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Chapter 1

Introduction

Euclid’s algorithm plays central role in mathematics. For the ring of integers Z, it says

that given integers a and b > 0, we can always find integers q and r such that

a = bq + r, 0 ≤ r < b.

In other words, there exists a unique q such that 0 ≤ a − bq < b holds. The important

point is such a representation is unique. As a consequence of this algorithm, we have

one of the most poetic statement in mathematics, namely the fundamental theorem of

arithmetic which says that every positive integer n > 1 can be uniquely written as

a product of primes. For a number field K with the ring of integers OK , define the

Euclidean function φ : OK → N ∪ {0} as follows:

1. φ(α) = 0 if and only if α = 0, and

2. for all α, β , 0 ∈ OK there exists a γ ∈ OK such that φ(α − βγ) < φ(β).

We say that K is Euclidean if such a function exists in OK . In particular, if φ is the

absolute value norm, then OK is called norm-Euclidean. The immediate consequences

of having a Euclidean function in an integral domain D , i.e., in a Euclidean domain, is

1
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that D is automatically a principal ideal domain, it is possible to compute the greatest

common divisor of any two elements of D and so on. Thus, the study of classification

of integral domains which are Euclidean is extremely important. It is a simple exercise

to show that Z is Euclidean, so is F[x], where F is a field.

If m is a negative squarefree integer, then the integral domain Z + Z
√

m is norm-

Euclidean if and only if m = −1,−2 and if in addition m ≡ 1 (mod 4), then the in-

tegral domain Z + Z(1 +
√

m)/2 is norm-Euclidean if and only if m = −3,−7,−11.

On the other hand to determine the positive squrefree integers m for which the inte-

gral domains Z + Z
√

m (m ≡ 2, 3 (mod 4)) and Z + Z(1 +
√

m)/2 (m ≡ 1 (mod 4))

is norm-Euclidean took considerable efforts of numerous mathematicians (see Ch 2,

[1]). The complete classification was provided by Chatland and Davenport (see [3]).

Their result is as follows: Let m be a positive squarefree integer with m ≡ 2, 3 (mod 4),

then Z + Z
√

m is norm-Euclidean if and only if m = 2, 3, 6, 7, 11, 19 and if m ≡ 1

(mod 4), then the integral domain Z + Z(1 +
√

m)/2 is norm-Euclidean if and only if

m = 5, 13, 17, 21, 29, 33, 37, 41, 57, 73. Thus, for K = Q(
√

m) the question whether OK

is Euclidean or not with respect to the norm function has been satisfactorily answered.

Suppose we know that an integral domain D is not norm-Euclidean, could it be

Euclidean with respect to a different Euclidean function φ? In this direction D. A. Clark

[5] showed that the integral domain Z + Z(1 +
√

69)/2 which is known to be not norm-

Euclidean is in fact Euclidean with respect to infinitely many φ’s! On the other hand one

may ask whether there is a criteria to ensure that an integral domain D is not Euclidean

with respect to any function φ. One of the ways of establishing this is to show if D is

not a field and certain special elements called universal side divisors (see page 44, [1])

do not exist in D, then D is not Euclidean. Using this criteria, it can be proved that if

m is negative squarefree integer with m ≡ 2, 3 (mod 4) and m < −2, then Z + Z
√

m is

not Euclidean. Similarly if m is squarefree negative integer with m ≡ 1 (mod 4) and
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m < −11, then the integral domain Z+Z(1+
√

m)/2 is not Euclidean with respect to any

function φ. Thus for K = Q(
√

m), d squarefree negative integer, the integral domain OK

is Euclidean if and only if m = −1,−2,−3,−7,−11.

On the other hand when m is a positive integer, very little is known regarding the

Euclidean property in OK with respect to φ different from norm function.

In 1949 Motzkin discovered an elegant criteria to determine when an integral do-

main is Euclidean. The next big step was taken by Weinberger, who in 1973 showed

that assuming the truth of generalized Riemann Hypothesis (GRH) all algebraic num-

ber fields with infinitely many units and whose ring of integers are PIDs are in fact

Euclidean! Thus, removing GRH was the next big challenge! This challenge was under-

taken by Ram Murty and his school who made substantial contributions to this area of

research. They showed that GRH can be removed provided the unit rank is at least three

(see Theorem 3.1.3). They introduced the concept of admissible primes, which now

proves to be an indispensable ingredient in the determination of Euclidean algorithm

in algebraic number fields. It is interesting to note that the existence of non-Wieferich

primes plays crucial role in the construction of admissible primes (see Chapter 3).

We make an extensive study of the concept of admissible primes and apply it to

study the Euclidean algorithm in real quadratic fields and cyclic cubic fields. Basically,

the thesis addresses the following questions:

Question 1. Are there infinitely many non-Wieferich primes in OK?

Question 2. What is the criteria to determine if a given number ring is Euclidean or

not?

Question 3. Are there infinitely many real quadratic fields which are Euclidean?

Question 4. What is the criteria to show if a given cyclic cubic field with class number

one is Euclidean or not?
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1.1 Main results

The thesis is organized as follows: Chapter 1 gives a brief introduction of the prob-

lems contained in the thesis and some preliminary results to understand the subsequent

chapters. In Chapter 2, we address Question 1 and prove the following theorems:

Theorem 1.1.1. Let K = Q(
√

m) be a real quadratic field of class number one and

assume that the abc conjecture holds true in K. Then there are infinitely many non-

Wieferich primes in OK with respect to the unit ε satisfying |ε| > 1.

Theorem 1.1.2. Let K be any algebraic number field of class number one and assume

that the abc conjecture holds true in K. Let η be a unit in OK satisfying |η| > 1 and

|η( j)| < 1 for all j , 1, where η( j) is the jth conjugate of η. Then there exist infinitely

many non-Wieferich primes in K with respect to the base η.

Chapter 3 addresses Question 3&4. In particular, the study the existence of admis-

sible primes in any real quadratic field and explicit construction of admissible primes

for a certain infinite family of real quadratic fields is discussed. The results contained

in Chapter 3 are as follows:

Theorem 1.1.3. Let L be a number field, and OL be its ring of integers. If q1 and q2 are

distinct, unramified prime ideals with odd prime norms q1 and q2 and if

1. ε has order q1(q1 − 1)/2 modulo q21;

2. q1 ≡ 3 (mod 4);

3. gcd
(
q1(q1 − 1)/2, q2(q2 − 1)

)
= 1; and

4. ε has order q2(q2 − 1) modulo q22;

then O×L maps onto
(
OL/q

2
1q

2
2
)×.
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Theorem 1.1.4. Assume the Hardy-Littlewood and the Wieferich primes conjectures. If

K is a real quadratic field such that OK has class number one, then OK is Euclidean.

Theorem 1.1.5. Let K = Q(
√

d) be as defined in (3.2) . Then there exists a set {p1, p2}

of two unramified prime ideals with odd prime norms p1 and p2 respectively such that

the canonical map O×K →
(
OK/p1

2p2
2)× is surjective.

Theorem 1.1.6. There exists a family C :=
{
Q(
√

d) : d is prime
}

of real quadratic

fields such that OK is Euclidean if and only if it has class number one.

The final Chapter 4 deals with Question 4. The main result of this chapter is the

following:

Theorem 1.1.7. Let K be a cyclic cubic field with conductor f , satisfying 73 ≤ f ≤

11971 and let OK be its ring of integers. Then OK is Euclidean if and only if it has class

number one.

1.2 Preliminaries

In this section we state some preliminary results (without proof) which are required to

understand the technical details contained in this thesis. The interested reader may refer

to any standard book in algebraic number theory e.g., [9], [?], [17].

Algebraic Number Fields

• Every Euclidean domain is a principal ideal domain. However, the converse is

not true!

• The ring Z is Euclidean with respect to ϕ(n) =| n |.

• The polynomial ring k[x] over a field k is Euclidean with respect to the function

ϕ( f (x)) = deg( f (x)) + 1.
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• Every ideal in a number ring OK is uniquely representable as a product of prime

ideals.

• For a rational prime p, consider the principal ideal pOK in OK . Then, we can

write pOK = p
e1
1 . . . p

er
r uniquely. Let fi be the dimension of OK/pi over Z/pZ.

The numbers ei and fi are the ramification index and inertial degree respectively.

For any number field K of degree n over Q, the numbers ei, fi and n are related by

the equation
∑r

i=1 ei fi = n.

• For a Galois extension K over Q we have e := e1 = e2 = · · · = er and f := f1 =

f2 = · · · = fr and hence re f = n.

• Let K be a quadratic number field , then the ring of integers OK can be written as

OK = Z+Z[δ] for some algebraic integer δ. Denote by t and n the trace and norm

of δ respectively. Let p ∈ N be a prime, and let ν = 0, 1 or 2 be the number of

distinct solutions in Z/pZ to the equation x2 − tx + n = 0. Then the type of prime

factorization of pOK is determined by ν and is given by :

1. ν = 0 if and only if p is inert.

2. ν = 1 if and only if p is ramified.

3. ν = 2 if and only if p splits.

Cyclotomic Fields

Let ω = e2πi/m. The mth cyclotomic field is a number field of the form Q(ω). It

has degree φ(m) over Q. The cyclotomic field is a Galois extension. The following

fundamental facts are well known.

• The Galois group of the mth cyclotomic field Q[ω] over Q is (Z/mZ)×. The ring

of algebraic integers is equal to Z[ω].
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• (Prime Factorization in a cyclotomic field) Let K be a mth cyclotomic field and

p be a rational prime. Let m = pkn with (p, n) = 1. Then ramification index

e = φ(pk) and the intertial degree f is the multiplicative order of p modulo n.

• A rational prime p - m splits completely in K if and only if p ≡ 1 (mod m). In

general, p splits into φ(m)/ f distinct primes.

Class Number

Let K be an algebraic number field and OK be its ring of integers. Recall that a

fractional ideal is a finitely generated OK submodule of K. Let M,N be two fractional

ideals. Their productMN is the collection of all finite sums of the form mn where m ∈

M, n ∈ N. The inverse of a fractional idealsM is defined as the set {α ∈ K : αM ⊂ OK}.

It is a well known fact that the set of all fractional ideals is a group with respect to this

product.

Let F (K) be the group of all fractional ideals and P(K) be the subgroup of all

principal fractional ideals. Then the quotient group

Cl(K) := F (K)/P(K)

is called the class group of K. The class group is a finite abelian group. The cardinality

of the class group is called the class number and it is denoted by h(K). It is an easy

exercise to show that K has class number one iff it is a principal ideal domain (PID).

Valuations of a number field

A function v : K − {0} → R is called an absolute value on K, if the following

conditions holds true.

• v(x) ≥ 0,

• v(xy) = v(x)v(y),



CHAPTER 1. INTRODUCTION 8

• there exists a constant C such that v(x + y) ≤ C max{v(x), v(y)},

for all x, y ∈ K.

Two absolute values v and v′ defined on K are said to be equivalent if v(x) < 1 holds

if and only if v′(x) < 1 for all x ∈ K.

A valuation v on K is an absolute value and it satisfies triangle inequality. i.e., v(x +

y) ≤ v(x)+v(y). In addition, if C = 1 in the above definition it is called nonarchimedean

valuation. Otherwise it is called archimedean.

Let p be a prime ideal in OK and vp(x) be the exponent of p in the ideal factorization

of (x). For c ∈ (0, 1), define the map | . |p: K → R as | 0 |p= 0 and | x |p= c−vp(x) for all

x ∈ K.

An equivalence class of valuations on a field K is called a prime of K. An equiv-

alence class of archimedean valuations is called an infinite prime and an equivalence

class of non-archimedean valuations is called a finite prime. A finite prime is equal to

| . |p for some prime ideal p.

Dirichlet Unit Theorem

Let us label the embeddingsσ1, σ2, . . . , σn of K intoC in such a way thatσ1, σ2, . . . , σr

are real embeddings and σr+1, σ2, . . . , σr+2s are complex embeddings and σr+i = σ̄r+i+1

for all 1 ≤ i ≤ r + 2s − 1. Then the Dirichlet unit theorem is the following statement:

Let K be an algebraic number field of degree n. Let r be the number of real conjugate

fields of K and 2s the number of complex conjugate fields of K so that r and s satisfy

r + 2s = n. Then OK contains r + s − 1 units ε1, . . . , εr+s−1 such that each unit of OK

can be expressed uniquely in the form ρεn1
1 . . . εnr+s−1

r+s−1 where ρ is a root of unity in OK and

n1, ..., nr+s−1 are integers.



Chapter 2

Non-Wieferich primes and abc

conjecture

2.1 Introduction

An odd rational prime p is called a Wieferich prime if

2p−1 ≡ 1 (mod p2). (2.1)

A. Wieferich [?] proved that if an odd prime p is a non-Wieferich prime, i.e., p satisfies

2p−1 . 1 (mod p2),

then there are no integer solutions to the Fermat equation xp +yp = zp,with p - xyz. The

known Wieferich primes are 1093 and 3511 and according to the PrimeGrid project [?],

these are the only Wieferich primes less than 17×1015. One of the unsolved problems in

this area of research is to determine whether the number of Wieferich or non-Wieferich

primes is finite or infinite. Instead of the base 2 if we take any base a, then p is said to

9
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be a Wieferich prime with respect to the base a if

ap−1 ≡ 1 (mod p2), (2.2)

and if the congruence (2.2) does not hold then we shall say that p is non-Wieferich

prime to the base a. Assuming the truth of famous abc conjecture (defined below),

J. H. Silverman [?] proved that given any integer a, there are infinitely many non-

Wieferich primes to the base a. He established this result by showing that for any fixed

α ∈ Q×, α , ±1, and provided the abc conjecture holds,

card
{
p ≤ x : αp−1 . 1 (mod p2)

}
�α log x as x→ ∞.

In [10] Hester Graves and M. Ram Murty extended this result to primes in arithmeti-

cal progression by showing that for any a ≥ 2 and any fixed k ≥ 2, there are �

log x/log log x primes p ≤ x such that ap−1 . 1 (mod p2) and p ≡ 1 (mod k), un-

der the assumption of abc conjecture.

In this chapter, we study non-Wieferich primes in algebraic number fields of class num-

ber one. This chapter is based on the paper [?]. More precisely, we prove the following

Theorem 2.1.1. Let K = Q(
√

m) be a real quadratic field of class number one and

assume that the abc conjecture holds true in K. Then there are infinitely many non-

Wieferich primes in OK with respect to the unit ε satisfying |ε| > 1.

Theorem 2.1.2. Let K be any algebraic number field of class number one and assume

that the abc conjecture holds true in K. Let η be a unit in OK satisfying |η| > 1 and

|η( j)| < 1 for all j , 1, where η( j) is the jth conjugate of η. Then there exist infinitely

many non-Wieferich primes in K with respect to the base η.
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2.2 The abc-conjecture

The abc-conjecture propounded by Oesterlé and Masser (1985) states that given any

δ > 0 and positive integers a, b, c such that a + b = c with (a, b) = 1, we have

c �δ (rad(abc))1+δ,

where rad(abc) :=
∏

p|abc p.

The abc conjecture has several applications, the reader may refer to [?], [13], [?], [?]

for details.

To state the analogue of abc-conjecture for number fields, we need some preparations,

which we do below. ([?], [13] for more details.)

Let K be an algebraic number field and let VK denote the set of primes on K, that is, any

v in VK is an equivalence class of norm on K (finite or infinite). Let ||x||v := NK/Q(p)−vp(x),

if v is a prime defined by the prime ideal p of the ring of integers OK in K and vp is the

corresponding valuation, where NK/Q is the absolute value norm. Let ||x||v := |g(x)|e

for all non-conjugate embeddings g : K → C with e = 1 if g is real and e = 2 if g is

complex. Define the height of any triple a, b, c ∈ K× as

HK(a, b, c) :=
∏
v∈VK

max(||a||v, ||b||v, ||c||v),

and the radical of (a, b, c) by

radK(a, b, c) :=
∏

p ∈ IK (a,b,c)

NK/Q(p)vp(p),

where p is a rational prime with pZ = p ∩ Z and IK(a, b, c) is the set of all primes p of

OK for which ||a||v, ||b||v, ||c||v are not equal.



CHAPTER 2. NON-WIEFERICH PRIMES AND ABC CONJECTURE 12

The abc conjecture for algebraic number fields is stated as follows: For any δ > 0, we

have

HK(a, b, c) �δ,K (radK(a, b, c))1+δ, (2.3)

for all a, b, c, ∈ K× satisfying a + b + c = 0, the implied constant depends on K and δ.

2.3 Wieferich/non-Wieferich primes in number fields

Let K be an algebraic number field and OK be its ring of integers. A prime π ∈ OK is

called Wieferich prime with respect to the base ε ∈ O∗K if

εN(π)−1 ≡ 1 (mod π2), (2.4)

where N(.) is the absolute value norm. If the congruence (2.4) does not hold for a prime

π ∈ OK , then it is called non-Wieferich prime to the base ε.

Notation: In this chapter, ε will denote a unit in OK and we shall write εn − 1 = unvn,

where un is the square free part and vn is the squarefull part, i.e., if π|vn then π2|vn. We

shall denote absolute value norm on K by N.

2.4 Proof of theorem (2.1.1)

Let K = Q(
√

m),m > 0 be a real quadratic field and OK be its ring of integers. Let

ε ∈ O×K be a unit with |ε| > 1. The results of Silverman [?], Ram Murty and Hester [10]

quoted in the introduction use a key lemma of Silverman (Lemma 3, [?]). We first derive

an analogue of Silverman’s lemma for number fields which will play a fundamental role

in the proof of the main theorems.

Lemma 2.4.1. Let K = Q(
√

m) be a real quadratic field of class number one. Let
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ε ∈ O×K be a unit. If εn − 1 = unvn, then every prime divisor π of un is a non-Wieferich

prime with respect to the base ε.

Proof. The assumption that K has class number one allows us to write the element

εn − 1 ∈ OK as a product of primes uniquely. Accordingly, we shall write

εn − 1 = unvn

for n ∈ N. Then

εn = 1 + πw, (2.5)

with π|un and π and w are coprime. As π is a prime, we have N(π) = p or p2, p is a

rational prime.

Case (1): Suppose N(π) = p.

From equation (2.5), we get

εn(p−1) ≡ 1 + (p − 1)πw . 1 (mod π2).

Case (2): Suppose N(π) = p2.

Again from equation (2.5), we obtain

εn(p2−1) = εn(N(π)−1) = (1 + πw)(p2−1) ≡ 1 + πw(p2 − 1) . 1 (mod π2).

Thus in either case,

ε(N(π)−1) . 1 (mod π2),

and hence π is a non-Wieferich prime to the base ε.

The above lemma shows that whenever a prime π divides un for some positive integer

n, then π is a non-Wieferich prime with respect to the base ε. Thus, if we can show that
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the set {N(un) : n ∈ N} is unbounded, then this will imply that the set {π : π|un, n ∈ N}

is an infinite set. Consequently, this establishes the fact that there are infinitely many

non-Wieferich primes in every real quadratic field of class number one with respect to

the unit ε, with |ε| > 1. Therefore, we need only to show the following

Lemma 2.4.2. Let Q(
√

m) be a real quadratic field of class number one. Let ε ∈ O×K be

a unit with |ε| > 1. Then under abc-conjecture for number fields, the set {N(un) : n ∈ N}

is unbounded.

Proof. Invoking the abc-conjecture (2.3) to the equation

εn = 1 + unvn (2.6)

yields

|εn| �
( ∏
p|unvn

N(p)vp(p))1+δ
=

(∏
p|un

N(p)vp(p)
∏
p|vn

N(p)vp(p)
)1+δ

(2.7)

for some δ > 0. Here the implied constant depends on K and δ.

As vp(p) ≤ 2 for any prime ideal p lying above the rational prime p, we have

∏
p|un

N(p)vp(p) ≤ N(un)2. (2.8)

For a prime ideal p|vn, let ep be the largest exponent of p dividing vn, i.e., pep ||vn. As vn

is the square-full part of εn − 1, we have ep ≥ 2. Hence,

1. N(p)2vp(p) ≤ N(p)2+ep for all prime ideals p with vp(p) = 2.

2. N(p)2vp(p) ≤ N(p)ep for all prime ideals p with vp(p) = 1.

Thus
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∏
p|vn

N(p)2vp(p) ≤
∏
p|vn

vp(p)=2

N(p)2+ep(p)
∏
p|vn

vp(p)=1

N(p)ep(p)

≤
∏
p|vn

vp(p)=2

N(p)2
∏
p|vn

vp(p)=2

N(p)ep(p)
∏
p|vn

vp(p)=1

N(p)ep(p)

≤
∏
p

′

N(p)2
∏
p|vn

vp(p)=2

N(p)ep(p)
∏
p|vn

vp(p)=1

N(p)ep(p),

where ′ indicates that the product is over all primes p in OK such that vp(p) = 2. As

it is well known that there are only finitely many ramified primes in a number field, it

follows that the product is bounded by a constant A (say). Thus, we have

∏
p|vn

N(p)vp(p) ≤
√

AN(vn). (2.9)

Combining equations (2.7), (2.8) and (2.9), we get

|εn| �
(
N(un)2

√
N(vn)

)1+δ
. (2.10)

Now, as |ε| > 1,

N(un)N(vn) = N(εn − 1) ≤ 2|εn − 1| < 2|ε|n,

i.e.,

N(vn) < 2|ε|n/N(un).

Substituting the above expression in (2.10), we obtain

|εn| �

(
N(un)2 |ε|

n/2

√
N(un)

)(1+δ)

.
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Thus,

(N(un))
3(1+δ)

2 � |ε|
n(1−δ)

2 .

Thus, for a fixed δ, N(un) → ∞ as n → ∞. This proves the lemma and completes the

proof of the theorem.

2.5 Non-Wieferich primes in algebraic number fields

In this section, we generalize the arguments of previous section to arbitrary number

fields. In this section, K will always denote an algebraic number field of degree [K :

Q] = l over Q of class number one. Let r1 and r2 be the number of real and non-

conjugate complex embeddings of K into C respectively, so that l = r1 + 2r2. We begin

with an analogue of Lemma (2.4.1).

Lemma 2.5.1. Let ε be a unit in OK . If εn − 1 = unvn, then every prime divisor π of un

is a non-Wieferich prime with respect to the base ε.

Proof. Let N(π) = pk, where p is a rational prime and k is a positive integer. Then

εn(N(π)−1) = εn(pk−1) = (1 + wπ)(pk−1) ≡ 1 + (pk − 1)wπ . 1 (mod π2).

This implies εN(π)−1 . 1 (mod π2).

Thus, the lemma shows that π is a non-Wieferich prime to the base ε whenever the

hypothesis of the lemma is met. Now, under the abc conjecture for number fields, we

show below the existence of infinitely many non-Wieferich primes.

Lemma 2.5.2. The set {N(un) : n ∈ N} is unbounded, where un’s are as defined in

Lemma (2.5.1).
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Proof. By the hypothesis of the lemma, we have εn = 1 + unvn, where εn, 1, unvn ∈

K∗ := K − {0}. Applying the abc conjecture for number fields to the above equation, we

obtain ∏
v∈VK

max(|unvn|v, |1|v, |εn|v) � (
∏
p|unvn

N(p)vp(p))1+δ, (2.11)

for some δ > 0.

Note that for the absolute value |.| in VK , we have

|εn| ≤
∏
v∈VK

max(|unvn|v, |1|v, |εn|v). (2.12)

As vp(p) ≤ l for any prime ideal p lying above the rational prime p, we have

∏
p|un

N(p)vp(p) ≤ N(un)l. (2.13)

As before, we denote by ep the largest exponent of p which divides vn, i.e., pep ||vn.

Clearly ep ≥ 2. Then

∏
p|vn

N(p)2vp(p) ≤
∏
p|vn

vp(p)≥2

N(p)2l+ep(p)
∏
p|vn

vp(p)=1

N(p)ep(p)

≤
∏
p|vn

vp(p)≥2

N(p)2l
∏
p|vn

vp(p)≥2

N(p)ep(p)
∏
p|vn

vp(p)=1

N(p)ep(p)

≤
∏
p

′

N(p)2l
∏
p|vn

vp(p)≥2

N(p)ep(p)
∏
p|vn

vp(p)=1

N(p)ep(p),

where ′ indicates that the product is over all primes p inOK such that vp(p) ≥ 2. As there

are only finitely many ramified primes in a number field, it is bounded by a constant B

(say). Thus, we have
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∏
p|vn

N(p)vp(p) ≤
√

BN(vn). (2.14)

Therefore, the equations (2.11) - (2.14) yield

|εn| �
(
N(un)l

√
N(vn)

)1+δ
. (2.15)

Note that in the case of real quadratic fields, the unit ε satisfies |ε| > 1 and this infor-

mation was crucial in proving Theorem 2.1.1. However, in the case of general number

fields, the following result (see Lemma 8.1.5, [9]) comes to our rescue. We state this

result as

Lemma 2.5.3. Let E = {k ∈ Z : 1 ≤ k ≤ r1 + r2}. Let E = A ∪ B be a proper partition

of E. There exists a unit η ∈ OK with |η(k)| < 1, for k ∈ A and |η(k)| > 1, for k ∈ B.

Taking A = {k : 1 < k ≤ r1 + r2} and B = {1}, Lemma 2.5.3 produces a unit η ∈ O×K such

that |η| > 1 and |η(k)| < 1, where η(k) denotes the kth conjugate of η, k , 1. Since, every

unit satisfies (2.15), replacing ε with η in (2.15), we obtain

|ηn| �
(
N(un)l

√
N(vn)

)1+δ
, (2.16)

where, by abuse of notation, we shall denote ηn − 1 = unvn, with un and vn denoting the

same quantities as defined earlier.

Now,

N(un)N(vn) = N(ηn − 1) = (ηn − 1)(η(2)n − 1)(η(3)n − 1) · · · (η(l)n − 1).

By Lemma 2.5.3, |η( j)n − 1| < 2 for all j, 2 ≤ j ≤ l.
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Thus,

N(un)N(vn) < C|ηn| or N(vn) < C|ηn|/N(un).

Now, (2.16) can be written as

(N(un))
(2l−1)(1+δ)

2 � |η|n
1−δ

2 . (2.17)

For a fixed δ, the right hand side of (2.17) tends to ∞ as n → ∞. Therefore the set

{N(un) : n ∈ N} is unbounded. This shows that there are infinitely many non-Wieferich

primes in K with respect to the base η.



Chapter 3

Admissible primes and Euclidean

quadratic fields

3.1 Introduction

Let K be an algebraic number field with ring of integers OK . Recall that a number ring

OK is called Euclidean with respect to a given function φ : OK → N ∪ {0} if φ has the

following properties

1. φ(α) = 0 if and only if α = 0, and

2. for all α, β , 0 ∈ OK there exists a γ ∈ OK such that φ(α − βγ) < φ(β).

In particular, if φ is the absolute value norm, then OK is called norm-Euclidean.

It is easy to show that if OK is Euclidean then OK is a principal ideal domain so that

its class number is one. The converse, however, is not true. Indeed, in 1949, Motzkin

[?] derived a useful criterion for any ring to be Euclidean and using it, he showed that

the ring of integers of Q(
√
−d) with d = 19, 43, 67 and 163 are not Euclidean, though

they all have class number one. As there are only nine imaginary quadratic fields with

20
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class number one, Motzkin’s paper shows that only five of these are Euclidean (and in

fact, they are all norm-Euclidean). Are there any other examples of rings OK with class

number one which are not Euclidean? In 1973, Weinberger [?] showed that if we as-

sume the generalized Riemann hypothesis (GRH), there are no more counterexamples.

In other words, apart from the five imaginary quadratic fields found by Motzkin, there

are no further examples of OK having class number one and not being Euclidean, if we

believe in the GRH! This surprising result makes one wonder how an analytic hypoth-

esis can lead to such an algebraic result and if the use of the GRH in such questions is

necessary. Such a program of research was initiated by M. Ram Murty and his school.

We will describe their results below.

Determining all norm-Euclidean quadratic number fields is a classical problem that

has received a lot of attention. The situation for imaginary quadratic fields has been

described above. It is known that Q(
√

d), d > 0 is norm-Euclidean if and only if

d = 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73. Thus, we have a complete list

of quadratic number fields which are Euclidean with respect to the absolute value norm.

We refer the reader to [19] for a survey of these classical results.

Thus, it is an interesting question to ask whether or not a given real quadratic field

is Euclidean with respect to a function different from the absolute value norm. As indi-

cated earlier, in 1949, Motzkin [?] proved a fundamental result which gives a criterion

for an integral domain to be Euclidean. His result is the following:

Let R be an integral domain. Define the sets Ek, k ≥ 0, as follows:

Let E0 := {0}, Ek := {0} ∪ {α ∈ R : each residue class mod α contains β ∈ Ek−1}, for

k ≥ 1. Then, R is Euclidean if and only if ∪k≥0Ek = R.

As an application of Motzkin’s contruction, one obtains that if K = Q(
√

d), d < 0,

then OK is Euclidean if and only if d = −1,−2,−3,−7,−11, which is the classical re-

sult mentioned in the beginning. But, it seems difficult to use Motzkin’s construction
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directly for real quadratic fields due to the presence of infinitely many units! However,

with the additional assumption of the generalized Riemann hypothesis (GRH), Wein-

berger proved that OK is Euclidean if and only if it has class number one [?] by adapting

an argument of Hooley [16] used in his solution of the Artin primitive root conjecture.

On the other hand, for a certain class of integers, called S -integers (defined below) R.

Gupta, M. Ram Murty and V. Kumar Murty [12] established that the ring of S -integers

is Euclidean if and only if OS is a PID without the use of the GRH. Here is a precise

statement of their result.

Let S be a finite set of places of K containing the infinite places S∞. An element x

of K is called an S -integer if ordp(x) ≥ 0 for all primes p of K not in S . Let OS denote

the ring of S -integers. Let g := gcd {NK/Q(p) − 1 : p ∈ S − S∞}. Then

Theorem 3.1.1. (R. Gupta, M. Ram Murty, V. Kumar Murty) [12]

Let K be Galois over Q and that

1. |S | ≥ max {5, 2[K : Q] − 3};

2. K has a real embedding or ζg ∈ K.

If OS is a PID, then it is Euclidean.

Though their work initiated a method of removing GRH from these questions, it

could not be applied to study the rings OK .

In 1995, M. Ram Murty and David A. Clark [4] developed a new criteria for the

existence of a Euclidean algorithm to hold in a general number ring. In order to state

their result (see Theorem 3.1.2), we need the concept of an admissible set of primes in

OK which we define in what follows.

Assume that OK has class number one. Let π1, . . . , πs ∈ OK be distinct non-associate

primes. A set of primes {π1, . . . , πs} is called an admissible set of primes if, for all



CHAPTER 3. ADMISSIBLE PRIMES AND QUADRATIC FIELDS 23

β = πa1
1 . . . πas

s with ai non-negative integers, every co-prime residue class (mod β) can

be represented by a unit ε ∈ O×K . In other words, the set {π1, . . . , πs} is admissible if the

canonical map O×K →
(
OK/(π

a1
1 . . . πas

s )
)× is surjective.

In [4], D.A. Clark and M. Ram Murty showed that it is enough to take a1 = a2 =

· · · = as = 2 in the above definition, (i.e,. the set {π1, . . . , πs} is admissible if the

canonical map O×K →
(
OK/(π2

1 . . . π
2
s)
)× is a surjective).

Using this concept, Clark and Murty proved:

Theorem 3.1.2. (M. Ram Murty, David A. Clark) [4] Let K be a totally real Galois

extension with degree nK such that OK has class number one. Suppose that OK has a set

S of admissible primes with m = |nK − 4| + 1 elements, then OK is Euclidean.

When K/Q is abelian, M. Ram Murty and M. Harper obtained a more precise and useful

criteria which we state below.

Theorem 3.1.3. (M. Ram Murty, M. Harper) [?] Let K/Q be abelian of degree n with

OK having class number one, that contains a set of admissible primes with s elements.

Let r be the rank of the unit group. If r + s ≥ 3, then OK is Euclidean.

There are other notable results in [?]. Specifically, Harper and Murty show that if

K/Q is a finite Galois extension with unit rank > 3, then OK is Euclidean if and only if

OK is a PID. This still leaves open the discussion for fields of small degree, in particular,

real quadratic fields. This will be the focus of this paper.

For real quadratic fields, K = Q(
√

d), d > 0, it is therefore enough to exhibit

the existence of an admissible set having two elements, as in this case the rank of the

unit group is one. Harper [14] proved that Z[
√

14] is Euclidean, by exhibiting the set

{5 −
√

14, 3 − 2
√

14} as an admissible set of primes. Additionally, in his thesis M.

Harper also established that all the real quadratic fields with discriminant ≤ 500 and

having class number one are Euclidean. Thus, the explicit construction of admissible
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primes is of independent interest in its own right and it is the purpose of this paper to

construct a set of admissible primes for an infinite family of real quadratic fields. It is

possible that this family contains infinitely many with class number one and we give

some reasons at the end of the chapter for this belief.

In this context, two famous conjectures have some bearing on our goals. The first

concerns the Hardy-Littlewood conjecture. Fix a natural number r and b coprime to r.

Hardy and Littlewood conjectured that the number of primes p ≤ x with p ≡ b (mod r)

such that 2p + 1 is also prime is
x

log2 x
.

The second conjecture we need is an estimate for the number of Wieferich primes. We

call this the Wieferich primes conjecture. Though this is generally believed, we have

not found a precise formulation of it in the literature so we give one here. Let ε be an

element of O×K of infinite order. The number of primes p ≤ x such that

εp−1 ≡ 1(mod p2)

is o(x/ log2 x). Both of these conjectures are unproven though sieve theory has made

some progress towards the Hardy-Littlewood conjecture. They will be relevant to our

discussion below.

The content of this chapter are taken from our paper [?].

3.2 Statement of the theorems

The following result is inspired from the work in [?], which we state as

Theorem 3.2.1. Let L be a number field, and OL be its ring of integers. If q1 and q2 are

distinct, unramified prime ideals with odd prime norms q1 and q2 and if
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1. ε has order q1(q1 − 1)/2 modulo q21;

2. q1 ≡ 3 (mod 4);

3. gcd
(
q1(q1 − 1)/2, q2(q2 − 1)

)
= 1; and

4. ε has order q2(q2 − 1) modulo q22;

then O×L maps onto
(
OL/q

2
1q

2
2
)×.

Proof: We shall use the notation G = 〈g〉 to mean that g generates the group G.

Let

β := εq1(q1−1)/2.

By (3) and (4), it follows that

〈β〉 = (OL/q
2
2)×.

On the other hand by (1), we have

β ≡ 1 (mod q21).

Since β generates the group (OL/q
2
2)× and the image of ε lies in (OL/q

2
2)×, there exists a

positive integer k such that

(βk)(−ε) ≡ 1 (mod q22).

i.e., βk is the inverse of −ε modulo q22.

Now, let

α := −βkε.
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Then by the above congruence, we have

α ≡ 1 (mod q22).

Also,

α ≡ −ε (mod q21),

thus by (1), α generates the group (OL/q
2
1). By the Chinese remainder theorem

(
OL/q

2
1q

2
2
)×
'

(
OL/q

2
1
)×
×

(
OL/q

2
2
)×
.

Let (x, y) ∈
(
OL/q

2
1
)×
×

(
OL/q

2
2
)×
. Then there exist positive integers e, f such that

αe ≡ x (mod q21) and β f ≡ y (mod q22).

Now the element z := αeβ f maps onto the element (x, y). Since (x, y) was arbitrary, the

canonical map takes O×L onto
(
OL/q

2
1q

2
2
)×.

In particular, we can use the previous theorem to produce admissible primes for any

real quadratic field.

Theorem 3.2.2. Assume the Hardy-Littlewood and the Wieferich primes conjectures. If

K is a real quadratic field such that OK has class number one, then OK is Euclidean.

Proof. The strategy is as follows. We want to select two primes q1, q2 satisfying the con-

ditions of our previous theorem and then apply Theorem 3.1.3. The Hardy-Littlewood

conjecture predicts that there are

�
x

log2 x

primes such that 2q1 + 1 is also a prime p (say). Let ε be a fundamental unit of OK . If
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we want ε to be a square mod p, we want

ε(p−1)/2 ≡ 1(mod p). (3.1)

But this means that p splits in the quadratic field K(
√
ε) which is an abelian extension of

Q. By the Kronecker-Weber theorem, it is contained in a cyclotomic extensionQ(ζr) for

some primitive r-th root of unity ζr. The condition 3.1 above is equivalent to saying that

p lies in a certain arithmetic progression (mod r). By the Hardy-Littlewood conjecture,

the number of primes p ≤ x such that 2p + 1 is prime and p splits in K(
√
ε) is

�
x

log2 x
.

Let us call this set Tx. A similar estimate holds for the number of such primes for which

ε is not a quadratic residue (mod p). Let us call this set S x. By the Wieferich primes

conjecture, the number of primes p ≤ x such that

εp−1 ≡ 1(mod p2),

is o(x/ log2 x) and so, after removing these primes from Tx and S x (if necessary), we

deduce that the number of primes in each of these sets is � x/ log2 x. These are also

disjoint sets on account of the splitting and non-splitting conditions. Let p1 ∈ Tx and

p2 ∈ S x and write q1 = 2p1+1, q2 = 2p2+1. Then, clearly, gcd(q1(q1−1)/2, q2(q2−1)) =

gcd(q1 p1, 2q2 p2)=1 and it is easily checked that all the conditions of the theorem are

satisfied. Finally, we need only apply the theorem of Harper and Murty to deduce the

final conclusion. �
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3.3 Explicit constructions

Now we give an explicit construction of admissible primes for a certain infinite family

of real quadratic fields.

Fix two primes p1 := 11 and p2 := 13. Let

d := (a + 1)2b2n2 + 2(a + 1)2n + 23 (3.2)

where a, b, n are integers such that

a ≡ 24 (mod p3
1 p3

2), b ≡ 5 (mod p3
1 p3

2), (3.3)

and

n ≡ 0 (mod p1 p2).

We define

K := Q(
√

d) = Q
(√(

(a + 1)2b2n2 + 2(a + 1)2n + 23
))
. (3.4)

With the above notations, we state the main theorems of this chapter as follows.

Theorem 3.3.1. Let K = Q(
√

d) be as defined above. Then there exists a set {p1, p2} of

two unramified prime ideals with odd prime norms p1 and p2 respectively such that the

canonical map O×K →
(
OK/p1

2p2
2)× is surjective.

As a consequence of Theorem (3.3.1) we deduce:

Theorem 3.3.2. There exists a family C :=
{
Q(
√

d) : d is prime
}

of real quadratic

fields such that OK is Euclidean if and only if it has class number one.

Remark 1. The reason for the above choice of d is governed by the fact that in Q(
√

d),



CHAPTER 3. ADMISSIBLE PRIMES AND QUADRATIC FIELDS 29

units can be found by solving the Brahmagupta-Pell equation

u2 − dv2 = 1

with

u := u(n) = b4(a + 1)n2 + 2b2(a + 1)n + a

and

v := v(n) = b3n + b.

where a, b have to satisfy the Brahmagupta-Pell equation x2 − 23y2 = 1.

The family is motivated by the following construction of Zapponi [?].

3.4 Proof of the theorems

In our case, K = Q(
√

d) with d as defined in the equation (3.2), we only need to find

a unit ε and primes such that all hypotheses of Lemma 3.2.1 are satisfied for K. As

p1 = 11 and p2 = 13, we see that (2) and (3) are satisfied. It is enough to check

conditions (1) and (4) of Lemma 3.2.1.

Therefore, it remains to find a unit ε ∈ O×K and show that p1, p2 are unramified

primes in OK , (i.e., the primes p1, p2 split in OK). Then Lemma 3.4.1 (below) allows us

to find an admissible set of primes {p1, p2}.

Let us set ε := u + v
√

d where u and v are as defined before (see Remark 1). Since

u and v satisfies the Brahmagupta-Pell equation

u2 − dv2 = 1,

we explicitly get a unit ε ∈ O×K .
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We now show that the two rational primes p1 and p2 split in OK . By construction

of integers d, we see that d ≡ 23 (mod p1). The discriminant, dK , of the field K is

congruent to 1 or 4 (mod p1). In either case dK is a square modulo p1. Therefore, by

a standard result about splitting of primes in quadratic fields (see Theorem 25, [?]), the

rational prime p1 splits in OK . Similarly, dK is congruent to 10 or 40 (mod p2). Thus,

p2 also splits in OK .

For a given unit ρ ∈ O×K and an unramified prime ideal q, the following lemma tells

us when the set {q} is an admissible set.

Lemma 3.4.1. Let ρ ∈ O×K be a unit and q be an unramified prime ideal with odd prime

norm q. If ρ is a primitive root modulo q, and q is a non-Wieferich prime to the base ρ,

i.e., ρq−1 . 1 (mod q2), then ρ generates the group (OK/q
2)×.

Proof: We only need to show that ρ has order q(q − 1) modulo q2. We proceed by

contradiction: suppose ρl ≡ 1 (mod q2) for some divisor l of q − 1, then ρq−1 ≡ 1

(mod q2), this contradicts our assumption that ρq−1 . 1 (mod q2).

Now, if ρql ≡ 1 (mod q2) for some l|q−1. Then ρql ≡ 1 (mod q). Since ρ is a primitive

root modulo q, we have q − 1|ql. This forces l = q − 1. Hence ρ generates (OK/q
2)×.

In order to use Lemma 3.4.1 in our case, we need to show that (i) ε is a primitive

root modulo p1, a prime ideal lying above p1 in OK , and (ii) p1 is a non-Wieferich prime

to the base ε.

Note that

N(ε2 − 1) = ε2ε̄2 − (ε2 + ε̄2) + 1 ≡ 2 − 2(a2 + 23b2) ≡ 10 (mod p1), (3.5)

and
N(ε5 − 1) = ε5ε̄5 − (ε5 + ε̄5) + 1 = 2 − 2

(
u5 + 10u3v2d + 5uv4d2

)
≡ 2 − 2(−1) ≡ 4 (mod p1).

(3.6)
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The equation (3.5) and (3.6) shows that ε does not have order 2 and 5 modulo any prime

ideal in OK lying above p1. Since p1 − 1 = 2 × 5, the unit ε is a primitive root modulo

any prime ideal lying above p1.

Next, to establish (ii), note that

N(ε5 − 1) = (ε5 − 1)(ε̄5 − 1) = 2 − (ε5 + ε̄5) ≡ 367 (mod p3
1),

and

N(ε5 + 1) = (ε5 + 1)(ε̄5 + 1) = 2 + (ε5 + ε̄5) = 4 − N(ε5 − 1) ≡ 968 (mod p3
1).

Thus,

N(ε10 − 1) = N(ε5 + 1)N(ε5 − 1) ≡ 1210 . 0 (mod p3
1). (3.7)

From (3.7), we conclude that there exists a prime ideal in OK lying above p1, say p1,

such that

ε10 . 1 (mod p2
1).

As p1 − 1 = 10, the prime ideal p1 is a non-Wieferich prime with respect to the base ε.

Therefore, by applying Lemma 3.4.1, ε has order p1(p1 − 1) modulo p2
1.

Now we shall show that ε has order p2(p2 − 1) modulo p2
2, where p2 is a prime ideal

lying above p2 in OK . Observe that

N(ε4 − 1) ≡ 2 − 2(a4 + 138a2b2 + 232b4) ≡ 3 . 0 (mod p2),

and

N(ε3 − 1) ≡ 2 − 2(a3 + 69ab2) ≡ 2 − 2(0) ≡ 2 . 0 (mod p2).
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From this, we obtain

N(ε3 + 1) = 4 − N(ε3 − 1) ≡ 4 − 2 ≡ 2 (mod p2).

Therefore,

N(ε6 − 1) = N(ε3 − 1)N(ε3 + 1) ≡ 4 . 0 (mod p2).

This shows that ε does not have order 4 and 6 modulo any prime ideal inOK lying above

p2, which means ε is a primitive root modulo any prime lying above p2.

Again, by routine computation, we see that

N(ε6 − 1) ≡ 511 (mod p3
2),

and

N(ε6 + 1) = 4 − N(ε6 − 1) ≡ 4 − 511 ≡ 1690 (mod p3
2).

This gives,

N(ε12 − 1) = N(ε6 − 1)N(ε6 + 1) ≡ 169 (mod p3
2),

we conclude that there exists a prime ideal, say p2, lying above p2 in OK which is a

non-Wieferich prime with respect to the base ε. Thus, ε has order p2(p2 − 1) modulo

p2
2.

Now, we set

τ := −ε,

and observe that

τ
p1(p1−1)

2 ≡ −1 × ε
p1(p1−1)

2 ≡ −1 × −1 ≡ 1 (mod p2
1), (3.8)
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which shows that τ has order p1(p1−1)
2 modulo p2

1.

Since p2 ≡ 1 (mod 4), the units ε and −ε have the same order modulo p2
2. Hence

τ has order p2(p2 − 1) modulo p2
2. Therefore, conditions (1) and (4) are satisfied for

the unit τ and primes p1, p2. This leads us to conclude that OK contains a set of two

admissible primes {p1, p2}. Thus, if OK has class number one, then by Lemma 3.2.1, OK

is Euclidean.

Proof of Theorem 3.5: In order to prove the theorem, we first show the following. Let

(a, b) be a solution for the Brahmagupta-Pell equation

x2 − 23y2 = 1 (3.9)

satisfying

a ≡ 24 (mod p3
1 p3

2) and b ≡ 5 (mod p3
1 p3

2). (3.10)

Then there are infinitely many square free integers d of the form

d = (a + 1)2b2n2 + 2(a + 1)2n + 23,

where n ≡ 0 (mod p1 p2). Our main ingredient is the classical result of Ricci [?] who

showed that if f (x) ∈ Z[X] is a separable quadratic polynomial with gcd{ f (n) : n ∈ Z}

a square-free integer, then there are infinitely many square-free values taken by f (n)

(in fact, he had shown that a positive proportion of the values are square-free). Now

consider the quadratic polynomial f (n) := (a + 1)2b2n2 + 2(a + 1)2n + 23, n ∈ Z. The

discriminant of this polynomial is 8(a + 1)3, which is not zero. Therefore, f (n) is

a separable polynomial and the gcd{ f (m) : m ∈ Z} is square-free. Thus, the result of

Ricci implies that there are infinitely many square-free values taken by f (n). We remark

that if the square-free values taken by f (n) has t distinct prime factors, then 2t−1 divides
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the class number of Q(
√

d) (see Problem 8.3.1, [9]). Thus, we need only consider the

prime values of f (n) if we want that the class number of Q(
√

d) is one. It may be noted

that a famous conjecture of Buniakovsky [2] says that if g(x) ∈ Z[x] is irreducible and

N = gcd{g(m) : m ∈ N} then there are infinitely many m ∈ N such that (1/N)|g(m)| is

a prime. In our case, if we take a = 24 and b = 5, for example, then N = 1. Thus our

polynomial f (n) assumes infinitely many prime values under Buniakovsky’s conjecture.

We shall now prove that there are infinitely many solutions a, b to the Brahmagupta-

Pell equation (3.9) satisfying the conditions (3.10).

Note that 24+5
√

23 is the fundamental unit in the ring of integers for the field Q(
√

23),

therefore a = 24, b = 5 is a pair satisfying (3.9) and (3.10).

Let us set

µ := 24 + 5
√

23,

and define

µk := ak + bk

√
23, ak, bk ∈ N.

Observe that each pair (ak, bk) is a solution for the equation (3.9). A simple computation

carried out in Python gives us the following:

a1210s+1 ≡ 24 (mod p3
1) and b1210s+1 ≡ 5 (mod p3

1) for all s ∈ N,

and

a2028s′+1 ≡ 24 (mod p3
2) and b2028s′+1 ≡ 5 (mod p3

2) for all s′ ∈ N.

Thus, ak+1 ≡ 24 (mod p3
1 p3

2) and bk+1 ≡ 5 (mod p3
1 p3

2), for k = 1210s = 2028s′,
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for all s, s′ ∈ Z. This shows that there are infinitely many integer pairs (a, b) satisfying

(3.9) and (3.10).

As we vary a, b and n, we get an infinite family of infinitely many real quadratic fields

of the form Q(
√

d).

3.5 Remarks

The set of quadratic fields with class number one in the family C is non-empty since

Q(
√

23) ∈ C. We expect there are more examples and this may be useful to investigate

further numerically. For ease of exposition, we fixed the primes p1 = 11 and p2 = 13.

In fact, the main theorem holds true for any real quadratic field K provided there exists

two unramified rational primes p1 ≡ 3 (mod 4) and p2 ≡ 1 (mod 4) satisfying the

following conditions:

1. N(εp1(p1−1)) . 0 (mod p1);

2. N(εp2(p2−1)) . 0 (mod p2); and

3. gcd
(
p1(p1 − 1)/2, p2(p2 − 1)

)
= 1;

for any fixed unit ε ∈ O×K .

It should be possible to go further. For example, the results of this chapter can

be easily extended to study cubic fields which are Euclidean, which we do in the next

chapter. In these cases, the unit rank is either 1 or 2 and so a similar dichotomy emerges.

Also, the results of [?] were confined to the case that K is Galois over the rationals. This

was due to a similar restriction in the work of Murty and Murty [?]. But this restriction

was recently removed in a work of Murty and Peterson [?] and consequently, there is a

wide scope for further progress.
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The two hypotheses we assumed, namely the Hardy-Littlewood conjecture and the

Wieferich primes hypothesis are both reasonable from a heuristic perspective. Indeed,

the former is encouraging given the recent progress on the twin prime problem. As

for the second, it is unclear at the moment. Heuristic reasoning suggests that the num-

ber of such primes less than x should not be more than O(loglogx). Our hypothesis is

much weaker from this viewpoint in that we postulate the number is o(x/log2x). Cer-

tainly these hypotheses are far less imposing than the elusive and fugitive generalized

Riemann hypothesis.



Chapter 4

Euclidean cyclic cubic fields

4.1 Introduction

Let K be a cyclic cubic field with discriminant f 2, where f is the conductor of K. In

1969, J. R. Smith [?] proved that the cyclic cubic fields with conductors 7, 9, ..., 67 are

norm-Euclidean. Further, in the same paper he showed that the fields with conductors

73, 79, 97, 139, 151 and 163 < f < 104 are not norm-Euclidean. The object of this

note is to show that all cyclic cubic fields with conductors f ∈ [73, 11971] are in fact

Euclidean provided they have class number one.

It is well known that if the conductor f of the cyclic cubic field K has t distinct prime

factors, then the class number of K is divisible by 3t−1 (see appendix of Heilbronn’s

paper [15] for a proof). Thus a cyclic cubic field with class number one must have

prime conductor f . Moreover, a necessary condition for a cyclic cubic field to have

class number one is that its conductor is either 9 or a prime in the residue class 1

(mod 6) ( see [15], [11] ). Accordingly, from now onwards, we shall be dealing with

only those cyclic cubic fields K with prime conductor f satisfying f ≡ 1 (mod 6).The

contents of this chapter are taken from [?]. Our main aim is to prove the following

37
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Theorem 4.1.1. Let K be a cyclic cubic field with conductor f , satisfying 73 ≤ f ≤

11971 and let OK be its ring of integers. Then OK is Euclidean if and only if it has class

number one.

Proof. It is easy to show that if a number ring OK is Euclidean, then it has class number

one. To prove the converse, we use a result of Harper and Ram Murty (Theorem 4.1.2

below) which gives a useful criteria to establish the Euclidean algorithm for certain

number fields.

We again recall the statement of Harper and Ram Murty as follows:

Theorem 4.1.2. (M. Ram Murty, M. Harper) [?] Let K/Q be abelian of degree n with

OK having class number one, that contains a set of admissible primes with s elements.

Let r be the rank of the unit group. If r + s ≥ 3, then OK is Euclidean.

The well known Dirichlet’s unit theorem states that the rank r of the group of units

in OK is given by r = r1 + r2 − 1, where r1 is the number of real embeddings and r2 is

the number of conjugate pairs of complex embeddings of K. In our case, K is cyclic

cubic field which means the Galois group over Q is cyclic of order three. This can only

happen if K is totally real. Thus, r = 3 − 1 = 2. All we need to do now is to exhibit an

admissible set of primes with one element (i.e. s = 1). For this we recall a special case

of lemma 3.2.1 from Chapter 3

Lemma 4.1.3. Let ρ ∈ O×K be a unit and q be an unramified prime ideal with odd prime

norm q. If ρ is a primitive root modulo q, and q is a non-Wieferich prime to the base ρ,

i.e., ρq−1 . 1 (mod q2), then ρ generates the group (OK/q
2)×.

Thus, we need to find an unramified prime π with odd prime norm such that the group

(OK/π)× has a primitive root ε ∈ O×K and π is a non-Wieferich prime with respect to ε.

As the field K is Galois of degree 3 over Q, this means that an unramified rational prime
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p either splits completely or remains as a prime in OK . It is well-known that a rational

prime p (, f ) splits completely in K if and only if p is a cube modulo f . By Euler’s

criterion, it follows that p is a cube modulo f if and only if p
f−1
3 ≡ 1 (mod f ).

In what follows, we shall exhibit a set of admissible primes with one element for the

cyclic cubic field K with conductor f = 73. By Theorem 4.1.2 and Lemma 4.1.3 it will

then follow that this field is Euclidean as it has class number one. For all other fields

in the range 73 < f ≤ 11971 with class number one, we shall give an algorithm which

produces an admissible set of primes with one element. The database [18] gives all such

fields. In the end, we shall list in a table the defining polynomial of all the class number

one cyclic cubic fields with conductors in the above range and the corresponding set of

admissible primes. This will complete the proof of our main theorem.

Thus, we start with the cyclic cubic field K with conductor 73. It is known that K

has class number one. The fundamental units ε1, ε2 for K are

ε1 :=
2
3

a2 −
14
3

a + 7,

ε2 :=
4
3

a2 +
14
3

a − 7,

where a is a root of the defining polynomial x3 − x2 − 24x + 27 for K. This is obtained

by using Sage programme.

Let us take the rational prime p = 3. It is unramified in K since p - 73.

Also, as 3
73−1

3 ≡ 1 (mod 73) implies that p splits completely in OK . The prime ideal

decomposition of 3 in OK is given by:

(3) =
(

1
3a2 + 2

3a − 11
) (
−1

3a2 + 1
3a + 6

) (
2
3a2 + 1

3a − 17
)
.
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Let π be the prime element such that (π) :=
(

1
3a2 + 2

3a − 11
)
. A simple calculation gives

ε1 ≡ −1 (mod π), (4.1)

and

ε2
1 ≡ 16 . 1 (mod π2). (4.2)

As (OK/π)× has order 2, it follows from (4.1) that ε1 is a primitive root modulo π. The

equation (4.2) says that π is a non-Wieferich prime with respect to ε. Thus, by Lemma

4.1.3 the set {π} is admissible. Thus K is Euclidean.

In section 4.2, we present an algorithm to determine a set of admissible primes with

one element.

Appendix will contain table of admissible primes and Sage Code to compute a ad-

missible prime for cyclic cubic fields.

4.2 Algorithm to find an admissible prime

1. data← list of [defining polynomials, conductor]

2. flat← false

3. foo← false

4. print ("Conductor|Defining Polynomial|Admissible prime")

5. for u in data:

6. prime← int(math.sqrt(u[1]))

7. K ← Number field with defining polynomial u[0]

8. if (class number of K is not 1):

9. break

10. u← unit group associated with K
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11. eps← one of the fundamental units of u

12. list p← [all cubic residues mod p]

13. for q set of primes

14. if q==2:

15. continue

16. if q>100000:

17. break

18. ((q modulo prime) in list p):

19. f← prime decomposition of q in K

20. for term in f:

21. frc← fractional ideal in term

22. for d ∈ {1, . . . q − 1}

23. if (q-1 mod d is 0 and (epsd) modulo frc ==1):

24. flat← true

25. break

26. if (flat is true):

27. flat← false

28. continue

29. frcs← (frc)2

30. if (epsq−1 mod frcs is not 1)

31. print(prime, polynomial, fractional ideal)

32. foo← true

33. break

34. foo is true:

35. foo← false

36. break
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37. if(prime > 100000):

38. break.

4.3 Remarks

As and when new fields with class number one are added to the database [18], it is pos-

sible to check with the algorithm given in this paper to determine whether it is Euclidean

or not.
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Appendix

5.1 Sage code to compute an admissible prime

Sage Code for generating an Admissible Prime in Cyclic Cubic Fields

J = JonesDatabase()

P = Primes()

import math

flag = false

foo = false

print(’{:<10} | {:<30} | {:<200} | {:<100}’.format("Regulator", "\Defining polynomial", "Fundamental unit", "Admissible prime"))

for ll in data:

prime = int(math.sqrt(ll[1]))

if (prime%6==1 and prime<7000):

#and prime>8000

43
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#print("\nWorking for prime "+str(prime))

#output = J.ramified_at(prime,3)

#print("Number fields are "+str(output))

#for K in output:

#print("Class number s " + str(K.class_number()))

K = NumberField(ll[0],’a’)

if (K.class_number() != 1):

#print("Class number for "+str(prime)+" is not one")

break

U = UnitGroup(K)

#print("Fundamental units are "+str(U.fundamental_units()))

eps = U.fundamental_units()[0]

listp = []

for i in range(prime):

if ((i^((prime-1)/3))%prime==1):

listp.append(i)

#print("The list for prime "+str(prime)+" is "+str(listp))

for q in P:

if (q==2):

continue

if (q>10000000):

break

if ((q%prime) in listp):

#print("The prime I am working with is "+str(q))

f=K.factor(q)

for pair in f:
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frc = pair[0]

#print(frc)

for d in range(1,q-1):

if ((q-1)%d==0):

#print("The divisor I got is "+str(d))

#print("The remainder I got is "+str(frc.small_residue(eps^d)))

if (frc.small_residue(eps^d) == 1):

flag = true

break

if (flag):

flag = false

continue

frcs = frc^2

if (frcs.small_residue(eps^(q-1)) != 1):

#print("eps^(q-1) module ideal squared "+str(frcs)+" is not one.")

print(’{:<10} | {:<30} | {:<100}’.format(prime, K.absolute_polynomial(), (str(frc))[17:]))

#print("For prime "+str(prime)+": Unit is "+str(eps)+", ideal is "+str(frc)+", the prime q is "+str(q)+", and the discriminant p^2 is "+str(prime^2))

foo = true

break

# print(frc.small_residue(eps))

if (foo):

foo = false

break

if (prime > 100000):

break
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5.2 Table of admissible primes

Here we list an admissible prime for cyclic cubic fields with f < 11971.

Table of admissible primes.

f polynomial admissible prime

79 x3 − x2 − 26x − 41 a + 1

97 x3 − x2 − 32x + 79 a2 + 3a − 21

103 x3 − x2 − 34x + 61 2
3a2 − 3a − 8

3

109 x3 − x2 − 36x + 4 35
2 a2 + 191

2 a − 12

127 x3 − x2 − 42x − 80 9a2 + 5a − 153

139 x3 − x2 − 46x − 103 a + 4

151 x3 − x2 − 50x + 123 a2 + 3a − 53

157 x3 − x2 − 52x − 64 135
2 a2 + 977

2 a + 523

181 x3 − x2 − 60x + 67 2
5a2 + 21

5 a − 26
5

193 x3 − x2 − 64x − 143 29
3 a2 − 65a − 734

3

199 x3 − x2 − 66x − 59 2a2 + 16a + 13

211 x3 − x2 − 70x + 125 a2 − 62

223 x3 − x2 − 74x + 256 5313a2 + 28133a − 216059

229 x3 − x2 − 76x + 212 266a2 + 1704a − 7627

271 x3 − x2 − 90x − 261 3a2 − 3a − 152

283 x3 − x2 − 94x − 304 448a2 + 4698a + 11855

331 x3 − x2 − 110x + 49 3
7a2 + 30

7 a − 1

337 x3 − x2 − 112x − 25 4a2 − 3a − 428

367 x3 − x2 − 112x − 435 1633
3 a2 − 13919

3 a − 3149

Continued on next page
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Table 5.1

f polynomial admissible prime

373 x3 − x2 − 124x + 221 38
7 a2 − 475

7 + 733
7

379 x3 − x2 − 126x − 365 13
5 a2 + 156

5 a + 74

409 x3 − x2 − 136x + 515 19
5 a2 − 252

5 a + 134

421 x3 − x2 − 140x + 343 13
7 a2 + 134

7 a − 60

433 x3 − x2 − 144x + 16 4257
4 a2 − 53501

4 a + 1472

439 x3 − x2 − 146x + 504 (3, 1
6a2 + 1

6a − 16)

457 x3 − x2 − 152x + 220 (5, a − 2)

463 x3 − x2 − 154x − 343 (7, 2
7a2 − 23/7a − 30)

487 x3 − x2 − 162x + 505 (5, a)

499 x3 − x2 − 166x − 536 (13, a + 6)

523 x3 − x2 − 174x + 891 (11, a)

541 x3 − x2 − 180x − 521 (7,−2
7a2 − 3

7a + 251
7 )

571 x3 − x2 − 190x + 719 (7,−3
7a2 + 4

7a + 354
7 )

577 x3 − x2 − 192x − 171 (3, 1
9a2 + 11

9 a − 44
3 )

601 x3 − x2 − 200x − 512 (13, a + 3)

613 x3 − x2 − 204x − 999 (3, 1
3a2 − 13

3 a − 44)

619 x3 − x2 − 206x − 321 (3, a)

631 x3 − x2 − 210x + 1075 (43, a + 14)

643 x3 − x2 − 214x + 1024 (3, 1
6a2 + 1

2a − 68
3 )

661 x3 − x2 − 220x + 1273 (3, a + 1)

673 x3 − x2 − 224x + 997 (23, a + 3)

691 x3 − x2 − 230x − 128 (5,− 1
10a2 − 23

10a + 74

727 x3 − x2 − 242x − 1104 (3, 1
6a2 + 1

6a − 27)

Continued on next page
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Table 5.1

f polynomial admissible prime

733 x3 − x2 − 244x − 1276 (5, a − 1)

739 x3 − x2 − 246x + 520 (5, a)

751 x3 − x2 − 250x − 1057 (7,−1
7a2 + 11

7 a + 23)

757 x3 − x2 − 252x − 729 (3,−1
9a2 + 10

9 a + 19)

769 x3 − x2 − 256x + 1481 (5, 1
5a2 + a − 166

5 )

787 x3 − x2 − 262x + 991 (31, a + 8)

811 x3 − x2 − 270x − 1592 (7, a − 2)

823 x3 − x2 − 274x − 61 (5, a + 2)

829 x3 − x2 − 276x + 307 (7, a + 2)

859 x3 − x2 − 286x + 509 (59, a + 28)

883 x3 − x2 − 294x − 1439 (17, a − 4)

907 x3 − x2 − 302x + 739 (11,− 5
11a2 − 40

11a + 1007
11 )

919 x3 − x2 − 306x + 1872 (29, a − 4)

967 x3 − x2 − 322x − 1361 (3, 1
9a2 − 1

3a − 226
9 )

991 x3 − x2 − 330x + 2349 (3, 1
3a2 + 11

3 a − 74)

997 x3 − x2 − 332x + 480 (5, a + 1)

1021 x3 − x2 − 340x − 416 (7, a − 2)

1033 x3 − x2 − 344x − 1913 (37, a − 1)

1039 x3 − x2 − 346x − 2155 (5, a)

1051 x3 − x2 − 350x + 2608 (53, a + 24)

1069 x3 − x2 − 356x − 2336 (29, a − 6)

1087 x3 − x2 − 362x + 2335 (5, a − 2)

1093 x3 − x2 − 364x + 1012 (3, 1
12a2 − 1

4a − 113
6 )

Continued on next page
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Table 5.1

f polynomial admissible prime

1117 x3 − x2 − 372x − 2565 (3, 1
3a2 − 13

3 a − 82)

1123 x3 − x2 − 374x − 1331 (5, a + 2)

1153 x3 − x2 − 384x + 427 (7, a)

1171 x3 − x2 − 390x − 347 (13, 1
13a2 + 4

13a − 214
13 )

1201 x3 − x2 − 400x − 2491 (13, a − 4)

1213 x3 − x2 − 404x − 629 (13, a − 6)

1231 x3 − x2 − 410x + 1003 (11, a + 4)

1237 x3 − x2 − 412x − 1741 (11, 1
11a2 − 2

11a − 245
11 )

1249 x3 − x2 − 416x − 2313 (3, a)

1279 x3 − x2 − 426x + 2179 (11, a + 3)

1291 x3 − x2 − 430x + 3347 (5, 1
5a2 + 8

5a − 278
5 )

1297 x3 − x2 − 432x + 1345 (5, a)

1303 x3 − x2 − 434x + 2799 (3, 1
9a2 + 4

9a − 32)

1321 x3 − x2 − 440x − 3327 (59, a + 9)

1327 x3 − x2 − 442x + 344 (7, 1
14a2 − 1

2a − 137
7 )

1381 x3 − x2 − 460x + 1739 (13,− 1
13a2 + 54

13a + 341
13 )

1423 x3 − x2 − 474x − 896 (5, a − 2)

1429 x3 − x2 − 476x − 3599 (37, a + 5)

1447 x3 − x2 − 482x − 1715 (13, a + 1)

1453 x3 − x2 − 484x + 3767 (7,−1
7a2 − 3a + 344

7 )

1471 x3 − x2 − 490x + 4304 (13, a − 4)

1483 x3 − x2 − 494x + 2197 (13, 1
13a2 − 1

13a − 26)

1531 x3 − x2 − 510x + 567 (5,− 2
15a2 − 16

15a + 227
5 )
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Table 5.1

f polynomial admissible prime

1543 x3 − x2 − 514x − 4229 (3, a + 1)

1549 x3 − x2 − 516x − 459 (3,− 1
15a2 + 2

3a + 117
5 )

1579 x3 − x2 − 526x − 1696 (11, a − 1)

1597 x3 − x2 − 532x − 2780 (3, a + 1)

1609 x3 − x2 − 536x + 1311 (3, a)

1621 x3 − x2 − 540x + 4923 (23, a + 10)

1627 x3 − x2 − 542x − 4640 (13, a + 5)

1657 x3 − x2 − 552x + 4480 (7, a + 2)

1663 x3 − x2 − 554x + 4681 (7, a + 3)

1669 x3 − x2 − 556x + 4327 (3, a + 1)

1693 x3 − x2 − 564x − 2759 (11, a − 3)

1723 x3 − x2 − 574x + 2744 (7, 1
14a2 − 1

14a − 28)

1741 x3 − x2 − 580x + 3353 (13,− 1
13a2 − 40

13a + 318
13 )

1747 x3 − x2 − 582x + 4141 (19, a + 9)

1753 x3 − x2 − 584x + 844 (5, a + 2)

1759 x3 − x2 − 586x + 2215 (3,− 1
15a2 − 4

5a + 74
3 )

1783 x3 − x2 − 594x − 5283 (3,−1
3a2 + 10

3 a + 131)

1801 x3 − x2 − 600x − 4736 (29, a − 7)

1861 x3 − x2 − 620x + 2757 (3, a)

1867 x3 − x2 − 622x + 6085 (3, a + 1)

1873 x3 − x2 − 624x − 4301 (11, 1
11a2 − 6

11a − 38)

1933 x3 − x2 − 644x − 4224 (11, a)

1993 x3 − x2 − 664x + 1181 (11, a − 1)
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Table 5.1

f polynomial admissible prime

1999 x3 − x2 − 666x + 4072 (7,−1
7a2 − 8

7a + 433
7 )

2011 x3 − x2 − 670x − 4171 (13, a + 6)

2017 x3 − x2 − 672x + 2764 (29, a + 5)

2029 x3 − x2 − 676x − 5561 (3,−1
9a2 + 451

9 )

2053 x3 − x2 − 684x − 6083 (11, a)

2083 x3 − x2 − 694x − 1543 (17, 4
17a2 − 86

17a − 1897
17 )

2089 x3 − x2 − 696x − 2708 (19, a + 1)

2113 x3 − x2 − 704x + 6652 (41, a + 15)

2137 x3 − x2 − 712x + 6965 (5, a)

2143 x3 − x2 − 714x − 7064 (23, a − 11)

2161 x3 − x2 − 720x − 2081 (29, a + 8)

2179 x3 − x2 − 726x + 7344 (3, a − 1)

2203 x3 − x2 − 734x − 408 (3, 1
18a2 + 7

18a − 83
3 )

2221 x3 − x2 − 740x − 4113 (5, 1
15a2 − 2

15a − 176
5 )

2239 x3 − x2 − 746x + 7795 (7, a + 2)

2251 x3 − x2 − 750x + 1584 (19, a − 6)

2269 x3 − x2 − 756x − 6723 (47, a + 11)

2281 x3 − x2 − 760x − 7012 (13, a + 6)

2287 x3 − x2 − 762x − 1440 (3, 1
18a2 + 23

18a − 86
3 )

2293 x3 − x2 − 764x + 3397 (17, 7
17a2 + 13

17a − 3504
17 )

2341 x3 − x2 − 780x − 6156 (3,− 1
12a2 − 5

12a + 87
2 )

2347 x3 − x2 − 782x + 5824 (7, 1
14a2 + 3

14a − 37)

2371 x3 − x2 − 790x − 3337 (17, a + 3)
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Table 5.1

f polynomial admissible prime

2377 x3 − x2 − 792x + 7219 (41, a + 5)

2383 x3 − x2 − 794x + 2736 (7, a + 1)

2389 x3 − x2 − 796x − 4955 (3, 1
15a2 + 4

5a − 107
3 )

2467 x3 − x2 − 822x − 731 (17, a)

2473 x3 − x2 − 824x + 6961 (13, 5
13a2 − 14

13a − 2722
13 )

2503 x3 − x2 − 834x − 4079 (17, a + 1)

2521 x3 − x2 − 840x + 9337 (5, 1
5a2 + 13

5 a − 553
5 )

2539 x3 − x2 − 846x − 7523 (11,− 5
11a2 + 100

11 a + 2858
11 )

2551 x3 − x2 − 850x + 4913 (23, a + 2)

2593 x3 − x2 − 864x + 2689 (53, a + 10)

2617 x3 − x2 − 872x + 9111 (3, 1
9a2 + 10

9 a − 194
3 )

2647 x3 − x2 − 882x − 2549 (19, a + 9)

2671 x3 − x2 − 890x − 4056 (3, a)

2677 x3 − x2 − 892x + 3371 (23, a + 7)

2683 x3 − x2 − 894x + 9937 (13, a + 1)

2707 x3 − x2 − 902x + 5815 (5, a)

2713 x3 − x2 − 904x + 10651 (19, a − 1)

2719 x3 − x2 − 906x − 9869 (11, a + 5)

2731 x3 − x2 − 910x − 10216 (13, a − 6)

2749 x3 − x2 − 916x − 1120 (5, a)

2767 x3 − x2 − 922x + 8096 (7, 1
14a2 + 5

14a − 327
7 )

2791 x3 − x2 − 930x − 9200 (5, 1
10a2 − 11

10a − 61)

2833 x3 − x2 − 944x − 9968 (7, a)
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Table 5.1

f polynomial admissible prime

2851 x3 − x2 − 950x + 8025 (3, a)

2857 x3 − x2 − 952x − 4021 (19, a + 5)

2887 x3 − x2 − 962x + 10051 (11, 1
11a2 + 9

11a − 674
11 )

2917 x3 − x2 − 972x + 11776 (23, a)

2953 x3 − x2 − 984x + 7984 (5, a − 2)

2971 x3 − x2 − 990x − 5832 (3, 1
18a2 − 1

18a − 36)

3001 x3 − x2 − 1000x − 8225 (3, a + 1)

3019 x3 − x2 − 1006x + 1789 (3,− 1
21a2 + 10

7 a + 661
21 )

3049 x3 − x2 − 1016x − 1581 (3, 1
21a2 + 1

3a − 229
7 )

3061 x3 − x2 − 1020x − 3968 (19, a + 6)

3067 x3 − x2 − 1022x + 2499 (3, a)

3079 x3 − x2 − 1026x + 9351 (3, −1
15 a2 + 2

3a + 227
5 )

3109 x3 − x2 − 1036x − 2303 (3, a + 1)

3121 x3 − x2 − 1040x − 9941 (23, a − 11)

3163 x3 − x2 − 1054x + 13472 (43, a + 3)

3169 x3 − x2 − 1056x + 11737 (11, a − 1)

3181 x3 − x2 − 1060x + 11428 (41, a − 19)

3187 x3 − x2 − 1062x − 3069 (3, 1
21a2 + 26

21a − 239
7 )

3229 x3 − x2 − 1076x + 5860 (23, a + 8)

3253 x3 − x2 − 1084x − 13253 (3, a + 1)

3259 x3 − x2 − 1086x + 10984 (11, a − 5)

3301 x3 − x2 − 1100x + 13693 (7, 1
7a2 + 2a − 729

7 )

3307 x3 − x2 − 1102x − 6859 (19,− 4
19a2 − 91

19a + 156)
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Table 5.1

f polynomial admissible prime

3319 x3 − x2 − 1106x + 4917 (3, a)

3331 x3 − x2 − 1110x + 2344 (47, a + 18)

3343 x3 − x2 − 1114x − 8048 (3, 1
18a2 + 5

6a − 374
9 )

3361 x3 − x2 − 1120x − 13693 (5, 1
5a2 − 17

5 a − 753
5 )

3373 x3 − x2 − 1124x − 11868 (3, a)

3391 x3 − x2 − 1130x − 14192 (23, a + 4)

3433 x3 − x2 − 1144x − 9409 (11, a + 5)

3457 x3 − x2 − 1152x − 13700 (5, a)

3463 x3 − x2 − 1154x + 3976 (7, a + 2)

3469 x3 − x2 − 1156x + 13619 (11, a + 1)

3499 x3 − x2 − 1166x − 11145 (3, 1
15a2 − 8

15a − 52)

3511 x3 − x2 − 1170x + 10663 (11, a + 2)

3541 x3 − x2 − 1180x + 8000 (5, 1
20a2 − 1

20a − 40)

3559 x3 − x2 − 1186x + 9227 (17, a − 8)

3583 x3 − x2 − 1194x + 1327 (7, a − 2)

3607 x3 − x2 − 1202x − 15096 (3, 1
6a2 − 17

6 a − 133)

3613 x3 − x2 − 1204x + 2141 (13, a + 2)

3631 x3 − x2 − 1210x + 10624 (3, a + 1)

3637 x3 − x2 − 1212x + 15895 (5, a)

3643 x3 − x2 − 1214x − 1889 (23, 1
23a2 + 8

23a − 682
23 )

3673 x3 − x2 − 1224x − 10883 (17, 1
17a2 − 6

17a − 922
17 )

3691 x3 − x2 − 1230x − 13397 (13,− 5
13a2 + 29

13a + 4157
13 )

3697 x3 − x2 − 1232x − 9311 (19, 6
19a2 − 151

19 a − 5095
19 )
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Table 5.1

f polynomial admissible prime

3709 x3 − x2 − 1236x − 15935 (5,−2
5a2 + 41

5 a + 329)

3733 x3 − x2 − 1244x + 8019 (3, a)

3739 x3 − x2 − 1246x − 15233 (11, a − 3)

3769 x3 − x2 − 1256x + 10609 (29, a + 10)

3793 x3 − x2 − 1264x + 14891 (13, a − 5)

3823 x3 − x2 − 1274x + 14584 (7, 1
14a2 + 9

14a − 438
7 )

3847 x3 − x2 − 1282x − 7979 (3,− 1
21a2 + a + 883

21 )

3853 x3 − x2 − 1284x + 16839 (3,−1
9a2 − 5

9a + 286
3 )

3877 x3 − x2 − 1292x − 4595 (5, a)

3889 x3 − x2 − 1296x + 144 (3, a − 1)

3907 x3 − x2 − 1302x + 9261 (7, 1
7a2 + 6

7a − 123)

3919 x3 − x2 − 1306x − 10741 (11, a − 5)

3931 x3 − x2 − 1310x − 12521 (17,− 5
17a2 + 86

17a + 4334
17 )

3943 x3 − x2 − 1314x + 8032 (11, a − 5)

3967 x3 − x2 − 1322x − 17925 (3, a)

4003 x3 − x2 − 1334x − 15419 (11, a + 5)

4021 x3 − x2 − 1340x + 13999 (7, a + 2)

4027 x3 − x2 − 1342x − 15064 (7, 1
14a2 − 11

14a − 64)

4051 x3 − x2 − 1350x − 7952 (11, a + 3)

4057 x3 − x2 − 1352x − 3456 (3,− 1
24a2 + 17

24a + 37)

4093 x3 − x2 − 1364x + 19707 (3, a)

4111 x3 − x2 − 1370x + 17053 (13, 1
13a2 + 11

13a − 952
13 )

4129 x3 − x2 − 1376x − 14528 (7, a + 2)

Continued on next page



CHAPTER 5. APPENDIX 56

Table 5.1

f polynomial admissible prime

4153 x3 − x2 − 1384x − 18304 (11, a − 5)

4159 x3 − x2 − 1386x − 12323 (19, 1
19a2 − 5

19a − 758
19 )

4177 x3 − x2 − 1392x + 5724 (17, a − 8)

4201 x3 − x2 − 1400x + 20227 (5, 1
5a2 + 18

5 a − 928
5 )

4231 x3 − x2 − 1410x + 1567 (7, a + 1)

4243 x3 − x2 − 1414x + 13829 (13, a + 6)

4273 x3 − x2 − 1424x − 7913 (23, a + 5)

4327 x3 − x2 − 1442x + 9295 (5, a)

4363 x3 − x2 − 1454x + 21007 (7, 3
7a2 + 37

7 a − 414)

4423 x3 − x2 − 1474x − 10648 (11, a − 1)

4441 x3 − x2 − 1480x − 9211 (11, a + 1)

4447 x3 − x2 − 1482x + 19435 (23, a + 7)

4483 x3 − x2 − 1494x + 22581 (3, a − 1)

4507 x3 − x2 − 1502x + 15691 (13, a + 4)

4513 x3 − x2 − 1504x − 7856 (3,− 1
24a2 − 9

8a + 253
6 )

4519 x3 − x2 − 1506x + 21256 (5, a + 1)

4549 x3 − x2 − 1516x − 13984 (5, a + 1)

4591 x3 − x2 − 1530x + 23125 (7, a − 2)

4597 x3 − x2 − 1532x − 22304 (13, a + 1)

4603 x3 − x2 − 1534x + 18071 (23, a + 4)

4621 x3 − x2 − 1540x − 21907 (7, 2
7a2 − 59

7 a − 2039
7 )

4651 x3 − x2 − 1550x + 23944 (17, a + 8)

4657 x3 − x2 − 1552x + 22940 (13, a + 4)
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f polynomial admissible prime

4663 x3 − x2 − 1554x − 2936 (5, a − 2)

4723 x3 − x2 − 1574x − 21341 (11, a + 2)

4729 x3 − x2 − 1576x + 10684 (3,− 1
24a2 − 7

8a + 509
12 )

4759 x3 − x2 − 1586x + 5464 (7, a − 2)

4813 x3 − x2 − 1604x − 18539 (47, a + 16)

4831 x3 − x2 − 1610x − 12167 (23,− 7
23a2 − 16

23a + 329)

4861 x3 − x2 − 1620x − 24125 (5, 2
5a2 − 47

5 a − 428)

4903 x3 − x2 − 1634x + 13801 (11, a + 3)

4909 x3 − x2 − 1636x + 17636 (5, a + 1)

4933 x3 − x2 − 1644x + 1827 (7, a + 2)

4951 x3 − x2 − 1650x − 1467 (11, a − 2)

4957 x3 − x2 − 1652x − 15789 (7,−1
7a2 + 12

7 a + 1121
7 )

4969 x3 − x2 − 1656x + 25029 (3, 1
9a2 + 26

9 a − 123)

4987 x3 − x2 − 1662x − 18101 (19,− 5
19a2 − 55

19a + 5560
19 )

4993 x3 − x2 − 1664x − 2589 (101, a − 25)

4999 x3 − x2 − 1666x + 26291 (5, 1
5a2 + 4a − 1111

5 )

5011 x3 − x2 − 1670x + 4083 (3, a)

5023 x3 − x2 − 1674x − 24929 (11, a + 3)

5059 x3 − x2 − 1686x − 21735 (5, 1
15a2 − 13

15a − 75)

5077 x3 − x2 − 1692x + 5265 (5, a + 1)

5101 x3 − x2 − 1700x − 17948 (5, a + 2)

5107 x3 − x2 − 1702x − 24211 (11, a)

5113 x3 − x2 − 1704x + 13824 (5, a − 2)
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Table 5.1

f polynomial admissible prime

5167 x3 − x2 − 1722x + 24304 (29, a − 6)

5179 x3 − x2 − 1726x + 23785 (5, a)

5209 x3 − x2 − 1736x + 23344 (73, a − 1)

5227 x3 − x2 − 1742x − 6195 (3,− 1
27a2 − 34

27a + 391
9 )

5233 x3 − x2 − 1744x − 17831 (3, 1
21a2 − 2

7a − 1189
21 )

5281 x3 − x2 − 1760x − 27383 (5, a + 2)

5323 x3 − x2 − 1774x + 22672 (3, 1
18a2 + 1

2a − 581
9 )

5347 x3 − x2 − 1782x − 10496 (7, a − 2)

5407 x3 − x2 − 1802x + 22429 (11, a + 4)

5413 x3 − x2 − 1804x + 5012 (7, a)

5419 x3 − x2 − 1806x − 25088 (17, a − 2)

5431 x3 − x2 − 1810x − 25747 (13, 2
13a2 + 20

13a − 2360
13 )

5437 x3 − x2 − 1812x − 28796 (23, a)

5443 x3 − x2 − 1814x − 28223 (7, 1
7a2 − 6a − 1226

7 )

5449 x3 − x2 − 1816x − 24016 (17, a + 7)

5503 x3 − x2 − 1834x + 30776 (29, a − 1)

5521 x3 − x2 − 1840x + 10633 (7, a)

5527 x3 − x2 − 1842x − 20061 (7, 1
21a2 − 1

3a − 418
7 )

5563 x3 − x2 − 1854x + 28021 (7, a)

5569 x3 − x2 − 1856x + 17532 (3, 1
24a2 + 1

24a − 205
4 )

5581 x3 − x2 − 1860x + 7648 (7, 1
28 −

9
28a − 328

7 )

5623 x3 − x2 − 1874x − 10413 (19, a − 7)

5641 x3 − x2 − 1880x + 19639 (13, a + 2)
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Table 5.1

f polynomial admissible prime

5647 x3 − x2 − 1882x + 29699 (17, a)

5653 x3 − x2 − 1884x − 7328 (19, a + 6)

5683 x3 − x2 − 1894x − 421 (5, a − 2)

5689 x3 − x2 − 1896x + 2107 (29, a + 2)

5701 x3 − x2 − 1900x − 15625 (7, a + 2)

5737 x3 − x2 − 1912x − 17636 (3, a + 1)

5743 x3 − x2 − 1914x + 25099 (19, a)

5749 x3 − x2 − 1916x − 2981 (11, a − 2)

5791 x3 − x2 − 1930x − 12011 (3, a + 1)

5821 x3 − x2 − 1940x + 10564 (7, 1
14a2 + 3

2a − 620
7 )

5839 x3 − x2 − 1946x − 22491 (3, a)

5851 x3 − x2 − 1950x + 13869 (23, a + 10)

5857 x3 − x2 − 1952x − 26465 (5, a)

5869 x3 − x2 − 1956x + 33475 (13, a)

5881 x3 − x2 − 1960x − 31801 (7, 2
7a2 − 37

7 a − 372)

5923 x3 − x2 − 1974x + 21937 (19, a + 9)

6007 x3 − x2 − 2002x + 17576 (13,− 3
13a2 + 42

13a + 306)

6043 x3 − x2 − 2014x + 15667 (3,− 1
27a2 − 8

9a + 1306
27 )

6067 x3 − x2 − 2022x − 34155 (5, a + 1)

6073 x3 − x2 − 2024x + 33289 (5, a + 2)

6091 x3 − x2 − 2030x − 1128 (3,− 1
30a2 + 17

30a + 223
5 )

6121 x3 − x2 − 2040x − 22217 (13, a)

6133 x3 − x2 − 2044x + 13856 (7,− 3
28a2 − 41

28a + 1021
7 )
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Table 5.1

f polynomial admissible prime

6151 x3 − x2 − 2050x + 34400 (5,−1
5a2 − 24

5 a + 274)

6199 x3 − x2 − 2066x − 19745 (5, 1
25a2 − 3

25a − 277
5 )

6211 x3 − x2 − 2070x − 30825 (5, 1
15a2 − 16

15a − 91)

6217 x3 − x2 − 2072x − 30164 (11, a + 4)

6229 x3 − x2 − 2076x − 10151 (37, a + 10)

6271 x3 − x2 − 2090x + 7200 (3, 1
30a2 − 41

30a − 46)

6277 x3 − x2 − 2092x + 12089 (11, a − 2)

6301 x3 − x2 − 2100x − 33372 (3, 1
12a2 − 19

12a − 231
2 )

6337 x3 − x2 − 2112x − 35675 (7,−1
7a2 + 16

7 a + 1403
7 )

6343 x3 − x2 − 2114x − 28661 (5, a + 2)

6361 x3 − x2 − 2120x + 36988 (7, a − 3)

6367 x3 − x2 − 2122x − 34429 (11, a + 5)

6373 x3 − x2 − 2124x + 32101 (7, a + 3)

6379 x3 − x2 − 2126x − 11813 (29, a + 11)

6397 x3 − x2 − 2132x + 35065 (5, a)

6421 x3 − x2 − 2140x − 28300 (61, a − 10)

6427 x3 − x2 − 2142x + 38800 (5, a + 1)

6451 x3 − x2 − 2150x − 35600 (5,− 1
10a2 + 1

10a + 143)

6469 x3 − x2 − 2156x + 31147 (19, 1
19a2 + 11

19a − 1359
19 )

6481 x3 − x2 − 2160x + 19683 (11, a − 2)

6529 x3 − x2 − 2176x + 3869 (13, a + 3)

6547 x3 − x2 − 2182x − 13579 (29, 1
29a2 + 4

29a − 1727
29 )

6571 x3 − x2 − 2190x + 24337 (31, a − 6)
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Table 5.1

f polynomial admissible prime

6577 x3 − x2 − 2192x + 5359 (11, a + 4)

6607 x3 − x2 − 2202x + 15661 (37, a + 13)

6619 x3 − x2 − 2206x − 4903 (23, a + 3)

6661 x3 − x2 − 2220x − 17516 (7, 3
28a2 − 53

28a − 2193
14 )

6673 x3 − x2 − 2224x − 38308 (37, a + 10)

6679 x3 − x2 − 2226x − 22016 (13, 2
13a2 − 45

13a − 2997
13 )

6691 x3 − x2 − 2230x − 36181 (19, a + 4)

6703 x3 − x2 − 2234x + 41211 (3,−1
3a2 − 28

3 a + 500)

6733 x3 − x2 − 2244x − 15461 (29, 1
29a2 + 90

29a − 1739
29 )

6763 x3 − x2 − 2254x − 27553 (41, a + 9)

6781 x3 − x2 − 2260x + 35663 (19, a − 8)

6793 x3 − x2 − 2264x − 8051 (5, a − 2)

6823 x3 − x2 − 2274x − 38411 (11, a + 3)

6829 x3 − x2 − 2276x + 10117 (67, a + 11)

6841 x3 − x2 − 2280x + 39019 (17, a + 7)

6871 x3 − x2 − 2290x + 26975 (13, a − 2)

6883 x3 − x2 − 2294x − 31101 (5, a + 2)

6907 x3 − x2 − 2302x − 9721 (11, a − 1)

6949 x3 − x2 − 2316x + 11839 (17, a + 3)

6961 x3 − x2 − 2320x − 2836 (7, a + 1)

6967 x3 − x2 − 2322x − 41544 (3,−1
6a2 + 31

6 a + 257)

6997 x3 − x2 − 2332x + 43796 (29, a + 6)

7039 x3 − x2 − 2346x − 11471 (11, a + 4)
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Table 5.1

f polynomial admissible prime

7057 x3 − x2 − 2352x − 37376 (13, a − 1)

7069 x3 − x2 − 2356x − 38225 (3, 1
15a2 − 6

5a − 317
3 )

7129 x3 − x2 − 2376x − 35381 (13, a + 2)

7159 x3 − x2 − 2386x − 19621 (7, a − 3)

7177 x3 − x2 − 2392x − 24455 (3,− 1
27a2 − 8

9a + 1603
27 )

7207 x3 − x2 − 2402x + 39505 (5, a − 2)

7213 x3 − x2 − 2404x − 41408 (19, a − 9)

7219 x3 − x2 − 2406x + 41175 (53, a − 25)

7237 x3 − x2 − 2412x + 21979 (29, 3
29a2 + 139

29 a − 4562
29 )

7243 x3 − x2 − 2414x + 15559 (11, a + 4)

7309 x3 − x2 − 2436x + 46561 (5, a + 1)

7321 x3 − x2 − 2440x + 45824 (11, a + 3)

7333 x3 − x2 − 2444x − 45356 (5, a + 2)

7369 x3 − x2 − 2456x + 33024 (3, 1
24a2 + 7

24a − 68)

7393 x3 − x2 − 2464x + 4381 (41, a + 10)

7411 x3 − x2 − 2470x − 30193 (19, a + 3)

7417 x3 − x2 − 2472x + 17581 (17, a + 7)

7459 x3 − x2 − 2486x + 45859 (47, a + 5)

7477 x3 − x2 − 2492x − 33785 (5, a + 1)

7507 x3 − x2 − 2502x + 7785 (5, a + 1)

7537 x3 − x2 − 2512x − 13120 (5, a − 2)

7549 x3 − x2 − 2516x − 39143 (13, a)

7561 x3 − x2 − 2520x − 7281 (3, 1
33a2 + 4

3a − 565
11 )
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Table 5.1

f polynomial admissible prime

7573 x3 − x2 − 2524x + 29731 (3, a + 1)

7591 x3 − x2 − 2530x + 9559 (11, 1
33a2 − 4

11a − 155
3 )

7603 x3 − x2 − 2534x + 36607 (13, a + 5)

7669 x3 − x2 − 2556x − 38061 (3,− 1
21a2 − 8

21a + 569
7 )

7681 x3 − x2 − 2560x + 45517 (3, a + 1)

7699 x3 − x2 − 2566x + 32792 (7, a − 1)

7717 x3 − x2 − 2572x + 50875 (5, a)

7723 x3 − x2 − 2574x + 46624 (17, a + 8)

7741 x3 − x2 − 2580x + 41572 (5, 1
20a2 − 7

20a − 859
10 )

7759 x3 − x2 − 2586x − 33335 (5, a)

7789 x3 − x2 − 2596x − 47311 (11, 1
11a2 − 56

11a − 157)

7873 x3 − x2 − 2624x − 17204 (11, a − 3)

7927 x3 − x2 − 2642x − 33176 (11, a)

7933 x3 − x2 − 2644x − 27031 (5, a − 2)

7951 x3 − x2 − 2650x + 15313 (23, a − 11)

7963 x3 − x2 − 2654x − 43944 (3, 1
18a2 − 17

18a − 295
3 )

7993 x3 − x2 − 2664x + 40261 (17, a + 2)

8053 x3 − x2 − 2684x − 14913 (3, a)

8059 x3 − x2 − 2686x − 8656 (17, 1
34a2 + 11

34a − 1005
17 )

8089 x3 − x2 − 2696x − 41943 (3, a)

8101 x3 − x2 − 2700x + 32704 (7, 1
28a2 + 3

28a − 64)

8161 x3 − x2 − 2720x + 50175 (3, a)

8167 x3 − x2 − 2722x − 41440 (5, a − 2)
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Table 5.1

f polynomial admissible prime

8179 x3 − x2 − 2726x − 53315 (5, a)

8221 x3 − x2 − 2740x − 17051 (3, a + 1)

8233 x3 − x2 − 2744x + 45129 (3,− 1
21a2 + 8

21a + 87)

8263 x3 − x2 − 2754x − 41009 (17, a + 2)

8293 x3 − x2 − 2764x + 27029 (5, a − 1)

8311 x3 − x2 − 2770x + 4925 (5, 1
35a2 − 16

35a − 373
7 )

8317 x3 − x2 − 2772x − 32960 (5, a)

8329 x3 − x2 − 2776x + 32699 (19, a − 2)

8353 x3 − x2 − 2784x + 55996 (89, a − 42)

8377 x3 − x2 − 2792x − 40644 (3,− 1
24a2 + 35

24a + 307
4 )

8389 x3 − x2 − 2796x − 55616 (7, a + 2)

8419 x3 − x2 − 2806x − 53944 (5, 1
5a2 − 7a − 1871

5 )

8431 x3 − x2 − 2810x − 49337 (7, a + 1)

8443 x3 − x2 − 2814x − 47531 (19,− 2
19a2 − 80

19a + 3621
19 )

8461 x3 − x2 − 2820x − 36351 (11, a + 2)

8467 x3 − x2 − 2822x − 26969 (19, a + 1)

8521 x3 − x2 − 2840x + 58069 (7, 3
7a2 + 85

7 a − 5721
7 )

8527 x3 − x2 − 2842x − 46109 (3, a + 1)

8539 x3 − x2 − 2846x − 32891 (13, a − 1)

8581 x3 − x2 − 2860x + 39409 (3, 1
27a2 + 2

9a − 1873
27 )

8599 x3 − x2 − 2866x + 50957 (19, 5
19a2 + 213

19 a − 9455
19 )

8623 x3 − x2 − 2874x − 54293 (11, a + 5)

8641 x3 − x2 − 2880x + 43525 (7, a + 2)
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Table 5.1

f polynomial admissible prime

8677 x3 − x2 − 2892x + 49491 (7, a + 1)

8689 x3 − x2 − 2896x − 12229 (5, a + 1)

8707 x3 − x2 − 2902x + 60304 (3, 1
6a2 + 9

2a − 968
3 )

8713 x3 − x2 − 2904x − 57764 (7, a)

8719 x3 − x2 − 2906x + 56512 (7, a + 1)

8737 x3 − x2 − 2912x + 59541 (3, 1
9a2 + 25

9 a − 649
3 )

8761 x3 − x2 − 2920x − 26932 (17, a + 8)

8779 x3 − x2 − 2926x − 32840 (3, a + 1)

8803 x3 − x2 − 2934x + 61947 (3,−1
3a2 − 32

3 a + 655)

8821 x3 − x2 − 2940x − 14375 (5,− 1
35a2 − 44

35a + 395
7 )

8839 x3 − x2 − 2946x + 32737 (19, a + 4)

8863 x3 − x2 − 2954x − 60728 (17, a + 8)

8893 x3 − x2 − 2964x + 59616 (3, a − 1)

8923 x3 − x2 − 2974x − 54199 (17, 1
17a2 − 20

17a − 1897
17 )

8929 x3 − x2 − 2976x + 47952 (29, a − 8)

8941 x3 − x2 − 2980x − 51328 (5, 1
20a2 − 37

20a − 507
5 )

8971 x3 − x2 − 2990x − 16613 (5,− 1
35a2 + 27

35a + 2078
35 )

9001 x3 − x2 − 3000x − 56673 (5, 1
15a2 − 22

15a − 676
5 )

9007 x3 − x2 − 3002x + 61381 (11, 1
11a2 + 35

11a − 1951
11 )

9013 x3 − x2 − 3004x − 39724 (7, a + 1)

9043 x3 − x2 − 3014x − 49904 (11, 2
11a2 − 74

11a − 4046
11 )

9049 x3 − x2 − 3016x + 47591 (5, 1
25a2 + 2

5a − 1981
25 )

9067 x3 − x2 − 3022x − 58096 (7, a − 3)
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Table 5.1

f polynomial admissible prime

9091 x3 − x2 − 3030x + 57913 (13, a + 4)

9103 x3 − x2 − 3034x − 61361 (3,−1
9a2 + 2a + 2017

9 )

9133 x3 − x2 − 3044x + 65284 (5, a + 2)

9151 x3 − x2 − 3050x − 59651 (13, a + 5)

9157 x3 − x2 − 3052x + 29845 (3, a + 1)

9181 x3 − x2 − 3060x − 63927 (3, 1
3a2 − 34

3 a − 677)

9187 x3 − x2 − 3062x + 47296 (13,− 1
13a2 + 69

13a + 2023
13 )

9199 x3 − x2 − 3066x + 21805 (5, 1
35a2 − 8

35a − 58)

9343 x3 − x2 − 3114x + 47061 (7, a)

9349 x3 − x2 − 3116x − 36011 (11, a − 5)

9397 x3 − x2 − 3132x + 9745 (5, a − 2)

9403 x3 − x2 − 3134x − 26816 (5, a + 2)

9433 x3 − x2 − 3144x − 59393 (13, a + 1)

9439 x3 − x2 − 3146x − 39504 (3, 1
30a2 − 1

6a − 351
5 )

9463 x3 − x2 − 3154x − 48016 (5, a + 2)

9547 x3 − x2 − 3182x − 11315 (5, a)

9613 x3 − x2 − 3204x − 47709 (19, a)

9619 x3 − x2 − 3206x + 59139 (3, 1
21a2 + 16

21a − 712
7 )

9631 x3 − x2 − 3210x + 70984 (7, a + 2)

9643 x3 − x2 − 3214x + 70001 (7, 1
7a2 + a − 2136

7 )

9661 x3 − x2 − 3220x − 13597 (19, a + 9)

9679 x3 − x2 − 3226x − 39433 (11, a + 4)

9733 x3 − x2 − 3244x + 57677 (29, a − 5)
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Table 5.1

f polynomial admissible prime

9739 x3 − x2 − 3246x + 32824 (11, a)

9769 x3 − x2 − 3256x − 52825 (5, a)

9781 x3 − x2 − 3260x − 47456 (7, 1
14a2 + 33

14a − 1083
7 )

9787 x3 − x2 − 3262x + 67784 (7,−1
7a2 − 44

7 a + 2185
7 )

9811 x3 − x2 − 3270x + 6904 (23, a − 2)

9817 x3 − x2 − 3272x + 57084 (3, a)

9829 x3 − x2 − 3276x + 29851 (7,− 1
35a2 + 22

7 a + 2206
35 )

9859 x3 − x2 − 3286x + 71569 (3, a + 1)

9871 x3 − x2 − 3290x − 70925 (5, 1
5a2 − 31

5 a − 436)

9883 x3 − x2 − 3294x + 69547 (11, a + 4)

9901 x3 − x2 − 3300x − 35937 (11, 1
33a2 − 1

33a − 66)

9931 x3 − x2 − 3310x − 63632 (3, a + 1)

9949 x3 − x2 − 3316x − 60431 (3, a + 1)

9967 x3 − x2 − 3322x − 47251 (29, 1
29a2 − 8

29a − 2628
29 )

9973 x3 − x2 − 3324x + 26964 (3,− 1
36a2 − 29

36a + 367
6 )

10009 x3 − x2 − 3336x − 66356 (7, a + 2)

10039 x3 − x2 − 3346x + 56144 (11, a)

10093 x3 − x2 − 3364x + 66539 (5, a − 1)

10099 x3 − x2 − 3366x + 50869 (7, a − 3)

10111 x3 − x2 − 3370x − 20971 (17, a + 6)

10141 x3 − x2 − 3380x + 69109 (17, a − 8)

10159 x3 − x2 − 3386x − 69608 (11, a + 4)

10177 x3 − x2 − 3392x + 55785 (3, 1
27a2 + 10

27a − 752
9 )
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Table 5.1

f polynomial admissible prime

10243 x3 − x2 − 3414x − 74736 (5, a + 2)

10273 x3 − x2 − 3424x − 761 (3, 1
39a2 + 6

13a − 2341
39 )

10303 x3 − x2 − 3434x + 39304 (59, a − 16)

10321 x3 − x2 − 3440x + 42813 (11, a + 3)

10333 x3 − x2 − 3444x + 55492 (31, a + 13)

10369 x3 − x2 − 3456x − 51461 (11, a + 2)

10429 x3 − x2 − 3476x + 32832 (3,− 1
36a2 − 31

36a + 65)

10453 x3 − x2 − 3484x + 75881 (19, a + 1)

10459 x3 − x2 − 3486x − 65853 (7, 1
21a2 − 19

21a − 761
7 )

10477 x3 − x2 − 3492x − 10089 (3, 1
39a2 + 14

39a − 769
13 )

10501 x3 − x2 − 3500x − 26447 (11, a + 2)

10531 x3 − x2 − 3510x − 20672 (7, a + 3)

10567 x3 − x2 − 3522x + 81405 (3,−1
3a2 − 35

3 a + 786)

10597 x3 − x2 − 3532x − 32576 (3, a + 1)

10627 x3 − x2 − 3542x + 72421 (19, a + 3)

10639 x3 − x2 − 3546x − 74079 (3, 1
15a2 − 5

3a − 782
5 )

10651 x3 − x2 − 3550x + 73768 (3, 1
18a2 + 7

6a − 1175
9 )

10657 x3 − x2 − 3552x + 46575 (5, a)

10663 x3 − x2 − 3554x + 69112 (23, a + 8)

10711 x3 − x2 − 3570x + 68233 (11, a + 2)

10723 x3 − x2 − 3574x − 29389 (7, a + 2)

10729 x3 − x2 − 3576x + 18279 (3, 1
39a2 − 1

3a − 802
13 )

10753 x3 − x2 − 3584x + 76864 (5, a + 2)
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f polynomial admissible prime

10789 x3 − x2 − 3596x − 55943 (43, a)

10831 x3 − x2 − 3610x + 78625 (3, 1
15a2 + 8

5a − 479
3 )

10837 x3 − x2 − 3612x + 83485 (5, a)

10861 x3 − x2 − 3620x + 66775 (17, a + 4)

10867 x3 − x2 − 3622x + 20929 (3, a + 1)

10891 x3 − x2 − 3630x − 46791 (11, 1
11a2 + 7

11a − 2375
11 )

10903 x3 − x2 − 3634x − 26248 (19, a − 4)

10909 x3 − x2 − 3636x + 54949 (7, a + 2)

10993 x3 − x2 − 3664x − 74101 (5, a + 2)

11047 x3 − x2 − 3682x + 36005 (17, a − 6)

11059 x3 − x2 − 3686x + 86424 (3, a)

11119 x3 − x2 − 3706x − 82363 (7, a + 1)

11131 x3 − x2 − 3710x − 42875 (5, 1
35a2 − 1

35a − 70)

11161 x3 − x2 − 3720x − 14468 (5, a + 2)

11173 x3 − x2 − 3724x + 84832 (3,− 1
12a2 − 13

4 a + 619
3 )

11197 x3 − x2 − 3732x + 26541 (3, 1
39a2 − 10

39a − 837
13 )

11239 x3 − x2 − 3746x + 46621 (5, 1
35a2 − 2451

35 )

11251 x3 − x2 − 3750x − 85841 (17, a + 2)

11287 x3 − x2 − 3762x − 67304 (13, a − 3)

11299 x3 − x2 − 3766x + 89555 (11, a − 2)

11317 x3 − x2 − 3772x + 59519 (31, 1
31a2 + 7

31a − 2042
31 )

11329 x3 − x2 − 3776x + 20560 (5, 1
40a2 − 13

40a − 125
2 )

11353 x3 − x2 − 3784x − 841 (5, a − 2)
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f polynomial admissible prime

11383 x3 − x2 − 3794x + 54807 (3, a)

11437 x3 − x2 − 3812x + 9319 (19, a + 1)

11443 x3 − x2 − 3814x − 84763 (7, a)

11467 x3 − x2 − 3822x − 87489 (31, a + 1)

11497 x3 − x2 − 3832x − 39175 (5, a + 1)

11503 x3 − x2 − 3834x + 11929 (37, a + 11)

11527 x3 − x2 − 3842x − 29031 (3, 1
39a2 + 7

39a − 859
13 )

11551 x3 − x2 − 3850x + 64600 (3, 1
30a2 + 13

10a − 253
3 )

11587 x3 − x2 − 3862x + 14591 (31, a − 5)

11593 x3 − x2 − 3864x + 42937 (23, a + 10)

11617 x3 − x2 − 3872x − 91215 (3, 1
3a2 − 38

3 a − 856)

11677 x3 − x2 − 3892x + 92551 (17, a + 1)

11689 x3 − x2 − 3896x + 17317 (23, a + 10)

11701 x3 − x2 − 3900x − 73673 (47, a + 7)

11719 x3 − x2 − 3906x + 82467 (13, a + 6)

11731 x3 − x2 − 3910x + 81248 (11, 1
22a2 + 19

22a − 1358
11 )

11743 x3 − x2 − 3914x + 64369 (17, a + 3)

11821 x3 − x2 − 3940x − 87563 (3,− 1
15a2 + 14

5 a + 2638
15 )

11827 x3 − x2 − 3942x + 35919 (3, 1
39a2 − 7

39a − 68)

11833 x3 − x2 − 3944x + 96417 (3, 1
3a2 + 34

3 a − 880)

11839 x3 − x2 − 3946x + 70157 (41, a + 15)

11863 x3 − x2 − 3954x − 39104 (13, a + 1)

11923 x3 − x2 − 3974x − 2208 (7,− 1
21a2 − 61

21a + 890
7 )
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f polynomial admissible prime

11941 x3 − x2 − 3980x + 97297 (5, 1
5a2 + 33

5 a − 2653
5 )

11953 x3 − x2 − 3984x + 64192 (17, a + 2)

11959 x3 − x2 − 3986x + 77512 (43, a + 10)

11971 x3 − x2 − 3990x + 8424 (3, 1
42a2 − 61

42a − 440
7 )
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