
On a Relative Mumford-Newstead
Theorem

By

Suratno Basu

A thesis submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

to

Chennai Mathematical Institute

May 2016

Plot No-H1, SIPCOT IT Park,

Siruseri, Kelambakkam,

Tamilnadu - 603103

India



ii

CHENNAI

MATHEMATICAL

INSTITUTE Suratno Basu

Plot No.H1, SIPCOT IT Park

Padur Post, Siruseri

Tamil Nadu, India-603 103

Phone: +91 - 44 - 2747 0226

E-mail: suratno@cmi.ac.in

DECLARATION

I declare that the thesis entitled “On a relative Mumford-Newstead Theorem"

submitted by me for the degree of Doctor of Philosophy in Mathematics is the

record of academic work carried out by me under the guidance of Professor V.

Balaji and this work has not formed the basis for the award of any degree, diploma,

associateship, fellowship or other titles in this University or any other University or

Institution of Higher Learning.

Suratno Basu

Chennai Mathematical Institute

May, 2016.





CHENNAI

MATHEMATICAL

INSTITUTE Professor V. Balaji

Plot No.H1, SIPCOT IT Park

Padur Post, Siruseri

Tamil Nadu, India-603 103

Phone: +91 - 44 - 2747 0944

E-mail: balaji@cmi.ac.in

CERTIFICATE

I certify that the thesis entitled “On a Relative Mumford-Newstead Theorem"

submitted for the degree of Doctor of Philosophy in Mathematics by Suratno

Basu is the record of research work carried out by him under my guidance and

supervision, and that this work has not formed the basis for the award of any degree,

diploma, associateship, fellowship or other titles in this University or any other

University or Institution of Higher Learning. I further certify that the new results

presented in this thesis represent his independent work in a very substantial measure.

Chennai Mathematical Institute

Date: May, 2016.

Professor V. Balaji

Thesis Supervisor.



Acknowledgements

This thesis owes a debt of gratitude to many people. Let me take this opportunity

to thank all of them.

First and foremost, I thank my supervisor V Balaji. During my course of research

at CMI he has always been a source of encouragement for me, showing me the

right path to walk and making me aware of possible pitfalls. He introduced me to

this vast research area- Moduli space of Vector bundles. He suggested me several

interesting questions; one of them has been answered in this thesis. I have greatly

benefited from many discussions with him.

I thank C.S Seshadri. It was a great opportunity for me to learn the subject from

him. He very patiently answered several of my doubts. He suggested me a proof of

a crucial statement in my thesis.

I had many fruitful discussions with Ramadas, Ronnie, Nagaraj, Pramath and

Manoj during the preparation of this thesis. I thank them for their precious time

and support. I also thank Ronnie for his valuable comments and critical remarks on

a previous version of this thesis; and for explaining a theorem from his paper.

I thank Rohith and Krisanu. I have learned a great deal of math while discussing

with them. I thank Chary for a very thorough reading of a previous version of the

thesis and suggesting many changes.

I thank Alok, Arijit and Sarbeswar for all their help and support. I consider

myself extremely fortunate to have them as my seniors.

My special thanks to all my freinds for making my social life extremely interesting

and enjoyable. I especially enjoyed the companies of Abhisek, Anirban, Nikhil, Tuhin,

Nirmalya, Rohith,Dhriti, Chary, Krisanu, Panchu, Prateep and Pabitra.

The entire work leading to this thesis was done in Chennai Mathematical Institute

(CMI). I thank CMI for providing such a wonderful atmosphere to do research. I

thank CSIR and CMI for funding my research. My deepest gratitude towards all the

non-academic stuffs in CMI who helped me in their various capacity throughout my

stay in CMI.

v



I thank all my family members for their various help and support throughout. I

particularly thank my uncle, Debal Basu whose support and encouragement helped

me stay focused always.

The two persons whom I love and respect most are my father, Biman Basu and

my mother, Suchitra Basu. They are still my best friends. I would also say they are

to be slightly blamed for pampering me so much that I still can’t do most of the

things without their help. This thesis is dedicated to them.

Finally, I thank Tridebi for letting me dream of a wonderful life together.

Suratno Basu

CMI, May 2016.



Dedicated to my Baba and Maa



Abstract

In this thesis, we prove a relative version of the classical Mumford-Newstead

theorem for a family of smooth curves degenerating to a reducible curve with a

simple node. We also prove a Torelli-type theorem by showing that certain moduli

spaces of torsion free sheaves on a reducible curve allows us to recover the curve

from the moduli space.
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Chapter 1

Introduction

Our main motivation comes from a classical theorem due to Mumford and Newstead.

We will briefly explain the theorem: Let X be a smooth, projective curve of genus

g ≥ 2 over C. We fix a line bundle L of odd degree over X. Let MX be the moduli

space of rank 2, stable vector bundles E such that detE ' L. It is known that MX

is a smooth, projective and unirational variety. Consequently it follows, by [Ser59,

Lemma 1], that the Hodge numbers h0,p = hp,0 = 0.Therefore, we have the following

Hodge decomposition:

H3(MX , C) = H1,2 ⊕ H1,2,

where α is the complex conjugate of α ∈ H3(MX , C) = H3(MX , R) ⊗ C and

H1,2 ' H2(MX , Ω1
MX

). Let pr1 : H3(MX , C) → H1,2 be the first projection. Since

H3(MX , R) ∩ H1,2 = {0}, we get that the image pr1(H3(MX , Z)) is a full lattice in

H1,2. We associate a complex torus corresponding to the above Hodge structure:

J2(MX) :=
H1,2

pr1(H3(MX , Z))
(1.1)

It is known as the second intermediate Jacobian of MX . We remark that the com-

plex torus, defined above, varies holomorphically in an analytic family of smooth

projective, unirational varieties and is a principally polarised abelian variety. It is

known that the second Betti number b2(MX) = 1 ([New67]). Let ω be the unique

ample, integral, Kähler class on MX which is also a generator of H2(MX , Z). Then

the principal polarisation on J2(MX) is induced by the following paring:

(α, β) 7→
∫

MX

ωn−3 ∧ α ∧ β, (1.2)

1



Chapter 1. Introduction 2

where α, β ∈ H1,2 and n = dim
C

MX . We denote this polarisation on J2(MX) by θ′.

The theorem of Mumford and Newstead ([MN68, Theorem in page 1201]) asserts

that there is a natural isomorphism φ : J(X)→ J2(MX) such that φ∗(θ′) = θ, where

J(X) is the Jacobian of the curve and θ is the canonical polarisation on J(X). In

[Bal90, Section 5, page 625]) there is a detailed proof of the fact φ∗(θ′) = θ. Hence,

appealing to the classical Torelli theorem one can recover the curve X from the

moduli space MX . This approach was employed by various other authors to recover

the curve X from certain other moduli spaces associated to X. For example V Balaji

in [Bal90] proves a Torelli type theorem for the Seshadhri desingularisation ÑX of the

rank 2 trivial determinant moduli space NX by looking at the second intermediate

Jacobian of ÑX .

The main observation of Mumford and Newstead is that there is a natural

isomorphism of Hodge structures between H1(X, Z) and H3(MX , Z). In this thesis

we are mainly interested in the following question: Suppose X0 is reducible projective

curve with a simple node. There is a certain moduli space MX0
of rank 2, stable

torsion free sheaves with fixed “odd determinant” associated to it. The question

is whether there is a natural isomorphism of Mixed Hodge structures between

H1(X0 , Z) and H3(MX0
, Z). In this thesis we will show that this is indeed the case.

In fact we will prove a stronger result in the relative setting. We now summarize the

main results obtained in this thesis:

Let X0 be a projective curve with exactly two smooth irreducible components X1

and X2 meeting at a simple node p. Fix two rational numbers 0<a1 , a2<1 such that

a1 + a2 = 1 and let χ be an odd integer. Under some numerical conditions, Nagaraj

and Seshadri construct in [NS97, Theorem 4.1], the moduli space M(2, (a1 , a2), χ)

of rank 2, (a1 , a2)-semistable torsion free sheaves on X0 with Euler charachteristic

χ. Moreover, they show that M(2, (a1 , a2), χ) is the union of two smooth, projective

varieties intersecting transversally along a smooth divisor. We will observe that

there exists a determinant morphism det : M(2, (a1 , a2), χ) → Jχ−(1−g)(X0) where

Jχ−(1−g)(X0) is the Jacobian parametrizing the line bundles with Euler characteristic

χ− (1− g) over X0 (see Proposition 2.16 in Chapter 1). We further observe that the

fibres of the morphism det is again the union of two smooth projective varieties

intersecting transversally (see Proposition 2.17 in Appendix). Fix ξ ∈ Jχ−(1−g). We

denote the fibre det−1(ξ) by M0,ξ . Since M0,ξ is a singular variety, a priori H3(M0,ξ , C)

has an intrinsic mixed Hodge structure. Let g be the arithmetic genus of X0 . Note

that g = g1 + g2 , where gi is the genus of Xi for i = 1, 2. Under the assumption gi>3,
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i = 1, 2, we will show that H3(M0,ξ , Q) ' Q2g, and that it has a pure Hodge structure

with Hodge numbers h
3,0

= h
0,3

= 0. Thus we have an intermediate Jacobian J2(M0,ξ ),

as defined earlier, corresponding to the Hodge structure on H3(M0,ξ , C) which is a

priori only a complex torus of dimension g.

Let π : X → C be a proper, flat and surjective family of curves, parametrised

by a smooth, irreducible curve C. Fix 0 ∈ C. We assume that π is smooth outside

the point 0 and π−1(0) = X0 , where X0 is as above, gi > 3 for i = 1, 2. Let Xt be

the fibre π−1(t) over t ∈ C. Fix a line bundle L over X such that the restrictions

Lt to Xt are line bundles with Euler characteristics χ− (1− g) for t 6= 0 and L0 is

isomorphic to the line bundle ξ. In this situation, it is observed in [NS97, Lemma

7.2] that there is a family π′ :ML → C such that the fibre π′−1(t) over a point t 6= 0

is Mt,Lt
, the moduli space of rank 2, semistable locally free sheaves with det ' Lt

over the smooth projective curve Xt and π′−1(0) = M0,ξ (see Section 2.0.6). We

should mention a related work by X Sun [Sun01]. In [Sun01] the author constructs

a family of rank r fixed determinant, semistable bundles over smooth projective

curves degenerating to a “fixed determinant” moduli space of rank r torsion free

sheaves over X0 . We consider an analytic disc ∆ around the point 0 and we denote

the family π′ : π′−1(∆)→ ∆ by {Mt,Lt
}t∈∆ .

With these notations we state one of the main results of this thesis :

Theorem 1.1.

1. There is a holomorphic family {J2(Mt,Lt)}t∈∆ of intermediate Jacobians corresponding

to the family {Mt,Lt
}t∈∆ . In other words, there is a surjective, proper, holomorphic

submersion

π2 : J2(ML) −→ ∆

such that π−1
2 (t) = J2(Mt,Lt

) ∀ t ∈ ∆∗ := ∆ \ {0} and π−1
2 (0) = J2(M0,ξ ). Further,

there exists a relative ample class Θ′ on J2(ML)|∆∗ such that Θ′|J2(Mt,Lt
)
= θ′

t
, where

θ′
t

is the principal polarisation on J2(Mt,Lt
).

2. There is an isomorphism

J0(X ) Φ
∼

//

π1 ""

J2(ML)

π2{{
∆

(1.3)
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such that Φ∗Θ′|π−1
1 (t)

= θt for all t ∈ ∆∗, where π1 : J0(X )→ ∆ is the holomorphic

family {J0(Xt)}t∈∆ of Jacobians and θt is the canonical polarisation on J0(Xt). In

particular J2(ML)0 := π−1
2

(0) is an abelian variety.

By the above theorem we deduce the following:

Corollary 1.2. Let X0 be a projective curve with exactly two smooth irreducible components

X1 and X2 meeting at a simple node p. We further assume that gi>3, i = 1, 2. Then, there

is an isomorphism J0(X0) ' J2(M0,ξ ), where ξ ∈ Jχ(X0). In particular, J2(M0,ξ ) is an

abelian variety.

Since J0(X0) is isomorphic to J0(X1)× J0(X2), we observe the Jacobian J0(X0)

is independent of the nodal point in X0 . Hence, the classical Torelli theorem fails

for such curves (see [MM64, Page 6 ]). On the other hand, it is known that under

a suitable choice of the polarisation on the Jacobian J0(X0), one can recover the

normalization X̃0 of X0 , but not the curve X0 . In otherwords one can recover both

the components of X0 but not the nodal point(see [Hai02, page 125]).

We see that the moduli space M0,ξ of rank 2 torsion free sheaves carries more

information than the Jacobian J(X0). In fact, we show that we can actually recover

the curve X0 from M
0,ξ′ by following a strategy of [BBdBR01]. More precisely, we

will prove the following analogue of the Torelli theorem for reducible curves:

Theorem 1.3. Let X0 ( resp. Y0) be the projective curve with two smooth irreducible

components Xi (resp. Yi), i = 1, 2 meeting at a simple node p (resp. q). We assume that

genus(Xi) = genus(Yi), for i = 1, 2, and X1 � X2(resp. Y1 � Y2). Let M0,ξX0
(resp.

M0,ξY0
) be the moduli space of rank 2, semistable torsion free sheaves E with detE ' ξX0

,

ξX0
∈ Jχ(X0), on X0 (resp. on Y0). If M0,ξX0

' M0,ξY0
then we have X0 ' Y0 .

1.1 Layout Of The Thesis

The general layout of this thesis is as follows: In Chapter 1 we will briefly summarize

the main results of [NS97] which we crucially need for the remaining chapters.

Though this Chapter mostly contains statements of the main results from [NS97]

the existence of a certain determinant morphism has been explained in some details.

This is quite crucial since we are mainly interested in computing the cohomologies
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of its fibres. I thank Prof C.S Seshadri for suggesting a way to show that the

determinant morphism exists. In Chapter 3 we will compute certain cohomology

groups of the moduli space M0,ξ . The Chapter 4 contains the proof the Theorem 1.1

and in Chapter 5 we will prove the Torelli type theorem.





Chapter 2

Preliminaries

In this chapter, we briefly recall the main results in [NS97] which will be extensively

used in the present work. Though this chapter is an exposition of the main results

obtained in the article [NS97], the existence of certain determinant morphisms are

explained with some details. Also the Theorem 2.12 is not explicitely proved in

[NS97]. We believe this is a new observation. Before proceeding further we will fix

the following notations. We will follow these notations in the subsequent chapters.

2.0.0.1 Notation

• Throughout we work over the field C of complex numbers. We assume that all

the schemes are reduced, separated and of finite type over C.

• Let pi : X1 × · · · × Xn → Xi be the ith projection, where Xi is a scheme for

i = 1, . . . , n. By abuse of notation, we denote p∗
i
(Ei) also by Ei , where Ei is a

sheaf of OXi
- modules.

• Let X be a projective scheme and E be a vector bundle over X. Then we set

hi(E) := dim
C

Hi(X, E).

• By cohomology of a scheme X, we mean the singular cohomology of the space

Xann , the analytic space with complex analytic topology associated to X.

• Let E be coherent sheaf over X. We denote by Ep the stalk at p and by

E(p) :=
Ep

mp Ep
the fibre of E at p ∈ X, where mp is the maximal ideal of the

local ring at the point p.

7
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• Let X be a smooth projective curve and E be a vector bundle over X. Then

we denote E⊗OX(np) by E(np), where p ∈ X is a closed point and n is an

integer.

• Let E1 , E2 be two locally free sheaves on a projective scheme X and let qi :

PE1 ×X PE2 → PEi for i = 1, 2 be two projections. Then we denote the line

bundle q∗
1
O(m)⊗ q∗

2
O(n) by O(m, n) where O(m) := O(1)⊗m.

• If Z is a closed subvariety of a smooth variety X, then we denote by

Codim(Z, X), the codimension of Z in X.

We recall some basic definitions from commutative algebra. All rings considered in

this section are Noetherian.

Definition 2.1. Let (A, m) be a local ring and M be a finitely generated A module.

We say a1 · · · ar ∈ m is a m-regular sequence if the following hold:

1. (a1 , · · · , ar)M 6= M,

2. ai is a non-zero divisor in M
(a1 ,··· ,ai−1 )M for i = 1 · · · r.

The depth of a A module M is defined to be the length of a maximal m- regular

sequence.

Definition 2.2. An extension A ⊂ B of reduced rings is subintegral if

(1) B is integral over A

(2) Spec B→ Spec A is a bijection

(3) ∀ P ∈ Spec B, kA∩P → kP is an isomorphism, where kP =
BP

PBP

Definition 2.3. If A ⊂ B, both rings reduced, we say A is seminormal in B if there

is no extension A ⊂ C ⊂ B with C 6= A and A ⊂ C subintegral. We say A is

seminormal if it is seminormal in its total ring of quotients.

Seminormal rings are characterised by the following properties:

Proposition 2.4. ([Nar93, Proposition 3.6]) A reduced ring is seminormal if ∀b, c ∈ A

with b3 = c2 there is a unique a ∈ A with b = a2 and c = a3.

A variety V is said to be seminormal if OV,p is seminormal ∀p ∈ V.
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2.0.1 Triples associated to a torsion free sheaves on a reducible

nodal curve

Let X0 be a projective curve of arithmetic genus g with exactly two smooth irreducible

components X1 and X2 meeting at a simple node p. The arithmetic genus g :=

h1(OX0
) of such a curve is g = g1 + g2, where gi is the genus of Xi for i = 1, 2. Let F

be coherent OX0
- module. Then we say F is a depth 1 OX0

- module if Fx is a depth

1, OX0 ,x-module for all x ∈ X0 . By a torsion free sheaf over X0 we always mean

a coherent OX0
-module of depth 1. Let F be a coherent OX0

-module. Then F has

depth 1 if and only if it is a pure sheaf of dimension 1 i.e. for all nonzero subsheaves

G ⊂ F we have dim supp(G) = 1 (see [NS97, Proposition 2.1]). We say a torsion free

sheaf F is of rank (r1 , r2) on X0 if F restricted to Xi is of rank ri , i = 1, 2. We say F is

of rank r if r1 = r2 = r. Note that one of the ri could be zero for a torsion free sheaf.

2.0.2 Hecke modification

Let V be a vector bundle over a smooth projective curve X. Fix a point x ∈ X and

K ⊂ V(x) be a subspace of V(x). There are two canonical constructions called the

Hecke modifications defined as follows:

(I) φ : W → V, Im(φp) = K, where W is a vector bundle and φ is a homomor-

phism of vector bundles, which is an isomorphism outside p.

(I I) φ′ : V → W ′, Ker(φp) = K, where W ′ is a vector bundle and φ is a homomor-

phism of vector bundles, which is an isomorphism outside p.

(See [NS97, Remark 2.4])

2.0.2.1 Equivalence between the category of torsion free sheaves and the cate-

gory of triples

Let
→
C be a category whose objects are triples (F1 , F2 , A) where Fi are vector bundles on

Xi , for i = 1, 2 and A : F1(p)→ F2(p) is a linear map. Let (F1 , F2 , A), (G1 , G2 , B) ∈
→
C.

We say φ : (F1 , F2 , A)→ (G1 , G2 , B) is a morphism if there are morphisms φi : Fi → Gi
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of OXi
-modules for i = 1, 2 such that the following diagram is commutative:

F1(p)
φ1⊗k(p)

//

A
��

G1(p)

B
��

F2(p)
φ2⊗k(p)

// G2(p)

(2.1)

Let F be torsion free sheaf on X0 . Note that F is locally free outside the point p. Let F̄1

be the restriction of F to X1 and F̄2 be the restriction of F to X2 . Let F1 = F̄1/(torsion)

and F′
2
= F̄2/(torsion).

Proposition 2.5. Given a torsion free sheaf F on X0 there is a unique triple (F1 , F2 , A) ∈
→
C

(up to isomorphism), where F2 is the Hecke modification (of type (I I)) of F′
2
, such that

F ' {( f1 , f2) ∈ F1 ⊕ F2 | A( f1(p)) = f2(p)}. In fact the above association gives an

equivalence of category between the category of torsion free sheaves and the category
→
C.

Proof. Note that if (F1 , F2 , A) ∈
→
C be a triple then F = {( f1 , f2) ∈ F1 ⊕ F2 | A( f1(p)) =

f2(p)} is a torsion free sheaf. We will show that given a torsion free sheaf we can

associate a unique triple (F1 , F2 , A) ∈
→
C such that F = {( f1 , f2) ∈ F1 ⊕ F2 | A( f1(p) =

f2(p)}. From Proposition 2.2 in [NS97] we get an exact sequence:

0→ F → F1 ⊕ F′
2
→ T → 0

of OX0
-modules where the module T is supported at the point p with mX0,p T = 0

and the morphism F → F1 ⊕ F′
2

is an isomorphism outside p. Let

N = Ker(F1(p)⊕ F′
2
(p)→ T).

Then, in [NS97, Remark 2.1], it is shown that the canonical projections

N → F1(p) and N → F′
2
(p)

are surjective. Therefore it follows that F can be identified with the subsheaf

of F1 ⊕ F′
2

consisting of all f = ( f1 , f2) such that evaluation of f at p is in N. Let

K = Ker(N → F1(p)). Then we see that K ⊂ F′
2
(p). There exists a vector bundle F2 on

X2 and a morphism i : F′
2
→ F2 which is an isomorphism outside p and ker(ip) = K

(see Subsection 2.0.2). Let N1 = Image(N) under the canonical homomorphism

F1(p) ⊕ F′
2
(p) θ→ F1(p) ⊕ F2(p). Then we see that the canonical homomorphism

N1 → F1(p) is an isomorphism and N = θ−1(N1) (see [NS97, Remark 2.3]). Now
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the subspace N1 ⊂ F1(p)⊕ F2(p) induces a linear map A : F1(p)→ F2(p) such that

N′ = Graph(A). Therefore we conclude that

F ' {( f1 , f2) ∈ F1 ⊕ F2 | ( f1(p), f2(p)) ∈ Graph(A).

The equivalence of category is proven in the [NS97, Lemma 2.3].

Remark 2.6. Similarly, we define another category
←
C whose objects are triples

(F1 , F2 , A) where Fi are vector bundles over Xi for i = 1, 2 and A : F2(p)→ F1(p) is a

linear map. The morphism between any two such triples is defined in the same way

before. In the proof of Proposition 2.5 if we set K′ = Ker(N → F2(p)) then we see

that

F ' {( f1 , f2) ∈ F′
1
⊕ F′

2
| B( f2(p) = f1(p)},

where j : F1 → F′
1

is the Hecke modification such that ker(jp) = K′ and B : F′
2
(p)→

F′
1
(p) is a linear map. In fact one can again show that the category of torsion free

sheaves is equivalent to the category
←
C (see [NS97, Remark 2.9]). Moreover, we note

that if the triples (F1 , F2 , A) ∈
→
C and (F′

1
, F′

2
, B) ∈

←
C correspond the same torsion free

sheaf F, then they are related by the following diagram:

F1(p)
ip //

A
��

F′
1
(p)

F2(p) F′
2
(p)

jp

oo

B

OO
(2.2)

where i : F1 → F′
1

(resp. j : F′
2
→ F2) is the Hecke modification, as explained in

Subsection 2.0.2, such that ker(ip) = ker(A) (resp Im(jp) = Im(A)).

2.0.2.2 Notion of semistability

Fix an ample line bundle OX0
(1) on X0 . Let deg(OX0

(1)|Xi
) = ci , i = 1, 2, and

ai =
ci

c1+c2
. Then 0<a1 , a2<1 and a1 + a2 = 1. We say a = (a1 , a2) a polarisation on X0 .

We fix a polarization a = (a1 , a2) on X0 .

Definition 2.7. For a torsion free sheaf F of rank type (r1 , r2), we define the rank

r := a1r1 + a2r2 and the slope µ(F) := χ(F)
r , where χ(F) := h0(F)− h1(F). A torsion

free sheaf F is said to be semistable(resp. stable) with respect to the polarisation

a = (a1 , a2) if µ(G) ≤ µ(F)(resp. <) for all nontrivial proper subsheaves G of F.
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Let (F1 , F2 , A) be a triple. A triple (G1 , G2 , B) is said to be a subtriple of (F1 , F2 , A)

if Gi

ji→ Fi are inclusions of OXi
-modules, i = 1, 2, such that the following diagram

commutes-

G1(p)
j1(p)

//

A
��

F1(p)

B
��

G2(p)
j2(p)

// F2(p)

(2.3)

Definition 2.8. We define the Euler characteristic and the slope of a triple

(F1 , F2 , A) ∈
→
C to be:

χ((F1 , F2 , A)) = χ(F1) + χ(F2)− rk(F2) and µ(F1, F2, A) =
χ((F1, F2, A))

r
.

A triple (F1, F2, A) is said to be semistable(resp. stable) if µ(G1, G2, B) ≤ µ(F1, F2, A)

for all nontrivial proper subtriples of (F1, F2, A).

Lemma 2.9. A torsion free sheaf F on X0 is a = (a1 , a2)- semistable (resp. stable) if and

only if the corresponding triple (F1, F2, A) is a = (a1 , a2) semistable (resp. stable).

Proof. Let (F1 , F2 , A) ∈
→
C be the triple associated to a torsion free sheaf F on X0 . Then

we have χ(F) = χ(F1, F2, A) (see [NS97, Remark 2.11]). By Proposition 2.5 a torsion

free subsheaf of F corresponds to a subtriple of (F1 , F2 , A). Therefore, the above

statement follows.

Let S(r, χ) be the set of all rank r, a = (a1 , a2) semistable torsion free sheaves

on X0 with Euler charachteristic χ. Note that the Hilbert polynomial P(E, n) =

(c1 + c2)n + χ(E) for all E ∈ S(r, χ) (this can be easily computed from equation

(2.1.3)).

Lemma 2.10. ([Ses, Septieme Partie]) Then there exists an integer m0 such that-

1. H1(F(m)) = 0 for all F ∈ S(r, χ) and m ≥ m0

2. F(m) is globally generated by its sections for all F ∈ S(r, χ).
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2.0.3 Moduli space of rank 1 torsion free sheaves over a reducible

nodal curve

2.0.3.1 Euler Characteristic bounds for rank 1 semistable sheaves

Fix three integers χ 6= 0, χ1 and χ2 6= 1 with χ > χi such that χ = χ1 + χ2 −
1. Let OX0

(1) be an ample line bundle such that deg(OX0
(1)|X1

) = χ1 − 1 and

deg(OX0
(1)|X2

) = χ2 . Since χ = χ1 + χ2 − 1, the Hilbert polynomial P(L, n) =

(n + 1)χ for all L ∈ S(1, χ). Let b1 =
χ1−1

χ and b2 =
χ2
χ . In this subsection whenever

we say a semistable rank 1 torsion free sheaf we assume the semistability with

respect to the polarisation b = (b1 , b2).

Lemma 2.11. Let L ∈ S(1, χ) and (L1 , L2 , λ) ∈
→
C be the unique triple representing L. Then

χ(Li), the Euler characteristic of Li , satisfy the following:

χ1 ≤ χ(L1) ≤ χ1 + 1, χ2 − 1 ≤ χ(L2) ≤ χ2 .

Moreover if L is semistable and non locally free then we have χ(L1) = χ1 and χ(L2) = χ2 .

Conversely, suppose L be a rank 1 torsion free sheaf with χ(Li) satisfy the above conditions

then L ∈ S(1, χ).

Proof. By Lemma [NS97, Lemma 5.2] we can easily derive the following: if L is

a rank 1,locally free and (L1 , L2 , λ) ∈
→
C be the unique triple representing L then

we only have to check the semistability condition for the subtriples (L1(−p), 0, 0)

and (0, L2 , 0). If L is a rank 1, non locally free sheaf and (L1 , L2 , 0) be the triple

representing L then we only have to check the semistability for the subtriples (L1 , 0, 0)

and (0, L2 , 0). Now by using the definition of semistability (see 2.8) we immediately

get the above Lemma.

In this subsection we prove that the moduli space of rank 1,semistable torsion

free sheaves with respect to a certain choice polarisation is isomorphic to the product

of the Jacobians.

Fix an integer m ≥ m0 such that Lemma 2.10 holds for all F ∈ S(1, χ) and

let P(n) = (n + 1)χ. Let Q(1, χ) be the Quot scheme parametrising all coherent

quotients

O⊕p(m)
X0

→ L→ 0



Chapter 2. Preliminaries 14

with Hilbert polynomial P(n) and U 1 be the universal quotient sheaf of O⊕p(m)
X0×Q(1,χ) on

X0 × Q(1, χ). Let R(1, χ)ss be the open subset of Q(1, χ) such that if q ∈ R(1, χ)ss

then U 1
q := U 1|X0×q is a rank 1 semistable torsion free quotient and the natural map

H0(OX0×q)→ H0(U 1
q )

is an isomorphism. Note that if L ∈ S(1, χ) then ,by Lemma 2.10, L(m) is a quotient

of a trivial sheaf of rank p(m) := h0(L(m)) and the natural map H0(O⊕p(m)
X0

) →
H0(L(m)) is an isomorphism. Therefore L(m) ' U 1

q for some q ∈ R(1, χ)ss. The

group GL(p(m)) acts on Q(1, χ) and R(1, χ)ss is invariant under the action of

GL(p(m)). Moreover, the action of GL(p(m)) goes down to an action of PGL(p(m)).

By a general result in (see [Ses, Septieme partie,III, Theorem 15]) the good quotient

R(1, χ)ss//PGL(p(m)) exists as a reduced, projective scheme. We will now study

the orbit closure equivalence in R(1, χ)ss. Let R0 be the open subset of R(1, χ)ss

consisting of only rank 1, locally free sheaves. Then R0 = R1 tR′
1

where R1 consists of

those rank 1 locally free sheaves L such that χ(L1) = χ1 , χ(L2) = χ2 and R′
1

consists

of those rank 1 locally free sheaves L such that χ(L1) = χ1 + 1, χ(L2) = χ2 − 1. Let

Jχi (Xi) be the Jacobian of isomorphism classes of line bundles over Xi with Euler

characteristic χi , i = 1, 2. With these notations the main theorem of this subsection

is:

Theorem 2.12. The good quotient R(1, χ)ss//PGL(p(m)) is isomorphic to Jχ1 (X1) ×
Jχ2 (X2).

Proof. Let q : R(1, χ)ss → R(1, χ)ss//PGL(p(m)) be the quotient map. More-

over, the subset R1 ⊂ R(1, χ)ss is smooth and irreducible. Therefore, the quotient

R1/PGL(p(m)) is smooth (see [HL10, 4.2.13]) and irreducible.

Claim 1: The quotient q(R1) = R1/PGL(p(m)) is isomorphic to Jχ1 (X1)× Jχ2 (X2).

To see this consider U over X0 × R1 . Then U 1 is locally free and hence Ui =

U 1|Xi
×R1

is locally free. Moreover, χ(Ui |Xi×q) = χi , i = 1, 2. Thus by the universal

property of Jχi (Xi) we get a morphism fi : R1 → Jχi , i = 1, 2. Therefore, we get

a morphism f = ( f1 , f2) : R1 → J = Jχ1 (X1)× Jχ2 (X2). Clearly, this morphism is

PGL(p(m))-invariant and the fibres of this morphism are isomorphic to the orbits of

the PGL(p(m)) action. Therefore, we get a bijective morphism R1/PGL(p(m))→ J.

Since R1/PGL(p(m)) and J are integral and J is smooth, we have that R1/PGL(p(m))

is isomorphic to the variety J = Jχ1 (X1)× Jχ2 (X2).
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Claim 2: We have an equality:

R1/PGL(p(m)) = R(1, χ)ss//PGL(p(m).

Note that Claims 1 and 2 together prove the theorem.

Let [L0 ] ∈ R(1, χ)ss//PGL(p(m) where [] is orbit closure equivalence class. Then

we want to show there is a L ∈ R1 such that q(L) = [L0 ]. In other words the orbit

closure O(L) intersects the orbit closure O(L0). Suppose, L0 is locally free with

χ(L0 |Xi
) = χi , i = 1, 2 then there is nothing to prove. So we assume that L0 is a

rank 1 torsion free but non-locally free sheaf. Let (L1 , L2 , 0) ∈
→
C be the the unique

triple representing L0 . Then by Lemma 2.11 we get χ(Li) = χi , i = 1, 2. Let L

be the rank 1 locally free sheaf corresponding to the triple (L1 , L2 , λ) ∈
→
C where

λ : L1(p) → L2(p) is an isomorphism. We will show now the orbit closure O(L)

intersects the orbit O(L0). For this, let pi : Xi ×A1 → Xi , i = 1, 2, be the two

projections. We again denote the pullback p∗
i
Li by Li . Since Li , i = 1, 2, are free

O
A1 -module, we can choose a O

A1 -module homomorphism λ : L1 |p×A1 → L2 |p×A1

such that λ(t) : L1(p, t)→ L2(p, t) is an isomorphism for all t 6= 0 and λ(0) = 0. Let

G be the graph of the morphism λ in L1 |p×A1 ⊕ L1 |p×A1 and G′ :=
L1 |p×A1⊕L2 |p×A1

G . Let

L := Ker(L1 ⊕ L2 → G′) over X0 ×A1. Now L1 ⊕ L2 and G′, being free O1
A

-module,

are flat over A1. Therefore, L is flat over A1. We also see that Lt is the torsion free

sheaf corresponding to the triple (L1 , L2 , λ(t)). Therefore, Lt ' L for all t 6= 0 and

L0 ' L0 . Note that, as Lt ∈ R(1, χ)ss for all t ∈ A1, H1(Lt) = 0 and Lt is globally

generated for all t ∈ A1. By semicontinuity theorem, we get p2∗L is locally free sheaf

of rank p(m) on A1. Since any locally free sheaf on A1 is free, p2∗L ' OA1
⊕p(m).

Thus we get a quotient

Op(m)

X0×A1
' p∗

2
p2∗L → L → 0.

such that H0(Op(m)
X0×t ) → H0(Lt) is an isomorphism for all t ∈ A1. Hence we get a

morphism φ : A1 → R(1, χ)ss such that φ∗U 1 ' L. Since Lt ' L for all t ∈ A1 − 0,

φ(A1 − 0) lies in the PGL(p(m)) orbit of L and φ(0) = L0 . Therefore, L0 is in the

orbit closure of L. Clearly, χ(Li) = χ(Li |Xi
) = χi , i = 1, 2. Thus L ∈ R1 , and we are

done.

Finally suppose, L0 is a rank 1, locally free sheaf such that χ(L1) = χ1 + 1

and χ(L2) = χ1 − 1 where (L1 , L2 , λ), λ : L2(p) → L1(p) an isomorphism, is the

unique triple representing L0 . Let L be the rank 1 locally free sheaf represented
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by (L1(−p), L2(p), λ) ∈
→
C. Then the orbit closure O(L0) intersects the orbit closure

O(L) in R(1, χ)ss. This easily follows from the observation: the torsion free sheaf L′

represented by the triple (L1 , L2 , 0) ∈
←
C is in the orbit closure of L0 . Note, by Remark

2.6, L′ is isomorphic to the torsion free sheaf represented by (L1(−p), L2(p), 0) ∈
→
C.

Thus , by Lemma 2.11, L′ is semistable. By the previous argument we can show that

L′ is also in the orbit closure of L. Hence the orbit closure O(L0) intersects the orbit

closure O(L). Thus given any [L0 ] ∈ R(1, χ)ss//PGL(p(m) we have seen that there

is a L ∈ R1 such that q(L) = [L0 ]. This proves Claim 2.

2.0.4 Moduli space of rank 2 torsion free sheaves over a reducible

nodal curve

2.0.4.1 Euler Characteristic bounds for rank 2 semistable sheaves

Fix an integer χ and a polarization a = (a1 , a2) on X0 such that a1χ is not an integer.

Then we have the following Euler characteristic restrictions:

Lemma 2.13.

Let χ1 , χ2 be the unique integers satisfying

a1χ<χ1<a1χ + 1 , a2χ + 1<χ2<a2χ + 2 (2.4)

and χ = χ1 + χ2 − 2. If F is a rank 2, a = (a1 , a2)-semistable sheaf then χ(F1) = χ1 ,

χ(F2) = χ2 or χ(F1) = χ1 + 1, χ(F2) = χ2 − 1 and rk(A) ≥ 1 where (F1 , F2 , A) ∈
→
C is

the unique triple representing F. Moreover if F is non-locally free then χ(F1) = χ1

and χ(F2) = χ2 .

Proof. See [NS97, Theorem 3.1].

Fix an integer χ such that a1χ is not an integer. With these notations one of the

main theorems of the article [NS97] is the following.

Theorem 2.14. The fine moduli space M(2, a, χ) of isomorphism classes rank 2, (a1 , a2)

stable torsion free sheaves with Euler characteristic χ exists as a reduced, projective scheme.

Moreover, it has exactly two smooth, irreducible components meeting transversally along a

divisor whenever χ is odd.
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Remark 2.15. Since M(2, a, χ) is union of two smooth projective varieties intersecting

transversally, we have M(2, a, χ) is seminormal.

2.0.5 Determinant morphism

Fix an integer χ and a polarization (a1 , a2) on X0 such that a1χ is not an integer. We

also fix an integer m′ such that Lemma 2.10 holds for all E ∈ S(2, χ) . Let Q(2, χ) be

the Quot scheme parametrising all coherent quotients

O⊕p(m′)
X0

→ E→ 0

and U 2 be the universal quotients sheaf of O⊕p(m′)
X0×Q(2,χ) on X0 ×Q(2, χ). Let R(2, χ)ss

be the open subset of Q(2, χ) such that if q ∈ R(2, χ)ss then U 2
q := U 2|X0×q is a rank

2 semistable torsion free quotient and the natural map

H0(OX0×q)→ H0(U 1
q )

is an isomorphism. Let R(2, χ)ss be the open subset of Q(2, χ) such that if q ∈
R(2, χ)ss then U 2

q := U 2|X0×q is a rank 2 semistable torsion free quotient and the

natural map

H0(OX0×q)→ H0(U 2
q )

is an isomorphism. The moduli space M(2, a, χ) is isomorphic to the good quotient

R(2, χ)ss//PGL(p(m′)). Let χ′
i
= χi − (1− gi), i = 1, 2.

Proposition 2.16. There exists a determinant morphism det : M(2, a, χ) → Jχ′
1 (X1)×

Jχ′
2 (X2) defined by the association F 7→ ∧2F

tor where tor is the maximal submodule of ∧2F

with proper support on X0 .

Proof. First note that if F is a rank 2, (a1 , a2)-semistable torsion fre semistable torsion

free sheaf with Euler charachteristic χ then χ(∧
2F

tor ) = χ− (1− g). Let us restrict the

universal quotient sheaf U 2 to X0 × R(2, χ)ss. Consider the sheaf ∧
2U2

T where T is

the maximal subsheaf of ∧2U 2 with proper support. The natural surjection map

∧2U 2|X0×q →
∧2U 2

T
|X0×q
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induces an isomorphism
∧2U 2|X0×q

tor
' ∧

2U 2

T
|X0×q ,

for all q ∈ R(2, χ)ss as the kernel of the surjection is supported over the nodal point

p. Therefore, we get χ(∧
2U2

T |X0×q) = χ − (1− g) for all q ∈ R(2, χ)ss. Hence the

Hilbert polynomial of ∧
2U2

T |X0×q is independent of q ∈ R(2, χ)ss. Since R(2, χ)ss is

reduced and the Hilbert polynomial of ∧
2U2

T |X0×q is independent of q ∈ R(2, χ)ss

we get that ∧
2U2

T is flat over R(2, χ)ss. Note that if U 2
q := U 2|X0×q is represented by

the unique triple (U 2
q 1

,U 2
q 2

,Aq) then χ(U 2
q 1
) = χ1 , χ(U 2

q 2
) = χ2 or χ(U 2

q 1
) = χ1 + 1,

χ(U 2
q 2
) = χ2 − 1. Thus by Lemma 2.11

∧2U2

T |X0×q , q ∈ R(2, χ)ss is semistable. Thus,

by Lemma 2.10, there is an integer m such that

(i)H1(
∧2U 2

T
|X0×q(m)) = 0 and(ii)

∧2U 2

T
|X0×q(m) is globally generated.

Therefore, there is an open covering {Ui} of R(2, χ)ss and morphisms deti : Ui →
R(1, χ − (1 − g))ss such that, for any non-empty intersection Ui ∩ Uj if we de-

note by detij = deti |Uij
, then there exists g ∈ PGL(n)(Uij) with the property

detij = gdetji where n = h0(∧
2U2

T |X0×q(m)) ( see [D9, Proposition 5.10]). Therefore,

we get a well-defined morphism det : R(2, χ)ss → R(1, χ − (1 − g))ss//PGL(n).

Now the group PGL(p(m′)) acts on R(2, χ)ss. Clearly, if q1 , q2 ∈ R(2, χ)ss

lie in the same orbit of PGL(p(m′)) then det(q1) = det(q2). Hence we get

a morphism R(2, χ)ss//PGL(p(m′)) → R(1, χ − (1 − g))ss//PGL(n) which we

again denote by det. Therefore, we are done since we have already proven

R(1, χ− (1− g))ss//PGL(n) ' Jχ′
1 (X1)× Jχ′

2 (X2) (cf. Theorem 2.12)

For the next proposition we will assume χ to be odd. Let M12 and M21 be two

components of M(2, a, χ) and D be their intersection. Then M12 and M21 are smooth.

Proposition 2.17. The fibres of the morphism det : M(2, a, χ)→ J0 = Jχ′
1 (X1)× Jχ′

2 (X2)

are the union of two smooth, irreducible projective varieties meeting transversally along a

smooth divisor.

Proof. Let J0(X0) be the variety parametrising all isomorphism classes of line bundles

L such that deg(L|Xi
) = 0, i = 1, 2. Then J0(X0) acts on both the varieties M(2, a, χ)

and J0 by F → F⊗ L. Let det1 and det2 be the restriction of det to M12 and M21 . Then

deti are J0(X0) equivariant morphisms. Since M12 , M21 and J0 are smooth we get the
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morphisms deti are smooth. Since D consists of rank 2 non locally free sheaves D

is invariant under the action of J0(X0). By the same argument we get the fibres of

deti |D are smooth. Clearly, detξ
i
∩ D = deti |−1

D
(ξ) for any ξ ∈ J0 . Therefore, det−1

1
(ξ)

and det−1
2

(ξ) intersect transversally.

Remark 2.18. The specific choice of polarisation in subsection 2.0.3 ensures that the

“determinant” ∧
2F

tor of a rank 2 semistable torsion free sheaf is again semistable. Note

that if we choose a generic polarisation i.e. a1χ is not an integer, then we can easily

show that rank 1 torsion free but non locally free sheaves do not occur as semistable

sheaves (see [NS97, page 113]). In this case we can easily show that the moduli space

of rank 1 sheaves is isomorphic to the product of the Jacobian.

2.0.6 Relative moduli space and relative determinant morphism

Let C = SpecR where R is a complete discrete valuation ring and X → C be a flat

family of proper, connected curves. We assume the generic fibre Xη is smooth and

the closed fibre X0 is the curve X0 . We further assume that X is regular over C. For

any C scheme S we denote X ×C S by XS . Fix an integer χ.

2.0.6.1 Relative moduli of rank 1, torsion free sheaves:

Fix a relatively ample line bundle OX (1) over X such that OX (1)|X0
gives the

polarisation of type (b1 , b2). Let Q1 → C be the relative Quot scheme parametrising

all rank 1 coherent quotients

Op(N)
X → L → 0.

which has the fixed Hilbert polynomial p(n) := (n + 1)χ′, χ′ = χ− (1− g), along

the fibre of X and flat over C. Let U be the universal quotient sheaf of O⊕p(m)
XQ1

on

XQ1
. Let G = Aut(Op(m)

X ) be the reductive group scheme over C. Then G acts on

Q1 . Let Rss
1

be the open subvariety of Q1 consisting of those quotients L which

are semistable along the fibre of X and the natural map H0(Op(m)
X ) → H0(L) is

an isomorphism. We can construct a good quotient J := Rss
1

//G, projective over

C using GIT over arbitrary base. Also note that (R1
ss//G)t = R1

ss
t

//Gt for all

t ∈ C ([Ses77, Theorem 4]). Thus the general fibre Jη is the Jacobian Jχ′(Xη) and by

Theorem 2.12 the closed fibre J0 is isomorphic to Jχ′
1 (X1)× Jχ′

2 (X2).
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2.0.6.2 Relative moduli of rank 2, torsion free sheaves

Fix a relatively ample line bundle OX (1)′ over X such that OX (1)′|X0
= OX0

(1) gives

the polarisation of type (a1 , a2) and such that a1χ is not an integer. Let Q2 → C be

the relative Quot scheme parametrising all rank 2 coherent quotients

Op(m′)
X → E → 0.

which has the fixed Hilbert polynomial p(n) := (c1 + c2)n + χ, where ci =

deg(OX0
(1)|Xi

, along the fibre of X → C and flat over C. Let G ′ = Aut(Op(m′)
X )

be the reductive group scheme over C. Then G ′ acts on Q2 . Let Rss
2

be the open

subvariety of Q2 consisting of those quotients E which are semistable along the fibre

of X and for whom the natural map H0(Op(N)
X )→ H0(E) is an isomorphism. It is

shown in [NS97, Theorem 4.2] that a relative moduli space M := Rss
2

//G ′ exists

and is projective over C using GIT over arbitrary base. Thus the general fibreMη is

the moduli space MXη
(2, χ) of rank 2, semistable sheaves with Euler characteristic

χ and M0 is the moduli space M(2, a, χ). Note that if X is a regular surface, by

[NS97, Remark 4.2], Rss
2

is smooth over C. If we assume χ to be odd then Rss
2
= Rs

2
.

Therefore, PG ′ acts onRs
2

freely. SinceRss
2

is smooth we conclude thatM = Rs
2
/PG ′

is regular over C.

Proposition 2.19. There exists a morphism Det :M→ J such that the following diagram

commutes-

M Det //

π′   

J

π′′��
C

(2.5)

Moreover, we have Det|M0
= det.

Proof. Let U ′′ be the universal quotient sheaf on XR2
ss and T̄ be the maximal subsheaf

of ∧2U ′′ with proper support. Note that Rss
2

is a reduced scheme and χ(
∧2U ′′q

tor ) =

χ− (1− g) for all q ∈ Rss
2

. Now χ(
∧2U ′′q

tor ) ' ∧2U ′′
T̄ |Xq

.Thus χ(
∧2U ′′q

tor ) = χ− (1− g)

for all q ∈ Rss
2

. Therefore, the Hilbert polynomial of ∧
2U ′′
T̄ |Xq

is independent of q.

Since Rss
2

is reduced the above fact implies that ∧
2U ′′
T is flat over Rss

2
. Now using

similar arguments as in Proposition 2.16 we get a morphism Det′ : Rss
2
→ J . This

morphism is compatible with the action of PG ′ on Rss
2

. Thus we get a morphism

Det :M→ J such that Det|M0
= det.



Chapter 2. Preliminaries 21

Remark 2.20. By similar arguments as in the proof of Proposition 2.17 we can show

that Det is a smooth morphism. Fix a section σ : C → J such that σ(0) = ξ.

This corresponds to a line bundle L over X such that L|X0
= ξ. Let us denote

Det−1(σ(C)) by ML . Since both the varieties M and J are smooth we conclude

thatML is smooth over C.

2.0.7 Moduli space of triples

Fix ξ ∈ J0 and let det−1(ξ) := M0,ξ . In this subsection we will discuss a different

description of the moduli spaces M(2, a, χ) and M0,ξ in terms of certain moduli space

of triples glued along a certain divisor. This description is given in section 5 of the

article [NS97]. This description will be useful for the cohomology computations

later.

The following facts are well known. For completeness we shall indicate a proof.

Fact 2.21. Let (X, x) be a smooth,projective curve together with a marked point x

and (E, 0 ⊂ F2E(x) ⊂ E(x)) be a parabolic vector bundle with weights 0<β1<β2<1.

Suppose the weights satisfy |β1 − β2 |<1
2 . Then we have-

(a) E is parabolic semistable implies E is parabolic stable.

(b) E is parabolic semistable implies E is semistable.

(c) If E is stable then any quasi parabolic structure (E, 0 ⊂ F2E(x) ⊂ E(x)) is

parabolic semistable with respect to the weights 0<β1<β2<1.

Proof. From our assumption on weights we get that | β1+β2
2 − βi |<1

2 for i = 1, 2.

Suppose E is strictly parabolic semistable. Let L be a parabolic line subbundle of E.

Then we have-

deg(L) =
deg(E)

2
+

β1 + β2

2
− βi .

Since | β1+β2
2 − βi |<1

2 and deg(L) is an integer this is not possible. This completes the

proof of (a). Let L be a line subbundle of E. The parabolic stability of E implies

deg(L)<
deg(E)

2
+

β1 + β2

2
− βi .

Therefore, deg(L)<deg(E)
2 ± 1

2 . Since deg(L) is an integer the above inequality will

imply deg(L) ≤ deg(E)
2 . This completes the proof of (b). Let L be a subbundle of
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E. If L(x) ∩ F2E(x) 6= 0 then we associate the weight β1 otherwise we associate the

weight β2 . Now as E is stable we have

deg(L)<
deg(E)

2
.

Since | β1+β2
2 − βi |<1

2 and deg(L) is an integer we conclude that

deg(L)<
deg(E)

2
+

β1 + β2

2
− βi .

This completes the proof of (c).

The following results is proved in [NS97]

Fact 2.22. Let (F1 , F2 , A) ∈
→
C (resp. (F′

1
, F′

2
, B) ∈

←
C) be a rank 2, (a1 , a2)-semistable

triple and the Euler characteristic χ(Fi), i = 1, 2, satisfy the inequality 2.4(resp.

the inequality 2.7), then Fi(resp. F′
i
) are semistable over Xi for i = 1, 2 (see [NS97,

Theorem 5.1]).

Conversely, we have the following:

Lemma 2.23. Let Fi be rank 2 semistable bundles over Xi and the Euler characteristic

χ(Fi), i = 1, 2, satisfies the inequalities 2.4. Let A : F1(p) → F2(p) be a linear map and

rk(A) = 2, then (F1 , F2 , A) ∈
→
C is (a1 , a2)-semistable. Moreover, if F1 and F2 are both stable

then (F1 , F2 , A) is (a1 , a2)-semistable if rk(A) ≥ 1.

Proof. Case 1: Let rk(A) = 2 The proof of the statement (1) follows from [Bar14,

Lemma 3.1.12 page 39]. For the sake of completeness, we will give a proof here.

It is shown in [NS97, Lemma 5.2] that it is enough to check the semistability

condition for the subtriples of the form (G1 , G2 , B), where Gi = 0 or a subbundle of

Fi or of the form Fi(−p) ⊂ Gi ⊂ Fi , for i = 1, 2. Since rk(A) = 2, we can list out the

triples that can not occur as subtriple of (F1 , F2 , A). Those subtriples are of the form:

(i) (L1 , 0, 0), (ii)(F′
1
, L2 , 0), or (iii)(L1 , F′

2
, 0),

where Li are line subbundles of Fi and F′
i

are the Hecke modifications of Fi for

i = 1, 2.
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If (G1 , G2 , B) is a subtriple of (F1 , F2 , A), where Gi is a subbundle of Fi , then we

can easily check that:

χ((G1 , G2 , B)) ≤ χ((F1 , F2 , A))

2
.

Therefore, it is enough to check that the semistability condition for the subtriples is

of the form:

• (F1(−p), 0, 0)

• (F1(−p), L2 , 0)

• (0, F2(−p), 0),

• (L1 , F2(−p), 0),

• (0, L2 , 0)

where Li is a rank 1 subbundle of Fi . Now we will check the semistability condition

for the subtriple of the form (F1(−p), 0, 0):

χ((F1(−p), 0, 0))
2a1

− χ

2
=

χ(F1)− 2
2a1

− χ

2

=
1
2
[
χ(F1)− (a1χ + 1)− 1

a1

]

<0 (since χ(F1)<a1χ + 1 by 2.4).

We check the semistability condition for the triple (F1(−p), L2 , 0)

µ(F1(−p), L2 , 0) =
χ(F1)− 2 + χ(L2)− 1

2a1 + a2

≤
χ(F1) +

χ(F2)
2 − 3

2a1 + a2
by semistability of F2

=
2χ(F1) + χ(F2)− 6

4a1 + 2a2

=
2χ(F1) + χ(F2)− 6

2(1 + a1)
since a1 + a2 = 1

≤ 2(a1χ + 1) + (a2χ + 2)− 6
2(1 + a1)

by 2.4

=
(2a1 + a2)χ− 2

2(1 + a1)
=

χ

2
− 1

1 + a1

<
χ

2
= µ(F1 , F2 , A)
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Similarly, for the subtriple (0, F2(−p), 0), (L1 , F2(−p), 0), (0, L2 , 0) one can easily

check the semistability condition. Therefore, we conclude that (F1 , F2 , A) is (a1, a2)-

semistable.

Now suppose rk(A) = 1. In this case we need both Fi to be stable.

Since rk(A) = 1 we get a parabolic structure on F1 given by 0 ⊂ ker(A) ⊂ F1(p)

and a parabolic structure on F2(p) given by 0 ⊂ Im(A) ⊂ F2(p). By Fact 2.21 (c)

we conclude that the above two quasi parabolic structure are parabolic stable with

respect to the weights 0<
a1
2 <

a2
2 <1. Thus by [NS97, Theorem 6.1] we get that (F1 , F2 , A)

is semistable.

We will also give a direct proof: As both Fi are stable-

χ(Li) ≤
χ(Fi)

2
− 1

2

for any subbundle Li of Fi , i = 1, 2. Using this and the inequality 2.4 we get -

χ(L1)<
a1χ

2
.

Thus, for the subtriple (L1 , 0, 0), we have µ(L1 , 0, 0)<µ(F1 , F2 , A).

For the subtriple of the form (0, L2 , 0), (F′
1
, L2 , 0) and (L1 , F′

2
, 0) we can easily

check the semistabilty condition. It only remains to check the semistabilty condition

for subtriples of the form (F1 , L2 , A) and (L1 , F2 , 0). Note that the above occurs as

subtriples if Ker(A) = L1(p) and Im(A) = L2(p). Using the inequality 2.4 and

χ(Li) ≤
χ(Fi)

2
− 1

2
.

we check the semistability condition for the subtriple (F1 , L2 , A) and (L1 , F2 , 0):

µ(F1 , L2 , A) =
χ(F1) + χ(L2)− 1

2a1 + a2

≤ 2χ(F1) + χ(F2)− 3
2(1 + a1)

=
χ + χ(F1)− 1

2(1 + a1)

<
χ + a1χ + 1− 1

2(1 + a1)
=

χ

2



Chapter 2. Preliminaries 25

and

µ(L1 , F2 , 0) =
χ(L1) + χ(F2)− 2

a1 + 2a2

≤ χ(F1) + 2χ(F2)− 5
2(1 + a2)

=
χ + χ(F2)− 3

2(1 + a2)

<
χ + a2χ + 2− 1

2(1 + a2)
<

χ

2
− 1

2(1 + a1)
<

χ

2

Remark 2.24. The same results hold true for the triples in the other direction i.e. if Fi

are semistable over Xi , i = 1, 2 satisfying the inequality 2.6 and rk(A) = 2 then the

triple (F1 , F2 , A) ∈
←
C is (a1 , a2)-semistable. Moreover, if Fi are stable and rk(A) ≥ 1

then (F1 , F2 , A) ∈
←
C is (a1 , a2)-semistable.

(I) Semistable triple of type (I): We say a rank 2, (a1 , a2)-semistable triple

(F1 , F2 , A) ∈
→
C is of type (I) if χ(Fi), i = 1, 2, satisfy the following inequalities:

a1χ<χX1
(F1)<a1χ + 1 , a2χ + 1<χX2

(F2)<a2χ + 2 (2.6)

and rk(A) ≥ 1.

(I I) Semistable triple of type (II): We say a (a1 , a2)-semistable triple

(F1 , F1 , B) ∈
←
C is of type (I I) if χ(Fi), i = 1, 2 satisfy the following inequalities:

a1χ + 1<χX1
(F′

1
)<a1χ + 2 , a2χ<χX2

(F′
2
)<a2χ + 1 (2.7)

and rk(B) ≥ 1.

Let S be a scheme. We say (F1 ,F2 ,A) is a family of triples parametrised by

S if Fi ’s are locally free sheaves on Xi × S, i = 1, 2 and A : F1 |p×S → F2 |p×S is a

OS-module homomorphism of locally free sheaves.

Remark 2.25. Given a family of triples (F1 ,F2 ,A) parametrised by S we can associate

a family of torsion free sheaves F parametrised by S i.e. a coherent sheaf F on

X0 × S which is flat over S such that Fs is torsion free for all s ∈ S. The association

is the following: Let G be the locally free subsheaf of F1 |p×S ⊕F2 |p×S generated by

the graph of the homomorphism A and LS :=
F1 |p×S⊕F2 |p×S

G . Consider the exact
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sequence-

0→ F → F1 ⊕F2 → LS → 0.

Since, F1 ⊕F2 and LS are both flat over S. Hence F is flat over S.

In [NS97, Theorem 5.3] it is shown that there is a smooth, irreducible projective

variety which has the coarse moduli property for families of semistable triples of

type I. We denote this space by M12 . By the same construction one can construct

another smooth, irreducible, projective variety which has the coarse moduli property

of semistable triples of type (I I). We denote this space by M21 . Let

D1 := {[(F1 , F2 , A) ∈ M12 | rk(A) = 1}.

and

D2 := {[(F′
1
, F′

2
, B)] ∈ M21 | rk(B) = 1}.

Then, by [NS97, Theorem 6.1] it follows that D1 (resp. D2) is a smooth divisor

in M12(resp. M21). Now if (F1 , F2 , A) ∈
→
C and rk(A) = 1, then by Remark 2.6,

we get a unique triple (F′
1
, F′

2
, B) ∈

←
C such that rk(B) = 1 and χ(F′

1
) = χ(F1) + 1,

χ(F′
2
) = χ(F2)− 1. Therefore, this association defines a natural isomorphism between

D1 and D2 . Let us denote this isomorphism by Ψ and M0 be the variety obtained

by identifying the closed subschemes D1 and D2 via the isomorphism Ψ. Now by

Remark 2.25 we get a morphism f1 : M12 → M(2, a, χ) (resp. f2 : M21 → M(2, a, χ))

by associating a triple (F1 , F2 , A) to the corresponding torsion free sheaf F. Clearly

f1 and f2 are compatible with the gluing morphism Ψ. Thus we get a morphism

M0 → M(2, a, χ). This morphism is bijective. Also this morphism induces an

isomorphism on the dense open subvariety of M0 consisting of isomorphism classes

of triples [(F1 , F2 , A)] such that rk(A) = 2. Therefore it is a birational morphism.

Thus by [Vit89, Theorem 2.4] the variety M0 is isomorphic to the moduli space

M(2, a, χ) as the latter space is projective and seminormal (see Remark 2.15) without

any one dimensional component.

Let S be a finite type scheme and χ′
i
= χi − (1− gi). Given a family of type (I),

(a1 , a2) semistable triples (F1 ,F2 ,A) parametrised by S we get two families of line

bundles ∧2Fi over Xi × S, i = 1, 2. Thus by the universal property of Jχ′
i (Xi) we get

a morphism

det1 : M12 → J0 := Jχ′
1 (X1)× Jχ′

2 (X2).
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such that det1((F1 , F2 , A)) = (∧2F1 ,∧2F2) for all closed points (F1 , F2 , A) ∈ M12 .

Similarly, we get another morphism:

det2 : M21 → J′
0

:= Jχ′
1
+1(X1)× Jχ′

2
−1(X2).

such that det2((F1 , F2 , A)) = (∧2F1 ,∧2F2) for all closed points (F1 , F2 , A) ∈ M21 .

Lemma 2.26. The fibres of deti are smooth and the fibres of deti intersect Di transversally,

i = 1, 2.

Proof. The group J0(X1) × J0(X2) acts on M21 (resp. M21) by (F1 , F2 , A) 7→ (F1 ⊗
L1 , F2 ⊗ L2 , A) and on J0 (resp. J′

0
) by (M1 , M2) 7→ (M1 ⊗ L1 , M2 ⊗ L2) where

(L1 , L2) ∈ J0(X1)× J0(X2). The morphism det1 (resp. det2) is clearly compatible with

the above actions. Thus det1 (resp. det2) is smooth. As M12 (resp. M21) and J0 (resp.

J′
0
) are smooth, the fibres of det1 (resp. det2) are smooth. Clearly, the divisor D1 (resp.

D2) is invariant under the above action. Therefore, deti |Di
are smooth, i = 1, 2. Thus

the fibres of deti |Di
are also smooth. Clearly, the intersection of a fibre of deti with

Di is the fibre of deti |Di
. Hence we are done.

Fix ξ = (ξ1 , ξ2) ∈ Jχ′
1 (X1)× Jχ′

2 (X2). Let det−1
1

(ξ) := Mξ
12

and det−1
2

(ξ ′) := Mξ ′
21

where ξ ′ = (ξ(p), ξ(−p)). By Lemma 2.26 the fibre det−1
1

(ξ) (resp. det−1
2

(ξ ′))

intersects D1 (resp. D2) transversally. Hence Dξ
1

:= det−1
1

(ξ) ∩ D1 and Dξ ′
2

:=

det−1
2

(ξ ′) ∩ D2 . Let M0,ξ be the closed subvariety of M0 obtained by gluing Mξ
12

and

Mξ ′
21

along the closed subschemes Dξ
1

and Dξ ′
2

via the isomorphism Ψ.

Let det be the morphism defined in Proposition 2.16. We can easily show that

det−1(ξ), ξ ∈ J0 is isomorphic to the variety M0,ξ . In the next chapter we will

compute some of the cohomology groups of M0,ξ .

2.0.7.1 Notation

Henceforth, we will denote by M0,ξ , the moduli space of rank 2, (a1 , a2)- semistable

bundles with det ' ξ and its components by M12 and M21 . We also denote the

smooth divisor Dξ
1

in M12 by D1 and the smooth divisor Dξ
2

in M21 by D2 .

We conclude this section by proving a geometric fact about the moduli space M12

(resp. M21).
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Lemma 2.27. The moduli space M12 (resp, M21) is a unirational variety.

Proof. To prove M12 is unirational we can assume, after tensoring by line bun-

dles, it consists of all triples (F1 , F2 , A), where Fi is semistable over Xi such that

deg(Fi)>2(2gi − 1) i = 1, 2. Then, any such Fi can be obtained as an extension:

0→ OXi
→ Fi → ξ i → 0,

where ξ i = det(Fi) for i = 1, 2. The exact sequences of this type are classified by

V
ξi

:= Ext1(OXi
, ξ i) = H1(Xi , ξ∗

i
). Let Ei be the universal extension over Xi × V

ξi
.

We denote the restriction Ei |p×V
ξi

by Ei p
. Clearly, Hom(E1 , E2) parametrises a family

of triples in the sense we have defined family of triples and if (F1 , F2 , A) is a triple

corresponding to the closed point A ∈ Hom(E1 , E2) then Fi ’s are the extensions of the

type described before. Now as the Fi ’s are semistable if we choose an isomorphism

A : F1(p)→ F2(p) then by Lemma 2.22, (F1 , F2 , A) is semistable. Thus we conclude

that the set of points W where the corresponding triple is semistable is a nonempty

Zariski open set of Hom(E1 , E2). Therefore, by the coarse moduli property of M12 ,

we get a morphism from W to M12 . Clearly the morphism W → M12 is surjective.

Hence, M12 is a unirational variety. The same argument shows the moduli space M21

is also a unirational variety.
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Topology of M0,ξ

3.1 Introduction

In this chapter, our main aim is to outline a strategy to compute the cohomology

groups of M0,ξ and compute explicitly the third cohomology group. We make the

following convention: Let X be a topological space. By Hk(X) we mean the singular

cohomology groups of X with the coefficients in Q, k ≥ 0. Whenever we obtain any

results for other coefficients, e.g Z, we will specifically mention it. Suppose X and

Y are varities over C. Whenever we say X → Y is a topological fibre bundle, we

assume the underlying topology of X and Y to be the complex analytic topology.

3.2 Some Topological Facts About Fixed Determinant

Moduli Space over Smooth Projective Curve

Let Y be a smooth,projective curve of genus gY ≥ 2 and MY be the moduli space of

rank 2 semistable bundles with fixed determinant. The cohomology groups of MY

are quite well studied in the literature. When the determinant is odd MY is a smooth

projective variety of dimension 3gY − 3 and the cohomology groups with integral

coefficients are completely known. When the determinant is even MY need not be

smooth. In fact it is known that the singular locus of MY is precisely the complement

MY \Ms
Y

if gY ≥ 3 where Ms
Y

is the open subset consisting of stable bundles (see

[NR69, Theorem 1]). In this case also the Betti numbers are determined in the work

29
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of [BS07]. We will summarize some of the results concerning the cohomology groups

of MY in both the cases i.e. odd determinant and even determinant:

Lemma 3.1. 1. Let MY be the moduli space of rank 2 semistable bundles with odd

determinant. Then MY is a smooth, projective rational variety ([New75]) and hence it

is simply connected and H3(MY , Z)tor = 0. Furthermore, b1(MY) = 0, b2(MY) = 1,

b3(MY) = 2gY , where bi are the Betti numbers ([New67]).

2. Let MY be the moduli space of rank 2 semistable bundles with even determinant. Then

Ms
Y

is a simply connected variety ([BBGN07, Proposition 1.2]). Furthermore, we

have b1(MY) = 0, b2(MY) = 1 and b3(Ms
Y
) = 2gY , where bi are the Betti numbers

([Nit89], [BS07, Section 3]).

3.3 Cohomology Computaion Of M0,ξ

In the last chapter we have seen that the moduli space M0,ξ is the union of two

smooth projective varieties M12 and M21 . In this section our first aim is to compute

some of the cohomology groups of M12 and M21 and then using Mayer-Vietris long

exact sequence we will compute the cohomology groups of M0,ξ . In the final section

we will mainly compute the third cohomology group of M0,ξ .

Let M1 (resp. M′
1
) be the moduli space of rank 2, semistable bundles over X1

with det ' ξ1 (resp. with det ' ξ1(p)) and M2 (resp. M′
2
) be the moduli space of

rank 2, semistable bundes over X2 with det ' ξ2 (resp. det ' ξ2(−p)) where ξ i ’s are

line bundles of degree di = χi − 2(1− gi) for i = 1, 2 and the integers χ1 , χ2 satisfy

the inequality 2.4. Since χ is odd, one of the integer in the pair (d1 , d2) is odd and

the other is even. We assume that d1 is odd and d2 is even. Therefore, M1 and M′
2

are smooth projective varieties. Let Ms
2

be the open subvariety of M2 consisting of all

the isomorphism classes of stable bundles over X2 and M′s
1

be the open subvariety

of M′
1

consisting of all the isomorphism classes of stable bundles over X1 . Note that

M2 \Ms
2

is precisely the singular locus of M2 if g2 ≥ 3 and M′
1
\M′s

1
is precisely the

singular locus of M′
1

if g1 ≥ 3.

Let us denote the open subvariety M1 ×Ms
2

of M1 ×M2 by B. We will show the

following,

Proposition 3.2. There is a surjective morphism p : M12 → M1 ×M2 . Moreover, p : P→
B is a topological P3-bundle where P := p−1(B).
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Proof. Let S be a finite type scheme and (F1 ,F2 ,A) be a family of triples

parametrised by S such that (F1 s
,F2 s

,As) is (a1 , a2)-semistable of type (I) for all

s ∈ S where Fi s
:= Fi |X0×s . We also assume ∧2Fi s

' ξ i , i = 1, 2. Then by Fact 2.22

Fi s
, i = 1, 2, are semistable for all s ∈ S. Thus we get a morphism p : M12 → M1×M2 .

Let ([F1 ], [F2 ]) ∈ M1 ×M2 . Choose any isomorphism A : F1(p) → F2(p). Then, by

Fact 2.23 (F1 , F2 , A) is (a1 , a2)-semistable. Therefore, p is surjective.

Now we show that p : P→ B is a topological P3-bundle. Let b = ([F1 ], [F2 ]) ∈ B.

Our first claim is the fibre p−1(b) is homeomorphic to PHom(F1(p), F2(p)) ' P3.

Let A ∈ Hom(F1(p), F2(p)) and A 6= 0. Since both Fi ’s are stable, by Lemma

2.23, (F1 , F2 , A) is (a1 , a2)-stable. Thus we get a morphism ib : Hom(F1(p), F2(p)) \
0 → M12 . Clearly, ib(Hom(F1(p), F2(p))) \ 0) = p−1(b). Note that (F1 , F2 , A) and

(F1 , F2 , λA) are isomorphic for all λ ∈ C∗. Thus ib descends to a morphism ib :

PHom(F1(p), F2(p))→ p−1(b). Now we show that ib is injective. Then the claim will

follow. Let A, B ∈ PHom(F1(p), F2(p)) are distinct points. Then the triples (F1 , F2 , A),

F1 , F2 , B) are non isomorphic. Suppose, (F1 , F2 , A) and (F1 , F2 , B) are isomorphic as

triples. Then there are isomorphisms φi : Fi → Fi , i = 1, 2 such that we have the

following commutative diagram:

F1(p)
φ1 (p)

//

A
��

F1(p)

B
��

F2(p)
φ2 (p)

// F2(p)

(3.1)

Since Fi are stable the only isomorphisms of Fi are λI for some scalor λ. Thus

we have φi(p) = λi I, i = 1, 2. From the commutativity of the above diagram we

get Bλ1 = λ2 A. Thus B = λ−1
1

λ2 A. Hence a contradiction as A and B are district

in PHom(F1(p), F2(p)). Therefore, the morphism is injective. Since the fibres of

p : P→ B are compact, p : P→ B is a proper, analytic map.

Our next claim is that the induced map dp : TF → Tp(F) at the level of Zariski tan-

gent space is surjective for all F = (F1 , F2 , A) ∈ P. Let (F1 , F2) ∈ B. Since Fi are both

stable, i = 1, 2, the Zariski tangent space TFi
' H1(End(Fi))0 where H1(End(Fi))0 =

Ker(tr1 : H1(End(Fi)) → H1(OXi
)) and tr1, the trace homomorphism (see [HL10,

Theorem 4.5.4]). Thus the tangent space T
(F1,F2)

B ' H1(End(F1))0 × H1(End(F2))0 .

Now a cocycle in H1(End(Fi)) corresponds to a locally free sheaf Fi over Xi × D

such that Fi t0
' Fi where D = Spec C[ε]

ε2 and t0 = (ε). Choose an isomor-

phism A : F1(p) → F2(p). Then clearly, A lifts to a OD-module homomorphism
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A : F1 |p×D → F2 |p×D . Thus we get a triple (F1 ,F2 ,A) parametrised by D such

that (F1 t0
,F2 t0

,At0
) = (F1 , F2 , A). By the coarse moduli property of M12 we get a

morphism x : D → M12 such that x(t0) = (F1 , F2 , A). In otherwords we get a point

of the Zariski tangent space at (F1 , F2 , A). Thus dp is surjective. Therefore, p is a

proper, surjective, holomorphic submersion. Hence, p : P→ B is a topological P3-

bundle.

Remark 3.3. By the same arguments as before we get a morphism p′ : M21 → M′
1
×M′

2
,

where M′
1

is the moduli space of rank 2 semistable bundles over X1 with det ' ξ ′
1

and M′
2

be the moduli space of rank 2 semistable bundles over X2 with det ' ξ ′2,

where ξ ′
1

:= ξ1(p) and ξ ′
2

:= ξ2(−p). Moreover, p′ : P→ B′ is a P3-fibration where

B′ = Ms
1
×M2 and P = p′−1(B′).

3.3.1 Codimension computations

In the following proposition we compute the codimension of the complement of the

open subvariety P in M12 (resp. the complement of P in M21).

Let K′ denote the complement of P in M12 and K′
2

denote the complement of P in

M21 . Then we have

Proposition 3.4.

(a) Codim(K′, M12) = g2 − 1. where g2 is the genus of X2

(b) Codim(K′
2
, M21) = g1 − 1 where g1 is the genus of X1 .

Proof. We will only show (a). The proof of (b) is similar. Note that if (F1 , F2 , A) ∈ K′

then F2 is a strictly semistable bundle on X2 . Therefore, K′ = p−1(M1 × K), where

K = M2 \Ms
2

and p is the morphism as in Proposition 3.2. . Now F2 ∈ K if and only

if there is a short exact sequence

0→ L2 → F2 → L1 → 0,

for some line bundles L1 , L2 with deg(Li) =
d2
2 , i = 1, 2. Clearly, L1 ⊗ L2 ' det(F2) '

ξ2 . Thus K consists of all S-equivalance classes [L1 ⊕ L2 ] of semistable bundles on

X2 where L1 , L2 ∈ Jd′
2 (X2), d′

2
=

d2
2 such that L1 ⊗ L2 ' ξ2 . Let K0 be the subset of K

consisting of all S- equivalence classes [L1 ⊕ L2 ] such that L1 � L2 . Then by [NR69,

Lemma 4.3] K0 is an open and dense subset of K. Let K′′ = p−1(M1 × K0). Then K′′



Chapter 3. Topology of M0,ξ 33

is open and dense in K′. Therefore, we get dim(K′) = dim(K′′). Now we will find a

parameter variety of isomorphism classes of all (a1 , a2)-semistable triples (F1 , F2 , A)

where F1 ∈ M1 and F2 ∈ PExt1(L1 , L2) for some Li ∈ Jd′
2 (X2), i = 1, 2 with L1 � L2

and show that this parameter variety has same dimension as K′′.

Let Jξ2 = {(L1 , L2) ∈ Jd′
2 (X2) × Jd′

2 (X2) | L1 ⊗ L2 ' ξ2}. Note that Jd′
2 (X2) is

isomorphic to Jξ2 by L 7→ (L, ξ2 ⊗ L−1). Therefore, Jξ2 is a closed subvariety of

Jd′
2 (X2)× Jd′

2 (X2) of dimension g2 . Let J′ = {(L1 , L2) ∈ Jd2 (X2)× Jd′
2 (X2) | L1 � L2}.

Then, clearly J′ is an open and dense subvariety of Jd′
2 (X2)× Jd′

2 (X2). Let J′ξ2 :=

J′ ∩ Jξ2 .

We will construct a projective bundle P over J′ such that the fibre over a point

(L1 , L2) ∈ J′ is isomorphic to PExt1(L1 , L2): Let L be the Poincare line bundle over

X2 × Jd′
2 (X2) and Li := (id× pi)

∗L where pi : Jd′
2 (X2)× Jd′

2 (X2)→ Jd′
2 (X2) is the ith

projection for i = 1, 2. Then V := R1p
J′ ∗

Hom(L1 ,L2) is a locally free sheaf of rank

g2 − 1 over J′ where p
J′ : X2 × J′ → J′ is the projection. Let P over J′ be the projective

bundle associated to V. Then the fibre over a point (L1 , L2) ∈ J′ is isomorphic to

PExt1(L1 , L2). Let P′ = P|
J′ξ2

. Let G be the universal extension over X2 × P′ (see

[NR69, Proposition 3.1]) and F be a universal bundle over X2 × M1 (note that F

exists as the degree and rank of the vector bundles in M1 are coprime).

Let Gp := G|
p×P′

and Fp := F|
p×M1

. Clearly, Hom(Fp , Gp) parametrises a family

of triples of type (I) such that every closed point in Hom(Fp , Gp) corresponds to

a triple (F1 , F2 , A) where F1 ∈ M1 and F2 ∈ P′. Note that if E ∈ PExt1(L1 , L2) then

Aut(E) ' C∗ whenever L1 � L2 (see [NR69, Lemma 4.1]). Let A, B ∈ PHom(Fp ,Gp)

be two distinct closed points and (F1 , F2 , A), (G1 , G2 , B) be the corresponding triples.

Then (F1 , F2 , A) and (G1 , G2 , B) are non isomorphic. This follows from the two facts:

if E1 ∈ M1 and E2 ∈ P′ then Aut(Ei) ' C∗. If E1 , E2 ∈ PExt1(L1 , L2) are distinct

then E1 and E2 are non isomorphic ( [NR69, Lemma 3.3]). Let K1 be the subset of

PHom(Fp ,Gp) whose closed points correspond to the triples (F1 ,G2 , A) such that

rk(A) = 2. Then K1 is an open subset in PHom(Fp ,Gp). Note that by Lemma 2.23,

any closed point of K1 is semistable. Therefore, by the coarse moduli property of M12 ,

we get a morphism iK : K1 → M12 . By the above discussions iK is injective. Clearly,

the image iK(K1) is dense in K′′ since if (F1 , F2 , A) ∈ K′′ \ iK(K1) then F2 ' L1 ⊕ L2

for some L1 , L2 ∈ Jd′
2 (X2). Therefore, dim(K1) = dim(K′′)

We have dim(M1) = 3g1 − 3 and dim(P′) = 2g2 − 2. Therefore,

dim(PHom(Fp ,Gp)) = dim(K1) = 3g1 − 3 + 2g2 − 2 + 3 = 3g1 + 2g2 − 2. Note
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that P is a dense open subvariety of M12 , therefore dim(P) = dim(M12). Now, from

the proof of Proposition 3.2, p : P → B is flat with fibres isomorphic to P3 as

algebraic varieties. Therefore, dim(P) = dim(B) + 3 = 3(g1 + g2)− 3. Hence, we

have dimM12 = 3g1 + 3g2 − 3. Since Codim(K′, M12) = dim(M12) − dim(K′) and

dim(K1) = dim(K′′), we see

Codim(K′, M12) = 3g1 + 3g2 − 3− 3g1 − 2g2 + 2

= g2 − 1.

Now we recall a well-known fact (see [BS07, Lemma 12]).

Lemma 3.5. Let X be a smooth projective variety and k := Codim(X/U), where U is an

open subset of X . Then we have Hi(X, Z) ' Hi(U, Z) for all i<2k− 1.

Using the above Lemma and Proposition 3.4 we immediately get the following

Proposition 3.6. With the above notations,

(i) Hi(M12 , Z) ' Hi(P, Z) for i<2k− 1 where k = g2 − 1.

(ii) Hi(M21 , Z) ' Hi(P, Z) for i<2k′ − 1 where k′ = g1 − 1.

3.3.2 Computation of cohomology groups of M12 (resp. M21)

In this subsection we will outline the strategy to compute the Betti numbers of the

component M12(resp. M21) and compute the third cohomology of M0,ξ in full details.

First we compute the Betti numbers of P (resp. P) using the Leray-Hirsh Theorem:

Theorem 3.7. (Leray-Hirsh) Let f : X → Y be a topological fibre bundle with fibres

isomorhic to F. Suppose, e1 , · · · , en ∈ H∗(X) such that H∗(Xy) is freely generated by

i∗y e1 , · · · , i∗y en for all y ∈ Y where Xy = f−1(y) and iy : Xy → X are the inclusions. Then

H∗(X) is freely generated as a H∗(Y)-module by e1 , · · · , en .

Proposition 3.8. The k-th Betti number bk(P) = ∑l+m=k
bl(B)bm(P

3) (resp. bk(P) =

∑l+m=k
bl(B)bm(P

3).
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Proof. Since P and B are both smooth varieties and p : P→ B is a submersion we get

p is smooth. Therefore, the fibres of p|P are smooth. From the proof of Proposition

3.2, it follows that the fibres of p are isomorphic to P3 as algebraic varieties. Choose

a relatively ample line bundle L over P. Now p∗L is locally free by Zariski Main

theorem. Therefore, we get that the dimension of H0(p−1(b), L|
p−1(b)

) is constant for

all b ∈ B. Hence, L|
p−1(b)

= O(k) for some k>0 for all b ∈ B. Consider the cohomolgy

classes c1(L), c1(L)2, c1(L)3. We denote by jb : p−1(b) → P the inclusion. Then

H∗(p−1(b)) is freely generated by j∗
b
c1(L), j∗

b
c1(L)2 and j∗

b
c1(L)3 for all b ∈ B. Thus

using the Leray-Hirsch theorem we get:

bk(P) = ∑
l+m=k

bl(B)bm(P
3).

where bk(X) denotes the kth Betti number of a space X.

As a corollary of the above Proposition we immediately get:

Corollary 3.9. (i) b1(P) = 0 (resp.b1(P) = 0) , (ii) b2(P) = 3 (resp. b2(P) = 3) and

(iii) b3(P) = 2g (resp. b3(P) = 2g) where g is the arithmetic genus of X0 and bi ’s are the

Betti numbers, i = 1, 2, 3.

Proof. By Lemma 3.1 and the Kunneth formula it follows that b1(B) = b1(M1) +

b1(Ms
2
) = 0, b2(B) = b2(M1) + b2(Ms

2
) = 1 + 1 = 2 and b3(B) = b3(M1) + b3(Ms

2
) =

2g1 + 2g2 = 2g. Thus by Proposition 3.8 we get b1(P) = 0, b2(P) = 3 and b3(P) =

2g.

Remark 3.10. By the above proposition all the Betti numbers of P can be computed

using the above argument as the Betti numbers of the varieties M1 and Ms
2

are well

known (see [BS07, page 113]).

Let g1 , g2>3. Then as a consequence of Proposition 3.6 and Corollary 3.9 we

immediately get:

Theorem 3.11. With the notations above,

1. H1(M12) = 0 (resp. H1(M21) = 0).

2. H2(M12) ' Q⊕Q⊕Q (resp. H2(M21) ' Q⊕Q⊕Q).

3. H3(M12) ' Q2g (resp. H2(M21) ' Q2g).

Remark 3.12. M12 is a smooth, projective unirational variety by Lemma 2.0.7.1. There-

fore, by a result of Serre ([Ser59]), M12 is a simply connected variety.
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3.3.3 Continuation of the cohomology computation

We have M0,ξ = M12 ∪M21 . Let D = M12 ∩M21 . We will compute the third coho-

mology group of M0,ξ using the Mayer-Vietoris sequence. Before we compute the

cohomology group we will make few more observations.

Let P1 be the moduli space of rank 2, parabolic semistable bundles (F1 , 0 ⊂
F2F1 ⊂ F1(p)) on X1 with parabolic weights 0<

a1
2 <

a2
2 <1 and detF1 ' ξ1 . Let P2 be the

moduli space of rank 2, parabolic semistable bundles (F2 , 0 ⊂ F2F2(p) ⊂ F2(p)) on

X2 with parabolic weights 0<
a1
2 <

a2
2 <1 and detF2 ' ξ2 . By Fact 2.21 (a) any parabolic

semistable bundle in P1 (resp. in P2) is parabolic stable. Therefore, one can show

that Pi ’s are smooth, i = 1, 2. Since E ∈ Pi is semistable by Fact 2.21 (b), we get

morphisms qi : Pi → Mi , i = 1, 2. Let Ps
2
= q−1

2
(Ms

2
). Thus we get a morphism

q := (q1 , q2) : P1 × P2 → M1 ×M2 such that q−1(B) = P1 × Ps
2

where B := M1 ×Ms
2
.

Now by using the same argument given in [NS97, Theorem 6.1] we can show that

there is an embedding i : P1 × P2 → M12 such that the image is isomorphic to D.

Thus we have a commutative diagram of morphisms:

P1 × P2
i //

q &&

M12

pzz
M1 ×M2

(3.2)

where p is the morphism in Proposition 3.2.

Let q′
1

: P1 → M′
1

be the morphism defined by E1 → E′
1

and q′
2

: P2 → M′
2

defined by E2 → E′
2

where E′
i

are the Hecke modifications of Ei . Then we get another

commutative diagram of morphisms:

P1 × P2

j
//

q′ %%

M21

pzz
M′

1
×M′

2

(3.3)

where the morphism q′ : P1 × P2 → M′
1
×M′

2
is given by the association (E1 , E2) 7→

(E′
1
, E′

2
) and p′ is the morphism in Remark 3.3.

In the following lemma we summarize some topological facts about the moduli

spaces Pi , i = 1, 2.



Chapter 3. Topology of M0,ξ 37

Lemma 3.13. (i) Pi , i = 1, 2, are smooth, projective and rational variety being P1-

bundles associated to algebraic vector bundles over coprime moduli spaces (see Remark 5.4).

In particular, Pi are simply connected and Pic(Pi) ' H2(Pi , Z) for i = 1, 2.

(ii) H1(Pi , Z) = 0, H2(Pi , Z) ' Z⊕Z and H3(Pi , Z) ' Z2gi for i = 1, 2 (follows from

the previous statement).

Lemma 3.14. (1) q∗ : H3(P1 × Ps
2
) ' H3(M1 ×Ms

2
).

(2) p∗ : H3(P) ' H3(M1 ×Ms
2
).

Proof. (1) From the fact 2.21 (c) it follows that the topological fibre of q : P1 × Ps
2
→

M1 ×Ms
2

is P1 ×P1. Using the similar arguments given in 3.2 and 3.9 we can show

that q is a topological P1 ×P1- bundle satisfying the hypothesis of the Leray-Hirsch

theorem. Thus by Leray-Hirsch theorem q∗ : H3(P1 × Ps
2
) ' H3(M1 ×Ms

2
).

(2) The proof is already given in 3.9.

Lemma 3.15. i∗ : H3(P1 × P2) ' H3(M12) where i : P1 × P2 → M12 is the inclusion.

Proof. First note that i(P1 × Ps
2
) ⊂ P. Therefore, we have-

P1 × Ps
2

i //

q
%%

P

p
{{

M1 ×Ms
2

(3.4)

By the commutativity of the above diagram we get i∗p∗ = q∗. Since, by Lemma 3.14,

p∗ and q∗ are isomorphisms, we get i∗ : H3(P)→ H3(P1 × Ps
2
) is an isomorphism. By

an argument given in [Bal88, Proposition 7] we can show that Codim(K, P1 × P2) =

g2 − 1 where K = P1 × P2 \ P1 × Ps
2
. Thus, by Lemma 3.5, we get i∗

1
: H3(P1 × P2)→

H3(P1 × Ps
2
) is an isomorphism where i1 : P1 × Ps

2
→ P1 × P2 is the inclusion. Also,

we have shown i∗
2

: H3(M12)→ H3(P) is an isomorphism where i2 : P→ M21 is the

inclusion. Thus i∗ : H3(M12)→ H3(P1 × P2) is an isomorphism.

It is known that the Picard groups Pic(Mi) (resp. Pic(M′
i
)), i = 1, 2, are iso-

morphic to Z ([DN89, Theorem B]). Let θi (resp. θ′
i
), i = 1, 2, be the unique ample

generators of Pic(Mi) (resp. Pic(M′
i
)). Let us denote the projections M1 ×M2 → Mi



Chapter 3. Topology of M0,ξ 38

by si ; the projections M′
1
×M′

2
→ M′

i
by s′

i
and the projections P1 × P2 → Pi by ri ,

i = 1, 2. Then we immediately get the following relations:

r∗
1
q∗

1
θ1 = q∗s∗

1
θ1 , r∗

1
q′∗

1
θ′

1
= q′∗s′∗

1
θ′

1
,

r∗
2
q∗

2
θ2 = q∗s∗

2
θ2 , r∗

2
q′∗

2
θ′

2
= q′∗s′∗

2
θ′

2
.

Let Θ1 := q∗s∗
1
θ1 , Θ2 := q′∗s′∗

1
θ′

1
, Θ3 := q∗s∗

2
θ2 and Θ4 := q′∗s′∗2 θ′

2
.

Lemma 3.16. The line bundles Θi , i = 1, · · · 4 are linearly independent on P1 × P2

Proof. Note that q∗
1
θ′

1
and q′∗

1
θ′

1
are linearly independent line bundles over P1 . This

follows from the observation: The line bundles θ1 (resp. θ′
1
) is ample over M1

(resp. M′
1
) and M1 , M′

1
are normal varieties. Moreover, by Fact 2.21 the fibre q−1

1
(F)

is isomorphic to P1 for all F ∈ M1 and the fibre q′−1
1

(F) is isomorphic to P1 for

all F ∈ M′s
1

. The image of the morphism, inside some projective space, defined

by the linear system corresponding to the sufficiently large power of q∗
1
θ1 (resp.

q′∗
1

θ′
1
) will be isomorphic to M1 (resp. M′

1
) (this follows by Lemma 5.6). Since M1

and M′
1

are not isomorphic we have q∗
1
θ′

1
and q′∗

1
θ′

1
are linearly independent. Now

ri : P1 × P2 → Pi are the projection maps, i = 1, 2. Therefore, Θ1 = r∗
1
q∗

1
θ1 and

Θ2 = r∗
1
q′∗

1
θ′

1
are linearly independent. Similarly Θ3 and Θ4 are linearly independent.

Next we will show that the relation Θ
a1
1 ⊗Θ

a2
2 = Θ

a3
3 ⊗Θ

a4
4 , with all ai non zero will

never occur. The above relation would imply r∗
1

L = r∗
2

M where L is a non trivial

line bundle on P1 and M is a nontrivial line bunlde on P2 . But this is impossible as

r∗
1

L|
q−1
1 (x)

is trivial but r∗
2

M|
q−1
1 (x)'P2

' M is non trivial for x ∈ P1 . From the above

observation we conclude that Θi are linealy independent, i = 1, 2, 3, 4.

In chapter 5 we will observe that the Pi ’s are rational varieties and Pic(Pi) '
Z⊕Z, i = 1, 2. Thus Pic(P1 × P2) ' Pic(P1)× Pic(P2) ' Z4. Therefore, the line

bundles Θi ’s generate the Picard group Pic(P1 × P2), i = 1, 2, 3, 4. Now we will prove

the following:

Lemma 3.17. The morphism i∗ − j∗ : H2(M12)⊕ H2(M21)→ H2(P1 × P2) ' H2(D), is

surjective where i and j are the inclusions in the diagrams 3.2, 3.3.

Proof. Since the Pi are rational varieties, we have that c1 : Pic(P1 × P2) → H2(P1 ×
P2 , Z) is an isomorphism where c1 is the first chern class homomorphism. By

Lemma 3.13 we get Pic(P1 × P2) ' H2(P1 × P2 , Z) ' Z4 Therefore, by Lemma 3.16
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H2(P1 × P2) is generated by c1(Θ1), c1(Θ2), c1(Θ3) and c1(Θ4). From commutative

diagrams 3.2 and 3.3 we get

Θ1 = i∗(p∗s∗
1
θ1), Θ2 = j∗(p′∗s′∗

1
θ′

1
), Θ3 = i∗(p∗s∗

2
θ2) and Θ4 = j∗(p′∗s′∗

2
θ′

2
).

Therefore, H2(M12)⊕ H2(M21)→ H2(P1 × Ps
2
) is surjective.

We will now prove the main theorem of this section.

Theorem 3.18. (i) H2(M0,ξ ) ' Q2 and (ii) H3(M0,ξ ) ' Q2g.

Proof. By Lemma 3.17, 3.15 and using the Mayer-Vietoris sequence we get-

0→ H2(M0,ξ )→ H2(M12)⊕ H2(M21)→ H2(D)→ 0.

and

0→ H3(M0,ξ )→ H3(M12)⊕ H3(M21)→ H3(D)→ 0.

Now b2(M12) = b2(M21) = 2 by Theorem 3.11 and b2(D) = b2(P1 × P2) = 4 by

Lemma 3.13. Therefore, b2(M0,ξ ) = 2.

Also we have that b3(M12) = b3(M21) = 2g by Theorem 3.11 and b3(D) = b3(P1 ×
P2) = 2g by Lemma 3.13. Therefore, b3(M0,ξ ) = b3(M12) + b3(M21)− b3(D) = 2g.

No we will discuss the Hodge structure on H3(M0,ξ , Z) (see the next chapter for

related definitions).

3.3.4 Hodge structure on H3(M0, Z)

Let us first recall the definitions of the Hodge structure of weight k and the mixed

Hodge structure.

Definition 3.19. Let V
Z

be a free Z-module of finite rank. We say that the module

V
Z

admits a Hodge structure of weight k if

V
Z
⊗C =

⊕
p+q=kVp,q.

with Vp,q = Vq,p, where ᾱ denotes the conjugate of α.
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Definition 3.20. Let V
Z

be a free Z-module of finite rank. A mixed Hodge structure

on V
Z

consists of the following data: a decreasing filtration (weight filtration)

0 ⊆ · · · ⊆Wk ⊆ · · · ⊆Wm = V
Q

.

, k ≤ m defined over Q and an increasing filtration (Hodge filtration),

V
C
= F0 ⊇ · · · ⊇ Fp ⊇ · · · ⊇ Fk = 0.

, defined over C such that on the each quotients Wi
Wi−1

the Hodge filtration {Fp}
induces a pure Hodge structure of weight i.

We say a mixed Hodge structure pure if there is no weight filtration.

Theorem 3.21. The Hodge structure on H3(M0 , Z) is pure of weight 3 with h
3,0

= h
0,3

= 0.

Proof. We have the following short exact sequence:

0→ H3(M0,ξ , C)
r∗→ H3(M12 , C)⊕ H3(M21 , C)

i∗−j∗→ H3(D, C)→ 0.

where all the morphisms are the morphism of Hodge structures. Thus Ker(i∗ −
j∗) is a pure sub Hodge structure of H3(M12 , C) ⊕ H3(M21 , C) of weight 3. This

induces a Hodge structure of weight 3 on H3(M0,ξ , C) as H3(M0,ξ , C) is isomorphic to

Ker(i∗ − j∗). Since M12 and M21 are smooth unirational varieties (see Lemma 2.0.7.1)

and their intersection D = M12 ∩M21 is also a smooth unirational variety, we have

h
3,0
(M12) = h

3,0
(M21) = 0 and h

3,0
(D) = 0. Hence we conclude h

3,0
(Ker(i∗ − j∗)) =

h
3,0
(H3(M0,ξ , Z)) = 0. This completes the proof.

Remark 3.22. Thus we can define the intermediate Jacobian as in 1.1 corresponding

to the Hodge structure on H3(M0,ξ , Z). We will denote this intermediate Jacobian by

J2(M0).



Chapter 4

Degeneration of the intermediate

Jacobian of the moduli space

In this chapter we will review the basic Hodge theory, variation of Hodge structures.

We will also state the existence limit Mixed Hodge structure in the case of family

of a smooth projecting varieties degenerating to a normal crossing variety. Finally

we will use these results to prove the main theorem of this chapter. We follow the

notations of the subsection 2.0.6 in Chapter 1.

4.1 Review of Hodge Theory

Let Y be a smooth projective variety over C. Then the cohomology group Hk(Y, C)

admits the following functorial Hodge decomposition:

Hk(Y, C) =
⊕

p+q=kHp,q

with Hq,p ' Hp,q where − denotes the complex conjugation on Hk(Y, C) induced by

the complex conjugation on C. Fix a very ample line bundle L on Y and a Hermitian

metric h on L. Then the class of the Chern form ωL,h (see [Voi02, page 75]) is equal

to the first Chern class c1(L) ∈ H2(Y, Z) ⊂ H2(Y, R) ([Voi02, Theorem 7.10]). Since

L is very ample c1(L) is positive definite. Such a closed 2 form is known as Kähler

form. The Lefschetz operator L : Hk(Y, Z) → Hk+2(Y, Z) corresponding to the

41
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Kähler form c1(L) is defined to be:

L(α) := c1(L) ∧ α.

. For r ≤ n the primitive cohomology is defined to be

Hr(Y)prim := Ker(Ln−r+1)

where n := dim
C
(Y). We have the following Lefschetz decomposition:

Theorem 4.1. ([Voi02, Theorem 6.4]) For k ≤ n the operator

Ln−k : Hk(Y, C)→ H2n−k(Y, C)

is an isomorphism and we have the decomposition

Hk(Y, C) '
⊕
2r≤k

LrHk−2r(Y, C)prim .

Note that the above decomposition is compatible with the Hodge decomposition.

The operator L induces an bilinear form Q on Hk(Y, R) given by:

Q(α, β) :=
∫

Y
c1(L)n−k ∧ α ∧ β. (4.1)

Then Q is alternating if k is odd, symmetric otherwise. The induced Hermitian

form:

H(α, β) = ikQ(α, β̄)

satisfies the following properties (see [Voi02, page 160]):

(i) The Hodge decomposition and the Lefschetz decomposition is orthogonal for H.

(ii) ip−q−k(−1)
k(k−1)

2 H(α, α)>0 for α nonzero of type (p, q) and α ∈ Hk(Y, C)prim .

We make the following definition:

Definition 4.2. Let V
Z

be a free Z module. We say V
Z

has an integral Hodge

structure of weight k if

V
Z
⊗C =

⊕
p+q=k

Hp,q and Hq,p = Hp,q
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. The integral Hodge structure (V
Z

, Hp,q) of weight k is polarised if there is an

intersection form Q defined on V
C

which is alternating if k is odd, symmetric

otherwise and satisfies the conditions (i), (ii) above.

By above we see that the primitive cohomology group Hk(Y, Z)prim ⊂
Hk(Y, R)prim has a polarised integral Hodge structure.

4.1.0.1 Variation of Hodge structure

Let X , B be complex manifolds and φ : X → B be a holomorphic map. Let

Xt := φ−1(t) denote the the fibre of φ above the point t.

Definition 4.3. We say that φ : X → B is an analytic family of complex manifolds if

φ is a proper, holomorphic submersion.

Consider the sheaves Hk
A

:= Rkφ∗A where A is a ring of coefficients (usually

Z,Q, R, C), considered as the constant sheaf of stalk A, and Rkφ∗ is the k-th derived

functor of the functor φ∗ from the category of sheaves over X to the category of

sheaves over B. Then we can show that, as φ is a proper, holomorphic submersion,

Hk
A

is a local system with stalks isomorphic to Hk(X, A). Let Vk be the holomorphic

vector bundle over B whose sheaf of section isHk := Hk
C
⊗

C
OB . Then Vk is equipped

with a flat connection

∇ : Hk → Hk ⊗Ω1
B

as follows: For σ ∈ Hk, σ = ∑i
αi σi in a basis σi of a local trivialisation, we set

∇(σ) := ∑
i

σi dαi ∈ H
k ⊗Ω1

B
.

This is well defined since if we choose another basis σ′
i

they are related by constant

transition matrix. Clearly, ∇2 = 0. Therefore, the connection ∇ is flat. This flat

connection is known as Gauss-Mannin connection.

Consider now a family φ : X → B of smooth, projective manifolds. Let Vk be the

holomorphic bundle corresponding to this family defined above. Then we have the

following theorem:

Theorem 4.4. ( [Voi02, Theorem 10.3]) The Hodge filtration Fp(t) ⊂ Hk(Xt , C), t ∈ B

gives a filtration of Vk by holomorphic subbundles FpVk, called the Hodge subbundles. These
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bundles satisfies the transversality property

∇FpVk ⊂ Fp−1Vk ⊗Ω1
B

4.1.0.2 Polarized Variation Of Hodge structure

We say the datum (Vk, FpVk, Vk
Z
) a Variation of Hodge structure. We say

(Vk, FpVk, Vk
Z
) is polarised if there exists a non- degenerate (−1)k- symmetric bilin-

ear form Q on Vk, defined over Z, such that for all t ∈ B the Hodge structure on Vt

is polarized in a sense of Definition 4.2.

Remark 4.5. The variation of Hodge structure arising from the primitive cohomology

groups {Hk(Yt , Z)prim}t∈B is an example of polarized variation of Hodge structure.

4.1.0.3 Intermediate Jacobian

Let k = 2m− 1 be positive odd integer. The Weil operator CW : Hk(Y, C)→ Hk(Y, C)

is defined to be:

CW (α) = ip−q ∑
p+q=k

αp,q, α = ∑
p+q

αp,q ∈ Hk(Y, C).

Note that CW is C linear isomorphism, CW (Hk(Y, R) = Hk(Y, R) and C2
W

= −Id.

Therefore, CW defines a complex structure on Hk(Y, R). We define

Jm
W
(Y) :=

Hk(Y, R)

Hk(Y, Z)
.

Then Jm
W
(Y) is a complex torus where the complex structure on Hk(Y, R) is defined

by CW . The above complex torus is known as the Weil intermediate Jacobian.

Proposition 4.6. The complex torus Jm
W
(Y) is projective. In otherwords it is an abelian

variety.

Proof. To show that Jm
W
(Y) is projective we need to show that there exists an inte-

gral Kähler form ω on Jm
W
(Y). Note that H2(Jm

W
(Y), Z) = ∧2H1(Jm

W
(Y), Z). Now

H1(Jm
W
(Y), Z) ' H2m−1(Y, Z)∗. Therefore, the bilinear form Q, as it is alternating,

induces an element ω ∈ H2(Jm
W

, Z). We first check that ω is of type (1, 1) at each
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point of Jm
W
(Y). It is enough to check this for the complexified tangent space Te J ⊗C

at identity. This means that the C bilinear extension of ω on a 2- form on Te J⊗C van-

ishes on ∧2T1,0
e . But this bilinear extension is the alternating form Q on H2m−1(Y, C)

and T1,0
e J is the complex subspace H2m−1(Y, R) where the complex structure is given

by the operator CW . Therefore, the above fact follows from the following observation:

note that H2m−1(Y, R) with the complex structure CW is isomorphic to a direct

summand W of
⊕

p+q=2m−1Hp,q such that if Hp,q belongs to W then Hq,p does not

belong to W. Let α, β ∈W. Let αp,q be a component of α and βp′,q′ be a component

of β . By the the above p′ 6= q and q′ 6= p. Thus Ln−k ∧ αp,q ∧ βp′,q′ = 0 since it is

of type (n− k + p + p′, n− k + q + q′) and H2n(Y, C) only has class of (n, n)-type.

Therefore, Q(α, β) = 0. Next we will show that the Hermitian form,induced by ω,

on the holomorphic tangent space is positive definite at every point of Jm
W
(Y). It

is enough to check for the tangent space at the identity. The tangent space at the

identity Te can be identified with H2m−1(Y, R) where the complex structure is given

by the operator CW . We will show that Q(α, CW α)>0 for all α ∈ H2m−1(Y, R) and α

nonzero. Suppose α be a primitive class of odd degree k′. Then we have

Q(α, CW (α)) = Q( ∑
p<q,p+q=k′

αp,q + ∑
p<q,p+q=k′

αp,q, ∑
p<q,p+q=k′

ip−qαp,q + ∑
p<q,p+q=k′

iq−pαp,q)

= Q( ∑
p+q=k′ ,p<q

iq−pQ(αp,q, αp,q) + ∑
p+q=k′ ,p<q

ip−qQ(αp,q, αp,q)

= 2 ∑
p+q=k′ ,p<q

ip−q−kH(αp,q, αp,q)

>0.

Now any class α ∈ Hk(Y, R) has a unique decomposition

α = ∑
r

Lrαr ,
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where the αr are of degree k− 2r ≤ in f (n, 2n− k) and are primitive in the sense that

Ln−k+2r+2αr = 0 in H2n−k+2r+2(Y, R). We have

Q(∑
r

Lrαr , CW ∑
r

Lrαr) = ∑
r

Q(Lrαr , LrCW αr) since i f r 6= s Q(Lrαr , CW Lsαs) = 0

= ∑
r

Q(αr , CW αr)

>0 since Q(αr , CW αr)>0 for all r.

There is another complex operator CH : Hk(Y, C)→ Hk(Y, C) defined to be:

CH(α) = ∑ p+q=ki
p−q
|p−q| αp,q, α = ∑

p+q=k

αp,q ∈ Hk(Y, C).

Again we note that CH(Hk(Y, R) = Hk(Y, R) and C2
H
= −Id. We define a complex

torus by

Jm
H
(Y) :=

Hk(Y, R)

Hk(Y, Z)
.

where the complex structure on Hk(Y, R) is defined by CH . It is known as the

Griffiths intermediate Jacobian. We remark that Jm
H
(Y) need not be an abelian

variety.

Remark 4.7. Jm
W
(Y) and Jm

H
(Y) coincide if |p− q| = 1.

Set FpH(Y, C) :=
⊕

r≥p
Hr,k−r. This gives an increasing filtration on

Hk(Y, C) = F0Hk(Y, C) ⊃ .. ⊃ FpHk(Y, C) ⊃ .. ⊃ FkHk(Y, C)

and Hk(Y, C) = Fp ⊕ Fk−p+1. It is easy to see that

Jm
H
(Y) =

H2m−1(Y, C)

FmH2m−1(Y, C)⊕ H2m−1(Y, Z)
.

Proposition 4.8. Let φ : Y → B be a family of smooth projective manifolds. Then there is

a family φ′ : JH → B of Griffiths intermediate Jacobians over B i.e. JH t = Jk
H
(Xt), t ∈ B

and k = 2m− 1.

Proof. Let L → B be the fibre bundle over B with fibres isomorphic to Hk(Xt , Z)

corresponding to the local system Hk
Z

. We set Wk := Vk

FkVk . Since Hk(Xt , Z) ∩
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FkHk(Xt , C) = (e), Lt ⊂ Wk
t

are lattices of maximal rank for all t ∈ B. We have

already observed that
Wk

t
Lt

is the Griffiths intermediate Jacobian Jk
H
(Xt). Thus we get

an inclusion j : L → Wk such that jt : Lt → Wk
t

is cocompact for all t. Therefore,

there is a unique complex manifold structure on Wk

L such that Wk → Wk

L is local

analytic isomorphism and this makes Wk

L → B a holomorphic submersion, where
Wk

L is the quotient space defined by the fibrewise equivalence i.e. by the equivalence

relation v, w ∈Wk are related if v, w ∈Wk
t

for some t and v− w ∈ Lt .

4.1.1 Degeneration of Hodge structures

Let Y be a smooth projective variety and C be an irreducible, smooth projective

curve. Let φ : Y → C be a morphism and let Yt denotes the scheme theoretic fibre of

φ above the point t ∈ C.

Definition 4.9. We say φ : Y → C is an algebraic family of projective varieties if φ is

a proper, flat and surjective morphism.

Note that, as C is smooth, there is a dense open subset U of C such that φ :

φ−1(U)→ U is smooth. Therefore, since C is a curve, only over the finite number

of points the fibre of φ is not smooth. We assume that the fibres of φ are reduced.

Consider such an algebraic family φ : Y → C. Let Yp , the fibre over a point p ∈ C, be

the union of smooth, irreducible projective varieties intersecting transversally. Let us

consider the complex analytic topology on C. As, C is smooth every point of C has

a complex analytic neighborhood (analytically) isomorphic to unit disk. We choose

an analytic neighborhood of p isomorphic to the unit disk. Let us again denote this

neighborhood by ∆. Let Y∆ := φ−1(∆). Then φ∆ is a proper, holomorphic map such

that φ|∆∗ : Y∗
∆
→ ∆∗ is a submersion where ∆∗ = ∆ \ p and Y∗

∆
= Y∆ \ p.

Theorem 4.10. (Deligne canonical extension, [Del70, page 91-92]) Let (V,∇) be a holo-

morphic vector bundle over ∆∗ together with a flat connection ∇ which has unipotent

monodromy T. Then there exists a unique extension (V̄, ∇̄) of (V,∇) over ∆ such that the

extended connection ∇̄ is logarithmic with residue log(T).

From now on we will simply denote the family φ∆ : Y∆ → ∆ by φ : Y → ∆.

Fix a positive integer k. We have a flat vector bundle (Vk,∇) over ∆∗ correspond-

ing to the local system Rkπ∗C. Since the fibre Y0 is union smooth projective varieties
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intersecting transversally one can show that ∇ has unipotent monodromy T with

unipotent index atmost k + 1 [Lan73]. Therefore, there is a canonical extension (see

Theorem 4.10) (V̄k, ∇̄).

Theorem 4.11. ([Sch73]) The Hodge subbundles F p of Vk extend to a holomorphic subbun-

dle F̄ p of V̄k such that

∇̄(F̄ p) ⊂ ¯F p−1 ⊗Ω1
∆
(log(0)).

Let V̄k(0) and F̄ p(0) be the fibres of V̄k and F p at 0 ∈ ∆. Let V
Z

k := j∗V
k

Z
where

j : ∆∗ → ∆ is the inclusion and V
Z

k
(0) be the fibre at 0. Then {F̄ p(0)} gives a

filtration on V̄k(0). The nilpotent operator N acts on the fibre V̄k(0) inducing a

decresing filtration

0 ⊂W0 ⊂ · · · ⊂W2k = V̄k(0).

This is called the monodromy weight filtration (see [Mor84, page 106]. W Schmid

[Sch73] showed that for each t ∈ C∗, the data (tNVk
Z
(0),F p(0), Wr) defines a mixed

Hodge structure (see [Hai02, Theorem 10] for the statement). We call this mixed

Hodge structure limiting mixed Hodge structure. As the fibre Y0 = Y1 ∪Y2 ∪ · · · ∪Yn

is the union of smooth projective varieties such that every m-fold intersection

Yi1
∩ ..∩Yi2

is smooth, using Mayer- Vietoris type spectral sequence one can induce

a functorial mixed Hodge structure on Hk(Y0 , Q) (see [Mor84, page 105]). Clemens

and Schmid showed that there is a natural morphism i∗ : Hk(Y0 , Q)→ V̄k
0

of mixed

Hodge structure of (0, 0)-type (see [Mor84, Clemens-Schmid I,page 108]).

We end this section by recalling few results from [Mor84]. Let Y0 = Y1 ∪ Y2 ∪
· · · ∪Yn . Define the dual graph Γ of Y0 to be the simplicial complex with one vertex

pi for each component Yi of Y0 such that the simplex <pi0
, · · · , pik

> belongs to Γ if

and only if Yi0
∩ · · · ∩Yik

6= φ.

Lemma 4.12. Let Yi , i = 1, · · · , n, be smooth projective curves. Then N : V̄1
0
→ V̄1

0
is

trivial if and only if H1(|Γ|) = 0 where N is the nilpotent operator acting V̄1
0

.

Proof. The proof follows from [Mor84, Corollary 2, page 109].

Though we have stated the above results in a very general set up, we are going

to apply these results in a very particular situation in the next section.
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4.2 The Main Theorem

Let π : X → C be a proper, flat and surjective family of curves, parametrised by

a smooth, irreducible curve C. We assume that X is a smooth variety over C. Fix

a point 0 ∈ C. We assume that π is smooth outside the point 0 and π−1(0) = X0

where X0 is a reducible curve with two smooth, irreducible components meeting at

a node. Fix a line bundle L over X such that the restriction Lt to Xt is a line bundle

with Euler characteristic χ− (1− g) for all t ∈ C where g is the genus of Xt . We

denote the restriction L|X0
by ξ. In chapter 1 we have shown that there is a proper,

flat, surjective family π′ : ML → C such that π′−1(0) = M0,ξ , the moduli space of

rank 2, stable torsion free sheaves with determinant ξ and for t 6= 0, π′−1(t) = Mt,Lt
,

the moduli space of rank 2 stable bundles on Xt with determinant Lt (see Proposition

2.19 and Remark 2.20). Moreover,ML is smooth over C. Choose a neighbourhood

of the point 0 which is analytically isomorphic to the open unit disk ∆ such that

both the morphisms π′|∆∗ and π|∆∗ are smooth, ∆∗ := ∆− 0. Denote the family

π′|∆∗ : π′−1(∆∗)→ ∆∗ by {Mt}t∈∆∗ and the family π|∆∗ : π−1(∆∗)→ ∆∗ by {Xt}t∈∆∗ .

4.2.0.1 Variation of Hodge structure corresponding to the family {Mt}t∈∆∗ and

{Xt}t∈∆∗

Since π′|∆∗ (resp.π|∆∗ ) is smooth we get a local system Riπ′∗Z (resp. Riπ∗Z) for i ≥ 0,

of free abelian groups. The fibre over a point t ∈ ∆∗ of the local system Riπ′∗Z (resp.

Riπ∗Z) is isomorphic to Hi(Mt , Z) (resp. Hi(Xt , Z)). Let H
Z
(M) := R3π′∗Z and

H
Z
(X ) := R1π∗Z. Let H

C
(M) (resp. H

C
(X )) be the holomorphic bundle over ∆∗

whose sheaf of section is H
Z
(M)⊗ZO∆∗ (resp. H

Z
(X )⊗ZO∆∗ ). Then H

C
(M)(resp.

H
C
(X )) admits a flat connection ∇M (resp. ∇X ). Let T (resp. T′) be the monodromy

operator defined by the flat connection ∇M (resp. ∇X ) corresponding to the positive

generator of π1(∆
∗, t0). Since the fibre π′−1(0) (resp. π−1(0)) is a union of two

smooth projective varities intersecting transversally, T (resp. T′) is unipotent. The

unipotency index of T is atmost 4 and T′ is atmost 2. Let (H
C
(M), Fp, H

Z
(M))

(resp. (H
C
(M), Gq, H

Z
(M))) be the variation of Hodge structure corresponding to

the local system H
Z
(M) (resp.H

Z
(X )). Then by Proposition 4.8 we get a family

π′ : J2(M∗
L) → ∆∗ (resp. π : J0(X ∗) → ∆∗) such that J2(M∗

L)t = J2(Mt,Lt
) (resp.

J0(X ∗t ) = J0(Xt) for all t ∈ ∆∗). Note that as Mt,Lt
are rational varieties,t ∈ Mt,Lt

we

have h0,3(Mt,Lt
) = h3,0(Mt,Lt

) = 0. Therefore, by Remark 4.7 we see that J2(Mt,Lt
)
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coincides with the Weil intermediate Jacobian. In otherwords J2(Mt,Lt
) is an abelian

variety for all t ∈ ∆∗.

Let ωt be the unique ample, integral, Kähler class which generates H2(Mt,Lt
, Z)

for all t ∈ ∆∗. Then there are polarisations Θt on J2(Mt,Lt
) induced by the intersection

forms -

(α, β) 7→
∫

Mt,Lt

ωn−3 ∧ α ∧ β, (4.2)

where α, β ∈ H1(Mt,Lt
, R) and n = dim

C
MMt,Lt

, t ∈ ∆∗. This polarisations {Θ′
t
}t∈∆∗

fit together to give a relative polarization Θ′ on J2(M∗). Let θt be the polarization

on J1(Xt) for all t ∈ ∆∗ induced by the intersection form:

(α, β) 7→
∫

Xt

α ∧ β, (4.3)

where α, β ∈ H1(Xt , R). Then {θt}t∈∆∗ fit together to give a relative polarization Θ

on J1(X ∗).

We denote canonical extension of H
C
(M) (resp. H

C
(X )) over ∆ by H

C
(M) (resp.

H
C
(X )). Let H

Z
(M) := j∗(H

Z
(M)) (resp. H

Z
(X ) := j∗(H

Z
(X )) where j : ∆∗ → ∆

is an inclusion.

4.2.0.2 Limiting mixed Hodge structure on the fibre H(M)(0) and H(X )(0)

Lemma 4.13. The limiting Hodge structure (tN′H
Z
(X )(0), Gq(0), W ′r ) is pure and is

isomorphic to the Hodge structure on H1(X0) ' H1(X1)⊕ H1(X2).

Proof. Since the singular fiber X0 is the union of two smooth curves meeting at a

node we have H1(|Γ|) = 0 where Γ is the dual graph associated to X0 . Therefore,

by Lemma 4.12, we get N′ = 0. Thus there is no weight filtration and hence

the limiting Hodge structure is pure. Now we have a morphism of MHS, i∗ :

H1(X0 , C)→ H(X )(0) of (0, 0) type (see [Mor84, Clemens-Schmid I,page 108]). By

Local Invariance Cycle Theorem [Mor84, page 108]), it is known that:

Ker(N′) = Im(i∗).
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Since Ker(N′) = H(0), i∗ is surjecive. Now rk(H1(X0 , C)) = 2g = rk(H(X )(0))).

Therefore, i∗ : H1(X0 , C) ' H1(X1 , C)⊕ H1(X2 , C) → H(X )(0) is an isomorphism

of Hodge structure. (see [Mor84, page 111]).

As a consequence of the above Lemma we get the following:

Corollary 4.14. There is a holomorphic family π2 : J0 → ∆ extending the family π2 :

J0∗ → ∆∗ such that π−1
2

(0) = J0(X0).

Proof. Since N′ = 0, we get that G1(0) ∩ H
Z
(X )(0) = (0). As a consequence

H
Z
(X )(0) is a full lattice inside H

C
(X )(0)/Ḡ1(0). Thus there is a holomorphic

family π2 : J0(X ) → ∆ extending the family π1 : J0∗ → ∆∗ such that π−1
2

(0) =

V/H
Z
(0) where V := H

C
(0)/F1(0). By Lemma 4.13, it follows that π−1

2
(0) '

J0(X0).

Next we shall show,

Lemma 4.15. There is an isomorphism φ : H
C
(X )→ H

C
(M) of flat vector bundles such

that φ(Gq) = Fq+1 and φ(H
Z
(X )) = H

Z
(M), q = 0, 1.

Proof. Let U be the relative universal bundle over X ∗ ×∆∗M∗ i.e. U|
Xt×Mt

is the

corresponding universal bundle. Now if we consider (1, 3) Kunneth-component

[c2(U )|Xt×Mt
]1,3 ∈ H1(Xt , Z) ⊗ H3(Mt , Z) of c2(U|Xt×Mt

), then we get a morphism

φt : H1(Xt , Z) → H3(Mt , Z), t ∈ ∆∗ such that φt(Gq(t)) ⊆ Fq+1(t) for q = 0, 1 (see

[MN68]). Thus we get a morphism φ : H
C
(X ) → H

C
(M) of flat vector bundles,

such that φ(Gq) ⊆ Fq+1, q = 0, 1. By the Mumford-Newstead theorem [MN68,

Proposition 1, page 1204] we conclude that φ is an isomorphism. Further, we

have φ∗(Θ′) = Θ (see [Bal90, Section 5,page 625]). Since the Deligne canonical

extension is unique the morphism φ extends to an isomorphism φ̄ : H(X )→ H(M).

Moreover, as the filtration {Gq(0)} (resp. {Fp(0)}) is canonically determined by the

filtrations {Gq(t)} (resp. {Fq(t)})(see [Mor84, Theorem(Schmid),page 116]), we get

φ0(Gq(0)) = Fq+1(0).

Now we will state and prove the main theorem of this chapter:

Theorem 4.16.
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1. There is a holomorphic family {J2(Mt,Lt)}t∈∆ of intermediate Jacobians corresponding

to the family {Mt,Lt
}t∈∆ . In other words, there is a surjective, proper, holomorphic

submersion

π2 : J2(ML) −→ ∆

such that π−1
2 (t) = J2(Mt,Lt

) ∀ t ∈ ∆∗ := ∆ \ {0} and π−1
2 (0) = J2(M0,ξ ).

Further, we show that there exists a relative ample class Θ′ on J2(ML)|∆∗ such that

Θ′|J2(Mt,Lt
)
= θ′

t
, where Θ′

t
is the principal polarisation on J2(Mt,Lt

).

2. There is an isomorphism

J0(X ) Φ
∼

//

π1 ""

J2(ML)

π2{{
∆

(4.4)

such that Φ∗Θ′|π−1
1 (t)

= Θt for all t ∈ ∆∗, where π1 : J0(X )→ ∆ is the holomorphic

family {J0(Xt)}t∈∆ of Jacobians and Θt is the canonical polarisation on J0(Xt). In

particular, J2(ML)0 := π−1
2

(0) is an abelian variety.

Proof. Proof of (1): By Lemma 4.15 we get that the local system H
Z
(M) is isomor-

phic to the local system H
Z
(X ) over ∆∗. Since by Lemma 4.13 the local system

H
Z
(X ) has trivial monodromy, therefore the local system H

Z
(M) also has trivial

monodromy. Hence N = 0. Thus we have F2(0) ∩ H
Z
(M)(0) = (0). As a con-

sequence we have a holomorphic family π1 : J2(ML) → ∆ extending the family

π1 : J2∗ → ∆∗ such that π−1(0) = V′/H
Z
(M)(0) where V′ = H

C
(M)(0)/F2

(0).

Now we claim: π−1
1

(0) ' J2(M0,ξ ). By Theorem 3.21, we see that the Hodge

structure on H3(M0,ξ , Z) is pure and it has rank 2g. Now there is a morphism

i∗ : H3(M0,ξ , Z) → HM(0) of MHS of (0, 0) type and Ker(N) = Im(i∗). Since

Im(N) = 0 and both the Hodge structures have the same rank 2g, H
Z
(M)(0) and

H3(M0,ξ , Z) are isomorphic as Hodge structures. This completes the proof of (1).

Proof of (2): This immediately follows from Lemma 4.15.

As a corollary of the theorem we get the following result:

Corollary 4.17. Let X0 be a projective curve with exactly two smooth irreducible components

X1 and X2 meeting at a simple node p. We further assume that gi>3, i = 1, 2. Then, there

is an isomorphism J0(X0) ' J2(M0,ξ ), where ξ ∈ Jχ(X0). In particular, J2(M0,ξ ) is an

abelian variety.
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Proof. By our genus assumption: gi>3 for i=1,2, we get Xi ’s have finite number of

automorphism i = 1, 2. Therefore, the curve X0 is stable i.e., it has finite number

of automorphisms. As the moduli space of stable curves is complete, we get an

algebraic family r : X → P1 such that r−1
1

(t) is smooth if t 6= t0 and r−1
1

(t0) = X0 .

Moreover, we can choose X to be regular over C. Therefore, by Theorem 4.16, we

get J2(M0,ξ ) ' J(X0). Hence, J2(M0,ξ ) is an abelian variety.
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Torelli type Theorem for the moduli

space of rank 2 deg 1 fixed

determinant torsion free sheaves over

a reducible curve

In this chapter our goal is to investigate the moduli space M0,ξ more carefully, and

show that we can actually recover the curve X0 i.e. both the components as well as

the node, from the moduli space M0,ξ following a strategy given in [BBdBR01].

5.1 Pointed Torelli Theorem for Parabolic moduli

space

Let X be a smooth projective curve and E be a rank n algebraic vector bundle on X.

Fix a finite number of points p1 , · · · , pm on X.

Definition 5.1. A parabolic structure on E over the points pj , j = 1, · · · , m consists

of the following data:

(i) A flag of subspaces of

E(p) := F1 E(pj) ⊃ F2 E(pj) ⊃ .. ⊃ Frj
E(pj), j = 1, · · · , m
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(ii) weights α1 , · · · , αrj
∈ R attached to the subspaces F1(pj), · · · , Frj

(pj) such that

0 ≤ α1<α2 ...<αrj
<1.

For a parabolic vector bundle (E, {Fj E(pj)}, {α
j
i}) we define the parabolic degree

to be:

Pardeg(E) = deg(E) + ∑
j

∑
i

αj
i
kj

i
.

We say a parabolic bundle E is semistable (resp. stable) if for all proper parabolic

subbundle F ⊂ E we have

pardeg(F)
rk(F)

≤ pardeg(E)
rk(E)

resp (<)

We have the following Theorem:

Theorem 5.2. ([MS80, Theorem 4.1]) The coarse moduli space of S-equivalence classes of

rank r parabolic semistable bundles with fixed parabolic degree exists as a normal projective

variety of dimension r2(g− 1) + 1 + dimFj where Fj are the flag varieties determined by

the quasi parabolic structures at the points pj , j = 1, · · · , m.

Now we consider parabolic bundles of rank 2 with fixed determinant ηX of

degree d and parabolic structure over a point p on X. We choose parabolic weights

0 ≤ α1<α2<1 so that parabolic semistable (= parabolic stable). Then the moduli

space of parabolic bundles is a smooth, projective variety. We denote this moduli

space by Mpar
X . We state the main theorem of [BBdBR01]:

Theorem 5.3. ([BBdBR01, Theorem 2.1] Suppose, X and Y be two smooth projective curves.

Let Mpar
X (resp. Mpar

Y ) be the moduli spaces of isomorphism classes of rank 2 parabolic stable

vector bundles with fixed determinant, defined in the above paragraph. If Mpar
X ' Mpar

Y then

there exists an isomorphism σ : X → Y such that σ(p) = q.

5.2 A Torelli type theorem for the singular curve X0.

In Chapter 2, we have described the moduli space M0,ξ of rank 2, a = (a1 , a2) stable

torsion free sheaves with det E ' ξ over X0.

Let π : X̃0 → X0 be the normalization map and π−1(p) = {x1 , x2}, where

p ∈ X1 ∩ X2 . Note that X̃0 = X1 t X2 , the disjoint union of X1 and X2 . Fix a line
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bundle ξ on X0 and let ξ i = ξ|Xi
, i = 1, 2. Recall that the moduli space M0,ξ of rank 2

stable torsion free sheaves with determinant ξ over X0 is the union of two irreducible,

smooth, projective varieties intersecting transversally along a divisor D. We have

also observed that D is isomorphic to the product P1 × P2, where P1 is the moduli

space of rank 2 parabolic semistable bundles (F1 , 0 ⊂ F2F1(x1) ⊂ F1(x1)) over X1

with det ' ξ1 and weights (
a1
2 ,

a2
2 ), and P2 is the moduli space of rank 2 parabolic

semistable bundles (F2 , 0 ⊂ F2F2(x2) ⊂ F2(x2)) over X2 with det ' ξ2 and weights

(
a1
2 ,

a2
2 ), where a = (a1 , a2) is the polarisation on X0 . Without loss of generality, we

can assume that deg(ξ1) = 1 and deg(ξ2) = 0.

Let M1 (resp. M′
1
) be the moduli space of rank 2, deg 1, semistable bundles over

X1 with det E ' ξ1 (resp. moduli space of rank 2, deg 0 semistable bundles over X2

with detE ' ξ1(−x1)).

Note that Pic(M1) ' Z (resp. Pic(M′
1
) ' Z). Let θ1 (resp. θ′

1
) be the unique

ample generator of Pic(M1) (resp. of Pic(M′
1
)). It is known that there exists a

unique rank 2 bundle E over X1 ×M1 such that ∧2Ex1
' θ1 , where Ex1

:= E|x1×M1

(see [Ram73, Definition 2.10]). Since the weights 0<
a1
2 ,

a2
2 <1 are very small, we can

show that: P1 ' P(Ex1
) (see [Bal88, Proposition 6] and [DB02, Theorem 3.7, (1)]).

Therefore, it follows that Pic(P1) ' Pic(M1)⊕ Pic(P1) ' Z⊕Z.

We define a morphism π′1 : P(Ex1
)→ M′

1
as follows: any closed point of P(Ex1

)

over E ∈ M1 looks like {E, V(x1)}, where V(x1) is a one dimensional subspace of

the fibre E(x1). Consider the vector bundle V which fits into the following exact

sequence

0→ V → E→ (ix1
)∗(E(x1)/V(x1))→ 0. (5.1)

As E(x1)/V(x1) is a 1-dimensional vector space supported over the point x1 , it

follows that det(V) ' ξ1(−x1). We can easily check that V is semistable (see [Bal88,

page 11]).

Thus we get a Hecke correspondence:

P(Ex1
)

π′1 //

π1
��

M′
1

M1

(5.2)
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Similarly, let M2 (resp. M′
2
) be the moduli space of rank 2, deg 1 semistable

bundles over X2 with detE ' ξ2(x2) (resp. the moduli space of rank 2, deg 0

semistable bundles over X2 with detE ' ξ2).

Let θ2 (resp. θ′
2
) be the unique ample generator of Pic(M2) (resp. Pic(M′

2
)). Then

there is a unique universal bundle E ′ over X2 × M2 such that ∧2E ′x2
' θ2 where

E ′x2
:= E ′

|x2×M2
.

Again, for the choice of weights 0<
a1
2 ,

a2
2 <1, we have P2 ' P(E ′x2

) (see [DB02,

Theorem 3.7 (2)]) and we have a Hecke correspondence as in the previous case:

P(E ′x2
)

π′2 //

π2

��

M′
2

M2

(5.3)

So, we have the following:

P(Ex1
)×P(E ′x2

)
p1 // P(Ex1

)

π1

��

π′1 // M′
1

M1

(5.4)

and

P(Ex1
)×P(E ′x2

)
p2 // P(E ′x2

)

π2

��

π′2 // M′
2

M2

(5.5)

Remark 5.4. Note that M1 and M2 are smooth ,projective, rational varieties. Now P1

(resp. P2) is isomorphic to the projective bundle P(Ex1
) (resp. P(E ′x2

)). Therefore,

the Pi ’s are rational varieties, i = 1, 2.

For the rest of the section we will fix the following notations:

ϑ1 := (π1 ◦ p1)
∗θ1 , ϑ2 := (π′1 ◦ p1)

∗θ′
1
,

ϑ3 := (π2 ◦ p2)
∗θ2 , ϑ4 := (π′2 ◦ p2)

∗θ′
2
.

Proposition 5.5. The numerically effective cone of P1 × P2 is generated by the line bundles

ϑi , i = 1, 2, 3, 4.
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Proof. Clearly, ϑi , i = 1, · · · , 4 are numerically effective (nef) line bundles as they

are the pull backs of the ample line bundles. First we show that ϑi , i = 1, · · · , 4,

are linearly independent. Note that π∗
1
θ1 and π′∗

1
θ′

1
are linearly independent over

Z (see the proof of [BBdBR01, page 4, Theorem 2.1] for an argument). Therefore,

ϑ1 = p∗
1
π∗

1
θ1 and ϑ2 := p∗

1
π′∗θ′

1
are linearly independent. By similar reason ϑ3 and

ϑ4 are linearly independent. Now we show that the relation ϑ
a1
1 ⊗ ϑ

a2
2 = ϑ

a3
3 ⊗ ϑ

a4
4

for some ai 6= 0,i = 1, · · · 4 will not occur. Suppose, ϑ
a1
1 ⊗ ϑ

a2
2 = ϑ

a3
3 ⊗ ϑ

a4
4 . Then this

would imply p∗
1
(π∗

1
θ1

a1 ⊗ π′∗
1

θ′
1

a2 ) = p∗
2
(π∗

2
θ2

a3 ⊗ π′∗
2

θ′
2

a4 ). But this is impossible for

the following reason: The line bundle p∗
1
(π∗

1
θ1 ⊗ π′∗

1
θ′

1
) is trivial on the fibres of p1 .

But as the fibres of p1 are P2 and π∗
2
θ2 ⊗ π′∗

2
θ′

2
is a non trivial line bundle on P2 we

get p∗
2
(π∗

2
θ2 ⊗ π′∗

2
θ′

2
) is non trivial on the fibres of p1 . From the above observation,

it follows that ϑi , i = 1, · · · 4 are linearly independent. Since P1 and P2 are both

rational varieties we get Pic(P1 × P2) ' Pic(P1)× Pic(P2) ' Z4. Therefore, any nef

line bundle on P1 × P2 is a non negative linear combination of ϑ1 , ϑ2 , ϑ3 , ϑ4 .

Next we show that
4⊗

i=1
ϑ

ai
i is ample if ai > 0 for all i = 1, . . . , 4. It is enough to

show that
4⊗

i=1
ϑi is ample. We observe that π∗1 θ1 ⊗ π′∗1 θ′

1
(resp. π∗2 θ2 ⊗ π′∗2 θ′

2
) is ample

on P1(resp. on P2)(see the proof of [BBdBR01, Theorem 2.1, page 4, 3rd paragraph]).

Therefore ,
4⊗

i=1
ϑi is ample on P1 × P2 .

Finally, we have to show
4⊗

i=1
ϑ

ai
i is not ample if ai = 0 for some i. Now fix

j ∈ {1, . . . , 4} such that aj = 0. Then
4⊗

i=1
i 6=j

ϑi is not ample as it is the pull back of an

ample line bundle from Pk ×Ml or Pk ×M′
k

for l, k ∈ {1, 2}, k 6= l. Next we observe

that if i ∈ {1, 2} and j ∈ {3, 4}, then ϑi ⊗ ϑj is not ample. Since in this case it is pull

back of an ample line bundle from Mk ×Ml or M′k ×M′
l

for k, l ∈ {1, 2}, k 6= l. We

have already observed that ϑ1 ⊗ ϑ2 and ϑ3 ⊗ ϑ4 is not ample.

So, from the above observations, we conclude the proposition.

Lemma 5.6. Let f : X → Y be a projective morphism with Y, a normal variety. Suppose,

each fibre of f is a rational variety. Let L be a line bundle on Y then H0(X, f ∗L) ' H0(Y, L).

Proof. Since the fibres of f are connected and Y is normal we have OY ' f∗OX . Thus

L ' f∗ f ∗L. Since all the fibres of f are rational we get Hi(Xy , Ly) = Hi(Xy ,OXy
) = 0

for all i > 0. Hence H0(X, f ∗L) ' H0(Y, f∗ f ∗L) = H0(Y, L)
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Remark 5.7. Note that π∗1 θ1 ⊗ π′∗1 θ′1 (resp. π∗2 θ2 ⊗ π′∗2 θ′2) is ample on P1 (resp. on P2)

(see the proof of 5.5). Now ϑ1 ⊗ ϑ2 = p∗
1
(π∗1 θ1 ⊗ π′∗1 θ′1) and ϑ3 ⊗ ϑ4 = p∗

1
(π∗1 θ3 ⊗

π′∗1 θ′4). Since P1 and P2 are both rational varaities, by Lemma 5.6, the image of the

morphism |(ϑ1⊗ ϑ2)
n| : P1× P2 → PN is isomorphic to P1 for some n� 0. Similarly,

the image of the morphism (ϑ3 ⊗ ϑ4)
m : P1 × P2 → PM is isomorphic to P2 for some

m� 0.

Lemma 5.8. Let θ be a nef but not ample line bundle on P1× P2 (i.e., θ lies in the boundary

of the nef cone of P1 × P2) and θ 6= ϑa
1 ⊗ ϑb

2 or ϑc
3⊗ ϑd

4 , where a, b, c and d are some positive

integers. Let Z be the image of the morphism P1 × P2 → PN′ induced by the linear system

|θn| for some large n. Then we have dim(Z) 6= dim(Pi) for i = 1, 2.

Proof. Assume that θ 6= ϑ1 ⊗ ϑ2 or ϑ3 ⊗ ϑ4. Then θ is either of the form
⊗
i 6=j

ϑi for

i, j ∈ {1, . . . , 4} or ϑi ⊗ ϑj for i ∈ {1, 2} and j ∈ {3, 4} (see the proof of 5.5).

Fix j ∈ {1, 2, 3, 4}. If θ is of the form
4⊗

i=1
i 6=j

ϑi, then the image Z of the morphism |θn|,

for sufficiently large n, is either isomorphic to Pk ×Ml or Pk ×M′
l

for k, l ∈ {1, 2},
k 6= l.

If θ is of the form ϑi ⊗ ϑj then the image Z of the morphism |θn| is either

isomorphic to Mk ×Ml or Mk ×M′
l
, for k, l ∈ {1, 2}, k 6= l. In both the cases we see

dim(Z) 6= dim(Pi) and hence we are done.

Now we prove the main theorem of this section:

Let X0 (resp. Y0) be a reducible curve with two components X1 , X2 (resp. Y1 , Y2)

meeting transversally at a point p (resp. q). Let π1 : X̃0 → X0 (resp. π2 : Ỹ0 → Y0) be

the normalisation map and π−1
1

(p) = {x1 , x2}, π−1
2

(q) = {y1 , y2}. We will make the

following assumption on the components of X0 and Y0 .

• g(Xi) = g(Yi) ≥ 2 for i = 1, 2.

• X1 � X2 (resp. Y1 � Y2).

Fix ξX0
∈ Jχ(X0) (resp. ξY0

∈ Jχ(Y0)). Let M0,ξX0
(resp. M0,ξY0

) be the moduli space of

rank 2, a = (a1 , a2)-stable torsion free sheaves with detE ' ξX0
(resp.detE ' ξY0

) on

X0 (resp. on Y0). Let D ⊂ M0,ξX0
(resp. D′ ⊂ M0,ξY0

) be the singular locus of M0,ξX0
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(resp. M0,ξY0
) and Pi (resp. P′

i
) be the parabolic moduli spaces, described before, with

parabolic structure over xi (resp. yi). Then D ' P1 × P2 and D′ ' P′
1
× P′

2
. Now we

have the following Torelli type theorem.

Theorem 5.9. If M0,ξX0
' M0,ξY0

then we have X0 ' Y0 .

Proof. Let Ψ : M0,ξX0
' M0,ξY0

be an isomorphism. Then Ψ(D) = D′ as D is the

singular locus of M0,ξ . Therefore, Ψ induces an isomorphism Ψ : P1 × P2 ' P′
1
× P′

2
.

Now if we can show that the above statement will imply Pi ' P′
σ(i)

for i ∈ {1, 2}
and σ is a permutation on {1, 2}. Then by [BBdBR01, Theorem 2.1], we get an

isomorphism fi : Xi → Y
σ(i) such that fi(xi) = y

σ(i). Hence, we get X0 ' Y0 . We will

show that if Ψ : P1 × P2 ' P′
1
× P′

2
, then Pi ' P′

σ(i)
.

Let ς1, ς2, ς3, ς4 be the generators of the nef cone of P′1 × P′2 as in Proposition 5.5.

Let N := ς1 ⊗ ς2 and N′ := ς3 ⊗ ς4 . Then Ψ∗N, Ψ∗N′ lie in the boundary of the nef

cone of P1 × P2. Note that, for sufficiently large n, m, the image of the morphism

|Ψ∗Nn| is isomorphic to P′
1

and the image of the morphism |Ψ∗N′m| is isomorphic

to P′
2
.

Now we claim that Ψ∗(N) = ϑa
1
⊗ ϑb

2
or ϑc

3
⊗ ϑd

4
for some a, b, c, d>0. Otherwise,

by Lemma 5.8, the dimension of the image of |Ψ∗(N)n| will be different from the

dimension of P′
1
. Suppose that Ψ∗(N) = ϑa

1
⊗ ϑb

2
for some a, b>0. Then, by our

assumption Y1 � Y2 , we have Ψ∗(N′) = ϑc
3
⊗ ϑd

4
for some c, d>0. Therefore, by

Remark 5.7, for sufficiently large n, m� 0, the images of the morphisms defined by

the linear systems |Ψ∗Nn| and |Ψ∗N′m| will be isomorphic to P1 and P2 . Hence, we

have isomorphisms Φ1 : P1 → P′1 and Φ2 : P2 → P′
2

such that the following diagrams

commute:

P1 × P2
Ψ //

|Ψ∗(N)n|
��

P′1 × P′2
|Nn|
��

P1
Φ1 // P′1

(5.6)

P1 × P2
Ψ //

|Ψ∗(N′)m|
��

P′1 × P′2
|N′m|
��

P2
Φ2 // P′2

(5.7)

Therefore, by Theorem 5.3, there is an isomorphism f1 : X1 → Y1 such that

f1(x1) = y1 and an isomorphism f2 : X2 → Y2 such that f2(x2) = y2 .
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Suppose that Ψ∗(N) = ϑc
2
⊗ ϑd

4
, c, d>0. Then, by similar arguments as above, we

can show that P2 ' P′
1

and P1 ' P′
2
. Therefore, there is an isomorphism f ′

1
: X2 → Y1

such that f ′
1
(x2) = y1 and an isomorphism f ′

2
(x1) = y2 Hence, we conclude X0 ' Y0.

This completes the proof.
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