized coordinates are conserved. We fixed the affine
parameter u as

oL .
— = -L*=-I".
ot
Assigning J be the conserved angular momentum along the ¢;-direction, we have
oc 1.
—— =P =—-JL*.
g1 6

However, the conserved angular momentum associated with the variable 1) can no longer be
arbitrary. It is determined by imposing that the geodesic is null, i.e., we set £ = 0 and it
leads to

P =—(1-6J7) (5.28)

QDI»—l

can be integrated as
Y = \/1 —6J%2u

The above expression gives a bound to the angular momentum J:

0<J<

> % .
To obtain the Penrose limit for the null geodesic carrying angular momentum J around
r=0, 6, =3, 0 =0, first we redefine the background coordinates:

(5.29)

T T oz x
T—Z,91—§+E,Q2—Z- (5.30)
and consider the following expansion with L — oo limit:
dw d d
dt = erdu, déy = codu + ey, dib = eadu + %Tw +eg L” , (5.31)

The null geodesic condition sets the constant coefficients ¢, co and ¢y
1
61:]_, CQZ—GJ, C4:§V1—6J2. (532)

In the expansion there is a diverging term O(L) which can be removed upon setting Acycs +
sz¢4¢s = 0. Normalizing the coefficient of dw? to unity gives the condition A\jcj + sz¢2 = 1.
By choosing the normalization factor of the light cone term 2dudv to 2, we have 43¢ = 1.
Solving these conditions provides the remaining coefficients c3, c5 and cg as

11
=V6(1—6J2), c5 = \/‘ = § = (5.33)

Then the resulting PP-wave metric after a rescaling the coordinates: © — v/6x, 2 — /62
has the expression

ds?, = 2dudv + di® + P2dQ3 + d2* + da’® + 22dB® + dw® — (P 4+ 36J°2%)du®.  (5.34)
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The PP-wave background is supported by the following dilaton and B, field

IS A
e 2% = = D=2 dundut 2*V1—6J2 dB A du (5.35)

with the corresponding NS-NS three-form flux
Hy =2 dz AdwAdu+22V1 —6J2 de AdB A du . (5.36)

In the Penrose limit we have only four-form field strengths

46

F, =
1= 35

Jr du Ndz Ndx Ndp . (5.37)

Now we show the PP-wave backgrounds we have obtained satisfy the type-I1A supergrav-
ity equations. In the following, we consider the pp-wave background specified by eqs.(5.34)-
(5.37). For type-I1A supergravity, the Bianchi identity and gauge field equation are given in
Appendix (A). In this PP-wave background the Bianchi identities are satisfied trivially. The
equation of motion for By is satisfied for our background, because the dilaton is constant,
FQIO and F4/\F4:0

Now the Hodge dual of the three-form NS-NS flux Hj is given by
*Hy = 2(dz AdB +V1—6J2 dz Adw) Adu A dSy

, which is a closed differential and the Hodge dual of F} is given by

46

375
which leads to Hs A xFy, = 0. Also, xF} is closed and H3 A Fy = 0.

*F4 =

JdU/\dQ4,

In order to verify the Einstein’s equations, first note that ® = const, together with H? =

F? = 0 = R. Computation of the Ricci tensor for the background shows that only R,, is

non-vanishing. Similarly the only H?2, and (F?),, are non-zero. The expression of these are
given by

H2, =16 —48J% , (F2),, =64J%/3%, and R, = 4+ 36.J° . (5.38)

The above analysis shows that the equation of motion for R,, component is indeed satisfied.

Now we shall discuss the closed string modes propagating in the PP-wave background. We
will consider the pp-wave solution (5.34) that carries angular momentum J. The PP-wave
solution has been obtained from the geometry by performing an Abelian T-duality along
p-isometry of the Klebanov-Witten background. The string world sheet action is given by
(4.22) and we consider the same conventions as described in (4.22).

We assign the string coordinates in the following manner:

U=u, V=uv (X', X*X>X"erQ; (X, X° €x,8, (X",X*)€z,0, (539)
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Then the worldsheet action (4.22) for the PP-wave background (5.34) takes the form

S:

8 4
/ drdo [Z OX'. 0X'+ ) (X' + X%0,X" — X79,X"
=1 =1

Yed

—(X®)2 V1 —6J2 0,X° +36J*(X")?| , (5.40)

The equations of motions for the transverse modes originating from the above action are
given by

OX'—X'=0;i=1,2,3,4,
OX°+vV1—-6J2 X°0,X5=0,
O0X°%—vV1-6J2 X°0,X°=0,

1
OX7—36°X" + §8UX8 =0,

1
Ox® — 5@,)(7 =0. (5.41)

Considering the ansatz X' ~ e~ @9 the frequencies of the uncoupled modes are given

by

wio=n?+1;i=1,234. (5.42)

nae

The modes X” and X® can be decoupled leads to two fourth-order linear partial differential
equations with corresponding frequencies

1
Wl =nt+ 3 [36J2 + /(36722 + nﬂ i=T.8. (5.43)
Defining a complex mode Z as Z = X®+4iX%, the equations involving X® and X provides
1 _
OZ+5 V1-6° (Z2-2)0,Z=0 (5.44)

This corresponds to a non-linear complex harmonic oscillator and the exact analytic solutions
cannot be obtained. Although for small value of v/1 — 6J? one can use perturbation theory
to obtain the frequencies of the corresponding modes.

Now we turn our interest to examining Penrose limits around various null geodesics in
the non-Abelian T-dual geometry. The metric and the background fields of the T-dual back-
ground are given in (2.57)-(2.62). In the T-dual metric we have along U(1)-isometry along
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¢1 and 1 directions. In the following we consider motion along these isometric directions and
examine Penrose limits. First consider motion along the ¢;-direction. The relevant metric
component to examine Penrose limits is

2y2

ASA
Gopy = L? | \Isin® 0, + 2A r3cos’ 0| . (5.45)

This metric component depends on 1, x, and #; directions. From the geodesic condition,
0u9prey = 0 we have 2y = 0,6, = 7/2 for p = 21, and 2y = 0 = 29,0, = 7/2 for p = 5.
Among these values p = 6; this gives rise to the values ¢, = (0,7/2, 7). However the only
non-singular choice for a geodesic is 1 = 0, x5 = 0 and ¢; = 7/2. Now we propose the
following large L expansion around this geodesic:

r Y1 Y2 Tz n LT
= — == == Oh==—+—, 1= =b — 5.46
r L7 Iy L, X2 Lu 1 2+L7 azx ¢1 X +L2 ) ( )
and keeping the 1 -coordinate unchanged. In the expansion, the parameters a and b are set
to be 1/A; and 1/\? respectively. We also redefine the light cone coordinates x* = u, z~ = v

and rescale z — V62, y1 — y1/V6, y2 — y2/3. The leading order terms in the limit L — oo
provides

ds* = 2dudv + dr* + P2dQ5 + d2° + dy} + yidy® + dys — 6(7 + 62°) du’. (5.47)
This is a PP-wave solution in the standard Brinkmann form.

In order to keep the dilaton finite in the Penrose limit, we redefine the string coupling as
gs = L3g~s ) (548)

then for the above PP-wave background the dilaton takes the form
8
e = SN, (5.49)

s

and the NS-NS two-form becomes
By = 2v6z dys A du | (5.50)
which leads to the following NS-NS three-form flux
Hs = 2v6 du A dz A dy, . (5.51)

At Penrose limit we have only two-form field strength in the RR sector
8
3v/37s

Now we will consider the other isometric direction v in the T-dual metric. In the following
we will show that motion along v -direction does not give pp-wave geometry. In this case the
relevant component of the metric is

Fy=

du Ndz . (5.52)

A2N2
Gyy = L* Z z? (5.53)
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From the geodesic condition we obtain xo, = 0,6; = 0. Proposing the following expansion
around the geodesic:
f

L

=2 g = t—awt, p=bat b (5.54)

"= =1 2’

, L2

and keeping x; and ¢; coordinates unchanged. In the L — oo limit the dual metric gives

ds* = —ra®(dx™)? + dr* + 7dQ; + Nd2? + A{2°dgy
AZ)2
+ 22 [bef dxtdr™ + 223dx~dpy — bri2datdg, — Z*a3de?
A2qy2 2 2 171
- i L(bdat + doy) } B> [i)\ng (22 + A2N2)da? — Nidy? — 2x1y2dx1dy2}

_I2q(dat)? 4 L [Agvx% {(bd:c+ +dér)” + 2bdx+d¢1} + (a2 Agv)dﬁ] (5.55)

2

+ JE—

2
where,

D =M+ A (5.56)

Here also we have diverging terms and that cannot be removed by any choice of the parameters
a and b. Hence the motion along 1/-isometry does not lead to PP-wave background.

Now we consider the closed string modes propagating in the PP-wave background (5.47),
Here also we use the same worldsheet action and gauge fixing defined in (4.22). For the
PP-wave background (5.47) we assign the string coordinates X' as

U=u, V=0 (Xl,X2,X3,X4> €7 O, (X5,X6) € y1, 0, <X7,X8> €2y (557)
Then the worldsheet action for the PP-wave background (5.47) takes the form

S:

/ drdo [aXi. dX'+6 (i(xi)%ﬁ(ﬁ)?)—\/6X780X8+\/6X88,,X7} . (5.58)

1=1

4ol

The equations of motion for the transverse modes X' varying from the action are given
by

OX'—6X'=0;i=1,2,3,4,
OX'=0;i=5,6,
V6

OX"—36X" + 5 0,X8=0,

Ox® — ? 0, X"=0. (5.59)



54 CHAPTER 5. PENROSE LIMITS IN NATD BACKGROUND

Considering the ansatz of the form X* ~ e~®i+ino We have

w2o= n?*4+6;i=1,234,
w2 o= n*;i=5,6,

1
2 .2,
Wy n+2

36+ +/(36)2+ 6n| : i =78 (5.60)

5.1.1 Dual Gauge theory

In this section we shall make comments on possible gauge theory dual for the pp-wave geome-
tries that we have studied in the previous section. The gauge theory dual has been presented
in [23,27]. The construction of dual gauge theory is based on intersecting D4 — NS5 — NS5
branes.

In the Abelian T-dual geometry (2.53), there is an underlying SU(2)4 x SU(2)p x U(1)g
global symmetry present in the background metric. The chiral fields (A;, As) form a doublet
under the SU(2)4 subgroup of the global symmetry and similarly (B, Bs) form a doublet
corresponds to SU(2)g. U(1)g is the R-symmetry group corresponds to a shift along the
circle coordinate 1, and all the fields Ay, As, By, By get the same charge under this symmetry.
Denoting J; and Jy to be the Cartan generators of SU(2)4 and SU(2)p respectively and
let J5 be the generator of U(1)g. The Cartan generators J; and Jy correspond to the shift
in the azimuthal coordinates ¢, and ¢- respectively and J3 corresponds to shift in ).

Now we will try to identify the large- R sector of the dual gauge theory. The BMN sector
has been constructed and studied in detail in [40]. First we define the conifold coordinates in
the theory as: 71 = A1By,Zy = AyBsy, Z3 = A1By, Zy = Ay By. The light cone Hamiltonian
is given by H = A — (J; + Jo + J3). From the BMN proposal it can be shown that the
ground state of the string corresponds to the operator Z; and the first excited state: H =1,
is described by the operators Z3, Z, and the covariant derivatives D, acting on Z;.

In closed string quantization of the PP-wave geometry (5.34) corresponding to the Abelian
T-dual background we find the frequencies (5.42)-(5.43) corresponding to n = 0 modes as 2

Wo,i = ]-7 L= 1a273747
wo,7+,8+ = 0,
Wo,7—,8— = 0. (561)

This mismatch of the frequencies is due to large effective interaction which causes the energies
of the states to change. The same phenomenon is also present in the PP-wave background
corresponding to the Abelian T-dual of AdSs x S® geometry [26].

2For small value of /1 —6J2 it can be shown using perturbation theory that the lowest mode will
correspond to n =1 and will have a higher frequency than the above modes.
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For the PP-wave geometry originated from non-Abelian T-dual background, the BMN
operators correspond to a class of operators in the quiver theory that we discussed in Chapter
3. The construction of dual field theory is based on the calculations of the brane charge and
the central charge [27]. The authors in [27] show that the holographic entanglement entropy
agrees with the corresponding supergravity dual. However, for the PP-wave geometry, care
must be taken as it originated by zooming a particular region and hence it is globally not
complete [27]. In this case, the holographic entanglement entropy can be obtained by imposing
a hard cutoff on the non-compact directions. But its field theory interpretation is not clear.
It might have correspondence to the entanglement entropy in some excited state in the dual
field theory.

5.2 Penrose limits in non-Abelian T-dual of Klebanov-
Tseytlin background

In this section we will discuss the Penrose limits in non-Abelian T-dual of Klebanov-Tseytlin
background. The T-dual background was presented in Chapter 2. The metric together with
the background fields are given by the expression (2.69)-(2.73). Before going to examine
Penrose limits first we rescale some of the coordinates in T-dual geometry and introduce the
parameter 7 as

In7 =1 L
nr =1Inry 1 2L47

Then the wrap factor H(r) takes the form

H(r)=""1n (;) . (5.62)
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Now we consider the Minkowski coordinates x* and rescale as z#* — L?z*. We also rescale
T-dual coordinates vy 3 as ve 3 — L2v2,3. Then T-dual metric (2.69) becomes

22 _
dSxaTp =

1 = (’)
l

1
\/_ Nudxtdx” 4 V2 T <d7”2 + ETQdQ%(QL ¢1)>]

s

6\/_ vio? + 6\/_ 81v2
)i (8 nG) e T
+<9\/§ \/@+ 2\9/5 8 (605 +2v21m (TO)> )dv§

+ L\ﬁ) (61}3 +2v21In <7’L0)) Uzdv2dU3] : (5.63)

In

<3

In

=3

Where A stands for
r )
A=4n (—) + (6113 +2v21n (-)) + 5402 .
T To

After the rescaling, the NS-NS sector of the T-dual background (2.72) takes the form

Bg = %2 In <:0> sin 01df, A doy + %2 3\/5(61)3 +2v2In (%)) vy 03 A dvy
(2\/_ 2 In ( ) + %(67)3 +2v21n <T0>>2) o3 A dvgl ,
o2 = 8195 " (T) A. (5.64)
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Considering the rescaling, the field strengths in the RR sectors (2.73) become

Fy= —1? 2X2

A LA 2 7“
Fo= ——(-In|(= —1—6\/5 6v —|—2\/_1n sin0;df; A d
2 162\/595[5 <7‘ ( 3 7“0))]1 1avy b1

L4 4
+ 6vs + 2\/_111 vy 03 A\ dvgy + 9U2 o3 Ndvs| ,
gsAS
A LS 1 r
Fy= =5 v sinyddy Adgy Adyr [( <6v3+2\/_1n (m)) ~ sl (;)
1 44/2 1
+@>U2dv3+ <_ g ( )+9(151 (r) 60) (6U3+2\/_1n <r0>>

—6\/§v§> dvs (5.65)

Now we consider various isometric directions in the T-dual geometry with rescaled coordinates
(5.63). The background admits U(1)-isometry along ¢ and ¢; directions. First we turn our
interest to the motion along ¢ direction. The geodesics equation for this case is

6ug¢¢ =0. (566)

The relevant component of the metric for the discussion is:

G = = 6\/_ In (%) o (5.67)

Now the component gy, depends on r together with the T-dual coordinates vy and vs.
The geodesic condition (5.66), for u = r, leads to v = 0 and for p = ve,v3 we have
{r = 7,v; = 0}. However, for all these values the metric component gy, vanishes and
leads to singular geometries. Hence, we will not examine Penrose limits for these singular
geometries.

We will now consider the motion along another symmetric direction ¢,. Consider the
relevant metric component as:

1 62
gorsn = L ([ In (%) [3—\@ sin® 0 + Tf v cos? | . (5.68)

In this case the geodesic condition becomes:

aﬂg¢1¢1 =0.

For p = r, the geodesic condition provides {6y = (0,7),v, = 0}. For u = 601, we have

{r=7,00=(0,%,m)}. Similarly, for p = vy, v3 the geodesic condition leads to {r = 7,0, =
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7,v2 = 0}. However, for the values r =7, {01 = (0,7),v, = 0}, the metric component gy, 4,
vanishes and give singular geometries.
In the following first we will consider Penrose limit around the geodesic 0; = 5, v, = 0 = v3

and keeping the r-coordinate unchanged, i.e., r = ¢ ; for some constant ¢ # 7 # 0. Consider
the following expansion around the above-mentioned geodesic with large L limit:

Z‘z:%7l:172737 r:c+%,91:g+%,t:ax+,

L2
In addition, we also rescale the T-dual coordinates v, and vz as vy — %, vz — £
while keeping the 1/-coordinate unchanged. In the expansion a and b are some unknown
constant parameters. By imposing the null geodesic condition, we have the relation between
the parameters a,b with ¢ as: )

a® = %ln (j) : (5.70)
Substituting the above expansion in the T-dual metric (5.63) and keeping the leading order
terms in L. — oo we have

1
ds = f ( )zbdx+d:c t s — (dy1+dy2+dy3 f,/

In

1 c 9 3 n <$) 9 9 9 1 2
+ﬁ,/m <;> A+ - <_> +2<ln <%)>2<dv2 V2dy) ) T ) dv?
b? c x?
3v2e2 ( >[1n ()

The metric contains a divergent term with O(L) and that cannot be removed for any choice
of the parameters present in the metric. Also the null geodesic condition (5.70) inhibits to
set b = 0. Hence, motion along the isometric direction ¢; does not lead to any smooth

o

ille}

20?
+2? + 22| (de)? — L 3—$ In <;) (dz™)? . (5.71)

C

geometry.

As in the case of AdSs x S and Klebanov-Witten backgrounds, we consider the null
geodesic that carries nonzero angular momentum. In order to find such a geodesic, we
consider motion in the (r,¢;) plane. We will confine our analysis in the neighbourhood of
0, = Z and vy = v3 = 0. Consider the Lagrangian for a massless particle as in (4.10) and

2
substitute the background metric (5.63) we find

B A () e (). e

2
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Now, in the Lagrangian (5.72) ¢ and ¢; are cyclic coordinates and their corresponding
momenta will be conserved. Let —EL? be the conserved momentum associated with ¢.
Then,

I
L? ot o ln <£>

i (5.73)

Denoting —JL? be the conserved momentum associated with the cyclic coordinate ¢; we

have
1 oL T/ /ry

The null geodesic condition i.e. £ = 0 leads to:
3r?
(%)
Now we will examine the Penrose limit for the above null geodesic carrying angular

momentum J. We expand the T-dual metric around z; = 0,2 = 1,2,3 , ¢ = 7 and
vy = v3 = 0. First we redefine the coordinates in the T-dual geometry as

i+ J?=E*. (5.75)

i . ™ z (Y v
y_;Z:17273701:§+_ U2_>_27U3_>fgv

- =, - (5.76)

€Tr; =
while keeping the v -coordinate unchanged. We redefine the string coupling g, as gs = L? g,
in order to keep the dilaton finite at the Penrose limit. Finally, we will consider the following
expansion :
dw dw dv

dt = cldu, dr = ngu + CgT s dgbl = c4du + 057 + Cﬁﬁ s (577)

and subsequently take L — oo limit. We need to fix the unknown coefficients ¢;. Imposing
the null geodesic condition determines the coefficients ¢q, ¢, and ¢4 as follows:

0 = 22 (D),

r2 T

Cop =

G = ——— = . (5.78)

Now we substitute the expansion (5.77) in the T-dual metric (5.63) and consider the
leading terms. At first, the expansion will contain divergent terms of O(L) as well as O(L?).
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Imposing the null geodesic condition automatically cancels the O(L?) terms each other. The
O(L) term can be removed upon setting the coefficients as:

7,2
CoC3 + EC4C5 =0. (579)

Considering the value of ¢ and ¢4 from (5.78) and substituting in the above equation one
can express the coefficient c3 in terms of c¢5 as

N

C3 =

32 B 2
o J2] L Jes. (5.80)

w(:) 1 ()

The coefficient c5 can be determined by requiring the background fields to satisfy the Ein-
stein’s equations that we will present later. Finally, we fixed the only remaining coefficient
cg. This is obtained by choosing the normalization factor of cross-term dudv in the metric

appropriately. Then we have
1

Substituting the above expansion in T-dual metric (5.63), and subsequently taking the

limit L — oo, we find

0 = dudo+ L (a2 + i+ dgg) +/n (£) (

1 T s 3 o <£> 2, 272
+ 3—\/5,/111 (;) + - (_) +2<1n (L>)2<dv2 +u2dip )

T0

C%\/i_}_ Cg >dw2

2

L9 L . 3

In the following we will show that the above metric is a PP-wave geometry by rewriting it
in the standard Brinkmann form. Now in this limit, the NS-NS sector takes the form

J22 du® . (5.82)

r

In
. T 3J
By, = %ln<i> dz Ndw — 3 <0> QUzdngdw+—2du/\dvg,

" n(5) +2(m (7)) n(:)

b _ ;‘1\/; In (;) lln (;) + 2(1n (%))1 . (5.83)
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Similarly the field strengths corresponding to the RR sector become

= 0,

. J 1 ]2 |
= L~ |2 ( ) 241 ( )-—-— du A dz
2= 54, 1 < [5 n\7) T ) T |
n

F4 = 2J 5 ! Ug[—ln 2 lln r iln 2
3§s<1n <£) +2(1n (%)) ) n (;_:) (7’) +2 (T0)<15 <T)
610>]du/\dz/\dw/\dvg . (5.84)

At Penrose limits, the NS-NS three-form field strength Hj; has the expression

} }
3 2
[0'5 In <L> + & o p— J2]
Ty r

In (%)

5 >2> du/\dvg/\d@b—l—idu/\dvg/\dz.

) o)

du N dz N\ dw — 3vy

(5.85)

In order to get the above we used dr = codu and the expression for the coefficient ¢y is given

by (5.78).

Now in the following we will represent the metric and the background fields in the standard
Brinkmann form [33]. In order to do that we will follow the same formalism developed in [26]
and presented in (4.41)-(4.44). For the PP-wave metric studied in (5.82) we have

+2).
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Then after making the following replacement

y—>y1 Yo — y—>y3 w— —2 PR
1 —7 2 —7 3 —7 —7 —7
vV Ay, Ay, Ay, VA VA,

U2—>L,’U3—> U3 and

sz Avs
A A A A A A A
- - Y12 Y2 2 Y3 2 w2 Tz 2 v2 2 fTv3 2
v v+4 A, y1+Ay2 yQ—I—AyB y3+Aww —I—Azz +AU2 v2+Av3 vy,
(5.87)

we have

ds? = 2dudv + dy; + dy3 + dy; + dw” + dz* + dvi + v3 dyp* + dv3

+

3V2
Fyly% +Fy2y§ +Fy3y?2, + Fww2 +Fz22 + Fvgvg "—FvSUg — —\/_ J222] du2 ,

where the functions F; can be read from the expression (4.44).

Now we will consider the background fields in the Brinkmann form. The fields in the
NS-NS sector are given as

- () [ ) (2))]

. 21
H,=
° 3

<3

o 3 J220,1n<1>+0_5 CINEC
1n<) _5 To 7"__7"2 3v2

i 32 1Pm(z)-m(z)-2
du Ndz N\ dw — \/5@2 E?— J?

I
—_
=
/N
3
N——
=
VRS
—_
=
VRS
il
—
[\
/
—_
=
VN P
=k
N——
N~ |7
)
N——

2
duAdngd¢+ﬂ

) ;)

du N\ dvs Ndz . (5.89)

1n<

<3
=3
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Similarly, the RR field strengths become
Frb= 0,
. -3
= 2 J 2lr1<f)—i-241n<1>—i du Ndz ,

WO (n ()’
- 24 r 1 T 1 r
b () () (52
! 3fgs<nz>>”’2[ E) e NG G

1
60)]du/\dz/\d¢ A dvy . (5.90)

We will now show that these fields satisfy the Bianchi identities and the gauge field
equation of motion in type-IIA supergravity (A). For the background fields in (5.88)-(5.90),
the field strengths H3, FQ and F4 are all closed together with FO as well as H3 A F2 are
indeed zero. Hence, the Bianchi identities (A) are indeed satisfied.

The expression of Hodge duals for the above background fields are given by

* Hy = ﬁ du N\ dyy N dys N dys [\2;5 Uy <E2 — lnBE; J2)%(Cg In <r£0> - %)
(cér\jé+3i§§) \/I:Edvg/\dl/;/\dvg,
RO RO R (10
o0 ) ()
2v3 J dw/\dvg/\d@/zl,

() ()

. 1 20-1) J 2
Fro= — | ( > 241 < )—— du A dy; Ndys A d
Ty 9\/§§s<m<z>>i U2[5 mF) e ) T g | A A a2 A s

A dw A dy N dvg A dvs

|
R F v RCA R CR ORI S

Adys A dys N dw A dos . (5.91)

_1

U3
N——
_|_
[\

dz N\ dw A dvs + vy

3

The above expressions provide that *xH; and e~2® H; are closed. Also, Ey A xF, and
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F4 A F4 vanishes. Similarly, both *Fg as well as *F4 are exact in forms. In addition, H 3 A F4
and Hs A xF) also vanishes. Hence the gauge field equations (A) in type-11A supergravity
are also satisfied.

Now to find the undetermined coefficient c5, we consider the Einstein’s equations in
type-I1A supergravity:

. - 1. 11, - 1 - 1 - 14 1
RW + 2DMDV(P = ZH,SI/ + e*® §(F22)MV + E(FZ)MV - ZgMV <F02 + §F22 + ZF42> ) (5-92)
together with the dilation equation
N ~ ~ 1 -
R+ 4D*® — 4(09)* — EH2 =0. (5.93)

For the pp-wave geometry (in the Brinkmann form) the only non vanishing component of
Ricci tensor is R, with the equation

1 - 1 -
_(F22)uu + _(Ff)uu

. 94
2 12 (5.94)

N - 1 A .
Ry, +2D,D,® = Zng + e

This equation involves the undetermined coefficient ¢5 in the expression of H2, . One can
solve this equation to determine the expression for the coefficient cs.

Before going to discuss the field theory dual, in the following we will discuss the super-
symmetry preserved by the pp-wave background studied in (5.88)-(5.90). As like for the
AdSs x S? case, here also we introduce the Brinkmann coordinates X* as

dy?:(alX")2 =123, w=X", 2=X°,
dv} + 03 dp? = (dXO)" + (dXT)" | vy = X5
(5.95)

Then, in these X*-coordinates the PP-wave background (5.88)-(5.90) takes the form

8
ds® = 2dudv + > dX? +H du’

i=1

Hy = fi(u) du AdX® NdX* — folu) du NdXO AN dXT + f3(u) du AdX® A dXP
Fy= fu(u) dundX®,
Fy= fs(u) du AdX® ANdXT AdXE (5.96)

where for easy reading we introduce the notation

H=F;X'X = |Fxi(X")? + Fx2(X?)? + Fxs(X?)? + Fxa(X*)?
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3v2

= (5)

+ <FX5 - J2> (XY 4 Fyo(X6)2 + Fyr(XT)? + Fys (X8)2] ,

27 3r? r c 22 2 -3 1
filu)= == |E* - J2] [0'51 - —5][32 5] ,
N e e v
) = valeo J2r ln@)_ln(%)_Q(ln(é))Q L
= (%) r(m(z)+2(m(2))) (fu(2)
2B

= (5)
C) r
falw) = 92\/§§s <ln é)) _iln (7’) +241n <r0> _1_10] ’

fs(u) = 35_4 == ( ( [~ (;) n %m (Tio) (1%1n (;) - %)] L (597

where the functions F;; are defined by

3
N—
N—

|
r

Fiuo=Fyp=F=Fxi;i=123,

3V2
F44:Fx4 s F55:FX5—L J2, F66:FX6 s F77:Fx7 s FggZFXS (598)

In (%)

By considering the same frame notation as in (4.58), in this case we have

Ci> = O(u),

= filw)e A Aet — folu) em AP Ae” + fa(u) e” AeP A e,

F2 = fa(u) e A€,

fs(u) e Ae® AeT Ael . (5.99)
Here the supersymmetric variations of the dilatino and gravitino are given by
34 . 1 .
§F2 (io2) + ﬂﬁm] é

c 1. .. 1 5 . 14
/\zﬁﬂq)e—ﬂﬁage —i—geq’

- 1.
0, = D, € — 8HWPF Pogé + e

1 5
,12‘2 (iy) ﬂnall e, (5.100)

Here we use the same convention as in AdSs x S° case.
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First considering the dilatino variation to zero we obtain

1

r- [ci -5 ( FL@)T = fo(u)T7 4 fg(u)r%)ag n %(3 Fo(@)T (ioy) + f5(u)F57601>] e=0.

(5.101)

The above condition gives us I'"¢ = 0. This states that the pp-wave background (5.96) pre-
serves 16 supercharges subject to gravitino variation. We now consider the supersymmetric
variation of gravitino. As the NS-NS three-form H; does not have any leg along et and
['yé = I'"é = 0, the variation 51@+ = 0 leads to 0.€é = 0. Hence we find that the Killing
spinor ¢ is independent of v, i.e. € = é(u, X*).

Finally we consider the variation (S@ZAJZ‘ ;1=1,...,8. Set it to 0, we obtain
0ie=T"R e, (5.102)

where R is given by

R = éll <f1 (u) <5¢4F5 — 5¢5F4> — fa(u) <5¢7F6 - 5i6r7> + f3(u) (5i5F8 - 5isr5>>03
)

e , ,

-3 ( fa(w)I? (ioy) + f5(u)f‘57601) I, (5.103)
Now, I'™ anticommutes with R and we also have I'"¢ = 0. Then 0;¢é = 0 leads to é = x(u)
with I'"y(u) = 0. Finally, the condition d¢_ = 0 gives rise to

Bux (1) — 1( FL)T — fo ()07 + fg(u)F85>agx(u) - % ( F1 ()T (i) + f5(u)F57601> x(w) =0

4
(5.104)

The above can be written in the simple form 0, x (1) —M (u)x(u) = 0, which can be integrated
to give rise

X(U) _ efdu/\/l(u)

Hence, the supersymmetry discussion shows that the PP-wave background (5.88)-(5.90) pre-
serves 16 supercharges.

Xo -

5.2.1 Gauge theory duals

In this section we will discuss the dual gauge theory for the pp-wave background studied
in (5.88)-(5.90). The dual gauge theory for the non-Abelian T-dual of Klebanov-Tseytlin
background has been discussed in [23]. The construction of the gauge theory is based on
the D-brane charges present in the dual background. It turns out that in the dual theory
the Seiberg duality is present much like as its seed background [23]. Here we will consider
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the Maxwell and Page charges for PP-wave background. We have shown that the RR field
strengths for the PP-wave background in Brinkmann coordinates are given by

Fyb= 0,
_3
Fy= 92\(/34;S<1n i))ilgln <;)—|—241n (%)—Tl()]du/\dz,
= sy
(n(z))"
+11n(1) iln<f)—i)]du/\dzAdw/\dv2. (5.105)
2 "/ \ 15 \F) T 60

In type-11A theory, the Maxwell and page charge for various brane is given by

~ 1 .
ax = F: )
Quveon = = [
QMaX, D8 — \/§/F0 s (5106)

and

N 1 N A A
QPage, D6 — \/§7r2/F2_BZFO7

QPage, D8 — \/5/1%0 . (5107)

Now from (5.105) it is very straightforward to see the D8 charges are all zero. Also, the
Maxwell for D6-branes is the same as the Page charge of it. The Maxwell and Page charges
for D2-branes also vanish. We have

A 1 A
ax - F )
(OMax, D2 W2 T /CG 6

. 1 . R B L
e - Fy— By ANF,+ =By AN By A F
Qpage, D2 Qk’%on/cG{ 6 2 4+2 2 2 2
1 ~ - ~ ~
~6 FOBQ/\BQ/\BQ}. (5.108)

Keeping vy as fixed, F4 and Fﬁ are zero together with 150 as well as BQ A F’g vanish for the
PP-wave background. Hence, from (5.107), we find that there is no longer any cascading
due to the large gauge transformation of B,. This leads that the quiver theory dual to the
PP-wave geometry (5.88)-(5.90) correspond to the end point of the cascade.



Chapter 6

Penrose limits in non-Abelian T-dual
of AdS3; background

In this chapter we will discuss the Penrose limits in T-dual of AdS3 backgrounds. We will
consider both Abelian as well as non-Abelian T-dual of AdS;5 x S3xT* geometry and examine
the Penrose limits. The Penrose limits in Abelian T-dual geometry have been discussed
in [42]. The supersymmetry discussion of the PP-wave geometry is also provided and it
states that the resulting background preserves 16 supercharges. In our work [47], we consider
the non-Abelian T-dual background described in [46] as well as in Chapter 2 in the thesis
and inspect Penrose limits in the dualized geometry. In the following first we will revisit the
work in [42] subsequently discuss our work [47] for the non-Abelian T-dual solution.

6.1 Penrose limits in Abelian T-dual background

In this section we will discuss the Penrose limits in the Abelian T-dual of AdSs x S® x T*
background. The T-dual geometry together with the background fields are presented in
Chapter 2 in the thesis. The Abelian T-duality acts along the fibre direction in S® as
discussed in [42]. In the following we will examine the Penrose limits in the resulting geometry.

First recall the T-dual geometry as presented in Chapter 2 in the thesis. The metric of
the geometry is given by
R? _— -
ds® = R2< — cosh? p dt® 4+ dp? + sinh? p dg@2> + T ( cos? Odi* + d92>

4 /2
; dx? + g(dxg +da? + da? + dxg) (6.1)

The NS-NS sector of the background is described by a non-zero dilaton and NS-NS three-form
flux as

+

o 2R
glsNE)
H3 = —a'cosf dip AdAdy . (6.2)

68
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The RR sector of the background is described by a two-form field strengths together with a
four-form field strengths

1 I
= _ZngNE’ cos@ diy N db
F, = —2gl,a’Nscoshpsinhp dt Adp Adp A dy . (6.3)

Now we inspect the Penrose limits in the background (6.1)-(6.3). To find the null geodesic
consider the motion of a particle with very speed along v-direction in the dual background.
The null geodesic resides at # = 0 and at the origin of AdS; geometry, p = 0 . Consider the
following expansion around the null geodesic p = 6 = 0:

r. _+_£- :i-€:§~—:%- ST, — % 6.4
R2 ) 2 x R2 ) p R Y 2 2 ) X 2(){/ ) g xl ‘/’UZ ) ( * )
and subsequently take R — oo limit. In the leading order of the expansion the background
metric provides

[

t=a" +

9
ds? = —4dz*da~ — (zg + I+ 4@3) dz™? +) dz} . (6.5)
=2

In the limit, the background dilaton vanishes and the NS-NS three-form flux takes the form
Hy = 2da™ NdZs AdTy . (6.6)

The supersymmetry analysis for the above background is carried out in [42]. The vanishing
of transverse components of the gravitino projection states that the Killing Spinor € is linear
in both along one light-cone direction z and the transverse coordinates Z; . Subject to
dilatino variation and the periodicity condition of the light-cone coordinate z, it is shown
that the PP-wave geometry (6.5)-(6.6) preserves 16 supercharges [42].

6.2 Penrose limits in non-Abelian T-dual background

We will now turn our attention to the Penrose limits for the non-Abelian T-dual background.
First we recall the T-dual geometry along with the background fields as

2.2

L2 L
A8 pap = AL7ds (AdSs) + L*ds™ (T*) + —-dp” + +’°p2 d02(0, 6) | (6.7)

In the above metric we rescaled the p-coordinate as p — L%p to get L? common factor in
the metric.

Due to the rescaling of the radial coordinate in the T- dual metric, the NS-NS sector of
the background takes form

26 _ L° 2 > L?p?
T =—4 By = ————sinfdd A d 6.8
€ 492( +10)7 2 2(4+p2)51n (ba ( )
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similarly the field strengths in the RR sector become

N L2 N L4 3 . Lﬁ
[y=—, Fy=——7"———sinfdd Adp , Iy = ——Vol(T") . (6.9)
gs 29: (4 + p?) gs

In the following we will consider the motion of a particle of various isometric directions in
the T-dual geometry (6.7) and examine Penrose limits. It is straightforward to see that z;’s
along the T* manifold are the symmetric directions. However, the geodesic condition (4.6)
for them is trivially satisfied. Hence we will not consider motion along the T* directions.

Now we turn our focus to the other symmetric direction in the T-dual geometry. The
background has U(1)-isometry along ¢-direction. The relevant component of the metric is
given by

L2 p2 )
= sin” @ . 6.10
990 = 13 2 (6.10)

The metric component has a nontrivial dependence on p and 6 coordinates. The geodesic
equation (4.6) for u = p gives p = 0 and 6 = {0,7}. Similarly for u = 60, we get p = 0
and 0 = {0,%,7}. Among these values, we will not consider p = 0 and ¢ = {0, 7} as for
these values the g4, component vanishes. This leads us to the only possibility of considering
the motion of a particle carrying nonzero angular momentum in the (p, ) plane. To find
such a geodesic we confine our discussion to the neighbourhood of r = 0 = z; and 0 = 7.
Considering the same Lagrangian for a massless particle as in (4.10) and substituting the

background metric (6.7) we obtained

L? | 2
L=—| -4 +-p"+ —=¢] . 6.11
5 ( Rl (6.11)
The above Lagrangian does not depend on the coordinates ¢t and ¢. Hence the corresponding
generalized momenta will be conserved. First consider the momentum conjugate to ¢ as

oL .

— = ALt . 6.12

5 (6.12)
Thus, we have ¢ = const. Set the affine parameter u appropriately we have f = 1. Now
consider the equation of motion of the generalized coordinate ¢

a£ _ L2 p2

3_¢i =L ,02¢ = const . (6.13)

Let J be the angular momentum associated with the motion along ¢-direction we have

P
=——0. 14
/ 4+p2¢ (6.14)

Imposing the geodesics to be null i.e. £ =0, we obtain the equation for p-coordinate as

4 2
P = 4(4 - :f J2) . (6.15)
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This equation can be solved exactly and we obtain in a simple form
2 2
o AT +A(2—4) (utc)
4 — J? ’

here ¢, is the integration constant. One can set it to zero by redefining the parameter .

p (6.16)

Now in the following we obtain the Penrose limit for the above null geodesic around

r =0 =z and § = § with carrying angular momentum J. Before going to Penrose

expansion, we redefine the background coordinates as

Yi . T x
== 4=1234, 0=—+—. 1
722 L’Z ’737 ) 2+L (6 7)

We also rescale the string coupling as g, = L3§,, in order to keep the dilaton finite in this
limit. Finally, we consider the following expansion

dw dv dw
dt = cidu , d¢ = codu + Cs + C173 dp = csdu + o (6.18)

r =

=3

and subsequently take L — oo limit.

Now we will solve the coefficients ¢; in the above expansion. The null geodesic condition
determines three of the coefficients as follows

4 2
01:1702:— ;QpJ,C5:2

4 — (4;—2’)2)J2] ’ : (6.19)

Now we substitute the expansion (6.18) in the T-dual metric (6.7) and take the L — oo
limit. In the expansion, at first it contains diverging terms of order O(L?). By imposing
the null geodesic condition, they cancel each other. The expansion also contains the order of
O(L) terms. Those can be ruled away upon setting the coefficients ¢; as

2

C5Cg + FPPZ CoC3 = 0. (620)
Now substitute the values of ¢ and ¢5 from (6.19) in above we find
1
C3 1 (4 + p2) 9 ’
—=—|4-——"=J . 6.21
Cg 2J[ p2 ( )

Later we will show that the coefficient ¢3 can be determined from Einstein’s equations in
type-I 1A supergravity. The only leftover coefficient ¢y is fixed by considering the appropriate
normalization for the cross-term dudv and it leads to ¢4 = —

1
7 .
Now substitute the above results in the background metric (6.7) the leading terms provide
2

2
ds®> = 2dudv + 4di* + 47%dx* + dyi + dy; + dy; + dy; + (% + 4_'i 20§> dw?
p

2 2
P 2 o At s 2
+ 4+p2d:r; - <4r +7J x )du . (6.22)
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Now we will consider the Penrose limit for the remaining background fields in the NS-NS
sector as well as in the RR sector. In this limit the NS-NS two-form By and the dilaton takes

the form

3
2 C3pP

BQ = m dw A dx 5
Y 1
e 2 = 7 (4+ %) . (6.23)

The NS-NS three-form field strength corresponding to the two-form B, in this limit becomes
\/4,02 _ (4+p2)J2
(4407

In the above we have used dp = c¢sdu and c¢5 is given by (6.19). In the Penrose limits, the
only RR two-form field strength is non-vanishing and given by the expression

_Jp
24,
The metric in (6.22) is not in the standard Brinkmann form [33]. In the following we will

transform it into the Brinkmann form by following [26] and also presented in (4.41)-(4.44).
For the pp-wave geometry in (6.22) we have the following A;’s

Hy=p (12+ p*)es + p(4+ p*)dy | duAdw A dz (6.24)

28 dx A du . (6.25)

< P, p
A =4, A, = P 2oa, = . 6.26
1 T 4+ p? (6:26)

Now we redefine the coordinates in (6.22) as

: (6.27)

then we get
ds®> = 2dudv + dr* + 72dx* + dyi + dys + dyz + dy; + dw® + da?

4 2)2
>+ (—( o) JQ—F$>902—Fww2

pr du® (6.28)

where functions F; are determined using the expression (4.44).

Now we will express the background fields in the Brinkmann coordinates. The NS-NS
fields take the form

=28 _ 1 (4+p2),

432
\/4p2—(4—|—p2)J2 2 44 2\ c I o
3 = (4+p2)% (12+p)63+,0( +p)c3 Z+4—|—p263

du N\ dw A dx . (6.29)
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Similarly, the RR two-form RR field strength in Brinkmann coordinates becomes

~ J
Fy, = % Va+p?deAdu . (6.30)

Now in the following we show that the above background indeed satisfies the equation of
motions and Bianchi identities in type-1IA supergravity. The background fields (6.29)-
(6.30) for the PP-wave geometry show that the NS-NS three form field strength H, together
with Fj are closed. Also we have [y = 0 = F},. Thus the Bianchi identities (A) are trivially
satisfied.

Now consider the Hodge duals of the field strengths H; and F, as follows:

A \/4p2 _ (4—|—p2)J2
3:

2
* H. 12+ p?)es + p(4 + p?) ! 6+p 2
(44 p2)? (2 F)eat ol o)) |3+ Tacs
du N\ dQ: A dyy N dys A dys A dyy
. J
* [y = % VA4 p2 du AN dQs Adyy A dys A dys A dys A dw (6.31)

Using the above expression it can be shown *ﬁg , (e_ﬁ’ *ﬁg,) as well as « FQ are all closed.

Hence, the gauge field equations (A) are satisfied indeed. In order to fixed the undetermined
coefficient c3 we consider the Einstein’s equations for type I A supergravity:

. .1 511, - 1, 4 1 ~ 1 1.
R/W + 2DMD,,(I) = Zqu + em §(F22);w + E(FZ)MV - ZQW (FO2 + §F22 + EF42> : (6-32)
together with the dilaton equation
A ~ ~ 1 -
R+ 4D*® — 4(09)* — EH2 =0. (6.33)

In the Brinkmann form the only non-vanishing component of the Ricci tensor of PP-wave
geometry is R,, and it follows the equation

o A 1 - 1 427~
R + 2D, D, = L1124 5™ <F22>W . (6.34)

This indeed provides a nontrivial constraint involving the coefficient ¢3 due to the presence
of H?, and the coefficient ¢z can be determined by solving this equation.

Now we will discuss the number of supersymmetries preserved by the pp-wave background
studied in (6.28)-(6.30). As like the earlier case, first we introduce the Brinkmann coordinates
X% as follows

A + Pdx? = (X)) i=1,2, 4= X'; i =3,4,5,6,
w=X", =X,
(6.35)
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In these X' coordinates, the PP-wave background in (6.28)-(6.30) becomes

8
ds® = 2dudv + > dX7 +H du’

i=1

b= o),
Hy = fi(u) du AdX" ANdX?® |
Fy= fou) dX® Adu . (6.36)

where we have introduced the notations

1 4g
A B
2 44 p?
H= ZF X'X7 Fy=Fy
1,J=1
4p? — (4 + p?) J? 2 2 3
filw) = v ; (124 0)es + (4 P7) 5| | T+ o3|
(4 + p2)§ 4  44+p
J
fo(u) = % Va+p?. (6.37)
The functions Fj; are given by the expressions
Fip=IFyp=-1,
4 2\2
Foy=F, . Fu=F,— %ﬁ . (6.38)
Assigning the same frame notation as in (4.58), here we obtained
b= du),
Hy= fi(u)e" neT A,
Fy= folu) éAe . (6.39)

Let us now focus on the supersymmetric variations for the dilatino and gravitino as
« 1 = 1 . 3 &2
0N = ¢ - —ﬁagé + 1—66@,#2 (ioy) €
. ) 1 FE BT VS .
0, = D€ — SHWPF Posé + 1—66‘1’}42 (io9) T'4€ . (6.40)
Considering the same convention as like in AdSs x S case and setting the dialton variation

to zero we find

r- &)—%fl( )r780—3—3%f2( )% (i) 6= 0.

(6.41)
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The above leads to the solution I'"¢ = 0. This states that the pp-wave solution (6.36) we
studied here preserves 16 supercharges. We will now proceed to solve the spinor conditions
for the gravitino variation. We need to solve &/Aju =0 for p = +,—,7. Now from the
NS-NS three form flux, we have I:er, = 0 for all u,r. Considering this and together with
the condition I';é = I'"é = 0, the variation 51@+ = ( provides that the Killing spinor € is
independent of the light cone coordinate v, i.e., d;¢ = 0. Thus, we have ¢ = ¢é(u, X*).

Now we consider the variations 51@- , 1=1,...,8. Set it to zero, we find
0ie=T"R €, (6.42)

where the notation R is given by

R—lf()<6~F7 5.r8) a I8 (o) T 6.43
= /1) (0T = 67 03+§f2(u) (ioo)T" . (6.43)

Now it can be shown that I'™ anticommutes with R and we also have I'"¢ = 0. Then the
above provides € = x(u) for some y(u) such that I'"x(u) = 0.

Finally solving the condition §¢_ = 0 we find

0ux(u) = (T a0 (w) + )T (i02)x(w) = 0. (6:44)

Introducing the matrix M (u) as

M(u) = i ( FLl@) gy — €@ fy ()T (zag)) (6.45)
the above will take simplified form
Aux(u) — M(u)x(u) = 0. (6.46)

This equation can be integrated and lead to y(u) = e/ @My Hence, the supersymmetry
analysis shows that the PP-wave background (6.36)-(6.38) preserves 16 supercharges.

6.3 Field theory dual

The dual field theory corresponds to the non-Abelian T-dual background has been studied
in [46]. The dual field theory is based on the intersecting branes and the holographic central
charge matches with the field-theoretic central charge discussed in [46]. The BMN operators
corresponding to PP-wave background belong to a class of operator resides in the quiver
gauge theory. In the following we will consider the brane charges for the PP-wave background
discussed in (6.28)-(6.30). In type 11 A supergravity the expressions of Page charges of various
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D-branes are given by [25]

A 1 A A A

Qusers = g [ Fo= R,

Qpage,D4 = m /04 Fy— By AN Fy+ %ﬁOBZ A B, )

Qpage,DZZ m/%ﬁﬁ—BQ/\ﬁh‘i‘%B2/\32/\F2—époé2/\é2/\32 )
Qpage,Ds = %%jTDg / Fy (6.47)

and the Maxwell charges are given by [23]

o 1 ~
ax = F s
Quwrn = = | K
o 1 ~
ax = F. s
QMax, D4 o /C 4 1

~ 1 A
QMax,D2 = / F6 s
V212 Je
CA2Ma,x,D8 = \/_/ FO . (648)

Here (), is the n-cycle admits by the corresponding geometry. The background also carries
NS5 branes with charge

1 .
i . (6.49)

Qnss =

Aoy Cs

Substituting the values of the field strengths for the PP-wave solution in (6.28)-(6.30), we
find the non-vanishing charges

~ A 1
Qpage,DG = QMax,D6 2 T F2 s

1 A

) = H 6.50
QNSS Aol \ 3 ( )

This indicates that at the Penrose limit we have only D6 and NS5 branes. Hence, The
BMN operators corresponding to the holographic dual of the pp-wave geometry will reside
in this quiver theory governed by intersecting configuration of D6 and NS5 branes.



Chapter 7

Heterotic Double Field Theory,
Generalized Kerr-Schild and its
double Yang-Mills formulation

In this Chapter we will discuss our work [57] on the Heterotic version of the Double Field
Theory (DFT). First we will review the basic construction of Heterotic Double Field Theory
and then we will study the Kerr-Schild ansatz in this context. It has been quite well known for
a long time that the Abelian T-duality is an exact symmetry of string theory of all order of the
expansion parameter « [9]. However, this symmetry does not manifest from the spacetime
action of any versions of the superstring theories. In the framework of Double Field Theory,
the low energy version of string theories namely known as supergravity limit can be written
in a duality invariant fashion [48,49,64,65,66,67]. In our work and in this thesis we consider
the low energy limit of the heterotic string and its formulation in the framework of double
field theory. The canonical approach to study heterotic DFT was discussed in detail in [51].
It is shown that the construction is based on the D-dimensional metric tensor g, NS-NS
two form field By field and a non-Abelian gauge field A i.e. H = H(g, B2, A) [68]. Here
‘H is known as generalized metric which is a multiplet of the corresponding symmetry group
in the theory. In addition to the H, the theory is contained with the generalized dilaton
d and these are the fundamental fields of heterotic DFT. The frame formalism of heterotic
DFT was introduced in [69], where the associated generalized frame has field dependence
E=MH(g, B2, A)

In DFT, the generalized metric formulation and generalized frame formulation are not
always equivalent [70]. As like in general relativity, the generalized frame contains extra
degrees of freedom leads to a gauge fixing procedure that some components of this frame field
are fixed and extra conditions appear if/when, for instance, one desires to work considering
perturbations around a background. One simple and powerful proposal to explore this idea
is the generalized Kerr-Schild ansatz (GKSA). For the case of ordinary DFT, GKSA was
introduced in [53] and its heterotic version was discussed in [54]. In both cases, the ansatz
describes a linear perturbation around H or £ by considering a pair of null vectors together

7
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with an arbitrary perturbation for the generalized dilaton d. Upon parametrization at the
supergravity level, the ansatz gives rise to the perturbations around the background g, along
with the NS-NS two-form gauge field B, and the background gauge field, A, as follows

K _
Juv Gopv — *l( lu) (71)
: S TR
K _ 1 .
by = by — ———=l, (1 — —5:A," 7.2
g g 1+§mz.l[“(] /2’ ) (7.2)
1
AMi — Aoui ‘|‘ " (73>

—= 1 i
V214 %/{l.l a

where r is the order parameter of the expansion, ! is a null vector and [ and j satisfy the
condition

P+5*=0. (7.4)

Both [ and [ are pair of null geodesics and together with j satisfy geodesic equations.
The above relations simplify the dynamics partially and can be easily imposed at the DFT
level [54]. Interestingly, the perturbations in (7.1)-(7.3), along with the perturbation of the
background dilaton, integrate a family of theories that can be described using the GKSA.
Such like the charged black string discussed in [71] and the charged dilaton black hole geom-
etry discussed in [72], both of them studied in detail by considering the generalized metric
formalism [54]. The case j = 0 and [ = [ is described by the ordinary Kerr-Schild ansatz [73].

However, the family of theories that can be studied using the GKSA in the generalized
frame formalism of DFT is slightly smaller than the theories that can be described in the
generalized metric formulation, since the gauge fixing condition forces 7 = 0, and then
both [ and [ are null vectors. In the following first we rewrite the heterotic DFT in a
double Yang-Mills forms by following [74]. We write the O(D, D+ K) multiplets in heterotic
DFT in terms of O(D, D) multiplets. The advantage of this formulation is that it in a
generalized gauge field at the DFT level and one can study the perturbations of this field
before parametrization, irrespective of the fundamental fields of the theory. In order to study
perturbations we consider the relaxed version of GKSA introduced in [58]. At the very end,
we discuss the double copy correspondence in this formulation.

7.1 Review of Heterotic Double Field Theory and Gen-
eralized Kerr-Schild Ansatz

In this section we discuss the basic notions of Heterotic Double Field Theory and its double
Yang-Mills formulation. The Heterotic DFT is defined on double spacetime coordinates:
XM - where M =0,...,D—1+ K, and K is the dimension of the corresponding heterotic
gauge group. The XM transforms under the fundamental representation of the underlying
symmetry group G = O(D, D + K). The theory is invariant under a global G symmetry
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which reads
56V = Vv m, (7.5)

Vi is a generic G-multiplet and h € O(D, D+ K) is the G-parameter. The invariant metric
of G is nyn € G. The G-invariance constraint the hy as

hn = —hym - (7.6)

In the theory the Infinitesimal generalized diffeomorphisms are governed by the generalized
version of the Lie derivative and the transformation takes the form

LV = VOV + (0N — VeV + FaanpV VT + toueM, (7.7)

here V), is an arbitrary generalized tensor in the theory, ¢ is a weight constant of the tensor
and fap is the generalized structure constants that satisfy the anti-symmetric conditions

fanve = fimwr s fon ™ frr =0. (7.8)

The strong constraint is given by

OMAIMB = 0, (7.9)
om(MA) = 0, (7.10)
fYPaouB = 0. (7.11)

These conditions indeed to ensure the closure of the generalized diffeomorphisms. Here A
and B are generic fields or parameters that appear in the heterotic DFT.

For a vector field V), the covariant derivative takes the form
ViV = 0uViy = T Ve, (7.12)

where I'ynp is a generalized affine connection. The metric compatibility in this framework
is given by the expression

VuHar = 0, Ve =0, (7.13)
which gives rise

Liyvne =0, (7.14)

the above determines some projections of the generalized affine connection [75].

The theory is also invariant under the local double Lorentz H = O(D —1,1), x O(1, D —
1 + K)g symmetry governed by the generalized parameter I' 45 where A = (A, A) splitting
into O(D —1,1);, and O(1,D — 1 + K)p vector indices, A = A=0,...,D—1 and A =
(A,i)=0,....,D -1+ K, ie.,

3 Va = Val'Pa, (7.15)
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where H is a generic vector. The H-invariance of 145 leads to I'ypg = —I'g4 -

In terms of generalized frame picture, the fundamental fields of the theory contained a
generalized frame £,* and a generalized background dilaton d. The frame-formulation of
DFT leads to the existence of two constant, symmetric and invertible H-invariant metrics
Nas and H 4. The first one is used to raise and lower the indices that are rotated by H and
the latter one is constrained according to

HAHSE =65 (7.16)

In addition, the generalized frame is constrained to relate the metrics n4s and na and
defines a generalized metric Han from Hyp

nas = EMannvEN s, Haw = EmHABEN® . (7.17)
As the generalized metric H s is also an element of O(D, D + K), it satisfies
Hurn” “Hon = N - (7.18)

The projector operators in DFT take the form

Pumn = % My — Haw) and Py = % (v + Haw) - (7.19)
The action of a flat covariant derivative acting on a generic vector V3 is given by

DAV = EAVE + was’ Ve, (7.20)
where €4 = V2EM 400 and wsC is the generalized spin connection that follows

wae = —wacs  and  wuge =wype = 0. (7.21)

However unlike general relativity, in DF'T we cannot fully determine a generalized spin
connection, wzc. Only the totally antisymmetric and trace parts of w4ze can be represented
in terms of generalized frame and the generalized dilaton, i.e.

V2 1
wiase) = —EuEN BEne) — ?fMNPgMASNBgPC = _g«/—"ABC> (7.22)
(,UBAB = —\/562‘18/\4 (EMAe_Qd) = —.FA. (723)

The generalized metric formulation, the O(D, D + K) invariant DFT action takes the
form

S = / d*PTEX e L (7.24)
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where,
L - é’HMN O H LD Hp — %HMN ONHEED
FAHMN O\ dOnd — 20 HMN Oped — % F N HNPHECOpH o
- %fM/cprﬁg’HMNHm%PQ

1 1
—ZfMNichmch - éfMMCfMMc - (7.25)

Up to some total derivative, the same Lagrangian (7.25) can be written in terms of
generalized fluxes as

2EFA + FuF4 — %me]-"“m — %]—"ABC}“A“ . (7.26)
The equations of motion from the varying the action we obtained
R = %HMNaMHKﬁaN,HICE - %HMNaNH“@:HM/c + AHMN O Opd
+4OHMN Ond — AHMN 004 dOnd — O ONHMY — % T HYPHE 00 H o
_TIQfMKPfNEQHMNHKEHPQ - ifMNICfNMLHKE
MY e =0, (7.27)
along with generalized Ricci tensor
Row = PP KpoPn + PP KpoPoy =0, (7.28)
where
Kmy = %8MH’C£3NHK5 - i (0 —20,d) (’H‘:’Ca;c’HMN) + 20Mm0nd

1 1
—50 MH EO Har e + 5 (0c = 20¢d) (H*“0mHarye + HE MOcH 1)

1 1 1
+§f(M£KHW3PHN)K - éf(MﬁK/HLPaN’)/HPIC — ZfMLKfNICL
1 _ 1
+§€2dap(€ UL Hoom) e — ZfMicPchQHMHpQ. (7.29)

This completes the discussion on the basic construction of heterotic DF'T. In this formu-
lation there is no signature of the gauge field as it is encoded in the generalized metric (or
in frame) and the gauge symmetry is embedded in the generalized diffeomorphisms.
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7.2 Heterotic Kerr-Schild ansatz in metric formulation

Now we introduce Kerr-Schild ansatz in the context of Heterotic DFT. First we will discuss
the metric formulation of it. The formulation of the GKSA for heterotic DFT describes exact
and linear perturbation of the generalized background metric [54]

HMN:H(,MN—FK(KMKN-F’CMKN), (7.30)
where Ky = PNy and Ky = PaV Ky are a pair of generalized null vectors satisfy

T]MNEM K./\/' = 0 )

(7.31)
P VEuKy = 0. (7.32)
According to (7.30), the corresponding DFT projectors are perturbed as follows,
1 — —
Pun = Pomwn — §H(KM’CN + KmKy)
— — 1 — —
Pan = Pun + gaKaln + KmKoy). (7.33)

In addition, the generalized background dilaton can be perturbed with a generic x expansion
given by

d=d,+rf,  f=> K"fu. (7.34)
n=0
Following the ordinary Kerr-Schild ansatz [73], the generalized vectors K, Ku and f

obey some conditions to produce finite deformations in the DFT action and EOM’s. Following
the original construction of the GKSA [53] we impose the following,

K" opkM + KpoME™ — KPOpK™ = 0,
KPopK™ + KpoMKP — K 9pk™M = 0, (7.35)
and
KMoy f =K ouf=0. (7.36)
Using (7.14), and change 0 — V in (7.35) we have ,
KO VpkM + IpVMET — KPVRET = 0,
KPR + KpVMKP — K Vpk™M = 0. (7.37)
In order to read heterotic supergravity, we parametrized the generalized metric as

géw _ggpcopu _ggpAopi
Han = _gZpCoPH Gopv T COPHCoauggU + Aoui’%ijAot/j CopﬂggaAOUi + AOMjKjZ' ) <738)
_gZpAopi CopyggUAoai + Aoyjﬁij "iij + AopiggaAoaj
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where C,,, = bowj—i—%AwiAom and u=0,...,D—1,7=1,..., K, while the parametrization
of the generalized background dilaton is given by

e o = \/Zgoem e, (7.39)

In addition, the generalized vectors K¢ and K can be parametrized as

M [»
1 o L (7 T ‘
Ky=—72 | =lu—=Coppl” | » Ku= —= | lu— Copul” — ﬁAOMijZ ’ (7.40)

\/§ _Aopilp \/i _Aopil_p + \/Z]z
with [ and [ satisfy,

" = 0, (7.41)
LI+ = 0. (7.42)
These satisfy geodesic conditions, which are inherited from generalized conditions at the DF'T
level.

Finally, the perturbations of the heterotic supergravity field are given by

G = gouv_—l_'_;d.l‘l(ulw (7.43)

b = b N — —— Ay (7.44)

v opv 1_1_%/{” [u\tv] \/5]1 v]

Ay = Agut (7.45)
V21+ gkl

¢ = ¢o+Kf, (7.46)

where we keep the same notation for the perturbation of the standard dilaton. While the
ordinary Kerr-Schild ansatz is based on linear perturbations on the metric tensor, the gen-
eralized Kerr-Schild ansatz contains a tower of perturbations due to 1.l # 0. Moreover, only
[ is a null vector when the gauge sector is taken into account.

In the next part we discuss about an obstruction when the generalized frame formulation
is used. Here, the background gauge field A,,; cannot be perturbed when one considers
heterotic DFT written in terms of a fundamental O(D, D + K) covariant frame.

7.2.1 Heterotic Kerr-Schild ansatz in frame formulation
The generalized Kerr-Schild ansatz for the DFT frame is given by,

_ -1 _ o
En = Eant™ + SrEnKME

1 —
SMA = SOMA — 5/?50 A]CM’CN . (747)
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In the frame formulation of DFT, by imposing conditions (7.35) and (7.36) we have [56]
kAR + KAK F et = 0,
KAk + B KEFE = 0, (7.48)
and
KAS f =K 'exf =0, (7.49)
where ICA = 5MAICM and KZ = EMZKM
Using these identifications, conditions (7.48) and (7.49) can be written as
KuDAK® = KgDAKE =0,
KaDAf = K4DAf=0, (7.50)

where D 4 is a background Lorentz covariant derivative.

The parametrization of the generalized background frame takes the form

1 _eo,ua - Cop,uega e'ga _Aoplega )
M - - -
EVa=—2 — Coppfha  €a —Aop'€a | (7.51)

Eo,ua
\/5 \/§A0W’€ig 0 \/56%
and we impose the standard gauge fixing for the double Lorentz group,
ab = ab—= _
Copall™ Covb = Copall” Covb = Jouv » (7.52)

with 74 the ten dimensional flat metric, a,b=0,..., D — 1.

Since £#; cannot be perturbed, we are forced to impose j; = 0 from the very beginning.
Then, the parametrization of the generalized vector fields is

I "
1 - 1. .
Km=—7% _lu - Copulp , Km=—% lu o COP#lp (7‘53>
\/§ _Aoiplp \/5 _AOiPl_p

In this framework, both [ and [ are null vectors in order to preserve the condition
EH=0. (7.54)
Then, it is possible to recover perturbations for the supergravity fields but part of the per-

turbations of the b-field and the full perturbation for the gauge field are missed.

In the next section we rewrite heterotic DFT in terms of O(D, D) fundamental fields in
order to present a double Yang-Mills formulation of this theory. The leading order terms of
the construction are closely related to the construction given in [74].
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7.3 Double Yang-Mills formulation

We start by considering the splitting of heterotic DFT. We parametrize the O(D, D + K)
generalized frame in terms of O(D, D) multiplets, i.e.,

A £, (X%) NEpA A Be.@
A M M _ M N M CEp
(c;M - (SaA gaa) - ( AMaEMA (D%)aﬁeﬁa ) (755)

where e,“ satisfies

eaa/fageﬁﬁ = Kag, (7.56)
eaa/ﬁz(weﬁg = Kgp- (7.57)

Where xyn and O,p are defined as follows
XN = nun — Au*Ana,  Oag = Kag — A AV g, (7.58)
and we also impose
EMAAy, =0 (7.59)

which requires a gauge fixing. Similarly, the projectors P, Paw and Pag, Pag are
decomposed as

Pyx 0 0 0 0 0
Puv=| 0 0 0|, Puv=1{0 Puyy 0 |, (7.60)
0 0 0 0 0 Fap
Py 00 0 0 0
Pas=| 0 0 0|, Pas=|(0 Pap 0 |. (7.61)
0 0 0 0 0

In [76], the ansatz (7.55) was used to obtain «'-corrections. There, the authors consid-
ered that the Ay, is not a fundamental field and, consequently, they identified it with some
projections of the DFT fluxes. Here we follow a different philosophy. We consider A,;, as a
fundamental field and we construct a double Yang-Mills action. Moreover, the parametriza-
tion of this field gives rise to the ordinary Yang-Mills connection A,;. As we previously

mentioned, {EM A, Aura, d} are now the fundamental fields of this alternative formulation

of heterotic DFT. Similarly, the symmetry rules given by é M and I' 45 must be decomposed
in a consistent way.

The symmetry transformations of the O(D, D + K) fields are given by
0Ema = ENOnEMma+ (OmET — O Ep)Epa+ FrnrEVET A+ EpsT 4, (7.62)
.
od = Noyd— §aMgM : (7.63)



86CHAPTER 7. HETEROTIC DOUBLE FIELD THEORY, GKSA AND ITS DOUBLE YM

where fyp only takes values when MNP = affy. The Or derivative is split according
to Opm = (0w, 0) and the O(D, D) strong constraint is

omAMB = 0, (7.64)
omu(0MB) = 0. (7.65)

The generalized diffeomorphisms parameter is split accordingly
M o= (M), (7.66)

with A\, a gauge parameter.

Some of the components of the double Lorentz parameter, I' 45, require a gauge fixing to
ensure 6,4 =0 and de;* = 0. From the former we find,

D5 = (072?507 \a) Ep™ (7.67)

Similarly, we can now demand §&,% = 5(D%)a5656, and then de,® = 0. The previous
condition is satisfied if

Pae = (O72)6" 5 = £p0" Eu + 0" Ay — fas X721 ) (7.68)
Equations (7.67) and (7.68) are the gauge fixing conditions that we need to write heterotic
DFT in terms of fields which are in representations of O(D, D).
7.3.1 Transformation rules
First we define the field
1

Cria = — Ay’ (072) 4 (7.69)

which is constrained by F MZCMQ = (. In addition we also define

Nop = Kap+ CraCVps (7.70)
Oun = nMun +CuChna. (7.71)

with satisfy
Aog=(0Yag, Ounv = "un - (7.72)

There relations are useful to write the action principle in terms of Az, or in terms of Cyy, .

Considering the transformation of 6&,,7 = 0E,,z and rewriting in terms of the C)y, field
we obtain,

0By = LeByz + Ex®Agz + Co0" A Epg (7.73)
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where we have identified as
I'ag = A5 (7.74)
Now we turn on the frame projection dEy 4,
0&ma = 0(x2)n ™ En® + (x2) VO EN2. (7.75)
By using the previous results we find,
SEna = LeEna+ Ex®Tpa — (02)M y (aMAaoRB(A%)ﬂa + 5A(@—%)MR) Epa. (7.76)

The above expressed needs a parameter redefinition to express it in a generalized Green-
Schwarz form. We define
Qx" = ()Y (0" CR5(A3) o + 00O 4)1 ") Bpa (7.77)
and Sy n = Py 0pA*Cyo — Quin, in order to identify the following
Pap = Aap — EMASunE"p. (7.78)

Then in terms of the previous parameter, the transformation of this component takes the
form,

0ENa = LiEna+ EnBAps — OxA*Cl o ERa . (7.79)
Together with the transformation of Cj;, reads

00" = LeOy™ + 0N = (O71)03pha + Cu®0"ACp = Cufag" X' (7.80)

7.3.2 Flux formulation

Now in this section we will write the Fluxes in the terms of O(D, D) multiplets. The
O(D, D+ K) invariant fluxes [77] can be written in terms of O(D, D) multiplets by following
(7.55) as

Fapc = 3\/§(X%)MPEP[A(aM((X%>NQEQ§)<X%>NRERQ}"‘aMAEaAQ}a)
V2P A ApsAcy | (7.81)

1

Fipe = V2EM500((x3)¥?Eos) (2 )nrER e + 2V2(x2) M pEX (00n (EV5) (X2 ) vrE g

+2v2EM 300 (A1) Agia (7.82)

Fape = —V2AM e300 ((x2) N Ep) (X ) nrE o + 2V2(x )M pET (000 (02 ape’s) A
FV2AM 46 L0 Ap® Aga + V210 ([02) P es5 ApsAc | (7.83)

Fa = V20ul((x3)MEpa) — 2v2(x2) M Epadud. (7.84)

where Ap, = Apyo EM p. The remaining projections can be decomposed in the same way.
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7.3.3 Action principle

Now we will write the components of the O(D, D + K) generalized metric in terms of the
following O(D, D) multiples {Hpn, Apa} (similarly to the decomposition given in [78]). In
our conventions,

Hun = Hun +2A00 AN = Hun + 20un — 20 D, (7.85)
Has = —20¢2)u"Aps = 2Cus, (7.86)
Hony = —2(x?)n%Aoa = 2Cxa (7.87)
Hop = Fap — 2AM JAMs = —Kap +2(A7 1) 0p. (7.88)

Then the decomposed DFT Lagrangian takes the form

1 1 1
L= gHMN(’)M’H,KL(‘)NHKL + Z%MNaMHKaaN%Ka + g%MNGMH"ﬂGNHag
1 1 1
—§HMN8NHKL8LHMK - §HMN8NH5K8KHM5 - éH“KaK”HMNc’)NHaM

—%HaKaKHﬂNaNHQﬁ + AHMN Oy rdOnd — 200 HM N Ond — % foHOMHN Oy Han

1 o 1 o 1 o 1 [0
_ifﬁ«YHﬁMHVAaMHaA - Efﬁv :\p’HaAHBMHW - Zfﬁvftf/\%w‘ — gf viaﬁv s
(7.89)
and the double Yang-Mills action principle leads the following form,

S = /cz?DXe—Qd(%(HMN — 207 )MM)ay (H* — 2071 )on (Hir — 2(07 ") k1)

FCHMY = 2070y O Oy O+ 5 (YN — 2(07 ) N)010 (A0 (A

—%(HMN + 29" — 207N aN(HFE — 2071 1) aL (Huk — 207" ) mk)

—2(HN 4+ 2N — 207N oy CFP 0K Chryg — 207 Ok (HMY = 2(07)MN) N Cia
—4CT O CNPON (AT )ag + 4(HMY = 2(07 )M V) Oy dOnd — 200 (HMY — 2(071)MN)Ond
—4f5,CMPCN 0y Crna — 25, CM (=7 + 2(A7) )0 (A7 )ax

S e+ 2(A ) (P 4+ AT (7 4 (A1)

L R A = LY (7.90)

The dynamics of the above system can be figure out by varying the previous Lagrangian or
splitting the equations of motion from the O(D, D + K) perspective. Following the second
one the equation of motion for the O(D, D) dilaton reads

R = 0, (7.91)
which is equivalent to £ = 0. The equation of motion for the O(D, D) metric is given by
Ky — (Hy™ + 200" — 2073 Kop(HOy + 209y —2(07H)%9)
—4Cy " Kag(HN + 269 — 2(071)%) — 401" KasCn” =0, (7.92)
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in addition, the equation of motion for the gauge field is given by

Knra — 2(Hp"” 4 200" — 2(07 1) KpoC¥y
—(Hy" + 200" = 2007y )Kpp(—r70 +2(A7H7)
—200 " Kyp(—KP 0+ 2(ATHP,) — 404K, oC%, =0, (7.93)

where

1
Kun = gaM(HKL — 20 Y N on (Hper — 2(07 Y k) 4+ O CE*OnCia

—i(aL —20,d) (H*F = 2(07) ") 0k (Hyn — 207 aw)) + 200m0nd
—%8(M(HKL —2(07Y) )0 (Hyyk — 2(07 ) wyk) — 2004 C**91.Cya

+%(3L —20,d) (H*" + 2" = 207 ") (Hnyx — 207 ) nk)
+4C" 00 Cnya + (Hk + 20k — 207 k) 0™ (H vy — 2(071) )
—I—%(()M(A_I)QBQN(A_I)M , (7.94)

Kot = _%(aL —20,d) (H"™ = 2(071)" )0k Crra) — %aM(HLK —2(07H) 9, Creq

1
—aMCLﬁaL(A_l)a/B + 5(8L — 28Ld) ((HLK + 277LK - 2(@_1)LK)6MCKQ
+2C" 00 (A g + 2(Hu™ + 260" = 2(071) 1 )0k Ch )

e, (e—wcf’ﬁcm) s, (7.95)

Kop = —;l((?L —20pd) (H"™ = 2(07)M)0k (A )ap) +2(91 — 20,.d) (C* (.0 Ch )

1 _ _
+ [ CT10p (A ) g0 — ngvfg,\ +e*op (6 *om(A 1)A(a>f/?)w

IS AT ) (—ry +2(A 7). (7.96)

7.3.4 Leading order terms

In this section we consider the leading order terms of the double Yang-Mills formulation that
we have presented. It turns out that the formulation of heterotic DFT leads to an infinite
expansion of gauge fields in the action principle. In the leading order terms the non-covariant
transformation of the gauged vector is given by [74],

5non—c0v14M’y = _aM)\’y + O(AQ) . (797)
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The transformation of a generic DF'T gauged vector is given by
VT = —An®fag? N (7.98)
hence a projected covariant derivative can be defined as
VuV7? =0V =V s Ay . (7.99)

However, the combination 05;V7 cannot be put in a covariant form using the gauge con-
nection. When deriving a more general object one has to consider the full DFT covariant
derivative as follows

VuVa? = 0 V" — Tun"Ve? — Vn® fus? Anr” (7.100)

where T'j;yp is the generalized affine connection in DFT, which is not fully determined [75].

The curvature for this generalized gauge connection takes the form
Fun™ =20 AN + [asAu®AN". (7.101)

The previous one transforms covariantly with respect to (7.98) by considering the generalized

Jacobi identities for the structure constant, in addition it agrees with the constraints of the
heterotic DF'T.

With respect to gauge transformations, the transformation rule of the generalized metric
reads

OnHun = 400" Ox)ha = —4A0" 05 A + O(A?). (7.102)

Interestingly, the previous transformation is non-covariant, £ terms withn contractions are
only fully covariant. It turns out that the leading order term in (7.102) is a generalized Green-
Schwarz transformation with considering A/, as a fundamental field. Upon parametrization,
the By shows this kind of transformation, as well as the metric tensor needs to be redefined.

Now we will turn on our interest to construct the leading order Lagrangian, we consider
the Abelian terms such that in variation they are linear in the gauge field. The leading order
terms of the double Yang-Mills action provide

1 1
S = /dQDXG_Qd(gHMNaMHKLaNHKL — §HMN8NHKL8LHMK

+AHMN 9y dOnd — 200 HMN Ond + HMN KL FR Fiena
—2AN (N HYE) (0 Aka) — 2HMN On HEE (O A (k™) Abtya

+iAMaAN“8MHKL8NHKL — AM ANegNHBL0, Hyyxe
+HynOMAK ALON Hyep — 2HMN Oy A AL 0 Hyrxe
+8AMAAN (9y;d) (Ond) — 8(Dp AMYAN (Ond) +...). (7.103)

In addition Ap;q = —Clhe in this limit.
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However, the combination HMNpKLFe Fren, is not fully covariant, so extra pieces are
needed to formulate the invariant action. Now, the ungauged part of the Lagrangian is not
gauge invariant as the generalized Green-Schwarz mechanism. Also, the double gauge field,
A transforms as a gauge connection to the leading order in gauge fields. Then, some
part of the leading order Lagrangian can be written in terms of its curvature but still the
non-covariant contributions appear.

7.3.5 Parametrization

In this part we parametrized the theory and show that it leads to standard heterotic super-
gravity. The parametrization of the fundamental fields in the theory take the form

gwj _gupbpu )
H = _ _ ! , 7.104
e (bupgpy Guv — bupg” by ( )
1 _g A,
“ = - ) ). 1
C(M 2 (_bupngAaz“‘Aul) (7 05)

The metric tensor g,, receives an anomalous gauge transformation from (7.102) and the
following field redefinition is needed,

G = G + %A,/'Am : (7.106)
The above procedure is same the as the gravitational Green-Schwarz mechanism where the
metric tensor is redefined by taking the terms proportional to the spin connection [79].
The generalized dilaton can be parametrized in the following way,
e = \/—_§6_2‘?’ =/—ge %, (7.107)
because the metric redefinition (7.106) leads a dilaton redefinition to obtain the standard inte-

gral measure in the corresponding theory. Now, the transformation rules for the supergravity
fields are given by

09w = LeGuw (7.108)
(5()“” = Lgbuy+28[ucy] —a[u)\ZAl,]i, (7.109)
6A) = LeA) + 0N — fr' NAK (7.110)
60 = Leg, (7.111)

where L¢ denotes the ordinary Lie derivative and éu = (, for the abelian gauge transforma-
tion of the NS-NS two form field. Finally, we obtain the action as

1. ] .
S = / aPay/=ge (R = 40,00"9 S HupH = ZEMW”) , (7.112)

where

~

. 1 S
H,, = 3[8[#%}— (AEMGVAp]i—gfijkALA]VA’;)} (7.113)

F,, = 20,4, — [ jRALAL. (7.114)

1%
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7.4 Double Yang-Mills and the relaxed GKSA

Now we introduce the relaxed form of the GKSA in order to study perturbations in the
theory. The GKSA was originally introduced in [53] and has been studied in heterotic DFT
framework [54] [55] [56], Kaluza-Klein DFT [80], Exceptional Field Theory [81], together
with [58] [82]. In the following we extend the ansatz in the context of double Yang-Mills
formulation of heterotic field theory.

7.4.1 Generalized metric formulation

First we consider a generalized metric H,;y, together with a generalized dilaton d and a
generalized gauged field A;,. The generalized metric H,,n satisfies a relaxed Kerr-Schild
ansatz [58] while the gauge field is linearly perturbed and the generalized dilaton can take
an arbitrary perturbation, i.e.,

2
Hun = Houn +8(KuKy + KuKy) + %KQKMKN : (7.115)
CMa = C’oMoa - KKMJa7 (7116)
d = dy+kf, (7.117)

where Hoyn, Comn and d, are generalized fields in the background, f =" f Mg, Ky
and K, are the projected vectors,

_ 1 _ L

KM = 5(77MN+HMN)KN:PMNKN, (7118)
1

KM = 5(77MN — HMN)KN == PMNKN7 (7119)

and k is the order parameter of the expansion. The null condition acts only on K, as

following
MKy Ky =0, (7.120)

and K, is related to J, by the expression

VK uKy = —Jo sk . (7.121)

The parametrization of the ansatz takes the same form as (7.43)-(7.46) but the inverse
metric inherits a second-order perturbation,

2
gv = Al 4 (7.122)

Now we consider the pure Abelian Yang-Mills theory at the DFT level. First we start as
S = / d*P Xe 2 HMN R Fren® (7.123)

== /dQDXe_Qd(HMNaMAKaE)NAKa — 2HMN8MAK°‘8KANQ) s (7124)
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HMN

where d and are constants and Ay, is the dynamical field with the equation of motion

HYNoy Frn + 2HY 0N Fryyy = 0, (7.125)

the above can be understood as a duality invariant generalization of the Maxwell equation.
Now we apply the generalized Kerr-Schild ansatz on A, as follows

AMa = AoMa + /iKMJa y (7126)
which agrees with (7.117). The dynamics of the system is governed by the equation

HMNGM(ﬁK(AoNa —+ HKNJQ) — 8N(A0Ka + KKKJQ»
+HMK6M8N(A2VQ + /iKNJa) =0. (7127)

In order to express in terms of the supergravity fields we parametrize the background fields
as

0 )
Hyyn = : (7.128)
MN ( 0 N
1 _nupA i
Oy = _( P) : (7.129)
M 2\ Ay

together the perturbations take the form

Ky = — (l“) Koy = — (l“) Jo = L (7.130)
EERVCANS AU Ao |

Upon parametrization of the pure Abelian Yang-mills dynamics leads to the following con-
tributions
K

ay o R i
277“”8,”)([1,] ) + 577N O (lp*) =0, (7.131)

which is first order in .

7.4.2 Generalized frame formulation

Now in the following we will discuss the relaxed generalized Kerr-Schild ansatz in the general-
ized frame formulation. The relaxed generalized Kerr-Schild ansatz for the double Yang-Mills
fields in the generalized frame formulation takes the form

_ -1 _ o

Eyt = EoMA+§f<;EoNAKMKN, (7.132)
1 _ 1,

Ev* = B = JhEn*KuKY - g/@QKQKMKNEéV A (7.133)

in addition, the generalized gauge field and the generalized dilaton are perturbed as in the
metric formalism. Here, the second order perturbation of Ej4 has its coefficient fixed by

EvaEYp + EyzEY 5 = nap, (7.134)
—EnaEYp + EyzEY 5 = Hap (7.135)
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as the right-hand side of the previous expressions must remain invariant. In this picture, the
generalized metric belongs to O(D, D) only if K> = 0. That leads to state the perturba-
tion (7.115) is not compatible with (7.133), which explains why the gauge field cannot be
perturbed in the ordinary O(D, D + K) framework. However, this formulation still has an
obstruction, but it arises before parametrization. This is very straightforward, because the
double Yang-Mills formulation of heterotic DFT written in terms of O(D, D) multiplets is
equivalent to the standard familiar formulation written in terms of O(D, D + K') multiplets.

7.4.3 Field redefinitions

The different formulations of DFT is the need of field redefinitions to match with standard
supergravity framework. This situation arises when the generalized metric is contained with
a non-trivial symmetry invariance as it encodes the By. The most straightforward example is
the Green-Schwarz mechanism. Analyzing the equation (7.106), it turns out that the redefi-
nition is mandatory as the metric g transforms non-covariantly under gauge transformations
according to (7.102). Considering at the perturbative level, background objects could encode
perturbations.

For a generic §,, the familiar Kerr-Schild ansatz [73] leads to ,
g,w/ = go,uz/ + FJ;LZV . (7136)

In order to make compatible at the perturbative level, we are forced to impose a vector
redefinition given by

L= 1+ Agl'ji s (7.137)

together with a field redefinition for the backgrounds

_ K2
Gopuv = Youv + ?l,uluj . (7138)

Now it is easy to see that the background g admits a second-order perturbation in terms of
the ordinary [ vector. In addition, the null and geodesic equations for the tilde fields lead
to impose furthermore conditions. These were discussed in [56] for Lorentz Green-Schwarz
contributions in the generalized Kerr-Schild picture, and it turns out that they are equivalent
to the gauge Green-Schwarz contributions when the Lorentz connection is replaced by the
gauge connection.

7.5 Application

Now in the following we will discuss some of the applications of our framework.
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7.5.1 Classical double copy at the DFT level
The main outcomes of this framework lead us inspect to the single and zeroth copy at the

DFT level. The foundations of this relation and DFT are introduced in [83].

Consider the ungauged part of the equation of motion of the generalized metric with zero
dilaton,

Run = PMP’CPQPQN—l-PMPICPQPQN =0, (7139)
where
1 KL 1 LK 1 LK
1 1 1
_Ea(MHKLaLHN)K + §8LHKL8(MHN)K + EaLHK(MaKHLN)
1 1
+§HKL8L(MHN)K + §HK(M8K8LHLN) . (7140)

By imposing the ordinary generalized Kerr-Schild ansatz on a flat H,jy;ny background,
HMN = HOMN—FK,(FMKN—FKMFN) . (7141)

In this case it is needed to invoke the generalized version of the geodesic condition [53] as
follows

K opK™M = KPopK" = 0. (7.142)

After imposing the conditions, the contributions in linear reads

1 _ .
—§HfL8K(8LKMKN + Ky 0K n)

4 Por 0k (0L K K 5) — Py 0k (K0, K) = 0, (7.143)

and the quadratic contributions are null because they depend on the perturbation of the
generalized dilaton. Defining a generalized killing vector, &;/, in the following way

LeHyy =0, (7.144)

where L, is the generalized Lie derivative. In addition, we consider a set of double coordinates
such that & = const. with

MKy =MKy=1. (7.145)

Upon contracting M Ry, y we get,

1 _ _ _ _
—§HOKL8K8LKN + P KO (0, K K y) — P Sogo K- =0,  (7.146)
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and contracting £V Ryy we have

| _ _
—SHI OO Ky ENPAK O (0L K Kar) + Pord 00 KX = 0. (7.147)

Now identify each null vector as a generalization of a U(1) vector field, Ay, = Ay and

Ay = Aj; , we obtain the generalization of the single copy expression at the DFT level as
the following

1 — — — —
—§H§L8K8LAN -+ §MP0MK(9K(8LALAN) — PoNKﬁKaLAL = 0,
1 _ _
— S HI 00, Ay — &N PN K0k (O A" Apy) + Poar 00, AL = 0. (7.148)

Although, the previous expressions do not match with the generalization of the Maxwell
equation at the DFT level, still it is straightforward to show that they encoded a pair of
Maxwell equations at the supergravity level. Consider a null By gauge field at the super-
gravity level, then we have ¢ = (0,£#). The parametrized generalized metric takes the
form

_ (7m0
Hyn = (0 77#!/)7 (7.149)

together, the pair of generalized gauge vectors inherit the ordinary Abelian fields Ay, — A,
and Ay — Z#. The geodesic condition leads to

AOFA, = 0,
A 0"A, = 0. (7.150)
and the ordinary killing vector satisfies
"9, (AA,) =0. (7.151)
The parametrization of (7.148) is given by the expression
0A, —0,(0°4,) = 04 0,F" =0 (7.152)
0A, —0,(0°4,) = 0 0'F,, =0, (7.153)
where we have introduced the curvatures of the Abelian gauge fields in the following way
F,, = 20,A,,
F,. = 20,4, . (7.154)

The zeroth copy relation can be obtained by contracting the extra generalized Killing
vector & in (7.146) or (7.147), with introducing the scalar function ¢ and considering the
redefinition kKppr — K, wWe obtained

1 — —
—SHI 0000 + € Por 0L (9K™) — €V P O (0K ) = 0, (7.155)
which leads to the standard supergravity zeroth copy relation

Op=0. (7.156)
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7.6 Relaxed GKSA and the DFT Lagrangian

Considering the ungauged part of the double Yang-Mills Lagrangian with assuming constant
backgrounds and the zero background dilaton we have

1 1

§HMN8MHKL8NHKL - §HMN6NHKL8LHMK : (7.157)
it turns out that the sixth and fifth-order contributions vanish by considering K, is a null
vector.

The contributions come from the x* as
1 — 1 — —OQ—
KM KVNEK 0y KqoyK® — gKMKNKpKQKZc?MKQ@NKP
1 —P—Q— 1 —

+§KMKNKPKQK28MKPE)NKQ -3 MN R KPR Op Kooy K? ., (7.158)

and the k3 contributions are
1 —o— 1 . __p_
—ZKMK2KP8PKQ8MKQ - ZKMKNKPKQaPKQaMKN

1yt 1 o
+ZKMK2KP8MKQGPKQ + ZKMKNKPKQaMKPaQKN

1 . 1 _ _
— HYMN K K R 0p Kooy K@ + L NKu KPR ONKoopK:

Lo M - P7r@7s? Lo uN P32 878
+ YN KPR YR 0y KoOp Ky — HY™N Ky KTK 0p KooK

1 _ 1 .
+7 MN e KPRCOp Kooy K- — ZHé”NKPKQKQ@JKM@NKQ

1 — _ 1 -
—ZHé”NKMKPKQ&VKQapKQ - ZHé”NKPKMKzﬁpKQaNKQ

9 1 . -

—KME K 0K poy K@ — 5KMKNK2aMKQaNKQ : (7.159)

2

similarly the x* contributions are

1 s 1 e —
ZHéV[NKzaMKQGNKQ + 1) NEpR 0y KoonK”

1 MN3-P77Q _l MN7F 7€ P
+ HYNE R 0y KOy Ko — SH) N KoK 0o Koy K

1 — 1 _ _
—éHé”NKMKP(‘)NKQﬁpKQ + 1) NKu K 0oKpoyK®

1 e — 1 _ _
—§H34NKMKP@PKQ3NKQ - §H§4NKPKQaPKMaNKQ

1 P T
—CHMNK KPOp K oonK® — §H§4NK23QKM8NKQ

2
1 _ 1 _ _
— ) NEy K ONKQ9K p + §H;”NKPKQ6MKQ(9PKN
1 _ P R
—iHé”NKPKMapKQ@NKQ - 5HyNKMKPaQKPaNKQ. (7.160)
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Now the generalized dilaton contributions are given by
Lq = 4HYN0ydoyd — 20, HMN Ond

= 42 [Hg”N + K(KMKN + KMKN>] Ot fON

— 220y [(KMKN + KMKN>] I . (7.161)

The gauged part can be traced out easily by considering the linear ansatz for the C'-field as
follows

Aag — Aoag = —2/<LKMJ(QCOMB) (7162)

@MN — @oMN = —QI{K(MJQOON)Q + HJQKMKNJ2 . (7163)

The first-order contributions can be computed using (7.90) with A™! = AJ! 4+ O(k?). Then,
the k contribution for the gauge sector will be

415 CMPCN 0y (KnJa) - (7.164)



Chapter 8

Conclusions

In the first part of the thesis, we reviewed the non-Abelian T-duality and its connection
with AdS/CFT correspondence. Although non-Abelian T-duality is not an exact symmetry
of string theory, it is an elegant solution-generating technique at the supergravity level. It
provides new supergravity backgrounds. In this thesis we consider the T-dual backgrounds of
AdSsx S%, Klebanov-Witten geometry, Klebanov-Tseytlin background as well background
with AdS3 factor.

We considered various null geodesic in the T-dual backgrounds and examined the Pen-
rose limits. Apart from singular geodesic, Penrose limits lead to PP-wave geometries. We
considered the closed string modes propagating in these new PP-wave geometries and briefly
mentioned the corresponding field theory duals. We also discussed the supersymmetry anal-
ysis for these PP-wave geometries. Although further investigation is needed to identify BMN
sector precisely in the dual gauge theory. It would be interesting to explore PP-wave geometry
in the non-Abelian T-dual of Klebanov-Strassler background as well A-deformed supergravity
backgrounds. Together with the above, it is shown in the various literature by C. Nunez et.al.
that the holographic central charge analysis plays a crucial role to constructing CFT duals
for non-Abelian T-dual backgrounds. It is interesting to examine the same for the PP-wave
geometries by imposing some hard cutoffs along the non-compact directions and exploring
the significance of those hard cutoffs in the dual gauge theory.

In the second part of the thesis, we discussed the double Yang-Mills formulation of het-
erotic DFT. In our picture, the fundamental fields are in O(D, D)-framework that has ap-
peared by rewriting the O(D, D + K) fields in terms of O(D, D) multiplets. In this frame-
work, we explored the relaxed version of Generalized Kerr-Schild (GKSA) ansatz to study
perturbations of these fields. In relaxed GKSA ansatz, the generalized background metric
is perturbed up to quadratic order but the gauge field is linearly perturbed. As an applica-
tion of it, we explored the classical double copy correspondence at the DFT level. It would
be interesting to explore the relaxed GKSA in the context of «'-corrections, non-Abelian
T-duality, Fractons as well as in the non-Riemannian geometries.
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Appendix A

type-/IB and type-IlA supergravity

In this appendix we discuss basic notions of type-IIB and type-IIA supergravity. We
will discuss the action, equations of motion, Bianchi identities together with supersymmetry
analysis of type-1IB and type-IIA supergravity. In the following we will start discussions
by considering type-IIB supergravity.

A.1 type-IIB supergravity

The action of type-I1B supergravity is given by

1 e , H™ 1/, F 1R
- | v 4o — ) - S (pr ey 25
s =g [, 9[6 (rea0er-T5) =5 (P24 50+ 557)
1
~5Ca A AdCy | (A1)

where the field strengths in terms of the potentials are
H=dBy, Fi =dCy, F3=dCy — CoH , F5=dCy— HNCs . (A.2)
In addition, Fj has to be self dual. The Bianchi identities are
dH =0, dFy =0, dFs=HANF,, dFs=HAN\F3. (A.3)

Einstein’s equations that follow varying the metric are

1 1 1 1 1 1
RW + QDMDV(I) = ZH[%V + €2<I> §(F12)MV + Z(Fi’?)lw + %(FSQ)W - Zguv <F12 + 6 32) -(A-4>
The equation comes from varying the dilaton is
1
R +4D*® — 4(0®)* — EH2 =0. (A.5)
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Finally, from the variation of the various fluxes we obtain

d(e—”*H) R A*F—FAF =0,
d*xFi+ HAN*F3=0,
dxFs+ HAFs =0,

A.2 Massive type-IIA supergravity

For massive I1A, the field strengths are given by
H:dB,ngdClerB,F4:ng—H/\Ol+%B/\B. (A7)
The field strenghts are invariant under the gauge transformations
0B=dA, 0Cy =—mA, 0C3=—mAANDB (A.8)
where A is a one-form. The Bianchi identities become
dH =0, dFs,=mH , dFy=HAF; . (A.9)

The action of the massive 1A supergravity is

_ 1 —| —20 , H? 1/ , F} F?
SMasswe ITA — 2_162 e —gle <R + 4(6(1)) 19 ) 5 <m + 5 —+ 1 >
1 2
- (dC’3 NdCy A B+ %dcg A B+ 7;‘—035) . (A.10)

FEinstein’s equations are

1 1 1 1 1 1
Ry +2D,D,® = Zqu +e*® §(F22)HV + E(Ff)/ﬂ/ - Zguv <F02 + §F22 + ZF42> - (A11)
The equation coming from varying the dilaton is
1
R +4D*® — 4(0®)* — ﬁH2 =0. (A.12)

The equation of motion for the gauge fields in type-II A case are given by

1
d(€_2¢*H) —FQ/\*F4—§F4/\F4ZW*F2 ,
d*F2+HA*F4:O,
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A.3 Supersymmetry in type-//B and type-I/A super-
gravity

The Killing spinor € consists of real Majorana-Weyl spinors €., such that

€= ( Z ) . (A.14)

In type-1IA supergravity, the Killing spinor e follows the condition I';;¢ = —o3e. Here
0;’s denotes the Pauli matrices with ¢ = 1,2,3. For the type-1IB supergravity, e satifies
['116 = Ihe. The type-I1A Killing spinor equations are

1 1 1
— Zgp — — Ze®
A Zﬁ c 24H0’36 +8e

3 _ 1
Smoy + 5}?(2 (20'2) + ﬂFMTl] €,

1 1
0, = Dye — SHWPF "Pose + geq’

1 1
moy + 5}7(2 (iO’Q) -+ ﬁFz;O'l] FHE s (A15)

where D e = 0,e + }lw/‘jbfabe )
The Killing spinor equations of type-IIB are

5/\=%ﬁ Hage + = e

1
1 (102) §F301] €,

1 1
5¢H = DHE — gH,uprVPUB‘E — geq) [F (7,0'2) —Fg o] + %F% (’LO'Q) ] FHE s (A16)

where we use the notation ¥, = F,, ,; i

i1...0n
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