
Chennai Mathematical Institute

SORTING AND SELECTION IN RESTRICTED MODELS

A Thesis in

Department of Computer Science

by

Varunkumar Jayapaul

c© 2017 Varunkumar Jayapaul

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

October 2017

Abstract

Sorting and selection problems have always been fundamental questions which have
constantly been studied. In this thesis, several questions regarding sorting and
selection are looked at in restricted models motivated by theoretical and practical
considerations.

In Chapter 1, we look at problems of sorting, where the algorithm may not have
complete freedom on what queries it can make. The adversary declares that certain
queries will not be answered by it, but the algorithm may be able to deduce the
result of that query using transitivity. In these circumstances, we give an algorithm
which improves the previous upper bound on the queries required and we also give
the first lower bound on the number of queries which are required. A prelimnary
version of the results in this chapter appear in proceedings of CALDAM 2017 [1].

In Chapter 2, we look at sorting and selection problem, when the oracle cannot
answer the relation between two elements, but can answer the difference in their
ranks. In this scenario the problem of sorting is equivalent to the problem of graph
reconstruction (where the graph is a simple path). To complicate the matter, the
adversary can also decide which queries it will answer. We show that the problem
has the same complexity, regardless of whether there are restrictions on pairs of
elements between which a query can be made.

In Chapter 3, we look at problems of sorting and selection, where the adver-
sary/oracle can reveal only whether the elements being compared are equal or not.
In these circumstances, we study the question of finding a mode and organizing
all the elements in the input, so that all the equal elements are grouped together.
We give optimal lower bounds and matching upper bounds for finding a mode and
for sorting in this model. We generalize a previously known technique for finding
the majority element, and use it to find a mode. Results of this chapter appeared
in proceedings of WADS 2015 and WALCOM 2016 [2, 3].

In Chapter 4, we look at the selection problem, when the oracle has some free-
dom to lie. The oracle has this freedom, only when the elements being compared
have their difference below a fixed threshold. In these situations, it is known that
finding a maximum element is equivalent to finding a king vertex in a tournament.

ii

A king vertex is a vertex which can reach the remaining vertices in the graph, by a
directed path of length at most two. We give an algorithm for finding such a king,
in the incremental dynamic setting. We also show the hardness of verifying a king
vertex. We also generalize some previously known results for finding kings and
show that the adversarial strategy needs to be changed, if a better lower bound
has to be shown. In other words we construct an algorithm which works specif-
ically against this adversary and ensures that it finds a king and the algorithm’s
runtime matches the best known lower bound. Results of this chapter appeared in
proceedings of FAW 2017 [4].

In Chapter 5, we look at the selection problem in directed graphs, undirected
graphs and tournaments, which may not have any transitivity property. In this
circumstances, the goal is to find vertices having a certain degree or the maximum
degree. We improve the previously known results for these questions. Results of
this chapter appeared in proceedings of CALDAM 2017 [5].

iii

Table of Contents

Acknowledgments vii

Chapter 1
Introduction 1

Chapter 2
Sorting Under Forbidden Comparisons with

Orientation Oracle 3
2.1 Introduction . 3

2.1.1 Organization of the Chapter 6
2.1.2 Definitions and Notation . 6

2.2 Sorting Under Forbidden Comparisons 7
2.2.1 Upper Bounds . 7

2.3 Lower Bounds . 12
2.3.1 Lower Bound for Dense Graphs 12
2.3.2 Lower Bound for Sparse Graphs 13

2.4 Sorting Special Comparison Graphs 16
2.4.1 The General Idea . 17
2.4.2 Chordal Comparison Graphs 18
2.4.3 Proper Circular Arc Graphs 19
2.4.4 Comparability Comparison Graphs 20

2.5 Concluding Remarks . 23

Chapter 3
Sorting and Selection under Forbidden Comparisons with

Distance Oracle 24
3.1 Introduction . 24
3.2 Organization of the Chapter . 25
3.3 Definitions and Notation . 26
3.4 Reconstructing Hamiltonian Path in Complete Graphs 26

iv

3.5 Reconstructing Hamiltonian Path in General Graphs 28
3.5.1 Assuming a Leaf Vertex is Given 28
3.5.2 When a Leaf Vertex is Not Given 30

3.6 Lower Bounds . 34
3.7 Concluding Remarks . 36

Chapter 4
Sorting and Selection Using Equality Comparisons 37
4.1 Introduction . 37

4.1.1 Related Work . 38
4.2 Finding All Modes (or Elements With Specific Frequency) 39

4.2.1 A Simple Mode Finding Algorithm 40
4.2.2 An Improved Algorithm

Generalization of the Fischer-Salzberg Majority Algorithm . 41
4.2.3 Finding Mode using n2/m+ n Comparisons 48

4.3 Sorting and Finding Least Frequent Element 56
4.4 Lower Bounds . 59

4.4.1 Lower Bound for Finding a Mode 59
4.4.2 Lower Bound for Finding a Least Frequent Element 60

4.5 Conclusions . 63

Chapter 5
Selection in Tournaments 65
5.1 Introduction and Motivation . 65
5.2 Preliminaries . 68

5.2.1 Definitions and Notation . 68
5.2.2 Some Known Results Which We Have Used 69

5.3 Finding a King Against a Pro-Low Adversary 73
5.4 Finding d-Kings and d-Covers . 77

5.4.1 Lower Bounds . 77
5.4.2 Upper Bounds . 79

5.5 Verification of Kings . 83
5.6 Finding Kings in the Incremental Dynamic Setting 84
5.7 Conclusions and Open Problems . 91

Chapter 6
Elusiveness of Finding Degrees 93
6.1 Introduction . 93

6.1.1 Organization of the Chapter 94
6.2 Definitions and Conventions . 95
6.3 Finding Vertices of Degree k . 96

6.3.1 Directed Graphs . 96
6.3.2 Undirected Graphs . 100

v

6.4 Finding the Maximum Degree . 102
6.4.1 Directed Graphs . 102
6.4.2 Undirected Graphs . 102

6.5 Tournaments . 104
6.5.1 Lower Bound for Finding Maximum Outdegrees 104
6.5.2 Upper Bound for Finding a Vertex with Maximum Outdegree 106

6.6 Conclusions and Open Problems . 107

Bibliography 109

vi

Acknowledgments

Firstly, I would like to express my sincere gratitude to my advisor Prof. Venkatesh
Raman for the continuous support of my Ph.D study and related research, for his
patience, motivation, and immense knowledge. His guidance helped me in all the
time of research and writing of this thesis. I could not have imagined having a
better advisor and mentor for my Ph.D study.

Besides my advisor, I would like to thank the rest of my thesis committee for
their insightful comments and encouragement. Chennai Mathematical Institute
gave me complete freedom in the choices I made and also ensured that my stay
with the institute was a cherishable ride.

I would also like to express my gratitude to Dr. Srinivasa Rao Satti, whose
unplanned visits to IMSc would ultimately end in wonderful ideas and papers. He
has been a great source of inspiration for me.

My sincere thanks also goes to the Institute of Mathematical Sciences that
provided me an opportunity to use their institute resources, and gave access to
the library and research facilities. Without their precious support it would not be
possible to conduct this research.

I would also like to express my gratitude to my colleagues Arindam Biswas, and
Dishant Goyal, with whom I had the opportunity to collaborate and write papers.

I thank my fellow colleagues Niranka Banerjee, Sankardeep Chakraborty, Anish
Mukherjee, for the stimulating discussions and for all the fun we have had in the
last four years. I would also like to thank my juniors at Chennai Mathematical
Institute.

Last but not the least, I would like to thank my parents for supporting me
spiritually throughout writing this thesis and my life in general.

vii

Dedication

To Menakha Jayapaul, Jayapaul Narayanswamy and Lord Shiva

viii

Chapter 1
Introduction

Sorting and selection problems have always been the under constant attention of

researchers across the computer science research community. These problems have

been a gateway for students who indulge in the world of algorithms. Over the past

several decades, various improvements have been made to the previously existing

algorithms for sorting and selection. Every parameter related to the efficacy of

an algorithm for sorting has been fine tuned over the past decades. They have

been looked through the lens of several branches of computer science. Researchers

working on parallel algorithms have designed parallel algorithms for faster sorting.

People concerned with space requirements of the algorithm, have succeeded in

reducing the additional workspace required for a sorting algorithm.

A significant portion of this advancement is based on certain assumptions re-

garding the instance of the problem or the ability of the oracle. In this thesis,

we take a look at those hidden assumptions and see what happens if these as-

sumptions may not apply to a particular sorting or selection problem. A common

assumption made by most of sorting algorithms presented across all graduate level

textbooks, is that the algorithm has the freedom to make a comparison between

any pair of elements. But several scenarios arise where such an assumption may

not be valid. Suppose there are n teams, and we need to rank the teams according

to their level of skill. If all teams are willing to compete against any other team,

then the problem boils down a traditional sorting problem. But suppose several

teams have some internal rivalry or they are not willing to play against certain

teams which they believe resort to unfair means. In such a scenario, traditional

2

algorithms may fail to rank them according to their skill.

Another common assumption made in regard to sorting/selection problems is

that when two elements a and b are compared, the oracle is assumed to output

whether a ≤ b or a > b. But there exist several scenarios where the oracle only has

the ability to tell whether a = b or not. In these types of problems, the goal of a

sorting algorithm would be to keep all elements which are equal in value together.

Consider the case of a folder which has several images. Most computer softwares

are only capable of telling whether two images match or not, thus revealing whether

the folder contains any duplicate images or not. These algorithms are unable to

define a total ordering between two distinct images, unless given a complex method

to define such an ordering to measure relative similarity.

Sometimes the oracle may not be correctly able to determine the winner if the

two elements being compared have an insignificant amount of difference. Especially

if the oracle resembles a human then such instances can occur quite frequently.

For example, it is easier for a child to decide that a tennis ball is smaller than

a basketball, but a child may not be able to decide correctly which one among a

basketball and a football is bigger.

The most common assumption regarding sorting problems is the assumption

that there exists a total ordering between the elements constituting the input. In

the worst of the scenarios, the elements being compared may have absolutely no

relative order between themselves. For example, several online multiplayer games

involve players playing several games against random strangers, and the simplest

way to rank them according to their skill is to keep track of the number of their

victories. The assumption of comparisons being transitive can go for a toss in

various such day to day scenarios.

In this thesis, we look at questions regarding these problems and improve pre-

viously known bounds and give new lower bounds with the goal to get a better

understanding of these problems.

Chapter 2
Sorting Under Forbidden

Comparisons with

Orientation Oracle

2.1 Introduction

Comparison based sorting algorithms is one of the most studied areas in computer

science. Huang, Kannan and Khanna [6] initiated the study of sorting when cer-

tain pairs of elements are forbidden to be compared and they gave a randomized

Õ(n
√
n) algorithm 1.

A forbidden pair is a pair of elements x and y which cannot be directly compared

to each other. This does not necessarily imply that the two elements are mutually

incomparable, i.e. there may exist some element z, such that x > z and z > y,

thereby implying x > y. The input is an undirected graph G(V,E), where V is

the set of elements and E represents the allowed comparisons/edge queries (the

two terms are used interchangeably). We call G as the comparison graph, and we

assume that the algorithm is given this undirected graph (so it does not have to

spend time to determine whether a given pair is comparable or not).

The comparison graph G has an underlying directed acyclic orientation realiz-

ing a poset PG maintained by an adversary. The goal of the problem is to determine

1Õ ignores polylogarithmic factors

4

the orientation of all the edges by probing the adversary for as few edges as pos-

sible (and using transitivity). We call this problem loosely as sorting the poset

underlying the graph G or simply sorting the graph G. The number of queries

made to the adversary is defined as the query complexity.

Poset sorting has been well studied for width bounded posets in [7]. It is known

that if a poset P has width (the size of the largest anti-chain) at most w, then

the information theoretic bound for the query complexity is Ω((w + lg n)n). A

query optimal algorithm n for width bounded posets whose total complexity is

O(nw2 lg(n/w)) is presented in the same paper.

Let q be the number of forbidden pairs in the given graph and let w be the width

of the poset PG realized by the vertices of the graph. The parameters q and w are

known to be related, since q is at least the number of incomparable pairs in PG

which is at least
(
w
2

)
. Hence, w is O

(√
q
)
, although

√
q can be substantially larger

than w. Take, for example, a total order with the comparison graph as simply a

path on n vertices. The width of the graph is one, as there is no anti-chain of

length more than one, however the graph is missing q =
(
n
2

)
− n+ 1 edges.

Banerjee and Richards [8] used q as a measure of how difficult it is to sort

G. When q is 0, there is no forbidden pair, and the standard comparison based

sorting algorithms can determine the poset using O(n lg n) edge queries. At the

other extreme, when |E|, the number of edges present in the graph is small, one

can simply probe every edge in the graph and sort much faster. A good structure

on the input graph can also help to sort much faster, regardless of how large q is,

as we show later in this chapter.

Banerjee and Richards [8] showed a O((q + n) lg n) query bound for sorting

a graph with q missing edges. We modify the algorithm resulting in a query

complexity of O((q + n) lg(n2/q)). For q = Θ(n2), this bound is better than the

bound of Banerjee and Richards. We also improve the running time of O(nω)

to running time of O(n2 lg n). We also show the first lower bound by exhibiting

a comparison graph with q forbidden pairs and an orientation of the edges that

requires Ω(q + n lg n) queries.

Then, we investigate the problem for some special classes of comparison graphs.

The graph classes which we have considered are incomparable, in the sense that no

graph class is contained by the other. A graph is chordal if every cycle of length

5

at least 4 in the graph has a chord (an edge joining two non-adjacent vertices

of the cycle). We show that if the comparison graph is a chordal graph, then

we can sort the graph using O(n lg n) queries using the simplicial ordering of the

vertices of the graph. A graph is a comparability graph if its edges can be oriented

such that for every triple x, y, z of vertices, if there is a directed edge from x

to y, and if there is a directed edge from y to z, then there is a directed edge

from x to z. We call such an orientation a comparability orientation. Note that

a directed acyclic orientation is not necessarily a comparability orientation. For

example, if G, the underlying undirected graph is a path on three vertices a, b and

c, then the orientation a → b → c is not a comparability orientation though it is

a directed acyclic orientation. The two comparability orientations for such a path

are a→ b← c and a← b→ c.

We show that if the comparison graph is a comparability graph and if the

adversary answers the edge queries based on a comparability orientation of the

graph, then we can sort the poset underlying the graph using O(n lg n) queries. A

consequence of this result is the following. Suppose we have a poset represented

by a directed graph such that the directed edges of the graph represent all the

order relations between the elements of the poset (so the missing edges represent

incomparable elements of the poset). And suppose we are not given the orientation,

but only the underlying undirected graph. Then we can find the poset probing the

adversary for O(n lg n) edge queries (the rest of the edge directions are deduced

using transitivity). This may be of independent interest.

We also look at the class of graphs known as proper circular arc graphs. A

circular-arc graph is the intersection graph of a set of arcs on the circle. It has

one vertex for each arc in the set, and an edge between every pair of vertices

corresponding to arcs that intersect. A circular arc graph is a proper circular-

arc graph [9], if there exists a corresponding arc model such that no arc properly

contains another. Recognizing a proper-circular arc graph can be done in linear

time [10, 11] . If the graph is a proper-circular arc graph we show that finding the

poset can be done by probing O(n lg n) edges.

6

2.1.1 Organization of the Chapter

In Section 2.2, we give the improved upper bound for sorting a graph based on

q. In Section 2.3, we give the first lower bound for sorting a comparison graph.

We also give lower bounds, in case the comparison graph is guaranteed to have

a total order. In Section 2.4, we outline the O(n lg n) query algorithm to sort

comparability graphs, proper circular arc graphs and chordal graphs.

In Section 2.5, we give some concluding remarks on sorting a graph whose

partial order is a total order.

2.1.2 Definitions and Notation

Let G be a graph. We denote by V (G) (or simply V) the vertex set of G, and by

E(G) (or simply E) the edge set. If |V (G)| = n and |E(G)| = m, G is said to have

order n and size m.

For any v ∈ V (G), N(v) denotes the set of neighbors of v, and we define

deg(v) = |N(v)| and n(v) = n− 1− deg(v) is the number of vertices that are not

adjacent to v. For a subset S ⊆ V (G), G[S] denotes the subgraph of G induced

by S and for v ∈ S, NS(v) denotes the neighbors of v in G[S]. Analogously, we

define degS(v) = |NS(v)|.
A tournament is a directed graph in which there is exactly one directed edge

between every pair of vertices, and a (directed or undirected) Hamiltonian path is

a (directed or undirected respectively) path that visits every vertex of the graph

exactly once.

An approximate median (if it exists) of G denotes a vertex v which can reach

and can be reached by Ω(n) vertices, whereas a median vertex (if it exists) is a

vertex which can reach bn/2c vertices and can be reached by n−1−bn/2c vertices.

To keep the notation simple, we sometimes omit ceilings and floors on fractions

when we actually mean integers, typically on the sizes of the vertex subsets we

handle. This does not affect the asymptotic analysis.

7

2.2 Sorting Under Forbidden Comparisons

2.2.1 Upper Bounds

We start by revising a known algorithm [8] with some slight modifications including

some constants, which we believe gives more accurate analysis. Central to their

algorithm is the construction of several subsets of vertices such that each subset

induces a clique.

If n2 ≤ 320q, it means that the total number of edges |E| =
(
n
2

)
− q < 160q− q,

thus |E| < 159q, that is the number of missing edges is asymptotically of same size

as the number of edges present. In such a case, we use brute force to query all the

edges in O(q) time and find the total sorted order. So we focus on the case when

n2 > 320q.

Assume for now that q ≤ cn for some constant c. Let R = {v ∈ V | n(v) > 4c},
then |R| ≤ n/2. This is obvious from the fact that

∑
v n(v) ≤ 2cn. Let S = V −R

and G[S] be the induced subgraph generated by S. We have |S| ≥ n/2 and if v ∈ S
then n(v) ≤ 4c .

Lemma 2.2.1. If q ≤ cn, there exists a subset X ⊆ S such that |X| ≥ n
2(4c+1)

and

G[X] is a complete graph and such a set can be found in O(n2)time.

Proof. We construct X explicitly. We start with X = {u}, where u is an arbitrary

vertex in S. We repeatedly pick a vertex (say t) adjacent to all vertices in X from

V and add it to X and remove it from V , until no such vertex exists. Let v be

the last vertex to be added to X, after which V becomes empty. Since v has at

least |S| − 4c neighbors, whenever we pick a neighbor of v from S to add to X we

lose at most 4c+ 1 vertices (including the vertex we picked). Hence, |X| is at least
|S|

4c+1
≥ n

2(4c+1)
.

Clearly the above procedure runs in O(n2) time and makes no comparisons.

Now, we deal with the general case for arbitrary values of q.

We will define the sets R and S analogous to the previous Lemma. We have

R = {v ∈ V | n(v) > 4q/n}. Thus, we get |R| ≤ n/2. Similarly S = {v ∈ V |
n(v) ≤ 4q/n} Thus all vertices in S do not share an edge with at most 4q/n vertices

in G. Additionally, |S| ≥ n/2. Now we will apply Lemma 2.2.1 successively to

8

construct a big-enough set X ⊆ S which we will use to find an approximate median

of V . For general values of q we can also show the following

Lemma 2.2.2. There exists a subset X ⊆ S such that |X| ≥ n
2(4q/n+1)

= n2

2(4q+n)

and G[X] is a complete graph and such a set can be found in O(n2)time.

Constructing several Xi

Let us define Si = S \
i⋃

j=1

Xj . We construct the first clique X1 ⊆ S using the

method detailed in Lemma 2.2.1.

There are two cases:

Case 1. q ≤ n: In this case, we use Lemma 2.2.1 and hence |X1| ≥ (n/2)/(4q/n+

1) ≥ n/10. We take the exactly n/10 elements from X1 and discard the rest to

be processed in the next round. Then we compute X2 from S1 which is of size at

least (n/2− n/10)/5 = 4n/50. Let X = X1 ∪X2. Thus |X| ≥ 9n/50.

Case 2. q ≥ n: In this case we have |X1| ≥ n2

2(4q+n)
≥ n2/10q by Lemma 2.2.2. We

take |X1| = (1/10)n2/q discarding some vertices if necessary.

Similarly we construct X2 ⊂ S1. S1 = |S| − n2/10q ≥ n/2 − n2/10q. It can

be seen that X2 ≥ |S1|/5q/n = (n2/10q)(1 − n/5q). We keep (n2/10q)(1 − n/5q)
vertices in X2 and the rest are discarded to be processed the next round. In general

for the clique Xr we have |Xr| ≥ (n2/10q)(1− n/5q)r−1 . Now we let X = ∪ri=1Xi

. We will show that |X| ≥ δ2n for some constant δ2 > 0. When r = 5q/n + 1, we

have

|Xr| ≥ (n2/10q)(1− n/5q)r−1 ≥ (n2/10q)(1− n/5q)5q/n > 3n2/100q

since q ≥ n. Hence, |X| =
r⋃

i=1

|Xi| ≥ r|Xr| ≥ (15/100)n, giving δ2 = 15/100.

Thus, in both the cases, we can create X such that |X| ≥ 15n/100.

In both the cases, for each Xi(1 ≤ i ≤ r) we keep a subset Yi of size |Xr| and

throw away the rest. Clearly, for each i, the induced sub-graph G[Yi] is also a

clique. Let Y =
r⋃

i=1

Yi . We have |Y | ≥ 15n/100 in both the cases.

9

Computing An Approximate Median Of V

Recall the definition of approximate median. We compute an approximate median

with respect to all the vertices (the set V) and not just the set S. This vertex will

divide the set V in constant proportions. This is done by using the set Y . For

each Yi we find its median using O(|Yi|) probes since G[Yi] is a complete graph

using the classical median finding algorithm in a total order [12]. Let mi be the

median of Yi and M be the set of these r medians. Since mi ∈ S, n(mi) ≤ 4q/n.

We define the upper set of m ∈ M with respect to a set A ⊆ V (m may not be a

member of A) as U(m,A) = {a ∈ A| a > m}. Similarly we define the lower set

L(m,A). We want to compute the sets U(m,Y) and L(m,Y). However, m may

not be neighbor of all the elements in Y . So we compute approximate upper and

lower sets by probing all the edges between m and the neighbors of m in Y . These

sets are denoted by Ũ(m,Y) and L̃(m,Y) respectively. It is easy to see that there

exists some m ∈ M which divides Y into sets of roughly equal sizes (their sizes

are a constant factor of each other). In fact the median of M is such an element.

However the elements in M may not all be neighbors of each other hence we will

approximate m using the ranks of the elements in M with respect to the set Y

(which is |L̃(m,Y)|). We compute the sets |L̃(m,Y)| and |Ũ(m,Y)| for all the

medians in M . All elements in M are rearranged in increasing order of |L̃(m,Y)|.
m∗ ∈M is chosen by taken the element which is a median of this sorted set. Next

we prove that the element m∗ the approximate median of M , picked using the

above procedure, is also an approximate median of Y .

Lemma 2.2.3. The element m∗ is an approximate median of Y .

Proof. First we show that the median of M is an approximate median of Y . Let us

take the elements in M in sorted order (m1, ...,mr), so the median of M is mdr/2e.

Now L(mr/2, Y) ≥
dr/2e⋃
i=1

L(mi, Yi). Since, the sets Yi are disjoint and L(mi, Yi) ≥

|Xr|/2, we have |L(mdr/2e, Y)| ≥ |Xr|r/4 (ignoring the floor). Similarly we can

show that |U(mdr/2e, Y)| ≥ |Xr|r/4. Hence mdr/2e is an approximate median of Y ,

since it has at least |Y |/4 elements less than itself and |Y |/4 elements greater than

itself. Now we show that |̃|L(m∗, Y)|− |L(mdr/2e, Y)|| < 4q/n. Consider the sorted

order of elements in M according to |L̃(m∗, Y)|. Since each element in m ∈M has

10

at most 4q/n missing neighbors in Y , we have ||L̃(m,Y)| − |L(m,Y)|| < 4q/n.

So the rank of an element in the sorted order is at most 4q/n less than its actual

rank. Thus an element m∗ picked as the median of M using its approximate rank

|L(m,Y)| cannot be more than 4q/n apart from mdr/2e in the sorted order of Y .

Hence

|L(m∗, Y)| ≥ |Xr|r/4− 4q/n ≥ 15n/400− 4q/n ≥ n/40

whenever2 n2 ≥ 320q. In an identical manner we can show that |U(m∗, Y)| ≥
n/40. Hence, m∗ is an approximate median of Y .

It immediately follows that m∗ is also an approximate median of V with both

|L(m∗, V)| and |U(m∗, V)| lower bounded by n/40. Lastly, we note that the above

process of computing an approximate median makes Θ(q + n) probes. This follows

from the fact that computing the medians makes Θ(n) probes in total and for each

of the ≤ 5q/n+ 1 medians we make O(n) probes.

This gives the following Lemma

Lemma 2.2.4. Every graph with q < n2/320 missing edges has an approximate

median vertex m computable using O(q + n) queries, such that m is greater than

at least n/40 elements and less than at least n/40 elements. Furthermore m can

not be compared with at most O(q/n) elements.

The algorithm of Banerjee and Richards [8] uses this Lemma recursively to

break the problems into smaller subproblems, to solve the sorting problem. Both

their and our algorithms are recursive, and the main difference is that we bail

out of the recursion earlier which improves the bounds. Their algorithm has a

partition step to break the input into smaller subproblems and a merging step

where they combine smaller solutions to solve larger subproblems. We modify the

process here by only having a single partitioning step, after which the problem

breaks into two disjoint problems. The output of the algorithm is an orientation

of all of the edges of the graph G. This simplification also helps us improve the

running time from O(nω) (where ω ∈ [2, 2.38] is the exponent in the complexity of

matrix multiplication) to O(n2 lg n).

2The constant used in [8] is 200, instead of 320. We have made the small change to factor in
a calculation gap in the last equation on page 7 in [8].

11

Algorithm 1: Sort G(V,E, q, depth)

1 if q ≥ n2/320 or depth = lg(n
2

q
)/ lg(40

39
) then

2 query every edge in E and output their orientations;

3 end

4 else

5 Find an approximate median vertex m using Lemma 2.2.4;

6 Compare m with all its neighbors in V and output their orientations;

7 Vl = {v|v ∈ N(m), v < m} and Vh = {v|v ∈ N(m), v > m};
8 Vincomp = {v|v ∈ V −N(m)};
9 Compare every vertex in Vincomp with all its neighbors in V and output

their orientations;

10 ∀u, v such that u ∈ Vl and v ∈ Vh and uv ∈ E orient edge from v to u;

11 Sort G(Vl, El, ql, depth+ 1) and Sort G(Vh, Eh, qh, depth+ 1) (El and Eh

are the set of edges in G[Vl] and G[Vh] respectively, while ql and qh are

the number of missing edges in G[Vl] and G[Vh] respectively)

12 end

Theorem 2.2.5. Sorting a comparison graph with q forbidden edges can be done

in min{|E|,O
(

(q + n) lg(n
2

q
)
)
} edge queries and takes O(n2 lg(n2/q)) time.

Proof. The details of the algorithm are given in Algorithm 1 which is initially

called with depth = 0. The algorithm is essentially the same as that of [8], ex-

cept that it is forced to stop the recursion, when the depth of the recursion i is

(lg(n
2

q
))/ lg(40

39
). It checks if the value of q is more than a certain threshold or the

depth of the recursion is less than a threshold and then it breaks the problem into

two disjoint problems using O(q + n) queries by Lemma 2.2.4. Suppose at level

l of the recursion, the sizes of the subproblems are n1, n2, n3...nt and the number

of missing edges in these subproblems are q1, q2, q3...qt respectively. The algorithm

either breaks them into smaller subproblems or queries every edge in that sub-

problem (whenever qi ≥ ni
2/320 missing edges). In the latter case, the algorithm

performs at most
(
ni

2

)
< 160qi queries. The query cost incurred by the incompara-

ble elements at any internal node of recursion tree is also O((qi/ni) ∗ ni) = O(qi).

In either of the cases, the total number of queries done at this level is at most

O
(∑l

i=1(qi + ni)
)

= O(q + n). Thus at any level of the recursion tree, the algo-

12

rithm makes at most O(q + n) queries.

When the depth of the recursion i is (lg(n
2

q
))/ lg(40

39
), the number of subproblems

would be O(n2/q) and the size of each subproblem would be at most (39/40)in =

q/n, since each subproblem has at most 39/40 fraction of the vertices of its parent

subproblem by Lemma 2.2.4.

Even if all these subproblems were complete graphs, the total number of edges

in all these subproblems would be O(n2/q ∗ (q2/2n2)) = O(q). At this point we

just ask all the edge queries without recursing any further using O(q) edge queries.

The algorithm creates a recursion tree which has O
(

lg(n
2

q
)
)

levels and queries

O(q + n) edges at each level. Thus the total edge queries made by the algorithm

is O
(

(q + n) lg(n
2

q
)
)

. If |E| < (q + n) lg(n
2

q
), then algorithm just asks all possible

edge queries without optimizing in any way.

In the above theorem, we have just counted the query complexity and ignored

the time it takes to find the queries to make. If the value of q > n2/320, then the

algorithm runs in O(E) = O(n2) time, by asking all queries using brute force. If q <

n2/320, constructing the sets Xi for finding the median (Step 5 of the algorithm)

using Lemma 2.2.4 takes O(n2) time by Lemma 2.2.1. Another O(|Elh|) time is

spent for finding orientations of edges across set Vl and Vh (Elh is the set of edges

between set Vh and Vl). Thus, one can see that the actual running time to perform

each level of iteration is O(q + n+ |Elh|+ n2) = O(n2). Since there are O(lg(n2/q)

such iterations, the algorithm has a total running time of O(n2 lg(n2/q)), which

improves the previous best running time of O(nω) (ω ∈ [2, 2.38] is the exponent in

the complexity of matrix multiplication).

2.3 Lower Bounds

2.3.1 Lower Bound for Dense Graphs

In this subsection, we deal with lower bounds for sorting when the input undirected

graph is a dense graph. We now exhibit lower bounds on the number of edge queries

needed to sort a graph G = (V,E) in terms of |V | and q =
(
n
2

)
− |E|, the number

of missing edges. When q is large, we have the following lower bound.

13

Lemma 2.3.1. There exists a graph with q ≥ n2/4 and an orientation such that,

Ω(|E|) edge queries are needed to sort the graph.

Proof. The graph which the adversary constructs is a complete bipartite graph

with A and B as the equal sized parts. Here the number of missing edges, as well

as the number of edges present is, roughly n2/4. The adversary orients the edges

from A to B forcing the algorithm to probe every edge, as the algorithm can not

deduce any of the edges using transitivity. If the algorithm fails to query an edge,

the algorithm has a choice of flipping its direction.

For q < n2/4, we have the following bound.

Theorem 2.3.2. When q < n2/4, there exists a graph and an orientation of the

edges such that any algorithm has to probe Ω(q + n lg n) queries to sort the graph.

Proof. In this case, the graph constructed by the adversary consists first of a

complete bipartite graph B with partitions X and Y of size roughly
√
q each such

that it has q edges and has q edges missing. Then it forms a complete graph K on

the remaining n− 2
√
q vertices and maintains a total order among those vertices.

And it has all the edges between every vertex of K and every vertex of B. If a

query comes between a vertex b in the bipartite graph B and a vertex c in the

complete graph K, the adversary directs the edge from b to c. If the edge query is

between two vertices inside the complete graph, the adversary answers consistent

with the total order it maintains. If the edge query is between two elements inside

the bipartite graph, the adversary answers according to the adversary in Lemma

2.3.1 with X and Y playing the role of A and B respectively.

The number of edge queries required to sort the complete graph K would be

Ω(n lg n) and the number of edge queries required to sort the bipartite graph B is

at least Ω(q) from Lemma 2.3.1, which gives a lower bound of Ω(q + n lg n) edge

queries.

2.3.2 Lower Bound for Sparse Graphs

Let us consider a comparison graph G(V,E) such that |E| = |V | = n and graph

is an undirected cycle, and let us say that the adversary also reveals that the

14

underlying poset is a totally ordered set. Even in this situation it is easy to show

that n− 1 edge comparisons are necessary to sort the graph.

Theorem 2.3.3. If the comparison graph is a simple cycle on n edges and has

the guarantee that the n vertices form a total order, then n − 1 edge queries are

necessary and sufficient to sort the graph.

Proof. Suppose v1, v2...vn are the vertices of G and v1v2, v2v3...vn−1vn and vnv1 are

the edges in G. Since there are n vertices and the adversary has revealed that they

form a totally ordered set, there are 2n possible sorted orders. This is due to the

fact that each vertex can be the minima of totally ordered set, and every vertex

can give possibly two sorted orders. One sorted order is obtained by looking at

the cycle in clockwise direction, and another is obtained by looking at the cycle in

anti-clockwise direction.

This also implies that all but two vertices have one incoming and one outgoing

edge. One vertex has two incoming edges (referred to as minima) and one vertex

has two outgoing edges (referred to as maxima), and these two vertices share an

edge in G.

The adversary has a simple strategy. It answers the first n− 2 queries so that

the edge being queried is directed in clockwise direction. The claim is that no

algorithm can correctly determine the directions of the last two edges, even with

the knowledge of the first n − 2 edge queries. There are two cases regarding the

remaining two edges which have not been probed.

Case 1: The two edges share a common vertex.

Suppose vivj and vjvk are the two unprobed edges. The remaining probed

edges form a directed path, since all the edges are on a cycle and the adversary is

answering all the edges in clockwise direction. Let vi be the source of the directed

path and vk be the sink of this directed path (without any loss of generality).

At this point, there are two possible total orders, which are consistent with the

answers given till now. One total order has vi as the minima and vj as the maxima,

while the other total order has vj as the minima and vk as the maxima. Thus n−1

edge queries are necessary in this case.

Case 2: The two edges do not share a common vertex.

Suppose vivj and vkvl are the two unprobed edges. The remaining probed edges

15

form two disconnected directed paths, since all the edges are on a cycle and the

adversary is answering all the edges in clockwise direction.

Among vi and vj, let vi be the vertex which recieves an incoming edge and vj

be the vertex which has an outgoing edge (without loss of generality). Similarly

among vk and vl, let vk be the vertex which recieves an incoming edge and vl be

the vertex which has an outgoing edge(without loss of generality).

At this point, there are two possible total orders, which are consistent with the

answers given till now. One total order has vi as the minima of the total order,

and the other total order has vk as the minima.

Thus, when two edges have not been probed the algorithm cannot correctly

output the total order in the underlying graph. Similarly it is easy to see that

if k edges have not been probed, then there are at least k vertices which do not

have any incoming edge and hence any of the k vertices can be the maxima of

the total order. Thus, the algorithm cannot figure out which of these edges is a

anti-clockwise edge. Therefore, under this adversary, the algorithm cannot infer

the direction of any edge until the algorithm makes n− 1 queries.

Since finding an anti-clockwise edge, reveals the source of the total order and

hence the entire total order, finding an anti-clockwise edge under this adversary is

sufficient to find the total order. Finding the anti-clockwise edge is also necessary,

since the anti-clockwise edge determines the source of the total order.

Thus n− 1 edge queries are necessary in this case.

We also prove that this lower bound is tight in this case of a cycle graph. A

simple n− 1 edge query algorithm to find the directions of edges also exists for a

simple cycle graph if there is the guarantee that the vertices form a total order.

The algorithm picks any n− 1 edges and queries them. One of the three possible

cases can happen.

Case 1: The algorithm finds a vertex v which has two incoming edges, in which

case v is the smallest element in the total order.

Let u and u′ be the two neighbors of v in the cycle. This implies that one of

the neighbors of v is a largest element in the total order. Since only one edge has

not been queried by the algorithm, it means that one of the vertices (u and u′)

know that they have two outgoing edge or one of the vertices has one incoming

and one outgoing edge. If u (without loss of generality) has two outgoing edges,

16

then u is the largest element of the total order, which defines and a unique total

order, defined by directed path which can reach v from u through u′. Otherwise,

if u (without loss of generality) has one incoming and one outgoing edge, then u′

is the largest element of the total order, which defines and a unique total order,

defined by directed path which can reach v from u′ through u.

Case 2: The algorithm finds a vertex v which has two outgoing edges, in which

case v is the largest element in the total order.

The proof is analogous to the proof for case 1.

Case 3: Every vertex has at most one incoming and one outgoing edge, in which

there is a directed path of length n which reveals a total order, and the comparison

which has not been made is the direct comparison between the smallest and largest

element of the total order.

Thus n− 1 edge queries are sufficient to find the total order in a simple cycle

graph.

2.4 Sorting Special Comparison Graphs

In general, the number of edge queries needed to sort a poset can depend on both

its size (n) and the number of forbidden pairs (q). However, when the comparison

graph accompanying the poset has some additional structure, we show that the

number of edge queries needed is at most O(n lg n), and more importantly becomes

independent of q.

In this section, we show that when the comparison graph is either chordal,

transitively orientable (i.e. a comparability graph) or proper-circular arc graph,

the graph can be sorted by making O(n log n) edge queries. In fact, the algorithms

presented below output linear extensions (i.e. topological orderings) of the input

posets. A topological ordering v1, v2...vn of its vertices is an ordering where if

(vi, vj) is a directed edge in the graph, then i < j. It is well-known that every

directed acyclic graph has a topological sort [13].

Topological sorting of a general directed acyclic graph G = (V,E) requires

Ω(|V |+ |E|) running time, while the algorithms in this section make O(n lg n)

queries. One can deduce the edge directions from the topological sort of the vertices

17

using transitivity, but they are not counted in the query complexity.

2.4.1 The General Idea

The algorithms in the next three subsections have the following general outline.

1. Pick an appropriate (constant-size) subposet of the input and topologically

sort it.

2. Iteratively extend the topological ordering by inserting one element at a time

using a binary search type procedure among its neighbors.

A binary insertion of a vertex v in the topological order v1, v2, . . . vt of its

neighbors is the process of finding whether v → v1 or vt → v or some adjacent

vertices vi and vi+1, i < t such that vi → v and v → vi+1. This is similar to

the process of searching a value in a sorted array using binary search and can be

performed using dlg te+ 1 queries.

When the comparison graph is a complete graph, then any directed acyclic

orientation of its edges has a unique directed Hamiltonian path (as with the ori-

entation, the directed graph is a transitive tournament), and hence has a unique

topological ordering. In this case, the above procedure is essentially the binary

insertion sort to sort the graph.

What we show is that such a binary insertion type procedure works even if the

comparison graph is not a complete graph. Towards that we capture the following

two simple observations.

Lemma 2.4.1. If G is a directed acyclic orientation of a complete graph (also

known as tournament), then it has a unique topological order.

Lemma 2.4.2. Let G(V,E) be a directed acyclic graph, and let S ⊆ V be such that

G[S], the induced subgraph on S, is a tournament on s vertices. Let v1, v2, . . . vs be

the unique topological order of vertices of S. In any topological order of the vertices

of V , the elements of S appear in the unique topological order within S.

Proof. Let u, v ∈ S, and let u appear before v in one topological order, then (u, v)

is directed from u to v ((u, v) edge is there as G[S] is a tournament). Then v

cannot appear before u in any other topological order of G[V] by the definition of

topological order.

18

2.4.2 Chordal Comparison Graphs

Chordal graphs [14] form a well-studied class of graphs as they can be recognized

in linear time [15], and several problems that are hard on other classes of graphs

such as graph coloring can be solved in polynomial time for chordal graphs [16].

An undirected graph is chordal if every cycle of length greater than three has a

chord, namely an edge connecting two non-consecutive vertices of the cycle [14].

In a graph G, a vertex v is called simplicial if and only if the subgraph of G

induced by the vertex set {v}∪N(v) is a complete graph. A graph G on n vertices

is said to have a perfect elimination ordering (PEO) if and only if there is an

ordering v1, v2...vn of G′s vertices, such that each vi is simplicial in the subgraph

induced by the vertices v1, v2...vi. Every chordal graph has a perfect elimination

ordering which can be found in O(|E|+ |V |) time [16, 15]. Our algorithm first

finds a perfect elimination ordering of the given chordal graph. Note that no edge

queries are made while finding a perfect elimination ordering.

Now we apply the idea outlined in Section 2.4.1 in the perfect elimination

ordering. Suppose v1, v2, . . . , vn is a perfect elimination ordering (PEO) for the

graph.

We obtain a topological sort of the vertices of the graph, in the inductive order

of the PEO. Let Gi be the induced graph on the first i vertices of the PEO,

and suppose that we know all the orientations of the edges of Gi, and we have a

topological sort of the orientation of Gi. Now we insert vi+1 using binary search

as follows. We consider the projection of the topological order of vertices of Gi

that are neighbors of vi+1, and insert vi+1 using binary search among them. In

particular, suppose we have vertices vp, vq ∈ Gi such that vp → vi+1 → vq where

vp and vq are consecutive vertices in the topological order of Gi among neighbors

of vi+1 (it is possible that one of vp or vq does not exist; vp may not exist if vq is

the first vertex of Gi in the topological order among neighbors of vi+1 and vq may

not exist if vp is the last vertex of Gi in the topological order among neighbors of

vi+1). Then we simply insert vi+1 after vp (or before every vertex if vp does not

exist) in the topological order. We claim the following.

Lemma 2.4.3. The resulting order is a topological order of the directed acyclic

orientation of Gi+1.

19

Proof. We only need to worry about edges incident on vi+1 as for every other pair

of vertices, their relative order has not been changed by the insertion and hence

the topological order property is satisfied by induction. By Lemma 2.4.2, vi+1 has

been inserted properly in the unique topological order on the induced subgraph

of vi+1 and its neighbors, as they form a clique (because of simplicial ordering

property).

Thus we have the following result

Theorem 2.4.4. If the comparison graph is a chordal graph, then the poset un-

derlying the graph on n vertices can be sorted using O(n lg n) edge queries.

The algorithm first finds a PEO of the vertices in O(|E|+ |V |) time. It also

spends O(deg(vi+1)) time to infer the directions of all edges between vi+1 and

vertices in Gi, which amounts to O(|E|) time over all the vertices . Thus, the total

time spent for finding the directions of all the edges is O(|E|+ |V |).

2.4.3 Proper Circular Arc Graphs

Circular graphs are intersection graphs of arcs on a circle. These graphs are re-

ported to have been studied since 1964, and they have been receiving considerable

attention since a series of papers by Tucker [9] in the 1970s. Various subclasses

of circular-arc graphs have also been studied. Proper circular-arc graphs form a

major and well studied subclass of this class of graphs [10]. A proper circular arc

graph is a circular arc graph in which no arc properly contains another. Recogniz-

ing these graphs and constructing a proper arc model can both be performed in

polynomial time [11].

We can show that O(n lg n) queries are enough for sorting proper circular arc

graphs, for which we need the following theorem

Theorem 2.4.5 ([11]). Neighborhood N(v) of every vertex v in a proper circular

arc graph can be split into atmost two disjoint sets N1 and N2 such that N(v) =

N1 ∪ N2 and the induced subgraphs on N1 as well as N2 are complete subgraphs.

This split of the neighborhood for every vertex can be found in O(|E||V |) time.

We maintain a subset Vi of i arbitrary vertices such that the directions of all

the edges in the induced subgraph G(Vi) are known and show that the directions

20

of all the edges in the induced subgraph G(Vi+1) where Vi+1 = Vi ∪ {u} (where

u ∈ V \Vi) can also be inferred using O(lg n) additional queries. This strategy is

similar to the strategy described in 2.4.1. Initially Vi consists of a single arbitrary

vertex.

Using Theorem 2.4.5, find the split of neighborhood of u in the proper circular

arc graph formed by induced subgraph of G(Vi+1). This neighborhood is guar-

anteed to be partitioned into at most two sets of vertices N1 and N2, such that

induced subgraph on N1 and N2 are both complete subgraphs.

Since N1 and N2 induce complete subgraphs, vertices in N1 and N2 have total

order. This implies that u can find its relations with vertices in N1 and N2 using

atmost O(lg n) queries. Then we spend O(deg(u)) time to mark the directions of

edges which have not been queried, but exist in the induced subgraph over vertices

in Vi+1, which can done using the acyclicity of the graph. Note that the time spent

marking edges using the property of acyclicity of the graph, do not count for edge

queries.

Thus we have the following result

Theorem 2.4.6. If the comparison graph is a proper circular arc graph, then the

poset underlying the graph can be sorted using O(n lg n) edge queries.

The algorithm uses the procedure in Theorem 2.4.5 for a maximum of n times,

which gives the running time to be O(n2|E|). Additionally O(n) time is spent by

the algorithm during ith iteration to assign orientations to edges based on acylicity

of the underlying graph. Thus O(n2) time is spent assigning edges. The total

running time of the algorithm is O(n2|E|).
The general case of circular arc graphs seem to have a less rigid structure and

thus we have been unable to find a similar result for them.

2.4.4 Comparability Comparison Graphs

An undirected graph is a comparability graph [14] if the edges of the graph can be

oriented in a way that for every triple x, y, z of vertices, if there is a directed edge

from x to y, and a directed edge from y to z, then there is a directed edge from x to

z. While both comparability graphs and chordal graphs are sub-classes of the well-

known class of perfect graphs, there is really no relation between both these classes

21

of graphs. In particular, in comparability graphs, we have no guarantee about the

existence of a simplicial ordering. However, we argue that we can incrementally

insert new vertices and get the orientation of its edges by doing the variation of

binary search outlined in Section 2.4.1, provided the adversary answers the query

according to a comparability orientation.

As we do not have simplicial ordering, we simply start with an arbitrary order-

ing of the vertices and maintain the topological sort of the subgraph induced by

the initial set of vertices and incrementally insert the new vertex. Let Gi be the

induced graph on the first i vertices (i ≥ 1) in the arbitrary order, and suppose

that we know all the orientations of the edges of Gi, and we have a topological

sort of the orientation of Gi. Now we insert vi+1 using binary search as before.

We consider the projection of the topological order of vertices of Gi among the

neighbors of vi+1, and insert vi+1 using binary search among them. In particular,

suppose we have vertices vp, vq ∈ Gi such that vp → vi+1 → vq where vp and vq are

consecutive vertices in the topological order of Gi among neighbors of vi+1. (Here

again, it is possible that one of vp or vq does not exist; vp may not exist if vq is

the first vertex of Gi in the topological order among neighbors of vi+1 and vq may

not exist if vp is the last vertex of Gi in the topological order among neighbors of

vi+1.) Then we simply insert vi+1 after vp (or before every vertex if vp does not

exist) in the topological order. We claim the following.

Lemma 2.4.7. The resulting order is a topological order of the directed acyclic

orientation of Gi+1.

Proof. Here again we only need to worry about edges incident on vi+1 as for every

other pair of edges, their relative order has not been changed by the insertion and

hence the topological order property is satisfied by induction. Suppose that there

exists a vertex u ∈ Gi such that u comes before vi+1 in the resulting topological

order and we have the edge vi+1 to u. Then u 6= vp (as vp → vi+1) and u has

to come before vp in the order (as vp immediately preceded vi+1 in the order).

But as vp → vi+1 → u, there must be an edge from vp → u as the orientation is

a comparability orientation, which is a contradiction to the fact that we have a

topological order of vertices of Gi (as u comes before vp in the topological order

of vertices of Gi). The case when there is a vertex u that comes after vi+1 in the

topological order, is similar to the case discussed.

22

Thus we have,

Theorem 2.4.8. If the comparison graph is a comparability graph, and if the

adversary answers the queries according to a comparability orientation, then the

poset underlying the graph can be sorted using O(n lg n) edge queries.

When vi is added to Gi during the ith iteration, O(lg n) edge queries are made

by the algorithm but before starting the next iteration, the algorithm spends

O(deg(vi)) time to mark the orientation of the edges whose directions have been

deduced using transitivity. Thus, the algorithm spends O(E + V) time to mark

the orientation of the edges.

Note that our proof crucially used the fact that adversary answers the query

according to a comparability orientation, and this is not just the artefact of the

proof. Otherwise we may not be able to sort using O(n lg n) queries. For exam-

ple, a complete bipartite graph (over two partitions A and B) is a comparability

graph, but if we are told that the orientation of the adversary is a comparability

orientation, then only two orientations are possible. One orientation has all edges

directed from vertices in A to vertices in B and the other orientation has all edges

directed from vertices in B to vertices in A. In this case, we can sort with just

one query. However we have shown an Ω(n2) lower bound in Lemma 2.3.1 if the

adversary is free to choose any directed acyclic orientation. While this may appear

as a restriction, another way to view the theorem is as follows, which can be of

independent interest.

Corollary 2.4.9. Suppose we have a poset represented by a directed graph whose

directed edges represent all the underlying relations between elements of the poset.

If we are given only the underlying undirected graph, and there is an adversary that

answers queries according to the partial order, then we can determine the relations

of the poset using O(n lg n) queries to the adversary.

The algorithms mentioned in the preceding subsection exploit the additional

information about the input poset which the comparison graph provides. We

remark that though these algorithms perform O(n lg n) edge queries, we did not

make any attempt to optimize the running times of the algorithm.

23

2.5 Concluding Remarks

We have given an improved upper bound of O((q + n) lg(n2/q)) and the first lower

bound of Ω(q + n lg n) for sorting an undirected graph on n vertices and q missing

edges. There is still a gap between the upper and lower bound, narrowing this gap

is an interesting open problem.

We gave algorithms which make O(n lg n) edge queries when the input com-

parison graph is a comparability or a chordal or a proper ciruclar arc graph, an

interesting open problem is to find the largest class of graphs for which an O(n lg n)

query algorithm is possible.

Finally, the problem is wide open when we know that there is a total order

underlying the vertices of the comparison graph. For example, in that case, the

complete bipartite graph can not be oriented as shown in Lemma 2.3.1 and hence

we do not know of any lower bound other than Ω(n lg n) regardless of the number

of missing edges. In particular, sorting the graph when the graph is a complete

bipartite graph is the famous nuts and bolts problem and can be sorted using

O(n lg n) queries [17]. We conjecture that sorting any undirected graph whose

vertices represent an underlying total order, can be done in O(n lg n) queries. In

other words, if we know that the directed acyclic orientation of the comparison

graph has a directed Hamiltonian path, then we conjecture that we can find the

path using O(n lg n) queries.

In fact, for total-orders in the forbidden pairs model, we do not even know how

to find an element of any given rank (or the median element) in O(n) queries. We

only know that O(n) queries are sufficient for ranks that are at a constant distance

away from the extremes.

Chapter 3
Sorting and Selection under

Forbidden Comparisons with

Distance Oracle

3.1 Introduction

Consider the following problem. There are n servers and each pair of servers can

communicate between each other directly or indirectly through other servers. The

structure as to how these servers are connected and how these messages are routed

is not known. The only way to know about this structure is to send a message from

a vertex and measure how much time it takes for the message to be received by

a destination vertex. If the message takes t units of time to reach the destination

vertex, then it can be inferred that it goes through t − 1 distinct servers. The

goal is the find the underlying routing structure of these servers, while trying to

minimize the number of message requests. These kind of problems are in general

referred to as graph reconstruction problems [18].

Formally, we are given n vertices which have a hidden graph H built on them.

The distance oracle, when given two vertices a and b, returns the number of edges

on the shortest path between these vertices in the graph H. The goal is to find

the hidden graph H while trying to minimize the number of distance queries to

the oracle.

25

Culberson and Rudnicki [19] gave an algorithm for reconstructing a d-degree

tree using O(dn logd n) distance queries. Reyzin and Srivastava [20] argued that

actual number of distance queries made was O(n1.5
√
d), and they showed an Ω(n2)

lower bound for the graph reconstruction problem on general graphs [21]. Math-

ieu and Zhou [18] gave randomized algorithms for the reconstruction of a degree

bounded graph with query complexity Õ(n1.5), for the reconstruction of a degree

bounded outerplanar graph with query complexity Õ(n) and near-optimal approx-

imate reconstruction of a general graph.

We initiate a study of a variation of the graph reconstruction problem where

the oracle has certain restrictions. In particular, the input is given as an undirected

graph G(V,E), and the oracle can answer distance between two vertices u and v

only if uv ∈ E. This restriction poses certain challenges and we study the simplest

case of reconstruction of a simple path on n vertices. More specifically, we address

the following problem.

Given an undirected graph G(V,E) which has an underlying Hamiltonian path

H and access to a distance oracle which gives the distance between vertices u and

v in H only if uv is an edge in E, find the maximum number of distance oracle

queries to find H.

Another motivation for the problem comes from the notion of generalized sort-

ing which has been described in chapter 1. The problem we study in this chapter

can be seen as a version of the sorting problem, where instead of direction queries,

the oracle answers the distance between the ranks of the pair of elements being

asked.

Our main result is that under this oracle query, there is no difference in com-

plexity between complete and general graphs, and in both cases O(n) queries are

sufficient.

3.2 Organization of the Chapter

Section 3.3 we give the necessary terminologies and notations that we use in the

chapter. Section 3.4 gives the O(n) algorithm when the graph is a complete graph.

In Section 3.5.1, we extend the algorithm to general graphs when we know a leaf

on the Hamiltonian path H. In Section 3.5.2, we give the most general algorithm

26

taking O(n) queries. Section 3.7 concludes with some remarks and open problems.

3.3 Definitions and Notation

G(V,E) denotes the simple undirected graph given as an input where V (|V | = n)

is the set of vertices and E is the set of edges. N(v) denotes the set of vertices

which share an edge with v in G(V,E). H denotes the unique Hamiltonian path

hidden in in G. A distance oracle when given two vertices u and v, returns the

number of edges between u and v on the Hamiltonian path H in G which is denoted

by d(u, v).

3.4 Reconstructing Hamiltonian Path in Com-

plete Graphs

First we look at the case, when adversary reveals that the undirected graph G(V,E)

is a complete graph on n vertices. In other words, the distance oracle can answer

distance query between any two vertices of G.

Theorem 3.4.1. Given a complete undirected graph on n vertices, the hidden

Hamiltonian path H can be found using at most 3n/2− 2 distance queries and in

O(n) time.

Proof. Pick an arbitrary vertex v and make all the distance queries of v with all

the remaining vertices. These n − 1 distance queries, will give at most 2 vertices

with the maximum distance from v. For any vertex w, a vertex lying at maximum

distance from it on H is a leaf vertex. A leaf vertex of the Hamiltonian path H

has a unique distance with every other vertex and hence if we perform all the

remaining n − 2 distance queries from a leaf vertex, we can find the locations of

each of these vertices on the Hamiltonian path H correctly. Thus, 2n − 3 oracle

queries are enough to find H.

We now argue that the number of queries can be reduced to 3n/2− 2.

After the first step comparing of v with all other vertices, suppose that all the

distances are distinct. Then there is only one vertex for any distance from v, and

27

thus v is a leaf and we already have the Hamiltonian path. Otherwise, let l1 be the

vertex at maximum distance from v, then clearly l1 is a leaf vertex. Similarly, let

l ≤ n/2 be the maximum distance for which v has two vertices at that distance,

and let S be set of all vertices which have positive distance ≤ l from v, and let

S ′ = V \ (S ∪ {v}). Note that d(l1, v) + l = n− 1.

It is clear that vertices u in S ′ (vertices u at distances d(u, v) > l) can only

lie between v and l1. If a vertex u ∈ S ′ does not lie between v and l1, it would

imply that v lies between u and l1 and hence the distance between l1 and u =

d(l1, v)+d(u, v) > d(l1, u)+ l = n−1 which is a contradiction, since the maximum

distance between any two vertices on H can be at most n−1. Thus, vertices u ∈ S ′

can be correctly located in H without making any oracle queries, since they lie

between v and l1 and at distance d(u, v) from v.

S is of even size, since S contains vertices whose distances repeat. Every vertex

in S has at most two valid locations in Hamiltonian path, which are equidistant

from v. For every pair of equidistant vertices u and u′ in S, we need to figure

out which of these vertices lie between v and l1 and which one does not. Finding

location of any one of the equidistant vertices, uniquely determines the location

of the other vertex. Perform oracle query ul1, and if d(u, l1) > d(v, l1), then v lies

between u and l1, else v′ lies between u and l1. Thus, at most |S|/2 queries are

enough to figure out the location of vertices in the Hamiltonian path.

When n is even, |S| is of size at most (n−2) (since S does not have v, it implies

that |S| ≤ n− 1 and n− 1 is odd). Thus, the total number of oracle queries made

the algorithm, when n is even at most n− 1 + (n− 2)/2 = 3n/2− 2.

If n(= 2k + 1) is odd, then two possible cases happen. If |S| ≤ 2k − 2, then at

most |S|/2 = (k−1) oracle queries are required. Otherwise, when S = 2k, both the

leaf vertices are in S, and we can figure out the second leaf for free without making

any oracle query and remove both leaf vertices from S, making |S| = 2k−2. In this

case too, at most k−1 oracle queries are sufficient. Thus, when n is odd, the total

number of queries required are at most n− 1 + (k − 1) = 3n/2− 5/2 < 3n/2− 2.

Thus, at most 3n/2− 2 oracle queries are enough to find the Hamiltonian path

in a complete graph. The running time of algorithm is also clearly O(n).

We conjecture that 3n/2−2 queries are necessary to find the Hamiltonian path

in a complete graph.

28

3.5 Reconstructing Hamiltonian Path in General

Graphs

In general when the graph is not complete, then we are restricted by the oracle

queries we can ask, and so it is not obvious whether we can find the Hamiltonian

path or how we can find a leaf.

3.5.1 Assuming a Leaf Vertex is Given

We first look at a simple case when a vertex is known to be a leaf vertex of the

Hamiltonian path H, but the graph is not necessarily complete. This case is

simpler, because all the vertices lie on the same of side of this leaf vertex on H,

and hence knowing their distance from that leaf is enough to find out where all

the vertices lie on the Hamiltonian path.

The following pseudocode, which has a flavour of the standard BFS algorithm,

explains the algorithm.

Algorithm 2: Hamiltonian Path in G(V,E) with s as one of leaf vertices

1 Color all vertices except s as white and color s as grey ;

2 Maintain all grey vertices in a priority queue with priorities as distances

from s ;

3 Initially the queue contains s with value 0 ;

4 while there exists a white vertex do

5 delete the grey vertex v with the smallest distance value from grey

queue ;

6 for u ∈ N(v) do

7 Perform oracle query vu if u is white and let d(v, u) be its distance ;

8 Insert u into grey queue with distance d(s, u) = d(s, v) + d(v, u) ;

9 Change u’s color from white to grey;

10 end

11 end

12 The distance values from s to every vertex gives the Hamiltonian path

It is easy to argue the query complexity and we will do that first. Whenever

a distance query is made to the oracle by the algorithm, a white vertex becomes

29

grey, and since there are n − 1 white vertices initially and a grey vertex never

becomes white, the number of oracle queries made is n − 1. The algorithm may

actually look at all edges, as in step 7 of the pseudocode, we may need to check

all neighbors of v, though we query only for white neighbors. Also in steps 5 and

8, we delete and insert a vertex into the grey priority queue. As the values of

the priority queue are simply integers in the range 1 to n, we can use an integer

priority queue [22] taking O(lg lg n) time for insertion/deletion per vertex. Thus,

the algorithm can be implemented in O(m+ n lg lg n) time.

To argue correctness, note that a vertex is marked grey if its distance from s

is known, and is removed from the grey queue if the distances to all its neighbors

in E have been known (directly or indirectly). The following Lemma shows that

every vertex eventually learns its distance from s on H.

Lemma 3.5.1. Before the ith iteration of the while loop, the algorithm has correctly

learnt all the vertices which lie at distance less than i from s.

Proof. We prove this by induction on i. The claim is clearly true when i = 1.

Every pair of vertices x and y which are adjacent in H also share an edge in E, so

in the first iteration of the while loop, the algorithm learns the vertex which is at

distance 1 from s, and so the claim is true for i = 2 as well. Assume the claim to

be true up to the jth iteration where j ≥ 2.

Consider the (j + 1)th iteration. It is possible that the vertex at distance j + 1

from s is already in the grey queue in which case, we are already done, as the claim

is true after (j + 1)th (and before (j + 2)th) iteration. Otherwise, as the algorithm

has gone through j-iterations and in each iteration a vertex (starting at distance

0) is removed from the grey queue, the shortest distance vertex being considered

is the vertex at distance j from s. As the vertex at distance j + 1 is its neighbor

in the graph, the white colored vertex at distance j + 1 from s will be probed

and found in this iteration, thus proving the Lemma, which leads to the following

theorem.

Theorem 3.5.2. Given a vertex v which is the leaf node of the Hamiltonian path

H, one can find H using n − 1 distance queries using Algorithm 2 and O(m +

n lg lg n) time where m is the number of edges in the graph.

30

Corollary 3.5.3. Given an incomplete undirected graph on n vertices, with at least

one vertex v adjacent to all other vertices, the hidden Hamiltonian path H can be

found using at most 2n− 2 distance queries and O(m+ n lg lg n) time.

Proof. Make all the n− 1 distance oracle queries of the form vv′, where v′ ∈ N(v)

and find a vertex at maximum distance from v (say u). Vertex u is guaranteed to

be a leaf vertex of H. Proof follows from application of Theorem 3.5.2.

3.5.2 When a Leaf Vertex is Not Given

In this subsection, we deal with the general case of graphs when the leaf vertex is

not given as a part of input. We give an algorithm to find the Hamiltonian path

without having the need to know a leaf vertex using 2(n− 1) oracle queries.

The pseudocode for the algorithm is given in Algorithm 3. We start with a

Hamiltonian path H on 2n + 1 vertices which is a placeholder for the vertices of

the graph. We place vertices in H as and when we know their (relative) positions.

During the execution of the algorithm, the vertices are colored with white, grey

or black. White vertices are vertices which have not been placed on H ′. Grey

vertices are vertices which have been placed on H ′, but their distances with all

their neighbors have not yet been learnt. Black vertices are vertices which have

been placed on H ′ and have learned their distance from all the vertices in their

neighborhood in E .

The set Q denotes the set of white vertices which have participated in exactly

1 oracle query and are not sure about their location in H ′. For all v ∈ Q, I stores

the result of the corresponding edge query made by v.

Now we analyze the correctness and query complexity of pseudocode in Algo-

rithm 3.

Correctness: The algorithm always maintains the invariant that the vertices

placed on H ′ do not contradict any distance query made upto that point. This is

true initially as m was an arbitrary vertex. During the first iteration of “while”

loop, steps 11-13 will label either one or two vertices on H ′. If exactly one vertex

is labelled, then m is a leaf vertex, as only leaf vertices have exactly one vertex

at distance one. Otherwise, if two vertices are labelled, then both the vertices are

31

at distance 1, and the distance between them is 2. Thus at this point all vertices

which have been labelled do not contradict any distance query.

We shall look at a Lemma which we need to prove the correctness and to find

the query complexity.

Lemma 3.5.4. Whenever a distance query is made by the algorithm, it is made

between two vertices such that one is grey and the other is white.

Proof. An oracle query always happens between v ∈ Su and the pivot vertex u. As

evident from step 7, the vertex v ∈ Su has white color, whereas u has grey color

in step 29.

Lemma 3.5.5. Every vertex v when it is labelled on H ′ has correct location with

respect to the other vertices on H ′.

Proof. If v was labelled in H ′ from Q, two labelled vertices u and u′ (since v is

white, u and u′ are grey by Lemma 3.5.4) in H ′ know their distance from v and

since they are also labelled in H ′ the distance d(u, u′) in H can also be inferred from

H ′. These three distances d(u, v), d(u′, v) and d(u, u′) define a unique unlabelled

vertex in H ′ where v can be placed.

If v was not in Q, then labelling happens only when d(u, v) = 1 for a pivot

u. For the first pivot m, if m was also a leaf, then there is only one vertex at

distance 1, and it is correctly labelled in H ′. If m is a non-leaf vertex, then both

the neighbors of m are discovered and are correctly labelled without contradicting

any previous labelling and distance queries, since they are the first two vertices to

be labelled in H ′ after u. If some vertex u other than m is a pivot, then one of

its neighbors is already been labelled, because the other vertex at distance 1 from

u has already found its location on H ′ (as the other vertex was the pivot in some

previous iteration of the “while” loop). Otherwise, u would not be the nearest

unmarked labelled vertex from m.

In either case, if the relative positions of the labelled vertices in H ′ is consistent

with the one in H prior to labelling of v in H ′, then it will also be consistent after

labelling of vertex v in H ′, since v has only one possible location to be correctly

labelled.

Thus, each stage of labelling correctly maintains the relative distances between

the labelled vertices.

32

Algorithm 3: Hamiltonian Path in G(V,E)

1 Create a path graph H ′ on 2n+ 1 unlabelled vertices ;
2 Pick a vertex m and label the middle vertex of H ′ as m ;
3 Color m with grey and rest of vertices with white;
4 Initialize Q and I to empty;
5 A pivot u is assigned value m;
6 while n vertices are not labelled in H ′ do
7 Let Su be neighbors of u which are assigned white color;
8 for v ∈ Su do
9 if v /∈ Q then

10 Make oracle query uv and get d(u, v);
11 if d(u, v) = 1 then
12 Label an unlabelled neighbour of u in H ′ to v;
13 Color v with grey;

14 end
15 else
16 Add v to Q;
17 Add [u, v, d(u, v)] to I;

18 end

19 end
20 else
21 Make oracle query uv to get d(u, v);
22 Find the unique tuple (say [u′, v, d(u′, v)]) in I which has the

distance of v from some vertex u′;
23 Find the unique vertex in H ′, which lies at distance d(u′, v) from

u′ and d(u, v) from u and label it as v;
24 Remove v from Q and [u′, v, d(u′, v)] from I;
25 Color v with grey;

26 end

27 end
28 Color u with black;
29 Find a nearest grey vertex from u on H ′ and make it the new u;

30 end
31 Remove the remaining n+ 1 vertices from H ′ which have not been labelled;
32 Output H ′;

33

All that needs to be shown is that every vertex in V is actually labelled in H ′.

Lemma 3.5.6. At the end of every iteration of “while” loop, the pivot knows at

least one of its neighbors in H ′.

Proof. Initially, when m is pivot it knows both the vertices which are its neighbors

in H ′ and their location in H ′. During the first iteration of while loop, one of

the neighbors of m is pivot (say m′) , which means that m′ knows one of vertices

which is its neighbor on H ′. Similarly at the ith iteration, the pivot knows one of

its neighbors on H ′, since it was the pivot in previous iteration of while loop. In

case the previous pivot was a leaf in H ′, the new pivot is the nearest grey neighbor

to it, and it is the grey neighbor of m (not m′ as m′ has become black) , and that

vertex also knows one of its neighbors (m) and its location in H ′.

Lemma 3.5.7. All vertices v ∈ V are labelled in H ′ by the (n − 1)th iteration of

“while” loop in Algorithm 3.

Proof. Every vertex (except m) is initially colored white. If v is the neighbor of

current pivot of an iteration of while loop, then v is either already labelled in

H ′ and has grey color, or lines 11 − 13 ensure that v is labelled besides pivot at

distance 1 correctly (as the other vertex at distance 1 from pivot is already known

by Lemma 3.5.6) and hence colored grey.

Thus, after every iteration of “while” loop, at least the neighbors of pivot (in

that iteration) in H ′ are labelled, which proves the Lemma.

The two lemmas, Lemma 3.5.5 and Lemma 3.5.7 together prove the correctness

of the Algorithm 3.

Query Complexity: The algorithm 3 performs atmost 2(n− 1) oracle queries to

find the underlying Hamiltonian path H.

Lemma 3.5.8. When a vertex v does not exist as a label (i.e. v is white) in H ′, it

can engage in at most two distance queries, after which it gets a label in H ′ (and

gets grey color).

34

Proof. As evident from steps 11-13 in Algorithm 3, some vertices which do not

occur as a label in H ′ become a label in H ′, after just one oracle query, if the

distance oracle returns value 1.

The only other place, the algorithm labels a vertex in H ′ is at step 25 . This

“else” case is executed, only if v exists in Q (which means it has engaged in exactly

1 distance query till this point) , and at the end of the loop, a vertex is labelled

with v in H ′, after v engages in its 2nd distance query and gets grey color. Thus,

a vertex which does not exist as a label in H ′, can engage in at most 2 distance

queries, after which it exists as a label in H ′.

Lemma 3.5.4 shows that neither two grey vertices nor two white vertices engage

in any distance query, during the execution of the algorithm 3. Thus, Lemma 3.5.4

and 3.5.8, together show that the algorithm performs at most 2(n − 1) distance

queries, (m is colored grey without making any queries) , which proves the following

theorem.

Theorem 3.5.9. Given an undirected graph G(V,E), one can find H using 2(n−1)

distance queries.

3.6 Lower Bounds

This section gives a simple adversary strategy to show that n− 1 distance queries

are necessary to find both the leaf vertices of the Hamiltonian path, and hence

gives a lower bound on number of oracle queries to find the Hamiltonian path.

The adversary maintains two sets of elements called P and S. S contains all

the vertices which have not participated in any distance oracle query. P contains

a collection of undirected paths p1, p2...pi. Initially all the vertices are in set S and

P is empty. Adversary strategy is as follows. If a distance oracle query (u, v) is

made, three possible situations can happen.

1. u, v ∈ S:-

Oracle answers 1 as the distance between them. Then it creates a path in P ,

with an undirected edge uv, removing both u and v from S.

35

2. u ∈ S and v /∈ S:-

Oracle finds a unique path in which v belongs (say pi). Suppose l1 is one of

the leaves of pi and d is distance of v from l1, then algorithm answers d + 1

as distance between u and v. It also gives away that distance between u and

l1 is one.

3. u, v /∈ S and lie on same path pi in P :-

The adversary answers the actual distance between u and v in pi.

4. u, v /∈ S, and they lie on two distinct paths pi and pj such that u lies on pi

and v lies on pj:-

Let li be a leaf of pi and its distance from u on pi be di and lj be a leaf of

pj and its distance from v on pj be dj. The adversary answers the distance

between u and v to be [di + dj + 1]. The adversary also gives a free answer

between vertices li and lj to be 1, which combines the two paths to become

one.

Correctness and Consistency: Whenever a comparison occurs between two

paths, they combine to become a single path. This means that if two vertices

lie on different paths, no distance oracle query has been made between any two

vertices of these paths(as shown in case 4). Whenever two paths combine to form

a new path, the two paths are connected at their leaves, which doesnt contradict

any answer the adversary may have given. Same can be argued when a path

and a single vertex in S are combined to form a new path. Thus, the adversary

ensures the consistency and correctness is maintained during the entire course of

the algorithm.

Query Complexity: Suppose an algorithm terminates, while there are at least

two paths in P , then the adversary has at least four distinct pairs of leaf nodes

of the Hamiltonian path (and four distinct Hamiltonian paths), consistent with

its previous answers. Thus a correct algorithm cannot terminate with two or

more paths in P . Similarly, if an algorithm terminates while there are two or

more vertices in S, the adversary has at least four distinct pairs of leaf nodes of

the Hamiltonian path (and four distinct Hamiltonian paths), consistent with his

previous answers.

36

Thus a correct algorithm can have atmost one path in P and one vertex in

S, when it terminates. Suppose, when the algorithm terminates, the adversary

has one path in P and one vertex in S. In that situation, the adversary can two

distinct Hamiltonian paths consistent with previous answers having two different

pairs of leaf nodes.

Thus, a correct algorithm has to have zero vertices in S and one path in P ,

when it terminates.

To create a path with p vertices, exactly p− 1 oracle queries are forced by the

adversary. Thus when a correct algorithm finally terminates, it ends with one path

of n vertices, which needs n− 1 oracle queries.

This lower bound in essence shows that finding both the leaf vertices needs at

least n− 1 queries.

It is important to note that n queries in worst case(provided that the graph is

complete) to find both the leaves.

3.7 Concluding Remarks

We show that the using distance oracle, the Hamiltonian path hidden in an undi-

rected graph can be found using O(n) distance oracle queries only, irrespective

of whether the input undirected graph is complete or not. It would interesting

to see whether 3n/2 oracle queries are necessary to find the Hamiltonian path in

complete graphs, or the trivial lower bound of n− 1 oracle queries can actually be

achieved.

A leaf vertex can be found using n − 1 oracle queries and finding both the

leaves (or the median) can be done using n oracle queries, when the input graph

is a complete graph. It is not clear whether the same number of oracle queries are

enough in the case of general graphs.

Since reconstructing path graph can be done in O(n) time irrespective of

whether the graph G(V,E) is complete or not, it is also interesting to figure out

whether reconstructing d-degree trees can also be done in Õ(n1.5) time, even when

the oracle queries are restricted to edges of the input graph which is not complete.

Chapter 4
Sorting and Selection Using Equality

Comparisons

4.1 Introduction

In this chapter we consider sorting and selection problems when the input sequence

is not necessarily from a totally ordered set and so there is no notion of an inherent

linear or total order.

The only way the relation between a pair of elements is determined in this

scenario is by making equality comparisons. While this is a natural variant that

occurs when dealing with heterogenous sets of elements or elements that do not

have a total order (say, for example, the elements are subsets of a universe), to the

best of our knowledge the only problem studied extensively in this model is the

problem of determining the majority element (an element that appears at least

dn/2e times) if it exists, and there is a classical linear time algorithm for this [23].

Exact comparison complexity including upper and lower bounds, and average case

complexity of the majority problem have been studied [24, 25, 26, 27, 28].

In this chapter, we explore the natural problem of determining a mode (a most

frequently occurring element), of sorting (determining the frequency of every ele-

ment) and of finding a least frequent element in this model. We show that Θ(n2/m)

(equality) comparisons are necessary and sufficient to find an element that appears

at least m times. This is in sharp contrast to the bound of Θ(n log(n/m)) [29]

38

bound in the traditional comparison model. The lack of transitivity of the in-

equality comparisons throws interesting challenges.

We begin the development of our mode finding algorithms in Section 4.2 with a

simple algorithm that takes at most 2n2/m comparisons where m is the frequency

of the mode. This appears in Section 4.2.1. Then, by generalizing a classical

majority algorithm due to Fischer and Salzberg [28], we improve the number of

comparisons to at most (3/2)(n2/m) +O(n2/m2) in Section 4.2.2. Our final algo-

rithm in Section 4.2.3 takes at most n2/m+n comparisons and can be implemented

in Õ(n2) time. Section 4.4 proves asymptotically matching lower bound for finding

a mode.

In Section 4.3 we discuss the sorting problem where one needs to determine

all the distinct elements and their frequencies in the given input. This has appli-

cations, for example in Graph Mining, where we are given a collection of graphs,

and we need to group them into those that are isomorphic to each other, and the

only oracle we know is an algorithm to detect whether two graphs are isomorphic

or not. We give upper bounds for sorting and finding a least frequent element,

and also give lower bounds when all elements have the same frequency. Finally,

Section 4.5 concludes with remarks and open problems.

4.1.1 Related Work

As mentioned earlier, we know of only the majority problem [23] studied exten-

sively in the equality comparison model. Demaine, Lopez-Ortiz and Munro [30]

studied the (lower and upper bounds on the) number of passes required to find

(a superset of) elements that appear(s) at least n/(k + 1) times in the equality

comparison model. Our first algorithm for mode in Section 4.2.1 is essentially

the same algorithm though we analyze the number of comparisons (as opposed to

the number of passes). In one of the earliest papers studying optimal algorithms

on sets, Reingold [31] proved lower bounds for determining the intersection/union

of two sets if only =, 6= comparisons are allowed. Regarding mode, Munro and

Spira [32] considered optimal algorithms and lower bounds to find a mode and

the spectrum (the frequencies of all elements), albeit in the three way comparison

model. Misra and Gries [33] gave algorithms to determine an element that appears

39

at least n/k times for various values of k, in the three way comparison model.

4.2 Finding All Modes (or Elements With Spe-

cific Frequency)

Given a set of elements, a mode of the input is defined as any element which

occurs the maximum number of times in the input. The input can have several

modes. A natural randomized algorithm to find a mode (given its frequency m)

in this model is to pick a random element and find its frequency by comparing

it with all other elements. If m is the frequency of a mode, then the probability

that this algorithm picks a mode in any given round is m/n, and hence in about

n/m rounds, the algorithm finds a mode with high probability. As it makes n− 1

comparisons in each round, the expected number of comparisons is around n2/m.

A high confidence bound can then be shown for this randomized approach. We

show that this bound of O(n2/m) is achievable by a deterministic algorithm even

without the knowledge of m. In addition, we give an adversary argument to show

that Ω(n2/m) comparisons are necessary.

In this section, we provide three algorithms to find a mode, each subsequent

algorithm improving upon the earlier one in terms of the number of comparisons

performed. The first two algorithms not only use O(n2/m) comparisons, but also

spend only O(n2/m) time for the rest of the operations. The first one takes at

most 2n2/m comparisons, while the number of comparisons made by the second

one is 3n2/2m+O(n2/m2). The first one is relatively simple to argue correctness,

and the second algorithm generalizes a classical majority finding algorithm. Both

these algorithms have a ‘selection phase’ where a candidate set of elements for a

mode are selected, and a ‘confirmation phase’ where the candidates are confirmed

and those who pass the confirmation tests are output. The third algorithm uses

at most n2/m + n comparisons although our implementation uses Õ(n2) time for

the other operations.

For now, we assume that m is known, and later, we explain how this assumption

can be removed.

40

4.2.1 A Simple Mode Finding Algorithm

The first phase of the SimpleMode algorithm in this subsection is essentially the

one (called FREQUENT) that appears in [30].

Let k be the smallest integer such that bn/kc ≤ m− 1, i.e., bn/kc ≤ m− 1 <

bn/(k−1)c. Let a1, a2, . . . an be the given list of n elements. We give an algorithm

that finds all elements with frequency more than bn/kc from an input of size n.

The pseudocode description is given below. Here B is a set of distinct elements

with some frequencies associated with each element.

Algorithm 4: SimpleMode(n)

1 Initialize B = {a1}; i = 1;

2 while i < n− 1 do

3 i = i+ 1

4 if value of ai already appears in B then

5 increment the frequency of the value that equals ai in B

6 end

7 else if add ai to B with frequency 1 then

8 if the number of distinct elements in B is k then

9 decrement the frequency of each element in B;

10 delete all elements with (the new) frequency 0.

11 end

12 end

13 end

14 Find frequency in the entire list, of all elements (if any) of B,

15 Output the elements whose frequency over entire input is at least m.

We show that the SimpleMode algorithm finds all elements with frequency

more than bn/kc using at most 2n(k− 1) comparisons. As k ≤ n/m+ 1, the total

running time of the algorithm is at most 2n2/m.

Suppose after every decrement, one copy of each of the elements is placed in

a (separate) set. Then as each set has k elements, the total number of such sets,

excluding B, is at most bn/kc < m. Also each of the sets has distinct elements.

So if an element has frequency more than bn/kc, then it must have a copy in the

final set B. Thus all elements with frequency at least m have a copy in B.

41

Every new element (after the first k− 1 distinct elements) is compared with at

most k − 1 distinct elements of B for a total of (n− k + 1)(k − 1) + (k − 1)k/2 =

(k − 1)(n + 1 − k/2) comparisons. Also finally B has at most k − 1 distinct

elements that are compared with the remaining elements for a total of at most

n(k − 1) comparisons for the confirmation phase. This results in overall at most

2n(k − 1) comparisons. As m ≤ n/(k − 1), we have k − 1 ≤ n/m and hence

the number of comparisons made is at most 2n2/m. This calculation covers any

bookkeeping costs which might be incurred during the running of the algorithm.

Thus we have the following theorem.

Theorem 4.2.1. Given a multiset of n elements and a frequency m, we can find all

elements with frequency at least m using at most 2n2/m comparisons and O(n2/m)

time.

4.2.2 An Improved Algorithm

Generalization of the Fischer-Salzberg Majority Al-

gorithm

Fischer and Salzberg [28] developed an algorithm to find a majority element (if

it exists) in a list of n elements using at most 3n/2 − 2 comparisons. (Recall

that a majority element is an element that appears more than bn/2c times.) We

generalize this to find a mode to improve the coefficient of n2/m in Theorem 4.2.1

to 3/2, resulting in at most 3n/2(bn/mc) +O(n2/m2) comparisons.

As before, let k be the integer such that bn/kc ≤ m − 1 < bn/(k − 1)c. We

give an algorithm (FSGeneralization) to find an element with frequency at least

m ≥ bn/kc + 1 using at most 3n(k − 1)/2 + O(k2) comparisons and O(nk) other

operations. When k = 2, the problem degenerates to the majority problem and

the bound becomes at most 3n/2 + O(1) as in the case of Fischer and Salzberg’s

algorithm. The main trick beyond the SimpleMode algorithm in the previous

section is, to organize the sets that are obtained by decrementing the frequency of

every element in a way to save comparisons in the confirmation phase.

Let a1, a2, . . . an be the given sequence of n elements. During the preprocessing

phase, the FSGeneralization algorithm maintains a list L, and an array B with the

following invariants:

42

• For any index i, L[i] /∈ Si, where Si = {L[j], 0 < |j − i| < k}. I.e. in L, any

set of consecutive k elements have distinct values.

• B, if non-empty, contains up to k−1 distinct elements, all of which appear in

the last k− 1 elements of L. Each cell in B contains the value of an element

x, its last location in L and a frequency f which has the following property:

the frequency of x in the input sequence (up to the point we have processed)

is the frequency of x in L plus f . We maintain elements of B in a queue in

the increasing order of their (last occurrence) locations in L.

Initially B is empty, and L contains the first element, a1, in the input sequence.

Then it processes each element ai (i > 1) in the sequence as follows.

• If ai equals an element in the last k − 1 positions of L, then if ai appears in

B, find its occurrence and increment its frequency. If ai does not appear in

B, then create a new entry for in B, with a frequency of 1, and set its last

occurrence location to its last occurrence in L.

• If ai does not equal any element in the last k − 1 positions of L, then add

ai to L, and repeat the following step until the first element of B appears in

the last k − 1 positions of L.

– Consider the element x in the first location of B. This is an element that

has the least (last) location in L among those in B. The last location

in L of that element is at least k positions away from the current last

position. Add x to the end of L after decrementing its frequency in B.

Remove it from B if its new frequency becomes 0. Otherwise update

its last location to the current location in L and move the element to

the last location of B that is kept sorted in ascending order of the “last

location” of its entries.

43

Algorithm 5: FSGeneralization(n)

1 Initialize L = a1; i = 1; B = ∅;
2 while i ≤ n− 1 do

3 i = i+ 1;

4 if ai equals an element in the last k − 1 elements of L then

5 if ai ∈ B then

6 Find and increment frequency of ai in B by one ;

7 end

8 else if ai /∈ B then

9 Create a new entry with ai as value, frequency as 1, and its

position as last known position of ai in L ;

10 Insert this entry in B in increasing order of the ‘position’ field of

its elements;

11 end

12 end

13 else if ai does not equal any of the last k − 1 elements of L then

14 Add ai to the end of L;

15 while B[first] does not appear in the last k − 1 positions of L do

16 Decrease frequency of B[first] by 1;

17 Add B[first].value to the end of list L;

18 Update B[first].location = last+ 1;

19 if B[first]’s frequency is nonzero then then

20 Move B[first] to end of B ;

21 end

22 else

23 Remove B[first] from B;

24 end

25 end

26 end

27 end

28 Comment: Confirmation Phase

29 for all elements in the last k − 1 elements of L do

30 Find their actual frequency in the input;

31 Output the elements whose total frequency in the entire input is larger

than or equal to m;

32 end

44

At the end of the preprocessing phase, the input sequence is partitioned into

L and B; i.e. every element of the input sequence is either in L or in B. Now, we

claim that only the last k − 1 elements of L are possible candidates for a mode,

and so we check the frequency of each of those elements with all elements of L and

output all those with frequency m. We call the step of finding the frequency of

the last k − 1 elements of L as the ‘confirmation phase’.

The pseudocode in algorithm 5 gives the details. In the initial phase, the only

comparisons made for each element are to test whether it equals an element in the

last k− 1 elements of L. We can use the last location entry to find its existence (if

at all) in B which involves no comparisons with the element. So at most n(k − 1)

comparisons and n(k − 1) other operations are made in the first processing phase

of the algorithm to construct L and B. The confirmation phase, if done naively,

takes at most (k − 1)n comparisons for a total of 2n(k − 1) comparisons.

In what follows, we prove the correctness of the FSGeneralization algorithm and

tighten the analysis to show a bound of at most n(k − 1)/2 for the confirmation

phase resulting in an overall comparison bound of 3n(k − 1)/2.

First it is clear that the algorithm maintains the two invariants (on L and B)

mentioned above after every step. The invariant on L is maintained as and when

we add new elements to L (either from the input sequence or from B). B always

contains at most k−1 elements. We add an element to B only when a new element

does not appear in the last k − 1 elements of L, and when that happens, B had

less than k− 1 elements, as the elements of B appear in the last k− 1 elements of

L, and so the addition to B does not make the number of elements of B go above

k − 1. Also when we add new elements to L, if B is non-empty, we add elements

from B to L ensuring that elements of B are in the last k − 1 elements of L, for

if an element of B is not in the last k − 1 elements of L, then that element would

have been added to the last element of L.

Suppose that the size of L is divisible by k. Then every element in L can

appear at most n/k ≤ m− 1 times (as every consecutive k elements are distinct).

And hence B has to be non-empty (for a mode to appear m times), and the only

candidates for elements appearing more than bn/kc times are those in B which

are anyway in the last k − 1 elements of L by the invariant on B.

Suppose the size of L is not divisible by k. Then the only possible input

45

elements that appear more than bn/kc ≤ m− 1 times are those in B and those in

the last n− k(bn/kc) locations of L, and the last k − 1 elements of L cover these.

This completes the correctness of the algorithm. Now we give a slight mod-

ification of the confirmation phase and give a careful calculation of the num-

ber of comparisons made in the confirmation phase and show it to be at most

n(k − 1)/2 +O(k2).

The Confirmation Phase

For any element in the last k− 1 locations of L that is not in B, the confirmation

phase starts by comparing it with an element that is k locations apart to the left

of it (as we know that the intermediate k−1 elements are distinct from it). For an

element in B, the confirmation phase starts with its copy in the last k−1 locations

and continues as above. And during the confirmation phase, if we find an element

which is not equal to the element being compared, then we move left by a position

and continue the comparison. And if we find an element which is equal to the

element being compared, then we skip k− 1 positions to the left and continue our

comparison.

Let ` ≤ k − 1 be the number of distinct elements in B and let f1, f2, . . . f` be

their respective frequencies in B at the end of the algorithm. Let f =
∑`

i=1 fi.

Lemma 4.2.2. Let ` ≤ k − 1 be the number of distinct elements in B and let

f1, f2, . . . , f` be their respective frequencies in B at the end of the FSGeneralization

algorithm. Let f =
∑`

i=1 fi. The number of comparisons done by candidates from

B in the confirmation phase is at most f(k − 1) + `(n/k − f) + (k − 1)2.

Proof. Let b be an element of B with frequency f1. Then for b to qualify as a

mode, it should have at least bn/kc − f1 copies in L. View L as a contiguous

sequence of k-sized blocks. There are d(n − f)/ke such blocks. Hence b may not

be present in at most d(n− f)/ke − 1− (bn/kc − f1) such blocks and hence may

get not-equal outcomes in comparisons with elements in these blocks for a total of

at most k(d(n− f)/ke− 1−bn/kc+ f1) comparisons with not-equal outcomes. It

is easy to see that it may make at most k − 1 more comparisons with not equal

outcomes, and has to get at least bn/kc−f1 equality comparisons. If the number of

comparisons with not equal outcomes or equal outcomes exceeds these quantities,

we can stop the confirmation phase of that element.

46

Now summing these comparisons for every element of B, the number of com-

parisons made by elements of B in the confirmation phase is at most∑`
i=1(bn/kc − fi + (k − 1) + k(d(n− f)/ke − 1− bn/kc+ fi))

≤ `(bn/kc(1− k) + (n− f) + k − 1) + f(k − 1)

≤ f(k − 1) + `(n/k − f + k − 1)

≤ f(k − 1) + `(n/k − f) + (k − 1)2

Now we continue with the analysis of the total number of comparisons in the

confirmation phase.

Case 1: f ≥ n/2.

This implies that |L| ≤ n/2. The confirmation phase finds the frequency of each

of the last k − 1 elements of L with the other elements of L which, in this case,

will take at most (k − 1)|L| ≤ n(k − 1)/2 comparisons.

Case 2: n mod k < f < n/2.

In this case, |L| ≤ kbn/kc, and hence any element of L that is not in B, appears

at most bn/kc times and hence they don’t qualify to become a mode.

From Lemma 4.2.2, the number of comparisons made by elements of B during

the confirmation phase is at most f(k − 1) + `(n/k − f) + (k − 1)2.

If f ≥ n/k, then

f(k − 1) + `(n/k − f) + (k − 1)2 ≤ f(k − 1) + (k − 1)2 < n(k − 1)/2 + (k − 1)2.

If f < n/k, then

f(k − 1) + `(n/k − f) + (k − 1)2 < n(k − 1− `)/k + (`n)/k + (k − 1)2

= n(k − 1)/k + (k − 1)2

≤ n(k − 1)/2 + (k − 1)2

Hence the number of comparisons made in this case is at most n(k − 1)/2 +

(k − 1)2.

Case 3: f ≤ (n mod k).

47

Let S be the set of all the elements which occur in last k − 1 positions of L, but

which do not occur in B. Let |S| = p. These p elements need at least bn/kc
additional copies for each of them to become a candidate for mode. I.e. each of

them should appear in every block of L. Hence, the verification process for each

element in S ends in at most bn/kc equality comparisons and possibly at most

k − 1 comparisons with not equal outcomes (as more than k not equal outcomes

would imply that the concerned element is not a candidate for majority), totally

making at most pn/k + p(k − 1) comparisons.

The remaining ` = (k − 1 − p) elements in the last k − 1 positions of L have

a copy in B. From Lemma 4.2.2, the number of comparisons made by these `

elements for verification is at most f(k − 1) + `(n/k − f) + (k − 1)2.

f(k − 1) + `(n/k − f) + (k − 1)2 = f(p+ `) + `(n/k − f) + (k − 1)2

= fp+ (`n)/k + (k − 1)2

Thus the total number of comparisons made by all the last (k− 1) elements of

L is

pn/k + p(k − 1) + fp+ (`n)/k + (k − 1)2 = ((p+ `))n)/k + 3(k − 1)2

≤ n(k − 1)/2 + 3(k − 1)2

Thus, the total number of comparisons is at most (n(k − 1))/2 + 3(k − 1)2.

Thus in all three cases, the confirmation phase takes at most (n(k − 1))/2 +

O(k2) comparisons. So the total number of comparisons made by the algorithm in

Theorem 2 is (3n(k − 1))/2 +O(k2), which is at most 3n/2bn/mc+O(n2/m2) as

k − 1 ≤ bn/mc.

Theorem 4.2.3. Given a multiset of n elements and a frequency m, all elements

with frequency more than m can be found using (3n/2)b(n/m)c + 3(n2/m2) com-

parisons and O(n2/m) time.

48

When m is not known The (SimpleMode and FSGeneralization) algorithms

presented in Theorems 4.2.1 and 4.2.3 can be made to find a mode, even if the

value of m is not known. This is achieved by guessing the values of m, in turn

guessing the values of k.

We keep running the algorithm for k = 1, 2, 4... till we find a power of 2 (say x,

i.e. k = 2x) at which the algorithm returns a non-empty set of all elements with

frequency greater than n/k thereby finding all elements which have the frequency

of a mode. Clearly x, the smallest power of 2 for which the algorithm returns a

non-empty set of elements with frequency great than n/2x, is dlg n/me.
The total number of comparisons performed by the algorithm in Theorem 4.2.1,

when m is not known would be S =
∑x

i=1(2n)(2i) which is 4n2/m (as (k − 1) ≤
n/m) which is about twice the number of comparisons taken by the algorithm in

Theorem 4.2.1 when m is known. Similarly, we can show that the algorithm in

Theorem 4.2.3 takes 3n2m+O(n2/m2) comparisons to find a mode (with frequency

m) when m is not known.

4.2.3 Finding Mode using n2/m+ n Comparisons

In this subsection, we find a mode faster (in terms of the number of comparisons)

than the previous two algorithms, and without the need to know the value of m.

We also give an implementation of the algorithm that takes Õ(n2) other operations

using some interesting non-trivial data structures.

Theorem 4.2.4. There exists an algorithm that performs at most n2/m+n (equal-

ity) comparisons to find all modes and their frequency m, in a given list of n

elements.

Proof. Let a1, a2, . . . an be the given sequence of n elements, and consider them

arranged clockwise in a circular list. The algorithm repeatedly compares, in se-

quence, every element with the first element (in the clockwise order) with which it

has not determined its (equal/not equal) relation, until an element with frequency

m is found. If m is not known to the algorithm, then the algorithm performs a

sequence of rounds of comparisons until it finds an element that appears at least

d(n− 1)/ke times at the end of k rounds.

49

Algorithm 6: Mode(n)

1 Initialize r = 0;

2 M = ∅(set of modes);

3 for i← 1 to n do

4 eq(ai) = {i}; neq(ai) = ∅;
5 end

6 while M = ∅ do

7 r = r + 1

8 for i← 1 to n do

9 find the next index j if any, starting from i+ 1, wrapped around

after n if necessary

10 such that j /∈ eq(ai) ∪ neq(ai) ;

11 if such an index j is found then

12 if ai = aj then

13 ∀x ∈ eq(ai) ∪ eq(aj)
14 eq(ax)← eq(ai) ∪ eq(aj) ;

15 neq(ax)← neq(ai) ∪ neq(aj) ;

16 ∀x ∈ neq(ai) ;

17 neq(ax)← neq(ax) ∪ eq(ai) ;

18 end

19 else if ai 6= aj then

20 ∀x ∈ eq(ai), neq(ax)← neq(ax) ∪ eq(aj);
21 ∀y ∈ eq(aj), neq(ay)← neq(ay) ∪ eq(ai) ;

22 end

23 end

24 else

25 Add ai to M .

26 end

27 end

28 end

29 Output M ;

We show that the (circular order) sequence in which the comparisons are made

50

achieves the desired upper bound. The pseudocode 6 describes the algorithm.

We define a “round” as a sequence of comparisons which are tracked by variable

r, in which every element which does not know its actual frequency in the input has

initiated exactly one comparison in clockwise order of the input. At the end of the

algorithm set M is output, which has all the elements which have the maximum

frequency. In the algorithm eq(ai) corresponds to the set of indices of all elements

that are known to the algorithm to be equal to ai, and similarly neq(ai) corresponds

to the set of elements known to be not equal to ai. We refer to the comparison

made in each round as the one initiated by ai (in line 8) and associate such a

comparison with ai (note that aj will also, by the same token, make one such

comparison in that round which will be associated with aj). It is clear that the

algorithm maintains the invariant that if the algorithm knows that ai = aj, then

eq(ai) = eq(aj) and neq(ai) = neq(aj). Hence we could keep these two lists for

each group of elements that are known to be equal as one pair of lists instead of

keeping them with each element. In what follows, we will continue to assume that

every element has these two lists available.

As the algorithm performs at most n comparisons in each round r, and stops

in d(n−1)/me rounds, the algorithm performs at most nd(n−1)/me ≤ n(n+m−
2)/m = (n2 − 2n)/m+ n < n2/m+ n comparisons.

The rest of the proof gives the correctness of the algorithm. We show that the

first time an element that appears at least (n− 1)/r times at the end of r rounds,

it is a mode. First we show that if an element appears m times, then the element

will be discovered (to have exactly m copies) in at most d(n− 1)/me rounds. We

deal with the case m = 1 first where we can show a slightly better bound.

Lemma 4.2.5. When all elements are distinct (i.e. when m = 1), the algorithm

determines this in bn/2c rounds and the number of comparisons made by the al-

gorithm is n(n− 1)/2.

Proof. When n is even, each element gains information regarding two new elements

in each round (one due to the comparison initiated by the element, and another

due to the comparison initiated on this element). So by round n/2−1, all elements

have discovered their relation with all other but one element of the input. So in

one more round of n/2 comparisons, all relationships will be found.

51

Thus the total number of comparisons made in this case is (n/2− 1)n+ n/2 =

n(n− 1)/2.

Similarly when n is odd, the algorithm takes (n− 1)/2 rounds for each element

to find its relation with the rest of the elements. Thus, total number of comparisons

made in this case is also n(n− 1)/2.

We prove the correctness for m ≥ 2 through a series of lemmas. The first

lemma follows from the fact that we maintain the ‘invariant’ for the sets eq(ai)

and neq(ai) for each i, throughout the algorithm.

Lemma 4.2.6. At any point in the algorithm, if ai = aj has been discovered by

the algorithm, then eq(ai) = eq(aj) and neq(ai) = neq(aj).

To understand the next lemma (and hence the total runtime of the algorithm),

consider the (lucky) situation where all equal elements are contiguous and so all

groups have found (a lower bound for) their frequencies. Now to determine their

exact frequency, all we need to do is to make one comparison between each pair of

groups. But we may not be that lucky, as several wasteful ‘not equal’ comparisons

may have been made between groups of (equal) elements before we even discover

that a pair of elements in a group are equal. Lemma 4.2.7 says that because of

the order in which we make the comparisons, the algorithm will not do too many

wasteful comparisons.

Lemma 4.2.7. Let ai, aj be two elements such that ai = aj, and let k /∈ eq(i). If

ai initiates a comparison with ak in a round, then aj will subsequently not initiate

a comparison with ak (even if ai = aj was not determined when ai initiated a

comparison with ak).

Proof. If ai = aj has already been discovered by the algorithm when ak was directly

compared with ai, then clearly the outcome of the comparison between ak and ai

also gives the relation between ak and aj (as updated by the eq and neq sets) and

so the algorithm will not compare aj with ak. The eq and neq sets to updated

everytime they obtain a new information without any delay as this is crucial for

the working of this lemma.

Suppose ai = aj has not been discovered by the algorithm when ak was com-

pared with ai. Suppose k > i. If j < i, then the way the algorithm makes the

52

comparisons, aj would be compared with ai (and be found equal and hence will

learn its unequal relation with ak from ai’s neq set) before comparing with ak and

hence will not initiate a comparison with ak thereafter. Hence assume that j > i.

Now, if j < k, then ai would have initiated a comparison with aj before initiating

with ak – a contradiction to the fact that ai = aj has not been discovered when ai

was initiating a comparison with ak. Now if j > k, then again aj would initiate a

comparison (in the wrap around) with ai before initiating a comparison with ak.

Hence aj will not initiate a comparison with ak.

A similar argument proves the claim if k < i.

A similar mirroring lemma also holds.

Lemma 4.2.8. Let ai, aj be two elements such that ai = aj, and let k /∈ eq(i). If

ak initiates a comparison with ai in a round, then ak will subsequently not initiate

a comparison with aj (even if ai = aj was not determined when ak initiated a

comparison with ai).

Lemma 4.2.9. Let X be the set of ais whose value is x, for some value x, and let

|X| = m ≥ 2. Then all elements of X together initiate at most n− 1 comparisons

in d(n− 1)/me rounds and know their relation with every other element.

Proof. From Lemma 4.2.7, all elements of X initiate together at most n − m

comparisons with elements not in X. As the equality relation is transitive, at most

m−1 equality comparisons will be made among themselves to determine that they

are all equal. Thus together elements of X initiate at most n−1 comparisons. Thus

at least one element of X initiates at most (n−1)/m comparisons and hence knows

its relation to others in this many rounds (as otherwise it would have initiated more

comparisons). Note that if any element of X has determined its relationship to

all other elements, then all elements of X immediately know their relationship to

all other elements. So in at most d(n − 1)/me rounds, each element of X will

determine its relationship with all other elements, and the set M contains x.

Hence, if after r rounds, we find an element(say x) which appears at least

d(n − 1)/re times, then x is a mode. For, if there is an element whose frequency

is more, then from Lemma 4.2.9, that element would have been discovered in the

previous rounds.

53

In fact, by modifying the while condition in line 6 of the algorithm 6 from

M = ∅ to r ≤ dn/ke, we have by the above lemma,

Theorem 4.2.10. Given a list of n elements and an integer k, all elements (if

any) with frequency at least k can be found using at most n2/k + n comparisons.

Now we describe how to implement Algorithm 6 so that the bookkeeping oper-

ations besides the comparisons can also be performed efficiently. We can maintain

all elements that are known to be equal to each other as a single set pointed to by

elements in the set in the list. Similarly for each such group, we can maintain their

neq set as a single set as well. As before, let a1, a2, . . . , an be the input sequence.

Then, if two elements ai and aj point to different eq sets, then these eq sets are

mutually disjoint. Also, the neq sets themselves are disjoint union of some eq

sets. Now after every comparison, several eq sets may need to be updated. Recall

from line 19 of the pseudocode that when the two elements(ai and aj) compared

are found not to be equal, then the updation involves just performing a couple of

union operations, and pointing these updated neq sets for both values ai and aj.

However, when two elements being compared are equal (line 12 in the pseudocode),

then apart from performing the union of their eq and neq sets, we need to update

the neq sets of several elements (specifically those that have learnt to be not equal

to one of the elements compared, see line 16).

If we represent the eq and neq sets as unsorted lists, then the naive way to

implement these query and update operations requires O(n) time when the re-

sult of a comparison is “not equal”, and requires O(n2) time when the result of a

comparison is “equal” (as the equality comparison results in up to Θ(n) set union

operations over sets of size Θ(n)). Since the number of “equal” comparisons in

atmost n − 1 and number of “not equal” comparisons is atmost O(n2/m), this

implementation takes (n− 1)n2 + (n2/m)n = O(n3) time.

Using a different data structure for maintaining the eq and neq sets, we show

how to implement the algorithm in Õ(n2) time (still using the same O(n2/m)

comparisons).

In this implementation, every element ai is assigned a vector vi of length n,

such that vi[j] stores the information about the comparison between ai and aj –

54

one of three values d (for “don’t know”), e (for “equal”) or ne (for “not equal”).

We initialize all the vectors vi such that vi[j] = d for all i 6= j, and vi[i] = e.

During the execution of the algorithm, we will change vi[j] to either e or ne, if the

algorithm learns that the relation between the values ai and aj is “equal” or “not

equal”, respectively. Furthermore, we update the vectors after every comparison,

to ensure that vi[j] = vj[i] for all i and j. We maintain each of these vectors using

a dynamic datastructure that supports access, rank, select and update operations

defined below.

• The operation access(vj, i) returns the value vj[i].

• The operation rank(vj, i, α) returns the number of occurrences of α among

the first i elements of vj.

• The operation select(vj, i, α) returns the position of the i-th occurrence of α

in vj.

• The operation update(vj, i, α) changes vj[i] to α.

We use the following simplified and rephrased version of the data structure by

Munro and Nekrich [34] to support these operations on each of the vectors.

Lemma 4.2.11 ([34]). A dynamic string over a constant sized alphabet can be

stored in a datastructure that uses O(n) bits and supports access, rank, select and

update operations in O(lg n/ lg lg n) time.

Note that all the vectors initially start as sequence of all but 1 d’s, and some in-

dices get changed to ne or e during the course of the algorithm’s execution and once

they change they don’t undergo any further change. We allocate O(n2 lg n/ lg lg n)

charge to the datastructure, as O(lg n/ lg lg n) charge is used anytime d is changed

to ne or e in the vector.

In the i-th round of the algorithm, finding the index j such that j 6∈ eq(ai) ∪
neq(ai) is equivalent to finding the smallest index j > i (considering wrap around)

in vi such that vi[j] = d. This can be implemented in O(lg n/ lg lg n) time using the

rank and select operations. In algorithm 6, whenever an inequality is discovered

between two values ai and aj, we go through all the positions with value e in

vi (using rank and select operations to skip the others and traverse only the e

55

values) and update the corresponding positions in vj to ne, and vice-versa for vj.

Since the maximum number of e’s in a vector is at most m, we spend at most

O(m lg n/ lg lg n) time, during each inequality comparison. Since there are atmost

n2/m inequality comparisons, the cost incurred by these inequality comparisons is

at most O(n2 lg n/ lg lg n).

Whenever an equality is discovered between two values ai and aj, we spend

O(n) time to simply merge the vectors vi and vj – the merged vector vi (also vj) is

obtained by setting vi[k] = vj[k] if vi[k] = d (and leaving the other entries as they

were), for 1 ≤ k ≤ n (Note that the d values may not have changed if the other

vector also has d in the corresponding location, and so we cannot charge the cost

to the cost of changing d to ne or e and hence we account for the cost here to get

O(n) cost). After the merge, both ai and aj point to the merged vector.

In addition, we need to implement line 16 of algorithm 6. For that, before

merging the vectors, we also find out all the indices which have ne assigned in one

set and d assigned in the other set (a simple scan is enough as we anyway charge

O(n) for the merge). For these indices, we update their vectors to change d to

ne in the corresponding location and the O(lg n/ lg lg n) charge is consumed. If

vi[k] = vj[k] = ne for some index k, it means that the element ak already knows

all the transitivity relations induced by the current comparison prior to making it,

and does not require any change in the vectors. There are atmost n − 1 equality

comparisons, thus the total cost incurred by these equality comparisons is at most

O(n2) (the lg n charge is deducted from the initial charge and is not counted here

again).

Thus, the total time spent is O(n2 lg n/ lg lg n) + O(n2) = Õ(n2), which gives

us the following theorem.

Theorem 4.2.12. Given a list of n elements, all elements (if any) with frequency

at least k can be found using at most n2/k + n comparisons, using Õ(n2) time.

We leave it as an interesting open problem to implement the above algorithm

to take overall O(n2/k) time.

56

4.3 Sorting and Finding Least Frequent Element

Sorting problem in this model is defined as finding the exact frequencies of every

distinct element in the input. Consider the naive algorithm that repeatedly picks

an element ai, which is known to be different from the elements whose exact

frequencies have been discovered, and finds its frequency by comparing it with all

elements not in eq(ai) and neq(ai) updating these two sets after every comparison.

Let c be the number of distinct elements in the sequence, and let x1, x2, . . . xc be

the values of the elements, and let fi, i = 1 to c be the number of times xi occurs,

where f1 ≥ f2 ≥ f3 . . . ≥ fc. In the worst case this algorithm will take at most

(n− 1) + (n− 1− (fc)) + (n− 1− (fc + fc−1)) + ...+ (n− 1− (fc + fc−1− ...+ f2)))

comparisons. This is at most nc − c −
∑c

i=2 (i− 1)fi =
∑c

i=1(c − i + 1)fi − c =∑c
i=1(c− i)fi + n− c which is at most c(n− 1) + n comparisons. Thus we have

Theorem 4.3.1. Let c be the number of distinct values in the sequence, and let

x1, x2, . . . xc be the values of the elements, and let f1, f2, . . . fc be the number of

times xi occurs, where f1 ≥ f2 . . . ≥ fc. Then there exists an algorithm to sort the

list using at most
∑c

i=1(c− i)fi + n− c comparisons.

In what follows, we analyze the number of comparisons made by our mode

algorithm (Theorem 4.2.4) if we run it until all frequencies are determined. Let c

be the number of distinct elements in the list. Then, it follows from Lemma 4.2.8

that an element ak never initiates a comparison with two elements ai and aj that

are equal to each other, but are not equal to ak. Thus every element initiates

at most c − 1 comparisons with elements not equal to it, and hence the total

number of comparisons resulting in ‘not equal’ answer, made by the algorithm is

at most n(c− 1). Along with the n− c equality comparisons, the total number of

comparisons is at most c(n − 1). In the following, we give a tighter upper bound

for the number of comparisons made by the algorithm.

We begin with the following corollary that follows from Lemma 4.2.7 and

Lemma 4.2.8.

Corollary 4.3.2. Let x and y be two distinct values that occur f1 and f2 times

respectively in the sequence, then the number of comparisons made by the algorithm

between elements ai = x and aj = y is at most 2 min{f1, f2}.

57

Proof. Let A be the set of indices i such that ai = x and B be the set of indices j

such that aj = y. Draw a bipartite graph with two parts as A and B and orient

an edge from i to j if ai initiates a comparison with aj. Lemma 4.2.7 says that

the indegree of any vertex in this bipartite graph is at most one and Lemma 4.2.8

says that the outdegree of any vertex is at most one. Thus the number of edges,

that corresponds to the number of comparisons made between A and B is at most

2 min{f1, f2}.

Theorem 4.3.3. Let c be the number of distinct elements in the sequence, and

let x1, x2, . . . xc be the values of the elements, and let f1, f2, . . . fc be the number

of times xi occurs, where f1 ≥ f2 . . . ≥ fc. Then the number of comparisons

made by the mode algorithm to identify the frequency of every element is at most

2(
∑c

i=1 ifi)− n− c ≤ c(n− 1).

Proof. Consider the number of comparisons made together by the set of all ele-

ments that are equal to xc with all the elements outside this set. By Corollary

4.3.2, this number is at most 2fc(c − 1). In general, the number of comparisons

made together by the set of elements that equal xi with elements that equal xj for

all j < i, is at most 2fi(i − 1). Thus the total number of comparisons made by

the algorithm is at most 2
∑c

i=1 fi(i− 1) = 2
∑c

i=1(fii− fi) = 2
∑c

i=1 ifi − 2n. As

the equality comparisons are transitive, the number of equality comparisons (made

within each group) is at most
∑c

i=1(fi − 1) which is at most n− c.
Thus the total number of comparisons made by the algorithm is at most

2
∑c

i=1 ifi − 2n+ n− c = 2(
∑c

i=1 ifi)− n− c
To show that 2(

∑c
i=1 ifi)−n−c ≤ c(n−1), it suffices to show 2

∑c
i=1 ifi−2n ≤

n(c− 1) or
∑c

i=1 ifi ≤ n(c+ 1)/2.

Suppose c is odd. Then

n((c+ 1)/2)−
c∑

i=1

ifi =
c∑

i=1

((c+ 1)/2− i)fi

=

(c+1)/2−1∑
i=1

fi((c+ 1)/2− i)−
c∑

i=(c+1)/2+1

fi(i− (c+ 1)/2)

=

(c−1)/2∑
i=1

fi((c+ 1)/2− i)−
(c−1)/2∑
j=1

j(fj+(c+1)/2)

58

=

(c−1)/2∑
i=1

i(f(c+1)/2−i)−
(c−1)/2∑
i=1

i(fi+(c+1)/2)

=

(c−1)/2∑
i=1

i[f(c+1)/2−i − f(c+1)/2+i] ≥ 0

The last inequality is true since every term in the summand is nonnegative as

fi’s are in nondecreasing order. This proves the claim.

Suppose c is even. Then

n(c+ 1)/2−
c∑

i=1

ifi =
c∑

i=1

((c+ 1)/2)− i)fi

=

c/2∑
i=1

fi((c+ 1)/2− i)−
c∑

i=c/2+1

fi(i− (c+ 1)/2)

=

c/2∑
i=1

fi((c+ 1)/2− i)−
c/2∑
i=1

fi+c/2(i− 1/2)

=

c/2∑
i=1

fc/2−i+1(i− 1/2)−
c/2∑
i=1

fi+c/2(i− 1/2)

=

c/2∑
i=1

(i− 1/2)(fc/2−i+1 − fc/2+i) ≥ 0

This proves the theorem.

Corollary 4.3.4. The least frequent element in a sequence of n elements can be

found in at most n2/` equality comparisons where ` is the frequency of the least

frequent element.

Proof. If ` is the frequency of the least frequent element, then every element ap-

pears at least ` times and hence the number c of distinct elements is at most n/`.

So if we apply our sorting algorithm (Theorem 4.3.3), we can sort, and hence find

the least frequent element in at most n(n− 1)/` comparisons.

59

4.4 Lower Bounds

In this section, we give lower bounds for finding a mode, the least frequent element

and sorting with equality comparisons. The lower bounds are proved by an ad-

versary argument. The adversary first models the input elements as vertices of a

graph. Then for every comparison made by the algorithm, the adversary answers

equal/not equal and constructs edges (based on the structure of the graph it has

constructed till then) appropriately. The adversary answers in a way that it can

instantiate the input elements, consistent with its answers.

4.4.1 Lower Bound for Finding a Mode

For giving a lower bound for finding a mode, we use Turán’s theorem stated below.

Theorem 4.4.1 (see Theorem 1.1 in Chapter VI in [35]). Let G be any graph

with n vertices such that G has no Km+1, the complete graph on m + 1 vertices.

Then the number of edges in G is at most n2/2− n2/2m.

Theorem 4.4.2. At least n2/2m−n/2 equality comparisons are necessary for any

algorithm to determine a mode with frequency m from a given list of n elements,

even if the algorithm knows m.

Proof. The proof is by an adversary argument. The adversary models the n ele-

ments as n vertices of an undirected graph G. Whenever the algorithm makes a

comparison between a pair of elements, the adversary will answer ‘not equal’ and

draws an edge between the pair of vertices, if after the addition of this edge, there

is still an independent set in the graph of size m + 1 or more. Otherwise, the

adversary will answer ‘equal’.

As long as the modeled graph has an independent set of sizem+1, the algorithm

cannot determine a mode. For, the adversary can make any subset of the elements

of the independent set of size m+ 1 as being equal to a mode.

Now when the algorithm gets the first ‘equality’ answer, the graph G has no

independent set of size m+ 1. Hence Ḡ, the complement of G has no clique of size

m+1. Hence by Theorem 4.4.1, the number of edges in Ḡ is at most n2/2−n2/2m.

Hence the number of edges in G, that corresponds to the number of comparisons

made by the algorithm, is at least
(
n
2

)
− n2/2 + n2/2m = n2/2m− n/2.

60

The frequency distribution in the above adversary strategy is the same as the

one used to prove a lower bound in the one pass algorithm to find a mode in [30].

However appealing to Turán’s theorem gives a simple argument for the number of

comparisons.

Recall the classical (textbook) algorithm [23] to determine the majority, if it

exists, of a list of n elements using at most 2n equality comparisons. Suppose

the list has no majority element, one could ask for a pair of elements whose com-

bined frequency is at least dn/2e. We show, by an adversary argument, using

Theorem 4.4.2 that finding such a pair requires Ω(n2) comparisons.

The adversary sets up the input in such a way that one element appears exactly

n/2− 2 times (and hence not a majority) and every other element appears once or

twice. The adversary gives away the element that appears exactly n/2− 2 times.

So the algorithm’s task is to determine whether there is an element that appears at

least twice among the remaining elements. The adversary answers the comparisons

between the remaining elements as in the proof of Theorem 4.4.2 (with m = 2)

forcing the algorithm to perform Ω(n2) comparisons. Thus we have

Theorem 4.4.3. Given a list of n elements, Ω(n2) comparisons are necessary to

determine whether there exists a pair of elements that together appear at least n/2

times.

4.4.2 Lower Bound for Finding a Least Frequent Element

It is easy to see that any algorithm to determine whether the given n elements are

distinct, using equality comparisons, requires Ω(n2) comparisons. The adversary

simply has to answer ‘not equal’ until the last comparison, and if the algorithm

does not make any comparison between a pair of elements, the adversary has the

option of making that pair equal.

However, this adversary or the one in the proof of Theorem 4.4.2 does not

work well to prove a lower bound for finding the least frequent element, as an

algorithm can pick an element and compare it with every other element receiving

‘not equal’ answers and can declare it to be the least frequent element using only

n− 1 comparisons. To obtain a better lower bound for the least frequent element,

we resort to a different adversary.

61

Lemma 4.4.4. In an n element list, Ω(n2) comparisons are needed to find a least

frequent element. Furthermore Ω(n2) comparisons are required to sort a list of n

elements even if the algorithm knows that every element appears exactly twice.

Proof. Assume that n is a multiple of 4. The adversary first works with a list where

every element appears twice. The adversary maintains a graph on n vertices where

each vertex corresponds to an element and an edge between a and b corresponds

to a possibility that a and b are equal. The adversary starts with a complete

graph and whenever it answers ‘not equal’, it removes that edge. When it answers

equal between a pair, it removes the pair of nodes (and their incident edges) from

the graph and it also reveals that these two vertices are not equal to any of the

remaining vertices in the graph.

The adversary strategy is to answer ‘not equal to’ for the comparisons as long

as it can maintain at least a Hamiltonian cycle in the resulting graph (which will

give at least two perfect matchings on the remaining elements). The adversary

ensures this (we will prove this later) by answering ‘not equal to’ for the first

n/4 − 1 comparisons any element is involved in. For a comparison involving a

pair of elements where at least one element has been involved in n/4 − 1 other

comparisons, it answers ‘equal to’ and deletes the pair of elements. Adversary

follows this strategy until it has deleted n/4 pairs of elements. After that, the

adversary reveals a perfect matching on the remaining vertices (for free). If the

algorithm declares any of the deleted pairs of elements as a least frequent element,

the adversary has the option of making the remaining elements distinct thereby

proving the algorithm wrong. This completes the adversary strategy.

Now we make the following two claims to complete the proof.

Claim 1 This adversary strategy ensures that there is always a Hamiltonian cycle

in the resulting graph (until n/4 pairs of vertices are deleted).

Proof. Dirac’s theorem [36] states that if every vertex of a graph on |V | vertices

has degree at least |V |/2, then the graph has a Hamiltonian cycle. We show that,

in the graph adversary maintains, the hypothesis of Dirac’s theorem is maintained.

Initially when the graph is complete this is clearly true. After the first equality

comparison is given by the adversary, the resulting graph has n − 2 vertices and

every other vertex has been involved in at most n/4− 1 comparisons, and so their

62

degree (in the entire graph) is at least 3n/4. In the resulting graph, a vertex might

have lost two degrees to those eliminated vertices, thus each resulting vertex has

degree at least 3n/4− 2 ≥ (n− 2)/2 as n ≥ 4.

Similarly when i ≤ n/4 pairs of vertices are removed from the graph, the

resulting graph has n− 2i vertices and each of the vertices in the remaining graph

has degree at least 3n/4 − 2i ≥ (n − 2i)/2 which impies that the graph has a

Hamiltonian cycle.

A corollary of Claim 1 is that the algorithm has no way of figuring out the

matching until n/4 pairs are deleted (as the adversary has two choices of matching

for the remaining elements).

Claim 2 The number of comparisons made by the algorithm is at least n2/16.

Proof. The adversary gives an equality comparison and eliminates a pair of ele-

ments only when at least one of the paired vertices has engaged in n/4 comparisons.

So to eliminate n/4 pairs of elements, the adversary forces n2/16 comparisons.

Claims 1 and 2 prove the theorem.

We generalize Lemma 4.4.4 to show the following.

Theorem 4.4.5. In an n elements list, Ω(n2/`2) equality comparisons are neces-

sary for any algorithm to determine a least frequent element with frequency ` even

if the algorithm knows `.

Proof. Let n be a multiple of `. The adversary gives away n/` sets of size `

each and reveals that all the elements in each set are equal to each other. Now

the algorithm’s task is to determine whether any element of any of the sets has

copies elsewhere. The adversary answers as in the proof of Lemma 4.4.4 treating

each group as an element until it eliminates n/4` pairs of groups. After that it

declares that the remaining groups have no other equal element thereby making

any element in any of the groups as a least frequent element with frequency `.

The algorithm cannot declare any element as a least frequent element before n/4`

pairs of the groups have been eliminated as the adversary has choice of ‘matching’

any group with another till that point. It follows from Lemma 4.4.4 that Ω(n2/`2)

comparisons have been forced.

63

Note that this bounds falls short of O(n2/l) upper bound in Corollary 4.3.4.

In case that the input consists of n/m distinct elements each occuring with m

frequency, then finding the m copies of each of the distinct elements also needs at

least Ω(n2/m2) comparisons, even when the adversary reveals this information to

the algorithm.

Theorem 4.4.6. In an n elements list, Ω(n2/m2) equality comparisons are nec-

essary for any algorithm to find all modes or to sort if every element is a mode

appearing m times even if the algorithm knows m.

Proof. The adversary makes 2n/m groups of m/2 elements each and reveals that

each group contains elements which are equal to each other. Given the hypothesis

of the theorem, the 2n/m groups form n/m pairs of groups where all elements in

each pair are equal. Now the algorithm’s task is to determine the matching pair

group for every group. The adversary answers like the adversary in Lemma 4.4.4

(treating each group as an element) and forces Ω(n2/m2) comparisons.

We note that this bound falls short of our upper bound of O(n2/m) proved in

Theorem 4.2.4 to find all modes or to sort when all elements appear m times.The

lower bounds in Theorem 4.4.5 and Theorem 4.4.6, have been improved to match

with our upper bounds by Devanny, Goodrich and Jetviroj in [37].

4.5 Conclusions

We have determined (up to constant factors) the comparison complexity of finding

a mode in a given list of n elements using only equality comparisons. There is a gap

of a factor of 2 between upper and lower bounds (Theorem 4.2.4 and Theorem 4.4.2)

and closing the gap is an interesting open problem. With respect to finding a least

frequent element the gap between our upper and lower bounds is wider, but the

lower bound has since been improved by Devanny, Goodrich and Jetviroj [37] to

match with our upper bound asymptotically. Also, for sorting, when all elements

have equal frequency, our lower bound of Theorem 4.4.6 has been improved in [37]

to match with our upper bound.

64

Munro and Spira [32] gave a lower bound for sorting in the model of three

way comparisons model, for sorting elements with different frequencies. Proving a

lower bound in the equality comparisons model, extending the lower bound of [37]

for the case when elements have different frequencies, to possibly match with our

upper bound in Theorem 4.3.1 is another interesting direction.

Another open problem is to explore data structures to implement the algorithm

in our best mode finding algorithm so that the rest of the operations also take

O(n2/m) time.

Chapter 5
Selection in Tournaments

5.1 Introduction and Motivation

A tournament is a directed graph in which there is exactly one directed edge

between every pair of vertices. As they model many practical scenarios (game

tournaments, voting strategies), tournaments are well-studied in structural and

algorithmic graph theory. Various structural and algorithmic properties of tourna-

ments are known and Moon’s [38] early monograph on this subject lead to much

subsequent work in the area.

It is well-known that every tournament has a ‘centre’ or a king vertex, i.e. a

vertex from which every other vertex can be reached by a directed path of length

at most 2 (a maximum outdegree vertex of the tournament is one such vertex). A

king is also called a 2-king. In this chapter, we look at the complexity of finding a

king in a tournament by probing the adjacency matrix of the tournament.

This problem also arises in the context of selection problem, when the oracle

that answers the comparison is faulty [39]. The oracle is faulty, only when the

elements being compared have their difference below a fixed threshold δ > 0. In

real life, if the two teams playing against each other have similar level of skill, then

either of the teams can win the match. This oracle is inspired by both imprecision

in human judgment of values and also by bounded but potentially adversarial errors

in the outcomes of sports championships. In this model, it has been shown[39]

that it is not always possible to find the correct maximum element, and the only

guarantee which can be given, is that there is a way to find an element which is

66

at most 2δ smaller than the correct maximum element. So instead of finding the

maximum element, we try to find an element which is at most 2δ smaller than

the maximum element. In other words, we try find to an element x such that

x > y − 2δ for all the remaining elements y which belong to the input.

When our faulty oracle returns that x > y, we can say with certainity that

x > y − δ. Hence, when oracle answers that x > y and y > z, it actually implies

that x > z − 2δ. If we map the elements to be compared as vertices of a graph,

and we map the oracle’s output x > y as an edge from x to y, then the problem

of finding an element which is at most 2δ smaller than the maximum element,

transforms into the problem of finding a vertex in a tournament, which can reach

the rest of the vertices by a directed path of length at most two.

There are two different papers written several years apart with almost identical

upper bound and lower bound strategies for finding a king [39, 40]. Here basically

one counts the number of probes (or edge-queries) to the adjacency matrix of the

tournament. Both these papers show an upper bound of O(n
√
n) time and a lower

bound of Ω
(
n4/3

)
time to find a king in a tournament. Closing the gap between

the upper and lower bound has been mentioned as an interesting open problem.

We address this problem in the chapter. While we don’t quite close the gap, we

make several advances.

Our first result is that to improve the lower bound, we need a different adversary

than used in these papers. The lower bound adversary essentially answers an edge

query by favoring the vertex (i.e. increasing its outdegree) with lower outdegree till

that time. We give an O
(
n4/3

)
algorithm against this adversary. As the adversary

can answer arbitrarily when the outdegree between the two vertices are the same,

we need to play against this adversary carefully to prove our upper bound.

Ajtai et al. [39] generalized the notion of a king to a d-king (for any d ≥ 2).

A d-king is a vertex from which every vertex is reachable by a path of length

at most d. Ajtai et.al showed that Ω
(
n1+1/(2d−1)

)
probes are necessary and

O
(
k(n/k)1+1/(3(2d−2−1)

)
are sufficient to find a d-king in an n vertex tournament.

Our algorithm against the adversary for finding a 2-king also works to give an

optimal algorithm against the same adversary for finding a d-king. More generally

we show that if a 2-king can be found in O
(
n4/3

)
time, then a d-king can be found

in optimal O
(
n1+1/(2d−1)

)
time.

67

Then we address the complexity of finding not just one king, but a small subset

of vertices such that every other vertex is reachable by a path of length at most

2 from one of these vertices. More generally, a d-cover is a set of vertices S such

that every other vertex in the tournament can be reached from some vertex in S

by a directed path of length at most d. A 1-cover is simply a dominating set, and

d-covers are referred to as distance-d dominating sets.

It is well-known that every tournament has a dominating set of size at most

dlg ne and can be found in O(n2) time. In fact, one can guarantee existence of a

slightly smaller dominating set that can also be found in the same time. There

exists a dominating set of size g(n) = lg n − lg lg n + 2 in a tournament on n

vertices [41] (see also Section 5.2.2). Thus, the minimum dominating set can be

found in nO(lgn) time and hence it is unlikely to be NP -complete. Papadimitriou

and Yannakakis [42] show that finding the smallest dominating set in a tournament

is complete for a complexity class LOGSNP . It is also known that there are

tournaments where the minimum dominating set size (also called the domination

number) is Ω(lg n) [43], [44] (see also [45]) using which it has been shown that

finding a k-sized dominating set is complete for the parameterized complexity

class W [2] (where the parameter is the solution size) and hence, even an f(k)nO(1)

time algorithm is unlikely for any computable function f [46].

We consider the complexity of finding dominating sets of size more than lg n−
lg lg n+ 2 and more generally, the complexity of finding d-covers. Using the lower

bound adversary that favors the lower degree vertex, we can show a lower bound for

finding k-sized d-covers. We also provide a matching upper bound for for finding

such d-covers for k ∈ Ω(lg n). More specifically, we show that lg n− lg lg n+ 2 + k

sized d-covers can be found in O
(
k(n/k)1+1/(2d−1)

)
time for any d ≥ 1 and k ≥ 1.

We also prove a matching adversary based lower bound to show that this bound is

optimal for k > ε lg n for any ε > 0. This, in particular, implies that a dominating

set of size k > lg n can be found in optimal O(n2/k) time.

We also discuss the complexity of finding a special king vertex called a Banks

vertex which has applications in social choice theory [47]. A Banks vertex is a

source of a transitive subtournament of vertices, who dominate the entire tourna-

ment. I.e. let S be a subset of vertices of the tournament such that the induced

tournament on S is acyclic, and S is a dominating set of the tournament. Clearly

68

the source vertex of the induced subtournament on S is a king, and that is called

a Banks vertex. We observe in this chapter that the known O(n
√
n) algorithm to

find a king, actually finds a Banks vertex.

In social choice theory, the set of all kings in a tournament is referred to as an

uncovered set. It is known that finding the set of all kings or Banks points in a

tournament requires Ω(n2) probes [48]. A similar, but a slightly different kind of

result has been known for finding a sorted sequence of kings. A sorted sequence

of kings is in a tournament on n vertices is a sequence of vertices v1, v2 . . . vn, such

that vi dominates vi+1 and vi is a king in sub-tournament Tvi = {vi, vi+1 . . . vvn}.
It has been known [40] that to find a sorted sequence of kings, Θ(n

√
n) probes are

necessary and sufficient.

Finally we discuss the problem of finding a king or a Banks vertex in an in-

cremental setting. I.e. given a tournament we can maintain some invariants of

the tournament so that when a new vertex is added to it, we can find a king or a

Banks vertex in O(
√
n) time.

Organization of the chapter In Section 5.2, we describe the necessary termi-

nology and some basic results on tournaments that we use in the chapter. In

Section 5.3, we describe our optimal algorithm against the known lower bound ad-

versary . In Section 5.4, we look at d-covers and describe several upper and lower

bounds for finding d-kings and d-covers in a tournament. Section 5.5 shows an

adversarial strategy which forces Ω(n2) time to verify whether a vertex is a king.

In Section 5.6, we give an incremental (vertices can be added to the tournament,

but not deleted) dynamic algorithm to find a king or a Banks point in tournament.

We conclude with pointers to some open problems in Section 5.7.

5.2 Preliminaries

5.2.1 Definitions and Notation

Let T = (V,E) be a tournament (complete directed graph). A dominator in T

is a vertex u ∈ V such that for any other vertex v ∈ S, (u, v) ∈ E. A king in T

is a vertex u ∈ V such that for any other vertex v ∈ V there is a directed path

of length at most 2 from u to v. We denote by V (T) the vertex set of T , and by

69

E(T), the edge set of T . |T | denotes the order of T , i.e. the size of V (T), and

for a subset S ⊆ V (T), T [S] denotes the subtournament of T induced by S. A

tournament or a subtournament is transitive if it has no directed cycle; i.e. there

is an ordering of the vertices such that every edge is going from a smaller vertex

to a larger vertex.

Let d ∈ N and S ⊆ V . S is called a d-cover of T if for every vertex v ∈ V \ S,

there is vertex u ∈ S such that there is a directed path of length at most d from

u to v.

A 1-cover is also called a dominating set. A king by itself is a 2-cover. If a

d-cover is of size 1, we call the unique element in the set a d-king. Let u ∈ V

be a vertex. An out-neighbor of u is a vertex v ∈ V such that (u, v) ∈ E; u is

said to dominate v. Similarly, an in-neighbor of u is a vertex v ∈ V such that

(v, u) ∈ E. For any v ∈ V (T), N+(v) denotes the set of out-neighbors of v, and

N−(v) denotes the set of its in-neighbors. We also define deg+(v) = |N+(v)|, and

deg−(v) = |N−(v)|.
Given a subset S of vertices, performing a round robin tournament on S refers

to the process of querying all possibles edges between every pair of vertices in S to

know their orientations. Using the same tournament analogy, we sometimes refer

to the out-neighbors of a vertex v as vertices that lose to v, and to its in-neighbors

as vertices that win against it. In other words, if there is an edge from u to v, we

say that u wins against v, and v loses to u.

We assume that the vertex set of the tournament is {1, 2, . . . n} and is given in

the form of an adjacency matrix where the (i, j)-th entry denotes the direction of

the edge between i and j. By an edge query or an edge probe, we mean a probe

to the adjacency matrix.

To keep the notation simple, we sometimes omit ceilings and floors on fractions

when we actually mean integers, typically on the sizes of the vertex subsets we

handle. This does not affect the asymptotic analysis.

5.2.2 Some Known Results Which We Have Used

In this section, we capture some elementary results about the nature and the

complexity of finding kings, that are used later in the chapter.

70

Lemma 5.2.1 ([49]). Any tournament has a king vertex (a vertex from which

every other vertex is reachable by a path of length at most 2). In particular, a

maximum degree vertex of the tournament is a king.

Lemma 5.2.2 ([49]). Let T be a tournament and v ∈ V (T). If a vertex u in

N−(v) is a king in T [N−(v)], then u is a king in T .

Proof. The vertex u reaches every vertex in N+(v) through v. Every other vertex

in T is reachable from u by a directed path of length at most 2 as it is a king in

T [N−(v)].

The above lemma can be used to give a simple algorithm to find a king.

A simple algorithm Pick any vertex v ∈ V and find all its out-neighbors in V .

Remove v, as well as all its out-neighbors in V from V . Repeat this process till

V becomes empty, in which case the last picked vertex is a king. The algorithm

takes O(n2) time.

Lemma 5.2.3. For a tournament of order n a king can be found in O(n2) time.

Shen et al. [40] (see also [39]) gave a better algorithm taking O(n
√
n) time

which uses the following simple lemma. The lemma follows from the fact that in

a tournament, the sum of the outdegrees is n(n− 1)/2.

Lemma 5.2.4 ([41]). In any tournament T of order n, there is a vertex with

outdegree at least (n− 1)/2 and a vertex with indegree at least (n− 1)/2 and such

vertices can be found in O(n2) time.

Lemma 5.2.5 ([39, 40]). For a tournament of order n, a king can be found in

O(n
√
n) time.

Proof. The algorithm first picks an arbitrary set of vertices of size
√
n and performs

a round-robin tournament on it. Then, it picks a vertex (say v) of maximum

outdegree (which is at least
√
n/2 by Lemma 5.2.4) in the set, and finds its out-

neighbors in the entire tournament. Next, it removes v and all its outneighbors

from V , and repeats the process until V has less than
√
n vertices in it. At this

71

point, the algorithm uses the routine of Lemma 5.2.3 and finds a king in O(n) time.

It is easy to see that the king in the final set is a king for the entire tournament

by Lemma 5.2.2 and that the algorithm takes O(n
√
n) time.

Banks Point

A Banks point is a king vertex with some special properties and has been studied

extensively in social choice theory, where they are useful in determining winners

in certain types of competition [47].

Definition 5.2.1 (Banks Point, Banks Set [47]). Let T = (V,E) be a tourna-

ment. A vertex v ∈ V is called a Banks point if there is a sequence of vertices

{v1, v2, . . . , vk = v} such that

1. vi dominates vj, for all 1 ≤ j < i ≤ k, and

2. {v1, . . . , vk} is a dominating set for G.

The Banks set for T is the set of all Banks points in T .

From the above definition, it is clear that S = {v1, . . . , vk} induces a transitive

subtournament of T . Also, vk = v dominates all other vertices in S. Since S is a

dominating set, all vertices in V are reachable from vk by a directed path of length

at most 2. Thus, vk is a king. However, not every king is a Banks point [50].

Note that the algorithm for finding a king in Lemma 5.2.3 actually finds a

Banks vertex as the last vertex dominates all the vertices picked up in the previ-

ous iterations and together will all of them, it dominates the entire tournament. It

is also not hard to see that Lemma 5.2.5 also actually finds a Banks point as the

sequence of vertices found in the phases of elimination form a transitive subtour-

nament. These vertices which form the transitive tournament are of size O(
√
n).

Then in the last subtournament (which is also of size O(
√
n)), where every vertex

dominates the vertices picked earlier, we apply Lemma 5.2.3 to find a king vertex,

which actually finds a Banks vertex, which gives us the following lemma.

Lemma 5.2.6. For a tournament of order n, a Banks vertex can be found in

O(n
√
n) time, and the number of vertices forming the transitive tournament is

O(
√
n).

72

Dominating Sets

The following result is immediate from Lemma 5.2.4. We simply find a vertex in

the tournament that dominates at least (n− 1)/2 other vertices, include it in the

dominating set and recurse on the in-neighbors of the vertex.

Theorem 5.2.7 ([45]). For any tournament of order n, a dominating set of size

at most dlg ne can be found in time O(n2).

There is also a tighter upper bound which is probably not well-known [41], we

give the proof here for completeness.

Theorem 5.2.8. In any tournament T = (V,E) of order n, a dominating set of

size at most lg n− lg lg n+ 2 exists, and can be found in time O(n2).

Proof. We proceed as in the case of Theorem 5.2.7, but bail out of the recursion

after dlg n−lg lg ne+1 steps. At this point, the partial dominating set D found has

at most dlg n − lg lg ne + 1 vertices, and the remaining subtournament R (whose

vertices are yet to be dominated) has at most n/2lgn−lg lgn+1 < (lg n)/2 vertices.

By definition, R dominates all of D.

Now, by looking at the out-neighborhood of V (R) in V \D we check (in O(n2)

time) whether V (R) dominates all of V \D. If so, we output V (R), whose size is

at most (lg n)/2. Otherwise, there is a vertex x in V \ {D∪V (R)} that dominates

the vertices of R. In this case, we output D ∪ {x} as the dominating set. Either

way, the size of the dominating set output is at most lg n− lg lg n+ 2.

Central to the lower bound result in [40] and [39] for finding a king, is, the

adversary that answers according to the pro-low strategy defined below.

Definition 5.2.2 (Pro-Low Strategy). Let T be a tournament whose edge direc-

tions are determined by the following adversary strategy for an algorithm that

queries edges: when the edge uv is queried, it is assigned the direction u → v if

deg+(u) ≤ deg+(v), and u ← v otherwise. Here deg+(u) and deg+(v) denote the

outdegree of u and v before the edge query is made.

The following lemma was used in the lower bound arguments.

73

Lemma 5.2.9. [40, 39] Let T be a tournament and S ⊆ V (T). Suppose an ad-

versary answers edge queries involving vertices u, v ∈ S using the pro-low strategy,

i.e., it compares out-degrees within T [S]. If a vertex v in S achieves deg+
S (v) = t,

then at least t(t+ 1)/2 edge queries must have been made by the algorithm.

5.3 Finding a King Against a Pro-Low Adver-

sary

As mentioned in the introduction, it is known that O
(
n3/2

)
probes are sufficient

and Ω
(
n4/3

)
probes are necessary to find a king in a tournament on n vertices.

Narrowing this gap between upper and lower bound has been mentioned as an

open problem in literature [39, 40]. In this subsection, we take a look at the

adversary strategy used in [39, 40] and show that there exists an algorithm which

works specifically against their strategy and can find a king using O
(
n4/3

)
edge

queries, matching the lower bound given by their adversary.

Theorem 5.3.1. If the adversary follows a pro-low strategy as described in Defi-

nition 5.2.2 then we can find a king in O
(
n4/3

)
time.

Proof. Take a sample of 2n1/3 vertices from the input V and find a vertex v that

dominates at least half of these vertices (such a vertex exists from Lemma 5.2.4)

using a round-robin tournament on the sample. Remove v and all vertices that

lose to v (in that sample) from V , and add v to a set D. Repeat this process of

sampling 2n1/3 elements and discarding elements, and adding elements to D, till

there are at least 2n2/3 + 1 and at most 3n2/3 elements remaining which we call R.

The number of edge queries made up to this point is O
(
n4/3

)
.

Notice that the vertices in D form a dominating set for all vertices in the input,

except those in R. Let |D| = f and |R| = r. Clearly f < n2/3 < r/2. Arrange

the vertices of D in non-decreasing order of their out-degrees. Let v1, v2, . . . vf be

the vertices of D in that order. We shall probe edges between all vertices in D

and all vertices in R in a certain order which shall be described below. This step

also uses O
(
n4/3

)
queries, since D and R are both of size O

(
n2/3

)
. The aim is to

demonstrate a vertex in R that wins against all vertices in D. Once we find such

a vertex, we will be done as the following lemma shows.

74

Lemma 5.3.2. Let C be a non-empty set of vertices in R that dominate all vertices

in D. Then a king of T [C], the induced subtournament on C, is a king for the

entire tournament.

Proof. Let x be a king of T [C]. Clearly x can reach all vertices of C in at most

two steps. As x dominates every vertex of D, x can reach every vertex of V \R in

at most two steps. Now consider a vertex v in R \ C. As v /∈ C, v loses to some

vertex y of D. So x can reach v by a path of length 2 by passing through y. �

So the rest of the algorithm probes edges between R and D in such a way that

the pro-low adversary is made to give a vertex in R that dominates all vertices in

D.

Recall that v1, v2, v3 . . . vf is the set of vertices in D in non-decreasing order

of their degrees. As we probe edges between vertices in D and those of R, some

of the degrees of D will change, and if that happens, we rearrange the vertices so

that the vertices continue to be in non-decreasing order of their degrees.

We define a free win point in D as the maximum integer value p such that for

all i ≤ p , deg(vi) ≥ i. By this definition, we can deduce the following.

Lemma 5.3.3. If p is the free win point, then deg(vp+1) = p.

Proof. As the vertices in D are in non-decreasing order of their degrees,

deg(vp+1) ≥ deg(vp) ≥ p which implies that deg(vp+1) ≥ p. But p+ 1 is not a free

win point and so deg(vp+1) < p+ 1 from which it follows that deg(vp+1) = p.

The following claim gives the importance of the notion of free win point.

Lemma 5.3.4. If p is the free win point, then any vertex v in R will, by default,

win at least up to the vertex vp (if queried in that order) when played against a

pro-low adversary.

Proof. When i = 1, it is true, since all vertices in D have outdegree at least

n1/3 ≥ 1 and v has 0 wins before querying with v1. When edge (v, vi), i < p is

probed v has exactly i − 1 wins since it has won all the i − 1 probes up to this

point, and deg(vi) ≥ i. Hence, ∀i ≤ p, v will dominate vi.

The following lemma is immediate from the lemma above.

75

Lemma 5.3.5. If the free win point p is |D|, then all vertices in R which have not

queried their edges with any vertices in D will win all vertices of D whenever the

queries are made.

We probe every vertex of D with every vertex in R. After completing with one

vertex of R, we simply choose another vertex of R arbitrarily. However, we probe

that vertex with vertices in D in a careful order. Now we explain the order in D

in which edges are probed between a vertex v in R. We first probe v up to the free

win point p, thus making v win against all these vertices and obtain a degree of p.

The queries after this point, depend on which of the following cases happen.

• There exists a vertex v′ in D such that degree(v′) > degree(vp+1) = p.

In this case, we play v with v′ to get degree p + 1 (as degree of v is p and

degree of v′ is more than p). Then v plays with all vertices with degree p

and v would lose to all of them while all of them including vp+1 will attain a

degree of p+ 1. Then v plays with all the remaining vertices in D.

• The vertex vp+1 is a maximum degree vertex in D. In this case, we simply

query v′ with vp+1 and all other vertices with the same degree. Note that

as degree(v) would also be p when the first (and possibly even subsequent)

queries are made, the adversary may answer either way as the adversary

answers arbitrarily in case of ties in the degrees.

Now we show the following about the sequence in D by which we probe vertices

of R.

Lemma 5.3.6. Let x1, x2, . . . xr be the vertices in R in the order in which they

are probed against vertices in D. If the free win point is p before xi has started

probing with vertices in D, then by the time xi+1 has completed its round, the free

win point will be at least p+ 1 or we would have found a vertex that dominates all

vertices of D.

Proof. The vertex xi will win with all vertices up to vp ∈ R by Lemma 5.3.4. If

there is no vertex beyond vp, then xi is the vertex that dominates all of D.

Otherwise, we argue based on various cases. If there is a vertex whose degree

is more than deg(vp+1) = p, then the algorithm probes with such a higher degree

76

vertex, wins (due to the pro-low adversary) and then plays with all those with

degree p and loses to them (as it has a higher degree when it started playing with

them). So all vertices with degree p including vp+1 gains a degree and hence the

free win point moves to at least p+ 1 as deg(vp+1) = p+ 1 ≥ p+ 1 now.

If vp+1 is the only maximum degree vertex, then one of two cases arises as the

adversary can answer arbitrarily as there is a tie in the degree of xi and vp+1. If xi

wins, then it is a vertex that dominates all vertices of D, and otherwise vp+1 gains

an extra degree moving the free win point.

So the only case we are left to argue is that degree(vp+1) has the maximum

degree but there is a set M of m > 1 vertices with the maximum degree. Here also

the adversary can answer arbitrarily due to the tie between the degree of xi and of

the m vertices. If xi loses to all of them, then all vertices with degree p in D now

have degree p+ 1. Thus degree(vp+1) changes to p+ 1 and thus the free win point

also changes to p+ 1. Otherwise, observe that if xi wins any one of the m vertices,

then it gains a higher degree and hence will lose to subsequent vertices of M due

to the pro-low strategy. Hence xi can win at most one vertex of M , and since we

have assumed that xi loses to at least one of the m vertices, it will lose to exactly

one. After xi completes its round, one of the m vertices of M will gain degree p+1

and all others remain with degree p. Now as there is a vertex with degree more

than p, due to the cases argued above, xi+1 from R will play with such a higher

degree vertex before playing vertices with degree p, and hence those with degree

p including vp+1 will gain a degree and the free win point will advance to at least

p+ 1.

The following claim follows from Lemma 5.3.5 and 5.3.6 and the fact that |R| >
2|D| and every vertex in D starts off with outdegree at least n1/3 and every vertex

in R starts with outdegree 0.

Lemma 5.3.7. There exists a vertex in R that wins against all vertices of D.

Now the algorithm simply probes all edges between verties in R and vertices in

D, identifies the set of vertices that dominate all of D (and the set is non-empty by

Lemma 5.3.7) and returns a king among them. The fact that the returned vertex

77

is the king for the entire tournament follows from Lemma 5.3.2. The total number

of edge queries made during the entire course of the algorithm is clearly O
(
n4/3

)
.

This concludes the proof of Theorem 5.3.1

5.4 Finding d-Kings and d-Covers

As described before a set S ⊆ V is called a d-cover of T if for every vertex v ∈ V \S,

there is vertex u ∈ S such that there is a directed path of length at most d from

u to v.

While we showed in the last section that the pro-low adversary is weak to

provide an improved lower bound for finding a king, here we show that it is still

useful to find a lower bound for finding a set of vertices such that there is a directed

path of length at most 2 (or more generally d) to every other vertex from one of

these vertices. We complement the lower buond by providing an algorithm that

achieves this bound for finding Ω(lg n) sized d-cover.

5.4.1 Lower Bounds

Generalizing Lemma 5.2.9, Ajtai et al [39] show that

Lemma 5.4.1 ([39]). When playing against a pro-low adversary, if an algorithm

finds a vertex that reaches at least t vertices by a path of length at most d for d ≥ 1,

then at least Ω
(
t1+1/(2d−1)

)
edge queries must have been made.

Setting t = n gives the lower bound for finding a d-king. We generalize the

above lemma to show

Lemma 5.4.2. If an algorithm playing against the pro-low adversary finds a k-

sized d-cover for some k, d ≥ 1, then it must have made at least k(n/k)1+1/(2d−1)

edge queries.

Proof. Suppose the algorithm returns a set of vertices C = {v1, v2, v3 . . . , vk} as

the k sized d-cover of the entire tournament. Perform a breadth-first search from

the vertices of C with all vertices in C at level 0, those that have direct edges

from them at level 1 etc. The breadth-first search tree has d levels. Now, for each

vertex in level i (from d to 1) assign a unique vertex at level i − 1 from which

78

there is a direct edge to it. This partitions the vertices into k sets, where the

i-th set contains the vertex vi, and all vertices assigned to it from level 1, and all

vertices assigned to those level 1 vertices from level 2 and so on. Thus we have k

subtournaments T1, T2, . . .Tk induced on the partition, and let si be the number

of vertices in the sub-tournament Ti. Note that vi has an at most d-length path to

every vertex in Ti and hence by Lemma 5.4.1, the number of edge queries made in

the tournament Ti is at least (si)
1+1/(2d−1). Thus the total number of edge queries

done by all the vertices is at least
∑k

i=1[(si)
1+1/(2d−1)]. As

∑k
i=1 si = n, we have

that the number of edge queries made is at least k(n/k)1+1/(2d−1) using Jensen’s

inequalities (as
∑k

i=1[(si)
1+1/(2d−1)] attains its minimum when all the si’s are the

same as their average value which is n/k).

For d = 1, we give a slightly different argument which maybe of independent

interest.

Theorem 5.4.3. Let 1 ≤ k ≤ n. If an algorithm finds a dominating set of size

at most k in a tournament of order n, then it makes Ω(n2/k) edge queries to its

input in the worst case.

Proof. We prove the result by an adversary argument. The adversary dynamically

builds the input instance T = (V,E), a tournament of order n. At all times, it

maintains a partition V = S ∪ S ′ of the vertex set.

Initially S = V , S ′ = ∅ and deg+(v) = 0 for all v ∈ V . Consider the following

invariant:

• For each v ∈ V , deg+
S (v) < (n/3k)− 1.

Suppose the above invariant holds.

Lemma 5.4.4. If |S| ≥ n/2 and D ⊆ V is a dominating set of T , then |D| > k.

Let v ∈ D. Then, by the invariant, v dominates at most n/3k vertices in S (as

a vertex in S also dominates itself). Since |S| ≥ n/2, we have

|D| ≥ n/2

n/3k
> 3k/2 > k.

79

This proves the claim.

The adversary uses the following strategy. When a new edge uv is queried, if

u, v ∈ S, the adversary uses the pro-low strategy and directs the edge from u to

v if deg+
S (u) ≤ deg+

S (v), and from v to u otherwise. If u, v ∈ S ′, the adversary

arbitrarily directs the edge. If u ∈ S (resp. v ∈ S) and v ∈ S ′ (resp. u ∈ S ′), then

the adversary directs the edge from u to v (respectively from v to u).

After a query is answered, if a vertex v ∈ S satisfies deg+
S (v) = dn/3ke− 1, v is

moved with all its out-neighbors into S ′. This ensures that the invariants always

hold. It now suffices to show that to reach a stage where |S| < n/2, Ω(n2/k)

queries must be made. Note that |S| shrinks in steps of dn/3ke, i.e., its size only

halves after O(3k) steps. At each step, a vertex v with deg+
S (v) = dn/3ke − 1 is

moved into S ′. For a vertex in S to acquire a degree (in S) of dn/3ke, Ω
(
(n/3k)2

)
queries must be made (by Lemma 5.2.9 as we use pro-low strategy inside S). So

the number of queries needed to halve the size of S is Ω
(
3k(n/3k)2

)
= Ω(n2/k).

Therefore in the worst case, any algorithm that finds dominating sets of size at

most k makes Ω(n2/k) edge queries.

Corollary 5.4.5. If an algorithm finds dominating sets of size O(log n) in tourna-

ments of order n, then it makes Ω(n2/ log n) edge queries to its input in the worst

case.

Theorem 5.4.6. Any algorithm that finds minimum dominating sets in tourna-

ments makes Ω(n2/ log n) edge queries to its input in the worst case.

Proof. Since a minimum dominating set has the smallest size among all dominating

sets, any algorithm that finds minimum dominating sets in tournaments finds

dominating sets of size atmost log n, because of Lemma 5.2.7. By Corollary 5.4.5,

this implies that the algorithm makes Ω(n2/ log n) edge queries in the worst case.

5.4.2 Upper Bounds

In this subsection we provide algorithms to find d-covers that match the lower

bounds proved in the last section, as long as the size of the d-covers is Ω(lg n).

80

Finding a dominating set (1-cover) of size (k + lg n− lg lg n+ 2)

We start with the following result for 1-cover (dominating set).

Theorem 5.4.7. A (k + lg n − lg lg n + 2) sized 1-cover in a tournament on n

vertices can be found in O(n2/k) time.

Proof. Let V be the input set of vertices. If k ≤ 2 apply Theorem 5.2.8. Otherwise,

pick a subset of vertices of size 2(n/k)+1 and find a vertex (say u) which dominates

at least (n/k) vertices inside this subset using Lemma 5.2.4. This vertex can be

found using O(n2/k2) time. Delete u’s out-neighbors add u to the dominating

set. Now recurse on the remaining tournament as long as |V | ≥ 2n/k + 1. Once

|V | ≤ 2n/k, apply Theorem 5.2.8 and find a 1-cover of size lg n − lg lg n + 2

for the remaining tournament in O((n/k)2) time, and add these vertices to the

output cover. The output cover is a 1-cover for the tournament, of size at most

k+lg n− lg lg n+2. The total time taken is O
(
(k − 2)(n/k)2 + (n/k)2

)
= O(n2/k).

Finding d-covers (d ≥ 2) of size (k + lg n− lg lg n+ 2)

For d ≥ 2, the lower bound on the size of the d-cover is 1. We first make the

following simple generalization of the O
(
n1+1/(3∗2d−2−1)

)
algorithm [39] to find a

d-king to show the following.

Theorem 5.4.8. In any tournament of order n, a d-cover of size k can be found

in O
(
k(n/k)1+1/(3(2d−2−1)

)
time.

Proof. Partition the vertex set into k parts to get k sub-tournaments on roughly

n/k vertices each. Now use the d-king finding algorithm in [39] in each sub-

tournament to find a d-king. The set of all these d-kings together form a k-sized

d-cover. Time taken to find a d-king in n/k size tournament is

O
(

(n/k)1+1/(3∗2d−2−1)
)

, thus the time taken to find a d-cover of size k

is O
(
k(n/k)1+1/(3∗2d−2−1)

)
.

81

In what follows, we give an improved algorithm for finding d-covers of size more

than dlg ne. We start with a lemma similar to Lemma 5.2.4 for 2-covers.

Lemma 5.4.9. In any tournament of order n, a vertex that reaches at least (n−
1)/2 other vertices via directed paths of length at most 2 can be found in time

O
(
n4/3

)
.

Proof. Let V be the vertex set of the tournament. Pick a subset of vertices of size

2n1/3 + 1 and find a vertex (say u) which dominates at least n1/3 of those vertices.

Take exactly n1/3 of u’s losers and remove them from V . Also add u to a set of

vertices called C. Repeat this process on the resulting V as long as |V | ≥ 2n1/3+1.

Once |V | < 2n1/3 + 1, perform a round-robin tournament on all the vertices in C

and find a vertex k that dominates at least (|C|−1)/2 vertices using Lemma 5.2.4.

The size of C is at least n2/3 − n1/3 − 1.

Thus vertex k can reach at least n1/3(n2/3−n1/3−1)/2 = n/2− (n2/3−n1/3)/2

vertices with path of length exactly two, and can reach (n2/3−n1/3− 1)/2 vertices

with path of length 1. Thus the vertex k is king of at least (n− 1)/2 vertices.

The total number of edge queries made is O
(
n4/3

)
, since round robin on set

C costs O
(
n4/3

)
edge queries, as well as the time taken to create the set C is

O
(
n2/3(n1/3)2

)
= O

(
n4/3

)
.

It is interesting to note that Yao [51] conjectured that finding a partial order

Sm
k (an element which has k elements less than itself and m elements greater than

itself) in a total order of size n cannot be done faster even if extra elements are

given. Lemma 5.4.9 shows that finding a king of n elements becomes substantially

easier if 2n elements are given. As we don’t see any connection at the problem

level, we are not sure whether our algorithm provides any insight to address Yao’s

conjecture.

Corollary 5.4.10. A (lg n−lg lg n+2) sized 2-cover in a tournament on n vertices

can be found in O
(
n4/3

)
time.

Proof. Use Lemma 5.4.9 to find a vertex v ∈ V which has a path of length at most

2, to at least (n − 1)/2 vertices (say to the set C). Remove v and the vertices in

C from V after adding v to the 2-cover set S and adding C to S ′, and repeat this

82

process on the remaining vertices, till the number of vertices in S is lg n−lg lg n+1.

At this point the number of vertices remaining in V is at most (lg n)/2. Find the

relation of all vertices with these (lg n)/2 with the vertices in S ′ using O(n lg n)

queries. One of the two cases happen. Either some vertex v′ in S ′ dominates all

vertices in V , in which case we add v′ to S and output it as the 2-cover, or no

vertex can dominate all vertices in V , in which case V forms a dominating set of

size (lg n)/2 and we output as 2-cover, since any 1-cover is a valid 2-cover. This

would give a lg n− lg lg n+ 2 sized 2-cover.

Theorem 5.4.11. A (k + lg n − lg lg n + 2) sized 2-cover in a tournament on n

vertices can be found in O
(
k(n/k)4/3

)
time.

Proof. Take a subset of input vertices of size 2n/k from V . Using Lemma 5.4.9

find a 2-king u of at least half of these vertices using O
(
(n/k)4/3

)
edge queries.

Remove u from V and add it to the output set C, and remove all vertices in V that

can be reached by a path of length at most 2 from u. Recurse on the remaining

tournament as long as |V | ≥ 2n/k. When |V | < 2n/k, find a lg n− lg lg n+ 2 sized

2-cover, by using O
(
(n/k)4/3

)
edge queries using Corollary 5.4.10, and add this

2-cover to the set C. The set C is a 2-cover for all the vertices in the tournament

of size at most k+lg n−lg lg n+2. The total time spent is O
(
k(n/k)4/3 + (n/k)4/3

)
= O

(
k(n/k)4/3

)
.

Now we generalize the above theorem for d ≥ 2.

Lemma 5.4.12. Let d ≥ 2 and k ≥ 1 be an integer. If a k-sized 2-cover can be

found in O
(
k(n/k)4/3

)
time, then a k-sized d-cover can be found

in O
(
k(n/k)1+1/(2d−1)

)
time.

Proof. We prove this by induction on d. For d = 2, there is nothing to prove. Let

d ≥ 3. Assume that the lemma is true for all integers from 2 to d− 1.

Let V be the set of vertices and s = (n/k)1/(2
d−1). Since d ≥ 3, n/s =

n1−1/(2d−1)k1/(2
d−1) > 3 + lg n (for large enough n), and so using Theorem 5.4.7

find a (n/s)-sized 1-cover of V using O(n2/(n/s)) = O(ns) time. Now find a k-

sized (d − 1)-cover for these n/s vertices using O
(
k(n/ks)1+1/(2d−1−1)

)
= O(ns)

83

time using induction hypothesis. The resulting set is a k-sized d-cover of entire

input, which is found in O(ns) = O
(
k(n/k)1+1/(2d−1)

)
time.

Thus we have from Theorem 5.4.11, Lemma 5.4.12 and Theorem 5.4.7,

Theorem 5.4.13. A (k + lg n − lg lg n + 2)-sized d-cover in a tournament on n

vertices can be found in O
(
k(n/k)1+1/(2d−1)

)
time for any k ≥ 1 and d ≥ 1.

By setting k = 1 in Lemma 5.4.12, we have

Corollary 5.4.14. If a 2-king can be found in O
(
n4/3

)
time, then we can find a

d-king in O
(
n1+1/(2d−1)

)
time.

The above corollary was mentioned as a likely possibility (without proof) in

the conclusion of [39].

The following corollary follows from Lemma 5.4.12 and Theorem 5.3.1.

Corollary 5.4.15. If the adversary follows a pro-low strategy as described in Def-

inition 5.2.2 then we can find a d-king in O
(
n1+1/(2d−1)

)
time.

The above lemma implies that we need a completely different adversary strategy

to improve the lower bounds for finding d-kings.

5.5 Verification of Kings

In this section, we deal with problem of verifying whether a given vertex is a king

or not. One can easily verify in O(n2) time whether a given vertex is a king by

running a standard breadth-first-search starting at the vertex and seeig whether

every vertex is reachable by a path of length at most 2. We give an Ω(n2) lower

bound for this problem. It is interesting to note that it is NP-complete [52] to

verify whether a given vertex is a Banks point.

Lemma 5.5.1. Let T be a tournament of order n. Given a vertex v ∈ V (T), it

takes Ω(n2) edge queries to decide whether v is a king in T .

84

Proof. Consider the following adversary strategy. The adversary arbitrarily fixes

subsets A,B ⊆ V (T)\{v} such that |A| = b(n− 1)/2c and |B| = d(n− 1)/2e, and

then assigns edge directions such that N+(v) = B and N−(v) = A. The remaining

edge directions are assigned dynamically.

Suppose u ∈ A,w ∈ B, and the edge uw is queried. The following cases arise.

• There are other non-queried u–B edges: the adversary assigns the direction

u→ w.

• All other u–B edges have been queried: the adversary assigns the direction

w → u.

For edges uw where u ∈ A and w ∈ A or u ∈ B and w ∈ B, the adversary

answers arbitrarily. Note that v directly reaches each vertex in N+(v) by a directed

edge, and it can only reach vertices in N−(v) through vertices in N+(v). For any

vertex u ∈ A, an algorithm cannot decide whether v can reach u until it queries

all u–B edges, since the status of v depends on how the adversary answers when

the last u–B edge query is made. By the same token, the algorithm cannot decide

whether v can reach all vertices of A unless it asks all edges between A and B.

Thus for every u ∈ A, d(n− 1)/2e queries must be made, i.e. a total of Ω(n2)

queries must be made to determine whether v is a king.

5.6 Finding Kings in the Incremental Dynamic

Setting

In the incremental dynamic setting, we start with a tournament, and the adversary

provides a vertex at a time, and the task is to find a king of this new tournament

after a new vertex is added to it without starting from scratch. We give an O(
√
n)

algorithm to determine a king under vertex additions. We assume that no vertex

is deleted.

The algorithm maintains the following invariants/data:

1. A transitive subtournament on a subset D = {v1, v2, . . . vk} of vertices. For

all j > i, vj dominates vi. Let V ′ be the set consisting of D and all vertices

85

dominated by D. Then vertex vk is a Banks point of T [V ′].

2. Let R = V \ V ′, and by definition of V ′, every vertex in R dominates all

vertices of D.

3. |R| ≤ 2|D|+ 1.

4. The outdegree of every vertex in R in the subtournament T [R].

When a new vertex v is added, it is probed with vertices in D, and if any vertex

in D dominates v, then v is added to V ′ and we return the king declared earlier

as the king for this new tournament too. Otherwise, v is added to R after probing

its edges with every vertex in R and updating the degree of every vertex in R

including that of v. If R is non-empty, then we output a maximum degree vertex

in R as a king, otherwise, we return vk as the king. The correctness is obvious as

a maximum degree vertex x in R reaches all vertices in R by a path of length at

most two by lemma 5.2.1. The vertex x also dominates all vertices of D and as D

is a dominating set of V ′, x reaches all vertices in V ′ by a path of length at most

two, and hence x is a king of the entire tournament. If R is empty, then as D is

a dominating set and as vk is the source of D, clearly vk is a king. Since every

vertex in R dominates every vertex in D, we maintain the transitive order when x

is added as the last vertex in D.

Clearly the first two invariants on D, V ′ and R are maintained but we need

to maintain the (third) size constraint on R. So when |R| = 2|D| + 1, we delete

a maximum degree vertex x in R from R and add it to D, make it as vk+1 and

moving all vertices dominated by x from R to V ′. This step of moving vertices

from R to D reduces the size of R by at least |D| and increases the size of D by

1, thereby ensuring that the third invariant is always maintained.

Now to analyze the number of probes made, we argue that |D| is maintained as

O(
√
n). As |R| ≤ 2|D|+ 1 and as the probes of the new vertex are made only with

vertices in D and R, the claim that the number of probes made by the algorithm

is O(
√
n) will follow.

Lemma 5.6.1. |D| ≤ 2
√
n+ 1.

86

Proof. Let D = {v1, v2, . . . vk} be the vertices ordered according to the order at

which they are added to D. We first claim that vk dominates at least k−1 vertices

(other than itself).

We prove this by induction on k. This is true for v1. Assume that k ≥ 2 and the

claim is true for values up to k − 1. Noticing the manner in which the algorithm

proceeds, when vk was added, |R| = 2(k − 1) + 1 and vk is a maximum degree

vertex in R and hence by Lemma 5.2.4, vk dominates at least (k−1) vertices other

than itself and the claim follows.

Thus (n−k) ≥ |V ′| ≥
∑k

i=1(i−1) from which it follows that (n−k) ≥ (k−1)k/2

from which it follows that k ≤ 2
√
n+ 1.

As a preprocessing step, we can simply find a Banks vertex using the algorithm

of Lemma 5.2.6 and store the dominating set D of V .

Now we count the time for other bookkeeping operations (beyond the number of

edge probes). We notice that we find a maximum outdegree vertex in R whenever

R is non-empty. But as we maintain the outdegrees of every vertex in R, this can

be found in O(|R|) = O(
√
n) time.

When |R| = 2|D|+ 1, we delete a maximum outdegree vertex from R to D and

delete from R all vertices dominated by that vertex. Note that Ω(
√
n) vertices are

deleted from R and due to that the outdegree of every other vertex in R may need

to be updated. This bookkeeping step could take O(n) time as every vertex in R

now needs to recount its degree in R. Notice that immediately after the step, |R|
decreases by at least half its size while |D| increases by 1. Hence, this expensive

step which takes O(n) time will not happen for another Ω(
√
n) steps. No new

edges are queried in R when this split happens, and only the running time gets

affected. Thus, the overall amortized time over a long sequence of insertions for

updating a king is O(
√
n). Thus we have

Theorem 5.6.2. Given a tournament on n vertices, we can maintain a data struc-

ture in O(n
√
n) time so that when a new vertex v is added to the tournament, we

can output a king of the new tournament using O(
√
n) edge probes in the worst

case and O(
√
n) other bookkeeping operations in the amortized case.

87

Note that the algorithm may not return a Banks vertex, as the maximum degree

vertex of R (which is output as a king) may not be a Banks point of R.

In what follows, we give a modification to the above algorithm where one can

actually find a king in the new tournament in O(
√
n) worst case time using some

standard tricks. Basically when R is split, instead of moving the highest degree

vertex to D immediately, we store that in a temporary set, and move it over roughly
√
n steps by which time, we will be able to update the outdegrees in the remaining

vertices in R.

As before the algorithm maintains

1. a Banks vertex vk of a subtournament T [V ′] (V ′ ⊆ V) of the given tourna-

ment, along with the vertices in the transitive subtournament v1, v2, . . . vk

realizing the Banks vertex where vk is the source vertex, and the set D =

{v1, v2, . . . vk} that dominates V ′.

2. We partition R = V \V ′ into three disjoint sets R1, R2 and R3 and maintain

the invariant that |R| ≤ 3|D|+ 1 and |R1| ≤ 2|D|+ 1.

3. Whenever R2 6= ∅, |R2| ≥ |D|+ 1 and it contains a vertex m that dominates

all other vertices in R2. Whenever R3 6= ∅, every vertex of R3, dominates m,

the dominator vertex of R2.

4. We maintain the outdegree of every vertex in R with respect to the subtour-

nament on vertices of R.

5. We maintain the outdegree of every vertex in R3 with respect to the sub-

tournament on vertices of R3.

Initially R = R1 and R2 = R3 = ∅ .

When a new vertex v is added to the existing tournament, it is probed as

before with vertices in D, and if any vertex in D dominates v, then v is added to

V ′, in which case, the king of the tournament just prior to addition of v in the

tournament also is a king of the tournament after v is added and the algorithm

terminates.

Otherwise, if v dominates all vertices in D, then v is probed with all vertices

in R and the count of outdegrees of all vertices in R (with respect to tournament

on R) is updated.

88

If v is added to R it is added to exactly one of the sets R1, R2 or R3 using the

following rules

• If R2 = ∅ and R1 < 2|D|+1, then v is added to R1. The outdegree of vertices

in R is updated.

• If R2 = ∅ and |R1| = 2|D| + 1, then we find the maximum degree vertex in

R1 and label it as m. Move m and all vertices dominated by m from R1 to

R2, making R1 of size at most |D| (and thereby making R2 of size at least

|D|+ 1). If the new vertex v dominates m, v is added to R2, else it is added

to R3. If R1 6= ∅, an arbitrary vertex is moved from R1 to R3. The outdegree

of vertices in R is updated. The outdegree of vertices in R3 (with respect to

tournament on R3) is maintained.

• If R2 6= ∅ and R1 6= ∅, then we probe v with m. If m dominates v, then

we add v to R2, otherwise we add v to R3 after updating the outdegree of

all vertices of R3 within the subtournament induced on R3. Regardless of

whether we add v to R2 or R3), we also remove an arbitrary vertex of R1

and move it to R3 and update the outdegrees of vertices in R3(with respect

to tournament on R3).

• If R2 6= ∅ and R1 = ∅ , then we add m to D as v|D|+1, move all other

vertices in R2 to V ′ and move all vertices in R3 to R1. Now R contains only

the vertices which were earlier in R3. The outdegrees of R3 were already

maintained anyway, and thus the outdegrees of every vertex in R is also

maintained.

It is easy to see that the invariants 1, 3, 4, 5 are maintained. Now we prove that

the invariant 2 is also maintained.

Notice that whenever R2 = ∅, |R1| < 2|D| + 1 and R3 are empty. Thus

R ≤ 3|D|+ 1 and |R1| ≤ 2|D|+ 1.

When |R1| = 2|D|+ 1 vertices, R1 gets split and at least |D|+ 1 vertices move

from R1 to R2, and a new vertex is added to either R2 or R3. Suppose d ≤ |D| is

size of R1 at this point. Thus, in this case also R ≤ 3|D|+ 1 and |R1| ≤ 2|D|+ 1.

When R1, R2 6= ∅, it means that R1 has been split, and everytime a new vertex

is added to R, it is either added to R2/R3 and exactly one vertex in R1 moves

89

to R2/R3. Before R1 becomes empty, at most d vertices have moved from R1 to

R3 and d new vertices are added to R. Thus, whenever R2 6= ∅ and R1 = ∅,
the maximum size of R is (d(number of new vertices added to R)+d (number of

vertices moved from R1 to R2/R3)+(2|D|+ 1− d) (number of vertices in R2 ∪R3

when R1 was last split))= 2|D|+ 1 + d. Since d ≤ |D|, the maximum size of R is

3|D|+ 1. No vertices are added to R1 whenever R1, R2 6= ∅. Thus |R1| ≤ d ≤ |D|.
When R2 6= ∅ and R1 = ∅, at least |D|+ 1 vertices are moved from R to V ′, which

ensures that |R| < 3|D|+ 1.

When R2 6= ∅ and R1 = ∅, all vertices of R2 are moved to V ′, and then vertices

in R3 are moved to R1. Thus at least |D| + 1 vertices are moved from R to V ′,

thus R ≤ 2|D|, and then the sets R2, R3 become empty. So |R| ≤ 3|D| + 1, and

R ≤ 2|D|+ 1.

This proves that invariant 2 is always maintained.

Now to output a king vertex of the updated tournament, the algorithm checks

if R is empty or not. Whenever R is empty, the Banks vertex of V ′ is the Banks

point of entire tournament and thus it is also a king. Whenever R is non-empty,

a maximum degree vertex in R (which happens to be a king of R) is also a king

of entire tournament, which is always maintained by the invariant 4. This proves

the correctness of the algorithm.

The running time (including the number of queries made) for incrementally

maintaining a king is clearly O(|D|) = O(
√
n) in the worst case. Thus, we have

Theorem 5.6.3. Given a tournament on n vertices, we can build a data structure

in O(n
√
n) time so that when a new vertex v is added to the tournament, we can

output a king of the new tournament in O(
√
n) time in the worst case.

The algorithms in Theorem 5.6.2 and Theorem 5.6.3 always return a king, but

they do not necessarily return a Banks point at every step. This is because the

maximum outdegree vertex of R may not dominate all vertices in R. We could

maintain a Banks point within R and return such a Banks point whenever R is

non-empty. And when the size invariant on R is violated, it makes sense to move

the Banks point along with the dominated vertices to D, but then we move too

many vertices to D and this requires care.

First recall that a Banks point is simply the source vertex of a transitive sub-

tournament whose vertices dominate the entire tournament. So if we simply main-

90

tain the transitive subtournament (which maybe of large size) and compare the

newly added vertex to the vertices of the subtournament, we can find a Banks

point. If the new vertex dominates all vertices of the transitive subtournament,

then it is a Banks point and otherwise the earlier Banks point is the Banks point

for the new tournament. But as the size of the transitive subtournament can be

Θ(n) this results in a linear time algorithm to report a new Banks point.

Lemma 5.6.4. Given a tournament on n vertices, we can build a data structure

in O(n2) time so that when a new vertex v is added to the tournament, we can

output a Banks point of the new tournament in O(n) time in the worst case.

We shall now use this lemma together with the strategy in Theorem 5.6.3 to

improve the bound for finding a Banks point to O(
√
n). In particular, we continue

to maintain the invariants 1, 2 and 3 of Theorem 5.6.3. The invariants 4 and 5 are

changed to the following conditions.

• Maintain a Banks point over all vertices in R in addition to maintaining the

relation between every pair of vertices in R.

• Maintain a Banks point over vertices R3 with respect to the subtournament

on vertices of R3.

First, we notice that the algorithm in Theorem 5.6.3 always returns a Banks

point whenever the set R is empty. Whenever R is non-empty it only contains

vertices which dominate all vertices in D. Thus any Banks point of R is a Banks

point of entire tournament.

Initially R = R1 and R2 = R3 = ∅ .

When a new vertex v is added to the existing tournament, it is probed with

vertices in D, and if any vertex in D dominates v, then v is added to V ′, in

which case, the Banks point of the tournament just prior to addition of v in the

tournament also is declared as a Banks point.

Otherwise, if v dominates all vertices in D, then v is probed with all vertices

in R and a Banks point of all vertices in R (with respect to tournament on R) is

updated in O(|R|) = O(
√
n) time using lemma 5.6.4.

If v is added to R it is added to exactly one of the sets R1, R2 or R3 using the

exact same rules as used in Theorem 5.6.3. But there is one more step, which is

91

performed in addition to the procedure followed in Theorem 5.6.3 while a vertex

is added to R. Whenever R and R3 are not empty, a Banks point with respect

to R and a Banks point with respect to R3 are also maintained. This takes an

additional O(|R|+ |R3|) = O(
√
n) time/edge queries by the use of lemma 5.6.4.

The arguments for maintaining invariants, correctness and query complexity are

similar to the one showed in Theorem 5.6.3, which gives us the following theorem.

Theorem 5.6.5. Given a tournament on n vertices, we can build a data structure

in O(n
√
n) time so that when a new vertex v is added to the tournament, we can

output a Banks point of the new tournament in O(
√
n) time in the worst case.

5.7 Conclusions and Open Problems

We have investigated the complexity of finding Kings, Banks points and

d-dominating sets in tournaments. While our algorithms are not very involved,

they are strengthened by the fact that the algorithms to find above Ω(lg n) sized

d-dominating sets are provably optimal. We have also provided some additional

insights into the complexity of finding a d-king which may help narrow the gap

between upper and lower bound for the complexity of the problem. We believe

that our work will spur further work on improving the bounds for finding a king in

tournament. We end with some specific problems from the work on tournaments.

• There is still a gap in the complexity of finding a d-king for d ≥ 2. We have

shown in Corollary 5.4.14 that to improve the upper bound, it is sufficient

to improve the upper bound for finding 2-kings. Is the converse true? I.e.

can we improve the upper bound for finding d-kings (d > 2) even if a 2-king

cannot be found in o(n
√
n) time?

• Are the bounds in Theorem 5.4.13 optimal for k < ε lg n, for d ≥ 2? For

d = 1, we know that finding a k-sized dominating set is W [2]-complete.

• For vertices u and v, let b(u, v) denote the number of vertices through which

u can reach v by a directed path of length 2. Then, a king z is strong [53]

if the following condition is satisfied: b(z, v) > b(v, z) whenever v dominates

z. I.e. if v dominates z, the number of ways to reach v from z is more than

92

the number of ways to reach x from v through a directed path of length at

most 2. It can be shown that a maximum degree vertex in a tournament is a

strong king. Can a strong king be found in o(n2) time? It is also known [54]

that we need Ω(n2) time to find a maximum degree vertex in a tournament.

• Can we show that the lower bound for finding a Banks point is Ω(n
√
n)?

Chapter 6
Elusiveness of Finding Degrees

6.1 Introduction

In this chapter, we look at the selection problem in directed graphs, undirected

graphs and tournaments, which may not have any transitivity property. In this

circumstances, the goal is to find vertices having a certain degree or the maximum

degree. The topic of this chapter is on a query model which was quite popular

based on a conjecture from 70s which is yet unproven. We consider simple (di-

rected or undirected) graphs, where there are no loops and there is at most one

(directed or undirected appropriately) edge between any pair of vertices, which can

be represented using
(
n
2

)
entries of a matrix. A graph property is said to be elusive

(or evasive) [55] if any algorithm to determine the property requires probing all
(
n
2

)
entries of the adjacency matrix in the worst case. In this model, only the number

of queries is only counted, and the algorithm is allowed to do any other operations

for free.

Several graph properties are known to be elusive, e.g having a clique of size k or

a coloring with k colors [56] or having atleast one edge in the graph. A property is

monotone if it remains true when edges are added. For example a non-empty graph

stays nonempty even after adding an edge. A.L. Rosenberg [55] conjectured that

any deterministic algorithm must query at least a constant fraction of entries in

the adjacency matrix in the worst case, to determine if the graph has a given non-

trivial monotone graph property. This was proven by Rivest and Vuillemin [57]. A

stronger version of the conjecture called Aanderaa-Karp-Rosenberg conjecture was

94

also formulated [55], which stated that exactly
(
n
2

)
probes are needed to determine

whether a monotone property is elusive. The stronger Aanderaa-Karp-Rosenberg

conjecture remains unproven. See [58] for more information on recent develop-

ments.

One can also define elusiveness for other problems on graphs (not necessarily

properties, for example, finding a vertex with maximum degree) and for properties

of directed graphs [59]. There are also non-monotone properties that are elusive.

Hougardy and Wagler [60] showed that the property of being perfect, though not

a monotone property, is still an elusive property. In this chapter, we show that

another non-monotone property, the graph having a vertex of outdegree k ≤ (n+

1)/2 in directed graphs, is elusive. This improves an earlier lower bound of n(n−
1 − k)/2 [54] for k > 1. For k = (n − 1)/2, for example, the earlier bound was

n(n − 1)/4 whereas we improve the bound to
(
n
2

)
for all values of k ≤ (n + 1)/2.

Existence of a vertex with degree k is not a monotone property, since adding an

edge in the graph may make the graph to lose all its vertices with degree exactly

k.

We also address the complexity of finding a vertex of degree k in an undirected

graph. We show that determining whether an undirected graph has a vertex of

degree 0 or 1 is elusive, while for larger k, we could show a lower bound of .42n2

improving the previous lower bound of .25n2. We also show that finding the

maximum degree in an undirected graph or a directed graph requires
(
n
2

)
queries

to the adjacency matrix.

It is known [54] that finding a maximum outdegree vertex in a tournament

requires
(
n
2

)
− 2n+ 3 queries, but it was not known whether one needs

(
n
2

)
probes.

We show that one can find a maximum outdegree vertex in
(
n
2

)
− 1 queries, and

improve the lower bound to
(
n
2

)
−2 when n is odd and

(
n
2

)
−n/2−2 when n is even.

All our lower bounds are shown using simple, but subtle adversary arguments.

6.1.1 Organization of the Chapter

In Section 6.2, we give some definitions and conventions and some results we use. In

Section 6.3, we show results for finding degree k vertices in directed or undirected

graphs. In Section 6.4, we show results for finding the maximum degree as well as a

95

maximum degree vertex in directed or undirected graphs. In Section 6.5, we show

improved lower bounds and upper bounds for finding a maximum degree vertex in

a tournament. Section 6.6 lists some interesting open problems.

6.2 Definitions and Conventions

All our graphs (directed or undirected) are simple graphs that have no loops and

have at most one edge between any pair of vertices. The outdegree of a vertex u in

a directed graph is the number of vertices v such that there is a directed edge from

u to v, and the indegree of vertex is defined analogously. Sometimes we say degree

to mean outdegree when dealing with directed graphs. For a subset S of vertices

of a graph, the induced subgraph on S (G[S]) is the graph with vertex set S, and

the edge set that contains pairs of vertices of S that are edges in the graph G. In a

directed graph/tournament, when we say that a vertex u wins vertex v, we mean

that there is an edge directed from u to v. By the same token, we say that v looses

to u. A tournament is an orientation of a complete graph, i.e. a tournament is a

directed graph in which there is exactly one directed edge between every pair of

vertices. A round-robin over the tournament (or a subtournament) involves finding

the direction of all the edges in the (sub)tournament. A regular tournament is a

tournament in which every vertex has the same indegree and the same outdegree.

The following result is well known.

Lemma 6.2.1 ([38]). If a tournament on n vertices is regular, then n is odd. Fur-

thermore, for every odd integer n, there exists a regular tournament on n vertices.

The adjacency matrix of a graph on n vertices is an n by n matrix that has

its (i, j)-th entry 1 whenever there is an edge (i, j) and 0 otherwise. In the case of

directed graphs if (i, j) is a (directed) edge, then the (i, j)-th entry has 1 and the

(j, i)-th entry has a −1. Clearly, in undirected graphs, the matrix is symmetric,

and in directed graphs, the matrix is anti-symmetric.

All our proofs use an adversary argument. Here an adversary maintains the

adjacency matrix, and the algorithm probes the adversary for entries of the matrix.

The adversary has a fixed strategy and creates entries in the matrix, when they are

queried by the algorithm. Our argument to prove a lower bound of f(n) typically

96

has the form, ‘if the algorithm does not probe f(n) entries, then the adversary has

enough options on the rest of the graph to prove the algorithm wrong, whatever

the algorithm answers’.

6.3 Finding Vertices of Degree k

6.3.1 Directed Graphs

Earlier known lower bound [54] for finding a outdegree k vertex in a directed graph

is n(n − 1 − k)/2 for any 0 < k ≤ n − 1. For 0 < k ≤ (n + 1)/2, we improve the

bound to show the following.

Theorem 6.3.1. Any algorithm to determine whether a given directed graph has

a vertex with outdegree k (0 < k ≤ (n+ 1)/2) on n vertices, requires
(
n
2

)
probes to

the adjacency matrix.

Proof. The adversary constructs the digraph in following manner depending on

the value of k:

1. k is even and at least 2 The adversary partitions the graph into two sets of

vertices A and B. A contains 2(k − 1) + 1 vertices. B contains n − 2k + 1

vertices. Adversary maintains a regular tournament (that exists by Lemma

6.2.1) on A (each vertex has outdegree and indegree exactly (k− 1)) and the

induced subgraph on B is empty (edgeless). There is no edge directed from

A towards B. For every vertex x ∈ B, the adversary would add directed

edges from x to the first k − 1 vertices of A it is probed with. This way, it

is clear that there is no vertex in the graph with outdegree k.

In order to determine that no vertex in A is a outdegree-k vertex, the algo-

rithm is required to probe at least n−k non-outdegree edges of each vertex in

A. This would make any algorithm to probe the entire subtournament on A

and every edge between A and B. For otherwise, the adversary can flip/add

an edge out of that vertex to make that vertex of degree k consistent with

its answers for all vertices. To prove that no vertex in B is an outdegree

k vertex, the algorithm has to probe all pairs within B, as otherwise, the

adversary can add an edge to make a vertex of outdegree k.

97

2. k is odd and k ≥ 3 The adversary partitions the graph into two sets A and

B by taking 2k − 2 vertices in A and the rest in B. Adversary maintains a

regular subtournament A′ inside A on 2k− 3 vertices (each vertex within A′

has indegree and outdegree (k − 2)) and the remaining 1 vertex z of A will

have all edges directed to the vertices of the regular subtournament. The

rest of the construction for edges across A and B and within B are the same

as in the previous case.

In order to claim that no vertex in A′ is a degree-k vertex, the algorithm is

required to probe at least n − k non-outdegree edges of each vertex in A′.

This would make the algorithm to probe the entire subtournament on A′ and

every edge between A′ and B ∪ {z}. Although z already may have degree

more than k, queries with z are required to verify whether any vertex in B

or A′ can get degree k or not.

As in the previous case, the algorithm has to probe all pairs within B to

prove that no vertex in B is an outdegree k vertex.

3. k = 1 The adversary maintains an empty (edgeless) graph and answers the

queries according to it. If the algorithm leaves some edge unprobed between

a pair of vertices, say u and v, then following two cases happen:

(a) If the algorithm declares any vertex other than u and v as 1-outdegree

vertex, then adversary would trivially show that the algorithm is wrong,

as it has never given any edge, till this point.

(b) If the algorithm declares u (without loss of generality) as a 1-outdegree

vertex, then adversary would add an edge v → u, making vertex v the

unique vertex of outdegree 1 proving the algorithm wrong. �

For k = 0, we improve the earlier known lower bound [54] of n2/4 to show the

following.

Theorem 6.3.2. Determining whether a given directed graph on n vertices has a

vertex with outdegree 0 requires
(
n
2

)
probes to the adjacency matrix.

98

Proof. For n = 2, it is straightforward to see that the only edge in the graph

has to be probed, to determine whether any of the two vertices has outdegree 0.

For n ≥ 3, the adversary strategy is as follows: For the first query between two

vertices, say x and y, the adversary answers that the graph has an edge y → x

and adds y to a set W which is a set maintained by the adversary, that contains

all vertices with outdegree at least 1. The vertex x is now marked as a sink vertex

s. The label of the sink vertex is not fixed and may change over the course of the

algorithm’s execution.

If the algorithm asks a query (u,w) for a vertex w ∈ W , and u /∈ W , and u 6= s,

the adversary answers that there is no edge unless w is the only vertex of W with

which u has not been probed, in which case it directs the edge from u to w and

adds u to W . For a query involving a pair of vertices (u, v), u, v /∈ W ∪ {s}, the

adversary answers that there is no edge.

For a query between sink s and y, the adversary answers that there is no edge

unless y is the last vertex (not necessarily in W) with which sink s has not been

probed, in which case the adversary gives an edge from s to y and adds s to W . If

in the process y gets indegree 1 (and outdegree 0) then y plays the role of new sink

and marked as s, otherwise there is no sink. This strategy allows the adversary to

maintain the following invariants:

• The set W contains vertices whose outdegree so far is exactly one.

Proof. Each vertex gets its first outdegree while entering W , after which

point it only get indegrees.

• Every probe between vertices in W has been already made by the algorithm.

Proof. If there is an unprobed edge between two vertices u and v, where

v ∈ W , then u will not get an outdegree edge, and thus it would not be

present in W .

• There is at most one vertex outside W , referred to as sink s (if it exists) that

has indegree exactly one.

• Vertices other than those in W ∪ {s} have outdegree and indegree 0.

99

It is clear that all the above invariants are maintained by the answers of the

adversary. The adversary never gives an edge, if the edge between two vertices

both of which are outside W is made. Thus, to confirm whether a vertex has 0

outdegree or not, it has to compare with vertices in W . The only time when the

algorithm can discard a vertex for a candidate of 0-degree vertex, is when it is

added to W , after it gets its first outdegree.

Suppose an algorithm has not queried an edge between vertices u and v, and

it answers that w(6= u, v) is a 0-outdegree vertex. If w /∈ W , then there is at least

one vertex (say w′) with which it has not made a query, and its outdegree thus far

is 0. So the adversary can give an edge w → w′ and prove the algorithm wrong.

If w ∈ W , then the algorithm is wrong, since all vertices in W have at least one

outdegree.

If the algorithm outputs u as a 0-outdegree vertex (without loss of generality),

then the adversary can give the edge u → v and contradict the algorithm. Thus

all pairs of queries have to be made, to determine whether there is any vertex with

outdegree 0. �

For k > (n + 1)/2, we improve the known lower bound of n(n − k − 1)/2 to

show the following.

Theorem 6.3.3. For k > (n + 1)/2, determining whether there is a vertex with

outdegree k in a directed graph on n vertices requires at least (n− k− 1)(n+ k)/2

probes to the adjacency matrix.

Proof. The adversary maintains two sets A and B. A contains k+ 1 vertices, with

no edge between any pair of vertices within A. B contains n − k − 1 vertices,

with no edge between any pair of vertices within B. For any vertex in B, the

adversary will direct the first k − 1 vertices of A with which it is probed towards

A, and will answer that there is no edge with the remaining two vertices of A

(if probed). The algorithm is required to probe all edges out of each vertex of

B to prove that none of them is of degree k (as otherwise, the adversary can

create edges to prove the algorithm wrong). The number of queries probed is

(k + 1)(n− k − 1) + (n− k − 1)(n− k − 2)/2 = (n− k − 1)(n+ k)/2. �

100

6.3.2 Undirected Graphs

Similar to the adversary for determining outdegree 1 vertex in a directed, graph,

we can show the following by maintaining an adversary that does not give any

edge between pairs of vertices. If some edge is unprobed, then then the adversary

can keep the option of making both of them a degree 1 vertex.

Theorem 6.3.4. Determining whether a given undirected graph has a degree 1

vertex is an elusive property.

For degree 0, the adversary is similar to the adversary for outdegree 0 in the

case of directed graphs. We show the following theorem.

Theorem 6.3.5. Determining whether an undirected graph on n vertices has a

degree 0 vertex requires all n(n− 1)/2 probes to the adjacency matrix of the graph.

Proof. For the first query between two vertices, adversary would add an undirected

edge and place both of them in a set W . After that, if the algorithm asks a query

(u,w) for a vertex w ∈ W , and u /∈ W , the adversary answers that there is no

edge unless w is the only vertex of W with which u has not been probed, in which

case it gives an edge between u and w and adds u to W . For a query involving a

pair of vertices (u, v), u, v /∈ W , the adversary answers that there is no edge.

Thus the adversary maintains that

• vertices in W have degree at least 1,

• all pairs of vertices in W have been probed, and

• all vertices outside W have degree 0.

So the algorithm cannot declare any vertex of W as one of degree 0 as it will

be wrong otherwise. If V (G) \W 6= ∅, and if the algorithm declares a vertex of

V (G) \ W as a vertex of degree 0, then the algorithm can make the degree of

that vertex at least 1, as that vertex has still some edge unprobed (as otherwise it

will be in W). If the algorithm declares that there is no vertex of degree 0, then

W = V , and in that case, all edges between pairs of vertices in W = V have been

probed due to the invariant maintained by adversary.�

101

For k > 1, we are unable to show whether the property is elusive or not, but

we improve the known lower bound from n2/4 [54] to show the following.

Theorem 6.3.6. Finding a degree k vertex in an undirected graph on n vertices

requires at least (0.42)n2 probes to the adjacency matrix of the graph.

Proof. Without loss of generality we can assume that k ≤ b(n − 1)/2c. For k ≥
(n− 1)/2, one can simply find a vertex with degree n− 1− k in the complement

graph which can be obtained online from the adjacency matrix by interpreting 1s

as 0s and vice versa.

Adversary has a choice to answer in one of following two ways, which it decides

based on the value of k:

1. k ≤ (3−
√

5)n/2: Adversary constructs the graph as follows:

The vertices are divided into two sets A and B. A consists of k + 2 vertices.

B consists of n − k − 2 vertices. Each vertex of B has an edge with every

vertex of A. The subgraph of the set B contains no edge and the subgraph of

the set A is complete and hence every vertex of A has degree at least k + 1.

For each vertex in B, adversary would give edges to the first k − 1 vertices

of A with which it is probed, and answer the last three edges with set A as

empty, to make each vertex of B of degree k − 1. To prove that no k degree

vertex exists in B, the algorithm would probe every edge of subgraph B.

Hence the algorithm has to probe all edges incident on vertices of B which

is (n−k−2)(k+2)+(n−k−2)(n−k−3)/2 = (n−k−2)(n+k+1)/2 probes.

2. k > (3−
√

5)n/2:-Adversary constructs the graph as follows:

The graph is divided into two sets of vertices A and B. A contains n− k+ 1

vertices and B contains k − 1 vertices. The subgraph on each of the sets

A and B is complete. Each vertex of B has degree at least k − 2 and each

vertex of A has degree of at least k + 1 (because k ≤ b (n− 1)/2 c).
In order to claim that some vertex x ∈ B is of degree < k, the algorithm

is required to probe between x and at least n − k vertices of A. Adversary

would add an edge between x and the last 3 vertices of A it is probed with.

This would make x a degree k + 1 vertex. Adversary would do the same for

102

each such vertex of B. Now, the algorithm has to probe the whole subgraph

on B, to prove that none of the vertex in B is a degree k vertex.

In order to prove that none of vertex in A is a degree k vertex, the algorithm

would probe at least k + 1 edges of each vertex of A. As there can be at

most 3k − 3 edges between A and B, the algorithm is required to probe

the subgraph on A for the remaining edges. Algorithm would stop, when

each vertex of A has degree of k + 1. Suppose e is the number of edges

that algorithm is forced to probe inside the set A, to make each vertex

of A degree k + 1. Then, 2e + 3(k − 1) ≥ (n − k + 1) ∗ (k + 1) and so

e ≥ (n − k + 1)(k + 1)/2 − 3(k − 1)/2. Thus the algorithm would probe at

least (k−1)(n−k+1)+(k−1)(k−2)/2+(n−k+1)(k+1)/2− (3k−3)/2 =

(k(3n− 2k − 2)− n+ 4)/2 probes.

The minimum value of complexity of both strategies is when k = (3 −
√

5)n/2,

which gives a lower bound of .42n2 probes. �

6.4 Finding the Maximum Degree

6.4.1 Directed Graphs

The adversary for k = 1 in Theorem 6.3.1 also gives the following

Theorem 6.4.1. For a directed graph on n vertices, any algorithm would require

to probe at least n(n − 1)/2 queries to the adjacency matrix to find a maximum

outdegree vertex.

The same adversary implies that finding the maximum outdegree (not just a

vertex with the maximum outdegree) requires
(
n
2

)
probes.

Corollary 6.4.2. Finding the maximum outdegree in a directed graph on n ver-

tices, requires all n(n− 1)/2 queries to the adjacency matrix.

6.4.2 Undirected Graphs

The adversary strategy used to show that finding a degree 1 vertex in an undirected

graph is an elusive property (Theorem 6.3.4) shows the following.

103

Theorem 6.4.3. Finding the maximum degree in an undirected graph requires all

n(n− 1)/2 edge queries in the worst case.

However, if we don’t care about the maximum degree, and is sufficient to find

a vertex with maximum degree, then, we can show the following.

Theorem 6.4.4. Finding a maximum degree vertex in an undirected graph on n

vertices, has a lower and upper bound of n(n− 1)/2− 1.

Proof. Lower bound: Whenever a query comes for any pair of vertices x and y,

the adversary answers that there is no edge between x and y, except when all of

the remaining unprobed edges share the same vertex, in which case the adversary

would work as follows: If the query between vertices u and v is the last query,

after which all queries will have a common vertex x, then adversary would add an

edge (u, v) to the graph, and not give any more edges to x. Now, the algorithm

has to probe all the edges of x except the last one, to prove that vertex u or v is

indeed a maximum degree vertex. For, if the algorithm omits two edges out of x,

the adversary can make x the unique maximum degree vertex.

If such a case does not happen i.e, if there exist two unprobed edges that do not

share any vertex, say u1v1 and u2v2. Then the following two cases arise:

Case 1: If the algorithm declares any vertex x other than u1,v1,u2 and v2 as

a maximum outdegree vertex, then adversary would add an edge u1v1 to make

vertex u1 as the maximum degree vertex, contradicting the algorithm’s claim.

Case 2: Without loss of generality, if the algorithm declares vertex u1 as maxi-

mum degree vertex, then the adversary would add edge u2v2 to make vertex u2 of

degree 1, contradicting the algorithm’s claim.

Upper bound:- The algorithm would probe all edges except the last edge, say be-

tween u and v. If there exists some vertex x with degree larger than that of any

other vertex including u and v, then the algorithm declares x as a maximum degree

vertex, as both u and v cannot get degree more than that of x, even if edge uv

exists.

Without loss of generality, if u has degree greater or equal to that of any other

vertex, then the algorithm would declare u as a maximum degree vertex (since

presence or absence of an edge between u and v won’t affect the fact that u has

104

maximum degree). If both u and v are of the largest degree, then either of u and

v can be output by algorithm as a maximum degree vertex. �

6.5 Tournaments

A tournament is a directed graph in which there is exactly one directed edge

between every pair of vertices. Balasubramanian et al.[54] gave a 2kn lower bound

and 4kn upper bound for finding a vertex of outdegree k (0 < k ≤ (n − 1)/2).

Bridging this gap is still open for general value of k. In this section we deal with

finding the maximum outdegree vertex in a tournament. The previous known lower

bound for finding a maximum outdegree vertex in tournament was
(
n
2

)
− 2n + 3

[54]. We give an improved lower bound and also show that such a vertex can be

found without probing all the edges in the tournament.

6.5.1 Lower Bound for Finding Maximum Outdegrees

Theorem 6.5.1. Finding a vertex with the maximum outdegree in a tournament

on n vertices requires
(
n
2

)
− 2 edge-probes if n is odd and

(
n
2

)
−n/2− 2 edge-probes

if n is even.

Proof. When n is odd, the adversary starts by maintaining a regular tournament

on n vertices where each vertex has outdegree and indegree (n − 1)/2. Our first

claim is the following.

Claim 6.5.2. Suppose the algorithm declares a vertex x as one with maximum

outdegree. Then the algorithm must have ensured that the remaining (n−1) vertices

have indegree at least (n− 1)/2.

Otherwise, the adversary can flip an unprobed edge coming into one of these

vertices, say y, and make y the unique vertex with maximum outdegree proving

the algorithm wrong.

This claim already shows a lower bound of (n − 1)(n − 1)/2. We improve the

bound further by modifying the adversary as follows. The adversary keeps track

of vertices with indegree (n − 1)/2, and when the (n − 1)th vertex z is about

to get indegree (n − 1)/2, the adversary flips the edge coming into z. Let y be

105

the nth vertex, now every vertex other than y and z are known to have indegree

(n − 1)/2 and z has indegree (n − 1)/2 − 1. Now the adversary will continue to

answer according to its initial choice of orientations (of the regular tournament)

making z the vertex with the unique maximum outdegree. But to rule out y as a

candidate, the algorithm has to ensure that y has indegree at least (n − 1)/2 − 1

(as otherwise it can flip an edge coming into y to make it a unique vertex with

maximum outdegree). All these indegree edges are disjoint, but it is possible

that the edge that was going to come into z that got flipped was actually from

y counting for the indegree of y. Hence, the algorithm has to perform at least

(n− 1)(n− 1)/2 + (n− 1)/2− 2 = (n− 1)n/2− 2 comparisons.

Suppose n is even. The adversary constructs a tournament that has two sets

of vertices: X is a set of n/2 vertices with outdegree n/2 each and Y is a set of

n/2 vertices with outdegree n/2− 1 each. Before declaring v which is a vertex of

X as a vertex with maximum outdegree, the algorithm has to ensure that every

other vertex has indegree at least n/2 − 1 as otherwise the adversary can make

one of those vertices to have outdegree n/2 + 1 by flipping an unprobed incoming

edge to one of them, thus contradicting the algorithm. This proves a lower bound

of (n − 1)(n/2 − 1). As before, we further improve the lower bound as follows.

The algorithm flips the edge coming into the (n− 1)th vertex (say u) that is about

to get indegree n/2 − 1 so that it and the nth vertex (say v) are candidates for

maximum outdegree. Now the adversary answers in such a way that both u and

v dont get more than n/2 + 1 outdegree, thus the algorithm has to ensure that

both get indegree at least n/2 − 2. This, as before, results in a lower bound of

(n− 2)(n/2− 1) + 2(n/2− 2) = n(n− 1)/2− n/2− 2. �

Theorem 6.5.3. Finding the maximum outdegree (along with a vertex with the

maximum outdegree) in a tournament on n vertices requires at least
(
n
2

)
compar-

isons if n is odd, and
(
n
2

)
− n/2 comparisons if n is even.

Proof. It is evident that one cannot find out the maximum outdegree of a graph,

without actually knowing which vertex has the maximum outdegree, although the

converse is not true. If n is odd, the adversary works with a regular tournament,

and if some edge is not probed, it can flip the edge and change the maximum

outdegree.

106

If n is even, the adversary works with a tournament where n/2 vertices have

outdegree n/2, and other n/2 vertices have outdegree n/2 − 1. Any algorithm

which declares the maximum outdegree(which is n/2 in this case) along with the

vertex which has that degree (say u) has to ensure that all the vertices including

u have indegree at least n/2− 1, because if a vertex, say v, with indegree less than

n/2 − 1 exists, then the adversary will make v have outdegree n/2 + 1, and thus

contradict the algorithm. �

Corollary 6.5.4. Any algorithm to determine all vertices with the maximum out-

degree requires
(
n
2

)
edge-probes.

Proof. For odd sized graph, it follows from Theorem 6.5.3. For even sized tour-

naments, the adversary is similar to the one shown in Theorem 6.5.3. There are

n/2 maximum degree vertices and each of the n/2 maximum outdegree vertices

must have their all edges probed, otherwise the adversary could alter any edge to

prove the algorithm wrong. Also, the algorithm needs to probe all indegrees of

the remaining n/2 vertices to prove that none of them is a max-outdegree vertex.

Thus algorithm has to probe all indegree edges of each vertex of the tournament.

�

6.5.2 Upper Bound for Finding a Vertex with Maximum

Outdegree

Theorem 6.5.5. Finding a vertex with the maximum outdegree in a tournament

on n vertices, requires at most
(
n
2

)
− 1 edge-probes for n > 2.

Proof. Consider the subtournament T on some n− 1 vertices and perfom a round

robin tournament by making all possible comparisons between them taking (n −
1)(n− 2)/2 edge-probes. Let x be the remaining vertex. Two possible cases arise

for T .

1. T is a regular subtournament: In this case, every vertex in T has outde-

gree/indegree (n− 2)/2.

Choose an arbitrary vertex y of T . Probe x with all vertices of T except y.

We will argue that we have sufficient information to determine a vertex with

107

the maximum outdegree. Let z be a vertex in T − {y}, which is a vertex

with the maximum degree among vertices in T . At this point,

(a) if z lost to x, then x is a maximum outdegree vertex.

(b) if z won against x and outdegree of x is less than the outdegree of z,

then z is a maximum outdegree vertex.

(c) if z won against x and outdegree of x is at least the outdegree of z, then

output x as the maximum outdegree vertex.

2. T is not a regular subtournament:- Let y be a vertex of T with minimum

outdegree in T , which is at most n/2 − 2. Probe x with all vertices of

T except y. Let z be a vertex in T − {y}, which is the vertex with the

maximum outdegree among vertices of T − {y}. At this point,

(a) if outdegree of x is less than outdegree of z, then output z as the max-

imum outdegree vertex.

(b) if outdegree of x is the same or more than outdegree of z, then output

x as the maximum outdegree vertex.

The correctness of the algorithm is clear, and in both cases, we have probed at

most n(n− 1)/2− 1 edges. �

Note that the gap between the current upper bound (Theorem 6.5.5) and the

lower bound (Theorem 6.5.1) for finding a maximum degree vertex is 1 when n is

odd and is n/2 + 2 when n is even.

6.6 Conclusions and Open Problems

We have addressed the complexity of finding vertices of degree k or maximum

degree in a directed or an undirected graph or a tournament in a model where

only probes to the adjacency matrix are counted. While our adversaries are simple,

they are still non-trivial and they narrow the gap between upper and lower bounds

substantially. We end with the following open problems.

108

1. Is n(n − 1)/2 − 1 the optimal bound for finding a maximum degree vertex

in an odd sized tournament and is n(n− 1)/2− n/2− 1 the optimal bound

for finding a maximum degree vertex in an even sized tournament? We

believe that that the answer is yes when n is odd and no for n is even. For

example, when n = 4, we can find a vertex with the maximum outdegree in

three probes (simply by declaring the winner of a knock-out tournament).

Extending this argument/bound for larger even sized tournaments would be

interesting.

2. Is determining whether an undirected graph has a degree k vertex an elusive

property for k > 1?

Bibliography

[1] Biswas, A., V. Jayapaul, and V. Raman (2017) “Improved Bounds for
Poset Sorting in the Forbidden-Comparison Regime,” in Algorithms and Dis-
crete Applied Mathematics - Third International Conference, CALDAM 2017,
Sancoale, Goa, India, February 16-18, 2017, Proceedings, pp. 50–59.

[2] Jayapaul, V., J. I. Munro, V. Raman, and S. R. Satti (2015) “Sorting
and Selection with Equality Comparisons,” in Algorithms and Data Structures
- 14th International Symposium, WADS 2015, Victoria, BC, Canada, August
5-7, 2015. Proceedings, pp. 434–445.

[3] Jayapaul, V., V. Raman, and S. R. Satti (2016) “Finding Mode Using
Equality Comparisons,” in WALCOM: Algorithms and Computation - 10th
International Workshop, WALCOM 2016, Kathmandu, Nepal, March 29-31,
2016, Proceedings, pp. 351–360.

[4] Biswas, A., V. Jayapaul, V. Raman, and S. R. Satti (2017) “The com-
plexity of finding (approximate sized) distance d dominating sets in tourna-
ments,” in Frontiers in Algorithmics - 11th International Workshop, FAW
2017, June 23-25, 2017 at Chengdu, Sichuan, China.

[5] Goyal, D., V. Jayapaul, and V. Raman (2017) “Elusiveness of Finding
Degrees,” in Algorithms and Discrete Applied Mathematics - Third Interna-
tional Conference, CALDAM 2017, Sancoale, Goa, India, February 16-18,
2017, Proceedings, pp. 242–253.

[6] Huang, Z., S. Kannan, and S. Khanna (2011) “Algorithms for the Gen-
eralized Sorting Problem,” in IEEE 52nd Annual Symposium on Foundations
of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25,
2011, pp. 738–747.

[7] Daskalakis, C., R. M. Karp, E. Mossel, S. J. Riesenfeld, and
E. Verbin (2011) “Sorting and Selection in Posets,” SIAM Journal on Com-
puting, 40(3), pp. 597–622.

110

[8] Banerjee, I. and D. Richards (2016) “Sorting Under Forbidden Compar-
isons,” in 15th Scandinavian Symposium and Workshops on Algorithm The-
ory (SWAT 2016), vol. 53 of Leibniz International Proceedings in Informatics
(LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 22:1–22:13.

[9] Tucker, A. (1974) “Structure theorems for some circular-arc graphs,” Dis-
crete Mathematics, 7(1-2), pp. 167–195.

[10] Durán, G., L. N. Grippo, and M. D. Safe (2014) “Structural results on
circular-arc graphs and circle graphs: A survey and the main open problems,”
Discrete Applied Mathematics, 164, pp. 427–443.

[11] Hell, P., J. Bang-Jensen, and J. Huang (1990) “Local Tournaments and
Proper Circular Arc Gaphs,” in Algorithms, International Symposium SIGAL
’90, Tokyo, Japan, August 16-18, 1990, Proceedings, pp. 101–108.

[12] Blum, M., R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan
(1973) “Time Bounds for Selection,” J. Comput. Syst. Sci., 7(4), pp. 448–461.

[13] Kahn, A. B. (1962) “Topological sorting of large networks,” Commun. ACM,
5(11), pp. 558–562.

[14] Golumbic, M. C. and W. Rheinboldt (2014) Algorithmic Graph The-
ory and Perfect Graphs, Computer science and applied mathematics, Elsevier
Science.

[15] Tarjan, R. E. and M. Yannakakis (1984) “Simple Linear-Time Algo-
rithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Se-
lectively Reduce Acyclic Hypergraphs,” SIAM Journal on Computing, 13(3),
pp. 566–579.

[16] Rose, D. J., R. E. Tarjan, and G. S. Lueker (1976) “Algorithmic As-
pects of Vertex Elimination on Graphs,” SIAM Journal on Computing, 5(2),
pp. 266–283.

[17] Komlós, J., Y. Ma, and E. Szemerédi (1998) “Matching Nuts and Bolts
in O(n log n) Time,” SIAM J. Discrete Math., 11(3), pp. 347–372.

[18] Mathieu, C. and H. Zhou (2013) “Graph Reconstruction via Distance Or-
acles,” in Automata, Languages, and Programming - 40th International Col-
loquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part I, pp.
733–744.

[19] Culberson, J. C. and P. Rudnicki (1989) “A Fast Algorithm for Con-
structing Trees from Distance Matrices,” Inf. Process. Lett., 30(4), pp. 215–
220.

111

[20] Reyzin, L. and N. Srivastava (2007) “On the longest path algorithm for
reconstructing trees from distance matrices,” Inf. Process. Lett., 101(3), pp.
98–100.

[21] ——— (2007) “Learning and Verifying Graphs Using Queries with a Focus on
Edge Counting,” in Algorithmic Learning Theory, 18th International Confer-
ence, ALT 2007, Sendai, Japan, October 1-4, 2007, Proceedings, pp. 285–297.

[22] Thorup, M. (2003) “Integer priority queues with decrease key in constant
time and the single source shortest paths problem,” in Proceedings of the 35th
Annual ACM Symposium on Theory of Computing, June 9-11, 2003, San
Diego, CA, USA, pp. 149–158.

[23] Boyer, R. S. and J. S. Moore (1991) “MJRTY: A Fast Majority Vote
Algorithm,” in Automated Reasoning: Essays in Honor of Woody Bledsoe,
pp. 105–118.

[24] Alonso, L. and E. M. Reingold (2013) “Analysis of Boyer and Moore’s
MJRTY algorithm,” Inf. Process. Lett., 113(13), pp. 495–497.

[25] Alonso, L., E. M. Reingold, and R. Schott (1997) “The Average-Case
Complexity of Determining the Majority,” SIAM J. Comput., 26(1), pp. 1–14.

[26] ——— (1993) “Determining the Majority,” Inf. Process. Lett., 47(5), pp.
253–255.

[27] Saks, M. E. and M. Werman (1991) “On computing majority by compar-
isons,” Combinatorica, 11(4), pp. 383–387.

[28] Fischer, M. J. and S. L. Salzberg (1982) “Finding a Majority Among n
Votes: Solution to Problem 81-5 (Journal of Algorithms, June 1981),” Journal
of Algorithms, 3(4), pp. 362–380.

[29] Dobkin, D. P. and J. I. Munro (1980) “Determining the Mode,” Theor.
Comput. Sci., 12, pp. 255–263.

[30] Demaine, E. D., A. López-Ortiz, and J. I. Munro (2002) “Frequency
Estimation of Internet Packet Streams with Limited Space,” in Algorithms -
ESA 2002, 10th Annual European Symposium, Rome, Italy, September 17-21,
2002, Proceedings, pp. 348–360.

[31] Reingold, E. M. (1972) “On the Optimality of Some Set Algorithms,” J.
ACM, 19(4), pp. 649–659.

[32] Munro, J. I. and P. M. Spira (1976) “Sorting and Searching in Multisets,”
SIAM J. Comput., 5(1), pp. 1–8.

112

[33] Misra, J. and D. Gries (1982) “Finding Repeated Elements,” Sci. Comput.
Program., 2(2), pp. 143–152.

[34] Munro, J. I. and Y. Nekrich (2015) “Compressed Data Structures for Dy-
namic Sequences,” in Algorithms - ESA 2015 - 23rd Annual European Sym-
posium, Patras, Greece, September 14-16, 2015, Proceedings, pp. 891–902.

[35] Bollobás, B. (1978) Extremal graph theory, Academic Press.

[36] Dirac, G. A. (1952) “Some Theorems on Abstract Graphs,” Proceedings of
the London Mathematical Society, s3-2(1), pp. 69–81.

[37] Devanny, W. E., M. T. Goodrich, and K. Jetviroj (2016) “Paral-
lel Equivalence Class Sorting: Algorithms, Lower Bounds, and Distribution-
Based Analysis,” in Proceedings of the 28th ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA 2016, Asilomar State Beach/Pacific
Grove, CA, USA, July 11-13, 2016, pp. 265–274.

[38] Moon, J. (1968) Topics on tournaments, Athena series: Selected topics in
mathematics, Holt, Rinehart and Winston.

[39] Ajtai, M., V. Feldman, A. Hassidim, and J. Nelson (2016) “Sorting
and Selection with Imprecise Comparisons,” ACM Trans. Algorithms, 12(2),
pp. 19:1–19:19.

[40] Shen, J., L. Sheng, and J. Wu (2003) “Searching for Sorted Sequences of
Kings in Tournaments,” SIAM Journal on Computing, 32(5), pp. 1201–1209.

[41] Lu, X., D. Wang, and C. K. Wong (2000) “On the bounded domination
number of tournaments,” Discrete Mathematics, 220(1-3), pp. 257–261.

[42] Papadimitriou, C. H. and M. Yannakakis (1996) “On Limited Nonde-
terminism and the Complexity of the V-C Dimension,” J. Comput. Syst. Sci.,
53(2), pp. 161–170.

[43] Graham, R. L. and J. H. Spencer (1971) “A constructive solution to a
tournament problem,” Canad. Math. Bull., 14, pp. 45–48.

[44] Alon, N. and J. Spencer (1992) The Probabilistic Method, John Wiley.

[45] Megiddo, N. and U. Vishkin (1988) “On Finding a Minimum Dominating
Set in a Tournament,” Theor. Comput. Sci., 61, pp. 307–316.

[46] Downey, R. and M. Fellows (1999) Parameterized Complexity, Springer
New York.

113

[47] Brandt, F., F. A. Fischer, and P. Harrenstein (2009) “The Compu-
tational Complexity of Choice Sets,” Math. Log. Q., 55(4), pp. 444–459.

[48] Dey, P. (2017) “Query Complexity of Tournament Solutions,” in Proceedings
of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9,
2017, San Francisco, California, USA., pp. 2992–2998.

[49] Maurer, S. B. (1980) “The King Chicken Theorems,” Mathematics Maga-
zine, 53(2), pp. 67–80.

[50] Penn, E. M. (2006) “The Banks Set in Infinite Spaces,” Social Choice and
Welfare, 27(3), pp. 531–543.

[51] Yao, F. F. (1974) ON LOWER BOUNDS FOR SELECTION PROBLEMS,
Tech. rep., Cambridge, MA, USA.

[52] Brandt, F., F. A. Fischer, and P. Harrenstein (2007) “Recog-
nizing Members of the Tournament Equilibrium Set is NP-hard,” CoRR,
abs/0711.2961.

[53] Chen, A.-H., J.-M. Chang, Y. Cheng, and Y.-L. Wang (2008) “The
existence and uniqueness of strong kings in tournaments,” Discrete Mathe-
matics, 308(12), pp. 2629 – 2633.

[54] Balasubramanian, R., V. Raman, and G. Srinivasaragavan (1997)
“Finding Scores in Tournaments,” J. Algorithms, 24(2), pp. 380–394.

[55] Rosenberg, A. L. (1973) “On the Time Required to Recognize Properties
of Graphs: A Problem,” SIGACT News, 5(4), pp. 15–16.

[56] Bollobás, B. (1976) “Complete subgraphs are elusive,” J. Comb. Theory,
Ser. B, 21(1), pp. 1–7.

[57] Rivest, R. L. and J. Vuillemin (1976) “On Recognizing Graph Properties
from Adjacency Matrices,” Theor. Comput. Sci., 3(3), pp. 371–384.

[58] Miller, C. A. (2013) “Evasiveness of Graph Properties and Topological
Fixed-Point Theorems,” Foundations and Trends in Theoretical Computer
Science, 7(4), pp. 337–415.

[59] King, V. (1990) “A lower bound for the recognition of digraph properties,”
Combinatorica, 10(1), pp. 53–59.

[60] Hougardy, S. and A. Wagler (2004) “Perfectness is an Elusive Graph
Property,” SIAM J. Comput., 34(1), pp. 109–117.

