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Abstract

This thesis concerns the dynamics and integrability of the Rajeev-Ranken (RR) model, a
mechanical system with 3 degrees of freedom describing screw-type nonlinear wave solutions
of a scalar field theory dual to the 1+1D SU(2) Principal Chiral Model. This field theory is
strongly coupled in the UV and could serve as a toy model to study nonperturbative features
of theories with a perturbative Landau pole.

We begin with a Lagrangian and a pair of Hamiltonian formulations based on compatible
degenerate nilpotent and Fuclidean Poisson brackets. Darboux coordinates, Lax pairs and
classical r-matrices are found. Casimirs are used to identify the symplectic leaves on which
a complete set of independent conserved quantities in involution are found, establishing Li-
ouville integrability. Solutions are expressible in terms of elliptic functions and their stability
is analyzed. The model is compared and contrasted with those of Neumann and Kirchhoff.

Common level sets of conserved quantities are generically 2-tori, though horn tori, circles
and points also arise. On the latter, conserved quantities develop relations and solutions
degenerate from elliptic to hyperbolic, circular and constant functions. The common level
sets are classified using the nature of roots of a cubic polynomial. We also discover a family
of action-angle variables that are valid away from horn tori. On the latter, the dynamics is
expressed as a gradient flow.

In Darboux coordinates, the model is reinterpreted as an axisymmetric quartic oscillator.
It is quantized and variables are separated in the Hamilton-Jacobi and Schrodinger equations.
Analytic properties and weak and strong coupling limits of the radial equation are studied. It
is shown to reduce to a generalization of the Lamé equation. Finally, we use this quantization
to find an infinite dimensional reducible unitary representation of the above nilpotent Lie
algebra.
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Chapter 1

Introduction

1.1 Motivation and background

In this thesis we investigate the dynamics and integrability of a mechanical system describing
a class of nonlinear wave solutions of a 141-dimensional (14-1D) scalar field theory. This
scalar field theory was introduced in the work of Zakharov and Mikhailov [61] and Nappi [51].
It is ‘pseudodual’ to the 1+1D SU(2) principal chiral model (PCM), which is equivalent to
the 1+1D SO(4) nonlinear sigma model. The latter is an effective theory for pions, displays
asymptotic freedom and possesses a mass gap [55]. It serves as a good toy model for 3+1D
Yang-Mills theory, which describes the physics of strong interactions. The PCM and nonlinear
sigma model are prime examples of integrable field theories and nonperturbative results
concerning their S-matrix and spectrum have been obtained using the methods of integrable
systems by Zamolodchikov and Zamolodchikov [64] (factorized S-matrices), by Polyakov
and Wiegmann [56] (fermionization) and by Faddeev and Reshetikhin [24] (quantum inverse
scattering method).

Unlike the PCM, its pseudodual scalar field theory is strongly coupled in the ultraviolet
and displays particle production. Thus, as pointed out by Rajeev and Ranken [57], this scalar
field theory could serve as a lower-dimensional toy model for studying certain nonperturbative
aspects of theories with a perturbative Landau pole (such as 3+1D A\¢* theory, which appears
in the scalar sector of the Standard Model of particle physics). In particular, one wishes to
identify degrees of freedom appropriate to the description of the dynamics of such models at
high energies (if indeed, a UV completion can be defined). Though the pseudodual scalar
field theory has been shown by Curtright and Zachos [17] to possess infinitely many nonlocal
conservation laws, it has not yet been possible to solve it in anywhere near the way that the
PCM has been solved. The pseudodual scalar field theory is also interesting for other reasons.
Unlike the PCM, which is based on the semi-direct product of an su(2) current algebra and an

!This scalar field is obtained from a noncanonical transformation of the principal chiral field. Moreover,
while the models are classically equivalent, their quantum theories are qualitatively different. This motivates
the term ‘pseudodual’.
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abelian current algebra, its pseudodual is based on a nilpotent current algebra and a quadratic
Hamiltonian. Theories that admit a formulation in terms of quadratic Hamiltonians and
nilpotent Lie algebras are particularly interesting: they include the harmonic and anharmonic
oscillators as well as field theories such as Maxwell, A\¢* and Yang-Mills. Based on this
structural similarity, it is plausible that some common techniques of analysis may apply to
several of these models.

There are yet other reasons to be interested in the PCM, its pseudodual scalar field the-
ory and more generally the pseudoduality transformation. For instance, a generalization of
the PCM to a centrally-extended Poincaré group leads to a model for gravitational plane
waves [52]. On the other hand, a generalization to other compact Lie groups shows that
the pseudodual models have 1-loop beta functions with opposite signs [3]. Interestingly, the
sigma model for the noncompact Heisenberg group [8] is also closely connected to the above
pseudodual scalar field theory that we study. Similar duality transformations have also been
employed in the AdSs x S® superstring sigma model in connection with the Pohlmeyer reduc-
tion [32] and in integrable A-deformed sigma models [29]. The above dual scalar field theory
also arises in a large-level and weak-coupling limit of the 141D SU(2) Wess-Zumino-Witten
model. This field theory is also of interest in connection with the theory of hypoelliptic op-
erators [57]. In another direction of some relevance, attempts have been made to understand
the connection (or lack thereof) between the absence of particle production, integrability and
factorization of the tree-level S-matrix in massless 2D sigma models [35].

As a step towards understanding the 141D scalar field theory dual to the SU(2) PCM,
Rajeev and Ranken [57] obtained a consistent mechanical reduction to a class of nonlinear
constant energy-density classical waves. These novel ‘screw-type’ continuous waves could
play a role similar to solitary waves in other field theories. The restriction of the scalar
field theory to these nonlinear waves is governed by a Hamiltonian system with 3 degrees of
freedom, which we refer to as the Rajeev-Ranken (RR) model.

In this thesis, we will explore the integrability and dynamics of the RR model and obtain
results on both its classical and quantum versions. Aside from its intrinsic interest, we
hope that understanding the mechanical model in detail will shed light on its parent scalar
field theory. Moreover, comparing the RR model and its integrable features with other
dynamical systems has been very helpful in discovering common features and transplanting
ideas between these models. We next outline the major results of this thesis.

1.2 Outline and summary of results

In Chapter 2, we introduce the 141D scalar field theory pseudodual to the SU(2) principal
chiral model. The SU(2)-group valued principal chiral field g(z,t) is related to the su(2)-Lie
algebra valued scalar field ¢(z,t) via the noncanonical transformations

gl =X and ¢ lg= )\, (1.1)
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Here, primes and dots denote space and time derivatives respectively and A > 0 is a dimen-
sionless coupling constant. We then discuss the Hamiltonian-Poisson bracket formulations of
the PCM and its dual scalar field theory. We briefly mention salietnt features of the models
and point out that unlike the ‘Euclidean’ current algebra of the PCM, the scalar field theory
is based on a step-3 nilpotent current algebra. Next, we sketch the way Rajeev and Ranken
obtained a mechanical system by reducing the scalar field theory to screw-type waves of the
form:

d(x,t) = " R(t)e " + mKxr with K = %kO’g. (1.2)

Here, R(t) is a dynamical traceless 2 x 2 anti-hermitian su(2) matrix, while K is a constant
matrix. In (1.2), m is a dimensionless parameter, k a constant wavenumber and o3 the third
Pauli matrix. The dynamics of these screw-type waves is described by a Hamiltonian system
with three degrees of freedom and its equations of motion (EOM) are

L=[K,S] and S=\I[S,I]. (1.3)

Here S(t) and L(t) are dynamical su(2) matrices related to R(t) via

-1
L=[K,R|+mK and S:R—i—XK. (1.4)
The matrices L and S may also be regarded as a pair of dynamical vectors in 3D Euclidean
space (L = Tr (Ld/2i),S = Tr (S5/2i)) equipped with the cross-product Lie bracket.
Thus the phase space of the RR model is six-dimensional.

In Chapter 3, we discuss the Hamiltonian formulation and Liouville integrability of the RR
model. In Section 3.1, we find a Lagrangian as well as a pair of distinct Hamiltonian-Poisson
bracket formulations for the RR model. The corresponding nilpotent and Euclidean Poisson
brackets are shown to be compatible and to generate a (degenerate) Poisson pencil. In Section
3.2, Lax pairs (see Refs. [40,41,42] for an exposition on Lax pairs) and r-matrices associated
with both Poisson structures are obtained and used to find four generically independent
conserved quantities ¢, m,s and h. They are related to the S and L variables via

L 1 1 k
> = Tr | — —<KS|==LyL,+ ~
¢ T (2 3 S) 5La a+)\53,
mk* = Tr KL= —kLs, s°k*= TrS* and hk*= Tr SL. (1.5)

Here, ¢ and m may be shown to be Casimirs of the nilpotent Poisson algebra. The value of
the Casimir L3 is written as —m in units of k£ by analogy with the eigenvalue of the angular
momentum component L, in units of 4. The conserved quantity Tr SL is called h for
helicity by analogy with other such projections. The quantity s%k? is the square of the radius
of the S-sphere in the 3D Euclidean S-space. These conserved quantities are in involution
with respect to both Poisson structures on the 6D phase space. The symmetries and canonical
transformations generated by these conserved quantities are identified and three of their
combinations are related to Noether charges of the nilpotent scalar field theory. Two of these
conserved quantities ¢ and m (or s and h) are shown to lie in the center of the nilpotent (or
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Euclidean) Poisson algebra. Thus, by assigning numerical values to the Casimirs, we may
go from the 6D phase space of the model to its 4D symplectic leaves M3, (or MZ ). On
the latter, we have two generically independent conserved quantities in involution, thereby
rendering the system Liouville integrable. This explains how we can have four independent
conserved quantities in involution for a system with a 6D phase space. Though all four
conserved quantities are shown to be generically independent, there are singular submanifolds
of the phase space where this independence fails. In fact, we find the submanifolds where
pairs, triples or all four conserved quantities are dependent and identify the relations among
conserved quantities on these singular submanifolds. Pleasantly, these submanifolds are
shown to coincide with the ‘static’ and ‘circular/trigonometric’ submanifolds® of the phase
space and to certain nongeneric common level sets of conserved quantities. In Section 3.3, we
analyze the stability of classical static solutions of the RR model and of the corresponding
nonlinear wave solutions of the scalar field theory. Finally, the weak coupling limit (A — 0)
of the classical continuous screw-type waves is examined. They are shaped like a screw with
axis along the third internal direction suggesting the name ‘screwons’.

One may wonder whether the Rajeev-Ranken model is related to any other integrable
systems. In Appendix A, we compare and contrast the RR model with the (N = 3) Neumann
model [9,10], which is an integrable system describing the dynamics of a particle moving on
an N-sphere subject to harmonic forces. Though the models are not quite the same (as
the corresponding dynamical variables live in different spaces), this comparison allows us to
discover a new Hamiltonian formulation for the Neumann model [38]. In Appendix B, we give
the EOM of the RR model a new interpretation as Euler equations for a centrally extended
Euclidean algebra with a quadratic Hamiltonian. Thus, they bear a kinship to Kirchhoft’s
equations for a rigid body moving in a perfect fluid [47]. The latter is an integrable system
whose equations are Euler equations for a Euclidean algebra [14,21,58]. Roughly, L and
P=S-K /A play the roles of total angular momentum and linear momentum of the body-
fluid system in a body-fixed frame. However, while the Poisson brackets of the Kirchhoff
system are given by the Fuclidean L-P Lie algebra, the RR model involves its central
extension. Solutions of the RR model are also interpreted as a special family of flat su(2)
connections on 141D Minkowski space. Indeed, the currents g = ¢7'¢g and r; = g~ !¢’ of the
PCM (for the SU(2) group-valued principal chiral field g(z,t)) are components of a flat su(2)
connection in 1+1-dimensions, satisfying the additional condition 7y = r}. Solutions of the
dual scalar field theory thus furnish a special class of flat connections r, = Ae,,0"¢. This is
to be contrasted with certain other integrable systems (investigated for instance in [2,7,27]),
which describe Hamiltonian dynamics on the space of flat connections on a Riemann surface.
Evidently, while solutions to the RR model are very special classes of flat connections, the
latter models deal with evolution on the space of all flat connections.

Though analytic solutions in terms of elliptic functions had been found in [57], questions
about the structure of the phase space of the RR model and its dynamics were open. In
Chapter 4, we use the Casimirs of the (nilpotent) Poisson algebra to find all symplectic

2Static submanifolds consist of static solutions while the trigonometric submanifolds are the ones on which
the solutions are expressible in terms of trigonometric functions of time.
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leaves on the S-L phase space and a convenient set of Darboux coordinates on them. The
system is Liouville integrable on each symplectic leaf and the generic common level sets
of conserved quantities are shown to be 2-tori. Going beyond the generic cases, we find
three more types of common level sets: horn tori (tori with equal major and minor radii -
see Fig. 4.3), circles and points. These three arise when the conserved quantities develop
relations and are associated to the degeneration of solutions from elliptic to hyperbolic and
circular functions. An elegant geometric construction allows us to realize each common level
set as a fibre bundle with base determined by the roots of a cubic polynomial. We show
that the union of common level sets of a given type may be treated as the phase space of a
self-contained dynamical system. By contrast with the dynamics on tori and circles, which is
Hamiltonian, that on horn tori is shown to be a gradient flow. In fact, horn tori behave like
separatrices and are also associated to a transition in the topology of energy level sets. By a
careful use of the Poisson structure and elliptic function solutions, we also discover a family
of action-angle variables for the model away from horn tori. A more detailed sectionwise
summary of this chapter is given in the beginning of Chapter 4.

In Chapter 5, we discuss some aspects of the quantum version of the Rajeev-Ranken
model. In Section 5.1, we begin with Rajeev and Raken’s mechanical interpretation of the
model in terms of a charged particle moving in a static electromagnetic field [57]. They used
this viewpoint to quantize the model in the Schrodinger picture and obtained dispersion re-
lations for the quantized nonlinear waves in the weak and strong coupling limits. However,
their radial equation and its associated strong coupling dispersion relation appear to have
some errors. In Section 5.2, we take a complementary approach by interpreting the Rajeev-
Ranken model as a 3D cylindrically symmetric anharmonic oscillator. This interpretation
follows from rewriting the Hamiltonian in terms of the Darboux coordinates introduced in
Section 3.1.3 and identifying the coordinates and momenta as those of a massive nonrelativis-
tic particle. In Section 5.3, we exploit this mechanical interpretation to canonically quantize
the model and separate variables in the Schrodinger equation. Though the radial equation
is in general not exactly solvable, its analytic properties are studied and it is shown to be
reducible to a generalization of the Lamé equation. As with the classical model, the quantum
RR model resembles the quantum Neumann model, as we observe by examining properties
of the corresponding radial equations [10]. We obtain the energy spectrum at weak coupling
and its dependence on the wavenumber in a suitably defined strong coupling limit. In Section
5.4, we separate variables in the Hamilton-Jacobi equation and use this to find the WKB
quantization condition, though in an implicit form. In another direction, we notice that the
EOM of the RR model can also be interpreted as Euler equations for a step-3 nilpotent Lie
algebra (see Appendix C). In Section 5.5, we exploit our canonical quantization to uncover
an infinite dimensional reducible unitary representation of this nilpotent algebra, which is
then decomposed using its Casimir operators.

Finally, in Chapter 6, we discuss some of the results of this thesis and mention possible
directions for further research.

It is satisfying that a detailed and explicit analysis of the dynamics and phase space
structure of this model has been possible using fairly elementary methods. Our results
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should be helpful in understanding other aspects of the model’s integrability (bi-Hamiltonian
formulation on symplectic leaves, spectral curve etc.), the stability of its solutions, effects of
perturbations and its quantization (for instance via our action-angle variables, through the
representation theory of nilpotent Lie algebras or via path integrals using our Lagrangian
obtained from Darboux coordinates, to supplement the Schrodinger picture results in [57]
and in Chapter 5). Quite apart from its physical origins and possible applications, we believe
that the elegance of the Rajeev-Ranken model justifies a detailed study. It is hoped that
the insights gained can then also be usefully applied to understanding the parent scalar field
theory.



Chapter 2

Principal chiral model to the
Rajeev-Ranken model

In this chapter, we introduce the nilpotent scalar field theory dual to the principal chiral
model. Then we show how Rajeev and Ranken obtained a consistent reduction of this field
theory to a mechanical system with three degrees of freedom which describes certain screw-
type nonlinear wave solutions of the field theory. This chapter is based on [57] and [38].

2.1 Nilpotent scalar field theory dual to the PCM

As mentioned in the Introduction (Chapter 1), a scalar field theory pseudodual to the
1+1-dimensional SU(2) principal chiral model was introduced in the work of Zakharov and
Mikhailov [61] and Nappi [51]. The 141D principal chiral model is defined by the action
St = s [ Tr (0,90"g V) dadt = —— [ Tr [(979) — (07 g)?] dedt, (21
CM 2)\2 ugo g T 2)\2 r g g g g zrat, :
with primes and dots denoting x and ¢ derivatives. Here, A > 0 is a dimensionless coupling
constant and Tr = —2 tr . The corresponding equations of motion (EOM) are nonlinear
wave equations for the components of the SU(2)-valued field g¢(z,t) and may be written
in terms of the su(2) Lie algebra-valued time and space components of the right current,
ro=g 'gand r =g 'g"

i—g" =g9'g—dg 'y or -1 =0. (2.2)

An equivalent formulation is possible in terms of left currents [, = (9,9)g~". Note that
ro and 71 are components of a flat connection; they satisfy the zero curvature ‘consistency’
condition

1 — 1y + [ro,m1] = 0. (2.3)
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Following Rajeev and Ranken [57], we define right current components rescaled by A, which
are especially useful in discussions of the strong coupling limit:

1 1
I= vk and J = 3o (2.4)
In terms of these currents, the EOM and zero-curvature condition become

. . 1
J =Xl and I:)\[I,J]+XJ'. (2.5)

These EOM may be derived from the Hamiltonian following from Spcy (upon dividing by
A),

Hpen = % Tr / dx <)\[2 + %ﬁ) (2.6)
and the PBs:
{Io(2), L)} = 0, {Ju(@), B(y)} = —Neacl(x)d(z — y)
and {J,(2), L(y)} = —Newele(x)5(x — 1) + 610:6(x — y) (2.7)

for a,b=1,2,3. Since both I and J are anti-hermitian, their squares are negative operators,
but the minus sign in Tr ensures that Hpom > 0. The Poisson algebra (2.7) is a central
extension of a semi-direct product of the abelian algebra generated by the I, and the su(2)
current algebra generated by the J,. It may be regarded as a (centrally extended) ‘Euclidean’
current algebra. These PBs follow from the canonical PBs between [ and its conjugate
momentum in the action (2.1) [25]. The multiplicative constant in {J,, J,} is not fixed by the
EOM. It has been chosen for convenience in identifying Casimirs of the reduced mechanical
model (see Section 3.1.2).

The EOM J = A’ is identically satisfied if we express the currents in terms of a Lie
algebra-valued potential ¢:

I = and J=¢ or r,=X\e,0"¢

with g 0 —1

N>

L O) and "' =1. (2.8)

The zero curvature condition (I —.J'/X = X[I, J]) now becomes a 2"-order nonlinear wave
equation for the scalar ¢ (with the speed of light re-instated):

b= ¢+ cA, o). (2.9)

The field ¢ is an anti-hermitian traceless 2 x 2 matrix in the su(2) Lie algebra, which may be
written as a linear combination of the generators t, = 0,/2i where o, are the Pauli matrices:

¢ = gbata = 2lz¢ -0 with ¢a =utr (gbga) = Tr (¢ta) (210)
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for @ = 1,2,3. The generators are normalized according to Tr (f,f,) = 04 and satisfy
[ta;ts] = €apele. As noted in [57], a strong-coupling limit of (2.9) where the A[p,¢'] term
dominates over ¢”, may be obtained by introducing the rescaled field ¢(&,7) = A3¢(x, 1),
where ¢ = 2 and 7 = A\/3¢. Taking A — oo holding ¢ fixed gives the Lorentz noninvariant
equation ¢,, = c[¢,, d¢|. Contrary to the expectations in [57], the ‘slow-light’ limit ¢ — 0
holding A fixed is not quite the same as this strong-coupling limit.

The wave equation (2.9) follows from the Lagrangian density (with ¢ =1)

1 . 1 .
EZ”“<§¢¢—¢%+5@¢¢O S Ohubut e 0D, 00,0 (21)

The momentum conjugate to ¢ is 7 = ¢/X — (1/3) [¢, ¢'] and satisfies

i = L4 20,6050 = 5 2 61 20+ 1, ), 61+ 216, 6 0l (212)

The conserved energy and Hamiltonian coincide with Hpoy of (2.6):

E = iTr/dx[q32+¢’2]

2A
1 S
)\ - / 2
If we postulate the canonical PBs

{qba(x)? ¢b<y>} = 07 {ﬂ-a(x)a ﬂ-b(y)} =0 and {¢a<$>’ﬁb(y)} = (51,@5(1' - y)u (214>

then Hamilton’s equations ¢ = {¢, H} and 7 = {m, H} reproduce (2.12). The canonical
PBs between ¢ and 7 imply the following PBs among the currents I,.J and ¢:

{Ja(‘r)?Jb(y)} = 0, {I (:L’) ( )} :5abazé(x_y)a
{gba(‘r)vlb(y)} = ab5(x_y)7 {Qba( ) ( )} =0 and

1
and H = §Tr /da: (2.13)

{{a(2), L(y)} = if,)bc (2Je(7) + (¢e(x) — ¢e(y))0y) 6(x — ). (2.15)
These PBs define a step-3 nilpotent Lie algebra in the sense that all triple PBs such as
{{{]a(x)alb(y)}alc(z>}aId<w)} (216>

vanish. Note however that the currents I and J do not form a closed subalgebra of (2.15).
Interestingly, the EOM (2.5) also follow from the same Hamiltonian (2.6) if we postulate the
following closed Lie algebra among the currents

{Ja(‘r)v Jb(y)} = 07 {[a(x)a Jb(y)} = 6abax6(x - y) and
{L(2), I(y)} = eweled(z —y). (2.17)

Crudely, these PBs are related to (2.15) by ‘integration by parts’. As with (2.15), this
Poisson algebra of currents is a nilpotent Lie algebra of step-3 unlike the Euclidean algebra
of Eq. (2.7).
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The scalar field with EOM (2.9) and Hamiltonian (2.13) is classically related to the PCM
through the change of variables r, = Xe,,,0”¢. However, as noted in [17], this transformation
is not canonical, leading to the moniker ‘pseudodual’. Though this scalar field theory has
not been shown to be integrable, it does possess infinitely many (nonlocal) conservation
laws [17]. Moreover, the corresponding quantum theories are different. While the PCM is
asymptotically free, integrable and serves as a toy-model for 3+1D Yang-Mills theory, the
quantized scalar field theory displays particle production (a nonzero amplitude for 2 — 3

particle scattering), has a positive 5 function [51] and could serve as a toy-model for 3+1D
At theory [57].

2.2 Reduction of the nilpotent field theory and the RR
model

Before attempting a challenging nonperturbative study of the nilpotent field theory, it is
interesting to study its reduction to finite dimensional mechanical systems obtained by con-
sidering special classes of solutions to the nonlinear wave equation (2.9). The simplest such
solutions are traveling waves ¢(z,t) = f(z — vt) for constant v. However, for such ¢, the
commutator term —A[vf’, f'] = 0 so that traveling wave solutions of (2.9) are the same as
those of the linear wave equation. Nonlinearities play no role in similarity solutions either.
Indeed, if we consider the scaling ansatz ¢ (€, 7) = AV¢(x,t) where € = A=z and 7 = A~Pt,
then (2.9) takes the form:

A’Y_Qﬁqgrfr - AW_QO{Q;&E - AQ’Y_(B—HX))\[QEW ng] =0. (218)

This equation is scale invariant when o = # and v = 0. Hence similarity solutions must be
of the form ¢(x,t) = 1(n) where n = x/t and 1 satisfies the linear ODE

Y ="+ 2y = =AY, @] = 0. (2.19)

Recently, Rajeev and Ranken [57] found a mechanical reduction of the nilpotent scalar
field theory for which the nonlinearities play a crucial role. They considered the wave ansatz:

o(z,t) = " R(t)e ™" + mKr with K = %kag (2.20)

which leads to ‘continuous wave’ solutions of (2.9) with constant energy-density. These
screw-type configurations are obtained from a Lie algebra-valued matrix R(¢) by combining
an internal rotation (by angle o< z) and a translation. The constant traceless anti-hermitian
matrix K has been chosen in the 3™ direction. The ansatz (2.20) depends on two parameters:
a dimensionless real constant m and the constant K3 = —k with dimensions of a wave number
which could have either sign. When restricted to the submanifold of such propagating waves,
the field equations (2.9) reduce to those of a mechanical system with 3 degrees of freedom



2.2. REDUCTION OF THE NILPOTENT FIELD THEORY AND THE RR MODEL 11

which we refer to as the Rajeev-Ranken model. The currents (2.8) can be expressed in terms

of R and R: .
I = XeKIRe’K’“" and J =" (K, R] + mK)e " (2.21)

These currents are periodic in = with period 27/|k|. We work in units where ¢ = 1 so that [
and J have dimensions of a wave number. If we define the traceless anti-hermitian matrices

-1
L=[K,R|+mK and S:R+XK’ (2.22)

then it is possible to express the EOM and consistency condition (2.5) as the pair

L=[K,S] and S=\I[S,I]. (2.23)
In components (L, = Tr (Lt,) etc.), the equations become

Ll = kSZu L2 = _k517 L3 = 07 .
Sl = /\(SQLg — SgLQ), 52 = )\(Sng — 51L3> and 53 = )\(SlLQ — Sng). (224)

Here, L3 = —mk is a constant, but it will be convenient to treat it as a coordinate. Its
constancy will be encoded in the Poisson structure so that it is either a conserved quantity or
a Casimir. Sometimes it is convenient to express L; o and S in terms of polar coordinates:

Ly =krcosf, Lo=krsinf, S;=kpcos¢ and Sy = kpsina. (2.25)

Here, r and p are dimensionless and positive. We may also express L and S in terms of
coordinates and velocities (here uw = R3/k — 1/\):

21
L1 = ]CRQ, L2 = —le, L3 = —mk:, Sl = Rl, 52 = RQ and 83 = uk. (226)

I = E —m R2 + ZRl and S = i uk Rl — ZRQ
2 \Ry— iR, m 2 \Ri+iRy,  —uk

It is clear from (2.22) that L and S do not depend on the coordinate R3. The EOM (2.23,
2.26) may be expressed as a system of three second order ODEs for the components of R(¢):

Ry = Me(RiRs —mRy) — k*Ry, Ry = Me(RyRs +mRy) —k*R, and

.. —\k
Rajeev and Ranken used conserved quantities to simplify these equations of motion and
express the solutions to (2.27) in terms of elliptic functions.



Chapter 3

Rajeev-Ranken model: Hamiltonian
formulation and Liouville integrability

We begin this chapter by introducing a pair of Hamiltonian-Poisson bracket formulations for
the RR model. Then we find a Poisson pencil, Lax pairs, r-matrices and a complete set
of conserved quantities in involution, thereby establishing its Liouville integrability. These
conserved quantities are then related to the Noether charges of the parent scalar field theory.
Static and trigonometric submanifolds of the phase space are introduced, where the generally
elliptic function solutions simplify. Then, we investigate the functional independence of
the conserved quantities by examining the linear independence of the associated one-forms.
Finally, we discuss the stability of static solutions of the RR model and the corresponding
solutions of the field theory. This chapter is based on [38].

3.1 Hamiltonian, Poisson brackets and Lagrangian

3.1.1 Hamiltonian and PBs for the RR model

The Rajeev-Ranken model, which is a mechanical system with 3 degrees of freedom and
phase space M¢; (R® with coordinates L,,S,) can be given a Hamiltonian-Poisson bracket
formulation. A Hamiltonian is obtained by a reduction of that of the nilpotent field theory
(2.13). For the nonlinear screw wave (2.20), we have Tr ¢* = Tr R? and Tr ¢/*> =
Tr ([K, R] + mK)?. Thus the ansatz (2.20) has a constant energy density and we define the
reduced Hamiltonian to be the energy (2.13) per unit length (with dimensions of 1/area):

1 \? S24+ 12k k2
S — K [P =« "
(5-3K) +

1r.
——+—Sg+—=§[R§+k2(R%+R§+m2)].

1
H=-T
5 ! 2 \ N2

(3.1)

12
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We have multiplied by A for convenience. PBs among S and L which lead to the EOM
(2.23) are given by

{La, Lb},, = 0, {Sa, Sb}l, = )\eabch and {Sa, Lb},/ = _Eachc- (32)

We may view this Poisson algebra as a finite-dimensional version of the nilpotent Lie algebra
of currents I and J in (2.17) with K playing the role of the central §’ term. In fact, both
are step-3 nilpotent Lie algebras (indicated by {-,-}, in the mechanical model) and we may
go from (2.17) to (3.2) via the rough identifications (up to conjugation by ef?):

K,

1
a Lau Ia N a
Jo = —>/\<S ;)

) , Oa0:0(x —y) = —ewe K. and  {-,-} = M+, -}, (3.3)
Note that the PBs (3.2) have dimensions of a wave number. They may be expressed as
{f, g}, = #0,f0pg where the anti-symmetric Poisson tensor field 2 = (0 A|A B) with the
3 x 3 blocks Ay = —€pe K. and By, = AégpeL.. This Poisson algebra is degenerate: # has
rank four and its kernel is spanned by the exact 1-forms dL3 and d (S5 + (A\/k)(L? + L3)/2).

The corresponding center of the algebra can be taken to be generated by the Casimirs mk? =
Tr KL and ¢k? = Tr ((L?/2) — (KS/))).

Euclidean PBs: The L-S EOM (2.23) admit a second Hamiltonian formulation with a
nonnilpotent Poisson algebra arising from the reduction of the Euclidean current algebra of
the PCM (2.7). It is straightforward to verify that the PBs

{Sm Sb}a = 07 {Laa Lb}a = _)\Eabch and {Laa Sb}s = _)\eabcsc (34)

along with the Hamiltonian (3.1) lead to the EOM (2.23). This Poisson algebra is isomorphic
to the Euclidean algebra in 3D (e¢(3) or iso(3)) a semi-direct product of the simple su(2)
Lie algebra generated by the L, and the abelian algebra of the S,. Furthermore, it is easily
verified that s?k? = Tr S? and hk® = Tr SL are Casimirs of this Poisson algebra whose
Poisson tensor we denote # . It follows that the EOM (2.23) obtained from these PBs are
unaltered if we remove the Tr S? term from the Hamiltonian (3.1). The factor A in the
{L,, Sp}- PB is fixed by the EOM while that in the {L,, Ly} PB is necessary for h to be a
Casimir.

Formulation in terms of real antisymmetric matrices: It is sometimes convenient to
re-express the 2 x 2 anti-hermitian su(2) Lie algebra elements L, S and K as 3 x 3 real
anti-symmetric matrices (more generally we would contract with the structure constants):

. 1 . _ .
Ly = §eklmLm with L; = €Ly and similarly for S and K. (3.5)

The EOM (2.23) and the Hamiltonian (3.1) become:
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Moreover, the nilpotent (v) (3.2) and Euclidean (¢) (3.4) PBs become

{gkl, ~pq}u = % (5qupl - 5plqu + 5qlikp - 6kpiql) )

B Fad = —5 (BBt — bRy + 00y~ Gip)  and {Eas Ly} =0 (3.7
and (L Lyl = 5 (Shaln — SuLig + Ly — Bip L)

STy = 5 (3S— 0uSig + 60y —0,5) and (80,5} =0, (38

Interestingly, we notice that both (3.7) and (3.8) display the symmetry {gkz, f/pq} = {ikl, gpq}.
The Hamiltonian (3.6) along with either of the PBs (3.7) or (3.8) gives the EOM in (3.6).

3.1.2 Poisson pencil from nilpotent and Euclidean PBs

The Euclidean {-,-}. (3.4) and nilpotent {-,-}, (3.2) Poisson structures among L and S are
compatible and together form a Poisson pencil. In other words, the linear combination

{f,g}a:(l—a){f,g}erOé{f,g}g (39>

defines a Poisson bracket for any real a.. The linearity, skew-symmetry and derivation prop-
erties of the a-bracket follow from those of the individual PBs. As for the Jacobi identity,
we first prove it for the coordinate functions L, and S,. There are only four independent
cases:

{{Sa;Sh}ta,Se}a +cyclic = —(1 —a)Xeapa (1 — @)€gee Ke + @XégeeSe) + cyclic = 0,
{{La, Lt }a, Le}o + cyclic N2 €api€ace Le + cyclic = 0,

{{Sa;Sh}ta, Lcta + cyclic —(1 — a@)aNegpacdee Le + cyclic =0 and

{{La; Lv}as Seta +cyclic = adewq (1 — @)€gee Ke + @)egeeSe) + cyclic = 0. (3.10)

The Jacobi identity for the a-bracket for linear functions of L and S follows from (3.10).
For more general functions of L and S, it follows by applying the Leibniz rule (¢ =

(L1,2,37 51,2,3))1

af dg dh

W ghahla tevdic = 505 2,

({{&: &} ar €k }a + cyclic) = 0. (3.11)

As noted, both the nilpotent and Euclidean PBs are degenerate: ¢ and m are Casimirs
of {-,-}, while those of {-,-}. are s? and h. In fact, the Poisson tensor #z, = (1 —a)z +az
is degenerate for any « and has rank 4. Its independent Casimirs may be chosen as (1 —
a)(m/A)+ah and (1 —a)c—as®/2, whose exterior derivatives span the kernel of #,. The v
and ¢ PBs become nondegenerate upon reducing the 6D phase space to the 4D level sets of
the corresponding Casimirs. Since the Casimirs are different, the resulting symplectic leaves
are different, as are the corresponding EOM. Thus these two PBs do not directly lead to a
bi-Hamiltonian formulation.
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3.1.3 Darboux coordinates and Lagrangian from Hamiltonian

Though they are convenient, the S and L variables are noncanonical generators of the nilpo-
tent degenerate Poisson algebra (3.2). Moreover, they lack information about the coordinate
Rs3. It is natural to seek canonical coordinates that contain information on all six gener-
alized coordinates and velocities (R,, R,) (see (2.21)). Such Darboux coordinates will also
facilitate a passage from Hamiltonian to Lagrangian. Unfortunately, as discussed below, the
naive reduction of (2.11) does not yield a Lagrangian for the EOM (2.27).

It turns out that momenta conjugate to the coordinates R, may be chosen as (see (2.26))

A : A A : A
k?Pl = Sl + §mL1 = Rl + §mk’R2, kZPQ = SQ + §mL2 = R2 - §mkR1 and
kA k Eo A . Ak
kPy = 7(2c —m?) + 1= Ss + Tt (L +L3) = Rs + 7(1%% + R3). (3.12)

We obtained them from the nilpotent algebra (3.2) by requiring the canonical PB relations
{Ra, Rb} = O, {Pa, Pb} =0 and {Ra, /{Zpb} = 5ab for a, b= 1, 2, 3. (313)

Note that R, cannot be treated as coordinates for the Euclidean PBs (3.4), since { Ry, Ro} =
(1/k*){Ly, Ly} # 0. Darboux coordinates associated to the Euclidean PBs, may be analo-
gously obtained from the coordinates () in the wave ansatz for the mechanical reduction of
the principal chiral field g = e*%*Q(t)e 5* given in Table I of [57].

Since Rj3 does not appear in the Hamiltonian (3.1) (regarded as a function of (S, L) or
(R, R)), we have taken the momenta in (3.12) to be independent of R so that it will be cyclic
in the Lagrangian as well. However, the above formulae for P, are not uniquely determined.
For instance, the PBs (3.13) are unaffected if we add to P, any function of the Casimirs
(¢c,m) as also certain functions of the coordinates (see below for an example). In fact, we
have used this freedom to pick P3; to be a convenient function of the Casimirs. Moreover,
{R3,kP3;} =1 is a new postulate, it is not a consequence of the S-L Poisson algebra.

The Hamiltonian (3.1) can be expressed in terms of the R’s and P’s:

3

H P2 m A2 4 1 m?
E227+7(R1P2—R2P1)+§(Rf+R§) Ri+ R+ m” — < (Pg—x)] + 5
(3.14)

The EOM (2.23), (2.26) follow from (3.14) and the PBs (3.13). Thus R, and kP, are
Darboux coordinates on the 6D phase space M , = RY. Note that the previously introduced
phase space M¢ ; is different from M$ ., though they share a 5D submanifold in common
parameterized by (Lj9,S123) or (Ria, Pia3). MS, includes the constant parameter Lz =

—mk as its sixth coordinate but lacks information on R3 which is the ‘extra’ coordinate in
M}6%_P .

Lagrangian for the RR model: A Lagrangian Lyeen(R, R) for our system may now
be obtained via a Legendre transform by extremizing kP,R, — H with respect to all the
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components of kP:

1
Lmech = 5

3
> R — Amk <R1R2 - Rle) +k (R} + R3) (\Ry — k) — m2k2] . (3.15)
a=1

R3 is a cyclic coordinate leading to the conservation of kPs;. However L. does not admit
an invariant form as the trace of a polynomial in R and R. Such a form may be obtained
by subtracting the time derivative of (Ak/6) (R3(R? + R3)) from Lyea to get:

mech 9 2

— %Tr ((S—§>2—L2+/\R {S—%L] —%R {S—%[K,R]D -(3.16)

The price to pay for this invariant form is that Rs is no longer cyclic, so that the conserva-

L = Tr (E — 1([}(, R} +mK)* + %R[R, mK] + %R [R, (K, R]D

tion of P is not manifest. The Lagrangian L! ., may also be obtained directly from the
Hamiltonian (3.14) if we choose as conjugate momenta klI, instead of the kP, of (3.12):

A A A
I, =P — §R1R3, [y = P, — ngRg and T3 = P3 — 8(Rf + R3). (3.17)

Interestingly, while both Lyeq and L/, give the correct EOM (2.27), unlike with the
Hamiltonian, the naive reduction Lya.ie of the field theoretic Lagrangian (2.11) does not.
This discrepancy was unfortunately overlooked in Eq. (3.7) of [57]. Indeed L,y differs from
L/

" ech DY a term which is not a time derivative:

A .
Lusive = Lyean + - Tr K [R, B, (3.18)

To see this, we put the ansatz (2.20) for ¢ in the nilpotent field theory Lagrangian (2.11)
and use

Tr¢? = TrR% Tr¢?= Tr([K, R +mK)?> and

: : k* d
Tr ¢ld,¢] = TrR [R, K, R + mK] + m“"; (R} + ) (3.19)
to get the naively reduced Lagrangian
1., A [ 1 ,
Luave = Tr (SR + SR [R, K, R] + mK} — S(IK,R) +mK)? ). (3.20)

In obtaining L.« We have ignored an x-dependent term as it is a total time derivative, a
factor of the length of space and multiplied through by A. As mentioned earlier, L. does
not give the correct EOM for Ry and R, nor does it lead to the PBs among L and S (3.2) if
we postulate canonical PBs among R, and their conjugate momenta. However the Legendre
transforms of Lech, Ll o, @A Lyaive all give the same Hamiltonian (3.1).
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One may wonder how it could happen that the naive reduction of the scalar field gives
a suitable Hamiltonian but not a suitable Lagrangian for the mechanical system. The point
is that while a Lagrangian encodes the EOM, a Hamiltonian by itself does not. It needs
to be supplemented with PBs. In the present case, while we used a naive reduction of the
scalar field Hamiltonian as the Hamiltonian for the RR model, the relevant PBs ((3.2) and
(3.13)) are not a simple reduction of those of the field theory ((2.17) and (2.14)). Thus, it
is not surprising that the naive reduction of the scalar field Lagrangian does not furnish a
suitable Lagrangian for the mechanical system. This possibility was overlooked in [57] where
the former was proposed as a Lagrangian for the RR model.

3.2 Lax pairs, r-matrices and conserved quantities

3.2.1 Lax Pairs and r-matrices

The EOM (2.23) admit a Lax pair (A, B) with complex spectral parameter ¢ [45]. In other
words, if we choose

A(Q) = K+ L¢ + % and B(() = ? (3.21)
then the Lax equation A = [B, A] at orders ¢! and ¢° are equivalent to (2.23). The Lax
equation implies that Tr A™({) is a conserved quantity for all { and every n =1,2,3....
To arrive at this Lax pair we notice that A = [B, A] can lead to (2.23) if L and S appear
linearly in A as coefficients of different powers of (. The coefficients have been chosen to
ensure that the fundamental PBs (FPBs) between matrix elements of A can be expressed as
the commutator with a nondynamical r-matrix proportional to the permutation operator.
In fact, the FPBs with respect to the nilpotent PBs (3.2) are given by

{A(C) é? A(C/)}V = _% (Eabch - Eabc-ch (C + C,)) Oq & 0y
= L=+ () Ky) (- @04 — 0y @ o)

1 :
+5 g (Ly+iLly) (01 ®o035 —035®04). (3.22)

Here, 04 = (01 £ i039)/2. These FPBs can be expressed as a commutator
{AQ) A}, = () AT+ T A Wh??re
N 1
r(¢,¢) = INC =) with P = 5 (I—l—;aa@aa) . (3.23)

To obtain this r-matrix we used the following identities among Pauli matrices:

1 1
o_®oL—0, Q0 = §[P,03®[]:—§[P,I®03] and
0L ®03—03R0r = *T[Por®I]=F[P,IRoy]. (3.24)
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We may now motivate the particular choice of Lax matrix A (3.21). The nilpotent S-L PBs
(3.2) do not involve S, so the PBs between matrix elements of A are also independent of S.
Since P(A® B) = (B ® A)P, the commutator [P,A® [+ 1 ® A] =0 if A is independent
of ¢. Thus for r o< P, S can only appear as the coefficient of ¢° in A.

The same commutator form of the FPBs (3.23) hold for the Euclidean PBs (3.4) if we
use

ra(C.C) = A2, ) = —%, (3.25)

provided we define a new Lax matrix A, = A/¢?. The EOM for S and L are then equivalent
to the Lax equation A, = [B, A.] at order (2 and (~'. In this case, the FPBs are

{AE(C> @ AE(CI)}E = 42<, ()\eabch + (% + %) 6achc) Oq ® Op. (326)

3.2.2 Conserved quantities in involution for the RR model

The existence of a classical r-matrix implies that the conserved quantities are in involution.
In other words, Eq. (3.23) for the FPBs implies that the conserved quantities Tr A™(() are
in involution:

[Tr A™(Q) 8 Tr AY(C)} = mn Tr [r(C,¢), A™(Q) ® A () + A" 1(¢) @ A™(C)] = 0
(3.27)
for m,n = 1,2,3.... Each coefficient of the 2n'" degree polynomial Tr A"(¢) furnishes a
conserved quantity in involution with the others. However, they cannot all be independent
as the model has only 3 degrees of freedom. For instance, Tr A(¢) =0 but

L,L, S,K, 2¢ 1
R )+TSaLa+ﬁSaSa. (3.28)

Tr A%(() = ¢* K, K, — 2¢* LK, + 2¢* (

In this case, the coefficients give four conserved quantities in involution:

s?k? = TrS% hk*= TrSL, mk*= Tvr KL = —kL;
L 1 1 k
and Ck?2 = Tr <7 - XKS) = §LaLa + XS3 (329)

Factors of k% have been introduced so that ¢, m, h and s? (whose positive square-root we
denote by s) are dimensionless. In [57], h and ¢ were named C; and Cy. ¢ and m may
be shown to be Casimirs of the nilpotent Poisson algebra (3.2). The value of the Casimir
L3 is written as —m in units of k£ by analogy with the eigenvalue of the angular momentum
component L, in units of h. The conserved quantity Tr SL is called h for helicity by
analogy with other such projections. The Hamiltonian (3.1) can be expressed in terms of s?
and c:

1 1
_ 1.2 Z .2
H=k (25 +c+—2)\2). (3.30)
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It will be useful to introduce the 4D space of conserved quantities @ with coordinates ¢, s,
m and h which together define a many-to-one map from M g_ . to Q. The inverse images
of points in @ under this map define common level sets of conserved quantities in M¢ ;.
By assigning arbitrary real values to the Casimirs ¢ and m we may go from the 6D S-L
phase space to its nondegenerate 4D symplectic leaves M7 given by their common level
sets. For the reduced dynamics on M2 . s* (or H) and h define two conserved quantities
in involution.

The independence of ¢, m,h and s is discussed in Section 3.2.6. However, higher powers
of A do not lead to new conserved quantities. Tr A3 = 0 since Tr (tutpt.) = %eabc for
to, = 04/2i. The same applies to other odd powers. On the other hand, the expression for
A%(¢) given in Appendix D, along with the identity Tr (t.tpt.ty) = —i(éabécd —0acObd+ 0adObe)
gives

1 1 cs? + h? 2he¢  ms? 2 2
ETANO = et (SR e (T ) e (¢ o ame) ¢

+ <mc — %h) ¢s — (c + %m + 2m2> %+ imi — igs. (3.31)
Evidently, the coefficients of various powers of ( are functions of the known conserved quan-
tities (3.29). Tt is possible to show that the higher powers Tr AS Tr A% ... also cannot
yield new conserved quantities by examining the dynamics on the common level sets of the
known conserved quantities. In fact, we find that a generic trajectory (obtained by solving
(3.36)) on a generic common level set of all four conserved quantities is dense (see Fig. 3.1
for an example). Thus, any additional conserved quantity would have to be constant almost
everywhere and cannot be independent of the known ones.

Figure 3.1: A trajectory with initial conditions 6(0) = 0.1 and ¢(0) = 0.2 plotted for 0 < ¢ < 200/k on
a generic common level set of the conserved quantities ¢,m,s and h. The common level set is a 2-torus
parameterized by the polar and azimuthal angles # and ¢ and has been plotted for the values ¢ = 1/2,h =
0,m =s=1 with k= X =1. It is plausible that the trajectory is quasi-periodic and dense on the torus so
that any additional conserved quantity would have to be a constant.

Canonical vector fields on Mg ;: On the phase space, the canonical vector fields (V} =
#00, f) associated to conserved quantities, follow from the nilpotent Poisson tensor # of
Section 3.1.1. They vanish for the Casimirs (V. = V,, = 0) while for helicity and the
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Hamiltonian (H = Ek?),

l{Vh = LQ@Ll — L18L2 + 52831 — 51652 and

A
kKVg = 528L1 — 818L2 + E [(S2L3 — LQSg)asl + (Sng — 51L3)852 -+ (SlLQ — SQL1>853](332)
The coefficient of each of the coordinate vector fields in Vg gives the time derivative of the
corresponding coordinate (upto a factor of k%) and leads to the EOM (2.24). These vector
fields commute, since [Vg, V4] = =Vigny .

Conserved quantities for the Euclidean Poisson algebra: As noted, the same Hamilto-
nian (3.1) with the {-,-}. PBs leads to the S-L EOM (2.23). Moreover, it can be shown that
¢,m,s and h (3.29) continue to be in involution with respect to {-,-}. and to commute with
H . Interestingly, the Casimirs (¢, m) and non-Casimir conserved quantities (s*, h) exchange
roles in going from the nilpotent to the Kuclidean Poisson algebras.

Simplification of _EOM_using conserved quantities: Using the conserved quantities we
may show that @,0 and ¢ are functions of u = S3/k alone. Indeed, using (3.2) and (2.25)
we get

- LiLy— LiL,  kp

SQ .
@2 = 23 = N2 2sin’(0 — ¢), 6= = ——cos(f — ¢)
k2 L% + L% r

52 = 515 kmA + k:)\% cos(f — ¢). (3.33)

and ¢ = —oe

Now r, p and 6 — ¢ may be expressed as functions of u and the conserved quantities. In fact,

2 Tr SL
pPP=s—u? r?=2c—m?— Tu and h = 2;9 =—mu+rpcos(d —¢). (3.34)
Thus we arrive at
2
= N?k? {(s2 —u?) (2c —m? — %) — (h+ mu)ﬂ = 20k*x(u), (3.35)
. h + mu . h+ mu

Moreover, the formula for A in (3.34) gives a relation among wu,6 and ¢ for given values
of conserved quantities. Thus, starting from the 6D S-L phase space and using the four
conservation laws, we have reduced the EOM to a pair of ODEs on the common level set of
conserved quantities. For generic values of the conserved quantities, the latter is an invariant
torus parameterized, say, by 6 and ¢. Furthermore, %2 is proportional to the cubic y(u) and
may be solved in terms of the p function while 6 is expressible in terms of the Weierstrass
¢ and o functions as shown in Ref. [57].
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3.2.3 Symmetries and associated canonical transformations

Here, we identify the Noether symmetries and canonical transformations (CT) generated by
the conserved quantities. The constant m = —L3/k commutes (relative to {-,-},) with all
observables and acts trivially on the coordinates R, and momenta P, of the mechanical
system.

The infinitesimal CT R3 — R3+ ¢ corresponding to the cyclic coordinate in Ly (3.15)
is generated by (eAk/2)(2¢ — m?) = ek(Ps — 1/A) (3.12). Lyean is also invariant under
infinitesimal rotations in the R;- Ry plane. This corresponds to the infinitesimal CT

OR, = ceqp Ry, OP, =ceupP, for a,b=1,2 and O0R3=0dP; =0, (3.37)

with generator (Noether charge) ek [h + (Am/2)(2¢ — m?)]. The additive constants involving
m may of course be dropped from these generators. Thus, while P; (or equivalently c)
generates translations in Rz, h (up to addition of a multiple of P;) generates rotations in
the R;- R, plane. In addition to these two point-symmetries, the Hamiltonian (3.14) is also
invariant under an infinitesimal CT that mixes coordinates and momenta:

9|2 1 9 9 m?
5Ra = 2€Pa, (5Pa:€)\ X PS_X —(R1+R2)—7 Ra for CL:].,2
while dR; = e[2P;— A(R{+ R3)] and 6P;=0. (3.38)

This CT is generated by the conserved quantity
2 Am 2
ek |s+2c+Im | h+ 3 (2¢ —m*) (3.39)

which differs from s? by terms involving h and ¢ which serve to simplify the CT by removing
an infinitesimal rotation in the R;-Rs plane as well as a constant shift in R3. Here, upto
Casimirs, (3.39) is related to the Hamiltonian via s* + 2¢ = (1/k%)(2H — k*/\?).

The above assertions follow from using the canonical PBs, {R,,kP,} = 0, to compute
the changes dR, = {R,, Q} etc., generated by the three conserved quantities ) expressed
as:

1 1 2
h = PRy — PRy —mPDs, C—x<P3—X>+m7 and
23 2 A2 4 1 1
$ = 2 FidmealnP = P4 o (R4 Ry [Rf =3 (P3 - x) i m} T 343:40)

3.2.4 Relation of conserved quantities to Noether charges of the
field theory

Here we show that three out of four combinations of conserved quantities (Ps, h — m/\
and H ) are reductions of scalar field Noether charges, corresponding to symmetries under
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translations of ¢, x and t. The fourth conserved quantity L3 = —mk arose as a parameter in
(2.20) and is not the reduction of any Noether charge. By contrast, the charge corresponding
to internal rotations of ¢ does not reduce to a conserved quantity of the RR model.

Under the shift symmetry ¢ — ¢ +n of (2.9), the PBs (2.14) preserve their canonical
form as dm = (1/3)[n, ¢'] commutes with ¢. This leads to the conserved Noether density

and current
ji= Trn (?—@) and j, = Trn (—%4—@) : (3.41)

The conservation law 0,j; + 0,j, = 0 is equivalent to (2.9) [17]. Taking 1 o A, all matrix

elements of Q° = [ <gz§ — (A/2)]o, gb’]) dx are conserved. To obtain P3 (3.12) as a reduction
of (° we insert the ansatz (2.20) to get

Q= /erQSe_Kx dr where Q=R — %[R, K, R] + mK]. (3.42)

Expanding Q° = Qflta and using the Baker-Campbell-Hausdorff formula we may express

S

Q° = / (cos kxog — sinkxoy) %1 dx + / (cos kxoy + sin kxoy) 622_22 dx + /Q;;—i dx. (3.43)

The first two terms vanish while Q§ = P3 so that (Q° = [Pst3, where [ is the spatial length.
The density (P = Tr ¢¢'/A) and current (—€ = —(1/2\) Tr (¢* 4+ ¢'2)) (2.13) corre-

sponding to the symmetry z — x + € of (2.9) satisfy ;P — 9,€ =0 or Tr (gzﬁ - <;§”) ¢ =0.

The conserved momentum P = Tr [ IJ dz per unit length upon use of (2.22) reduces to

- 1 e I 1 k2, m
P—Tr/xe R(IK, B +mK) e dz = < Tr (S XK)L_T@ X)' (3.44)

As shown in Section 3.1.1, the field energy per unit length reduces to the RR model Hamil-
tonian (3.1).

Infinitesimal internal rotations ¢ — ¢ + 0[n,¢] (for n € su(2) and small angle 6) are
symmetries of (2.11) leading to the Noether density and current:

ji=Tr (0.6 = 50,00, ¢1)) and jo= T (=516.0]+ £[6[0.9])  (3.45)

and the conservation law Tr (n [qb, ¢_T¢H — [¢7 ¢/]D = 0. However, the charges Q' =

f J¢ dxr do not reduce to conserved quantities of the RR model. This is because the space
of mechanical states is not invariant under the above rotations as K = ikos/2 picks out the
third direction.
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3.2.5 Static and circular submanifolds

In general, solutions of the EOM of the RR model (2.23) are expressible in terms of elliptic
functions [57]. Here, we discuss the ‘static’ and ‘circular’ (or ‘trigonometric’) submanifolds
of the phase space where solutions to (2.23) reduce to either constant or circular functions
of time. Interestingly, these are precisely the places where the conserved quantities fail to be
independent as will be shown in Section 3.2.6.

Static submanifolds

By a static solution on the L-S phase space we mean that the six variables L, and S, are
time-independent. We infer from (2.24) that static solutions occur precisely when S; = S, =

0 and S3Ly = S3L; = 0. These conditions lead to two families of static solutions 3 and
Y9. The former is a 3-parameter family defined by 5123 = 0 with the L, being arbitrary
constants. The latter is a 2-parameter family where L3 and S3 are arbitrary constants while
Lis=512=0. We will refer to X5 3 as ‘static’ submanifolds of MS_L. Their intersection is
the L3 axis. Note however, that the ‘extra coordinate’ R3(t) corresponding to such solutions
evolves linearly in time, R3(t) = R3(0) + (S5 + k/A)t.

The conserved quantities satisfy interesting relations on 5 and 3. On Y5 we must have
h = Fsgn(k) ms and ¢ = m?/2 £ sgn(k) s/\ with s > 0 where the signs correspond to the
two possibilities S3 = +s|k|. Similarly, on 33 we must have s = h = 0 with 2¢ — m? > 0.
While X3 may be regarded as the pre-image (under the map introduced in Section 3.2.2) of
the submanifold s = 0 of the space of conserved quantities Q, ¥, is not the inverse image
of any submanifold of Q. In fact, the pre-image of the submanifold of Q defined by the
relations that hold on X, also includes many interesting nonstatic solutions that we shall
discuss elsewhere.

Circular or Trigonometric submanifold

As mentioned in Section 3.2.2 the EOM may be solved in terms of elliptic functions [57]. In
particular, since from (4.11) 4? = 2A\k?x(u), u oscillates between a pair of adjacent zeros of
the cubic y, between which x > 0. When the two zeros coalesce u = S3/k becomes constant
in time. From (2.24) this implies S; Ly = SsL;, which in turn implies that tanf = tan¢ or
0 — ¢ = nm for an integer n. Moreover, p,r and 6 = ¢ become constants as from (3.36),
they are functions of u. Thus the EOM for S = kpcos¢ and Sy = kpsin¢ simplify to
S, = —¢SQ and Sy = ¢S1 with solutions given by circular functions of time. The same
holds for Ly = krcosf and Ly = krsinf as Ll = kS5 and L2 = —kS; (2.24). Thus,
we are led to introduce the circular submanifold of the phase space as the set on which
solutions degenerate from elliptic to circular functions. In what follows, we will express it
as an algebraic subvariety of the phase space. Note first, using (2.25), that on the circular
submanifold
kSl k'SQ

. . n kp
0=0¢=(-1) +17 =T =L, (3.46)
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Thus EOM on the circular submanifold take the form

2 .
F5  and Sy = ——L, (3.47)

Ly=2S85=0, Ly=kSy, Ly=—kS, S =—2
3 3 ) 1 2 2 1, 1 L2 L1

The nonsingular nature of the Hamiltonian vector field Vg ensures that the above quotients
make sense. Interestingly, the EOM (2.24) reduce to (3.47) when S and L satisfy the
following three relations

Ei: (SxL)3=0, Zp:—ALi(SxL)y=kS? and Z3: ALo(S x L); =kS;. (3.48)

Here (S x L) = SiLy — SoL; etc. The conditions (3.48) define a singular subset C of the
phase space. C may be regarded as a disjoint union of the static submanifolds ¥y and X3 as
well as the three submanifolds C, C; and Cy of dimensions four, three and three, defined by:

C: S1#0, Sy#0, =, and either =, or =3,
Cl . Sl = O, SQ 7é 0, L1 =0 and 53
and C2 . 51 7é 0, S2 = 0, L2 =0 and Eg. (349)

C1, Cy, 35 and X3 lie along boundaries of C. The dynamics on C (where Lo and Sj»
are necessarily nonzero) is particularly simple. We call C the circular submanifold, it is an
invariant submanifold on which S and L are circular functions of time. Indeed, to solve (3.47)
note that the last pair of equations may be replaced with Ll/Ll = Sl/Sl and Lg/Lg = 52/52
which along with S1Ly; = S;L; implies that S;2 = aL;2 for a constant o« > 0. Thus we
must have SI = kaSy and SQ = —kaS; with the solutions

S1/k = Asin(kat) + Bcos(kat) and Sy/k = —Bsin(kat) + A cos(kat). (3.50)

A and B are dimensionless constants of integration. As a consequence of =5 or Z3 (3.48),
the constant values of Ly = —km and S5 = uk must satisfy the relation uv = —a(a+Am)/\.
The other conserved quantities are given by

1/ , A2+ B? 2a(a+Im) A?+ B*  am(a+ Am)
c = —|m°+ — , h = + and
2 a? A2 a A
2 A 2
# = Ay pry SO (351)

Though we do not discuss it here, it is possible to show that these trigonometric solutions
occur precisely when the common level set of the four conserved quantities is a circle as
opposed to a 2-torus. Unlike Y5 and X3, the boundaries C; and Cy are not invariant under
the dynamics. The above trajectories on C can reach points of C; or Cy, say when S; or S,
vanishes. On the other hand, in the limit A = B = 0 and « # 0, the above trigonometric
solutions reduce to the 35 family of static solutions. What is more, 5 lies along the common
boundary of C; and C,. Finally, when A, B and « are all zero, 5,5, and S3 must each
vanish while L, Ly and L3 are arbitrary constants. In this case, the trigonometric solutions
reduce to the Y3 family of static solutions.
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3.2.6 Independence of conserved quantities and singular subman-
ifolds

We wish to understand the extent to which the above four conserved quantities are indepen-
dent. We say that a pair of conserved quantities, say f and g, are independent if df and
dg are linearly independent or equivalently if df A dg is not identically zero. Similarly, three
conserved quantities are independent if df A dg A dh % 0 and so on. In the present case, we
find that the pairwise, triple and quadruple wedge products of dc,dh,dm and ds? do not
vanish identically on the whole L-S phase space. Thus the four conserved quantities are
generically independent. However, there are some ‘singular’ submanifolds of the phase space
where these wedge products vanish and relations among the conserved quantities emerge.
This happens precisely on the static submanifolds ¥y3 and C which includes the circular
submanifold and its boundaries discussed in Section 3.2.5.

A related question is the independence of the canonical vector fields obtained through
contraction of the 1-forms with the (say, nilpotent) Poisson tensor #. The Casimir vector
fields V; and V,,, are identically zero as dc¢ and dm lie in the kernel of #,. Passing to the sym-

plectic leaves M2

-+ We find that the vector fields corresponding to the non-Casimir conserved

quantities Vg and V}, are generically linearly independent. Remarkably, this independence
fails precisely where M2 intersects C.

Conditions for pairwise independence of conserved quantities

The 1-forms corresponding to our four conserved quantities are

k
k*ds® = 25,dS,, k*dc= L,dL, + deg, —kdm =dL; and k2dh = S,dL,+ L,dS,.
(3.52)
None of the six pairwise wedge products is identically zero:

k4 1 k3
Ed82 Ndh = 5,5,dS, N\ dLy + §(SaLb — SpLg)dSa A dSh, Edm A ds* = S,dS, N dLs

k
k*dm ANdh = S,dL,AdL3+ LodS, ANdLs, k*dc¢Adm = L,dLs A\ dL, + XdLg A dSs

kA kS,
Edsz ANde = S,LydS, N dLy+ 3 dS, N dSs
. 1 kL,
Kldh nde = S(SuLy = SyLa)dLa AdLy - > LoLydL, A dS, + S, A dS;
b£3
kSa
+ ( f - LaL3> dL, A dS. (3.53)

Though no pair of conserved quantities is dependent on M ;, there are some relations
between them on certain submanifolds. For instance, ds?> A dh = ds®> A dm = 0 on the 3D
submanifold ¥3 (where s = 0) while dh A dm = 0 on the curve defined by Syo = Li23=0
where h = m = 0. Similarly, ds®> A d¢c = 0 on both these submanifolds where s = 0 and
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)\ = k?s* respectively. Moreover, dh A d¢ = 0 on the curve defined by Sio = Lio =

— kS3/\ =0 where k*h? = \%¢3. However, the dynamics on each of these submanifolds is
tr1v1al as each of their points represents a static solution. On the other hand, the Casimirs
m and ¢ are independent on all of M$ ; provided 1/Ak* # 0.

Conditions for relations among triples of conserved quantities:

The four possible wedge products of three conserved quantities are given below.

ks
?dh ANds* Ndm = S,SydS, AdLy AdLs + = (S Ly — SpLy)dS, A dSy A dLs

3 k
EdSQ ANdh ANde = 5s@(sch — S,Ly)dSy AN dLy A dL. + (SyLy — ks*rle)de1 A dSs A dSs
a Ck
+ {(S Ly — S3Ly)L, — Sf ] dS, A dSs A dL;
+ Z (SaLy — SpLa)LedSq A dSy A dLe
ab;éS

K5 kS,
?dm ANds> Nde = S,LydS, A dLs A dL, S

kS,
KPdm Adh Ade = (SsLy — SyLo)dLy AdLy AdLs + ( T LaL3> dLy A dLs A dSs
—Y" LoLydL, (3.54)
b#£3

It is clear that none of the triple wedge products is identically zero, so that there is no
relation among any three of the conserved quantities on all of M3 ;. However, as before,
there are relations on certain submanifolds. For instance, ds?> A dm A dc = ds*> A dh A dc =
ds®> A dh A dm = 0 on both the static submanifolds 35 and ¥, of Section 3.2.5. On 22 we
have the three relations s? = (A\?/4)(2c — m?)?, \*(2cs? — h?)? = 4s° and h?* = m?s®>. On
the other hand, dh A dm A dc¢ = 0 only on the static submanifold 5 on which the relatlon
4h* = X\?>m?(2¢ — m?)? holds.

Vanishing of four-fold wedge product and the circular submanifold

Finally, the wedge product of all four conserved quantities is

k:7
—dh VAN dS ANdmAde = (SlLQ - SQL1> [deLl VAN dL2 VAN dLg A dSb

k
_del A dSy N dSs3 N dLs — LydSy A dSy A dLy N\ dLs

n SaSpk
A

+ (L,Ss — SaLg)Lb] dS, A dSs A dLy A dLs.(3.55)

This wedge product is not identically zero on the L-.S phase space so that the four conserved
quantities are independent in general. It does vanish, however, on the union of the two static
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submanifolds Y5 and 3. This is a consequence, say, of ds? AdmAdc vanishing on both these
submanifolds. Alternatively, if S; = Sy = 0, then requiring dh A ds* A dm A dc = 0 implies
either S3 = 0 or Ly = Ly = 0. Interestingly, the four-fold wedge product also vanishes
elsewhere. In fact, the necessary and sufficient conditions for it to vanish are =, =, and =3
introduced in (3.48) which define the submanifold C of the phase space that includes the
circular submanifold C and its boundaries C; 2 and X 33.

Consequent to the vanishing of the four-fold wedge product dh A ds®> A dm A dec, the
conserved quantities must satisfy a new relation on C which may be shown to be the vanishing
of the discriminant A(c,m, s?, h) of the cubic polynomial

x(u) = u® = Aew® — (8% + Ahm) u + % (2cs* — h* —m?s?) . (3.56)

The properties of y help to characterize the common level sets of the four conserved quanti-
ties. In fact, y has a double zero when the common level set of the four conserved quantities
is a circle (as opposed to a 2-torus) so that it is possible to view C as a union of circular level
sets. Note that A in fact vanishes on a submanifold of phase space that properly contains
C. However, though the conserved quantities satisfy a relation on this larger submanifold,
their wedge product only vanishes on C. The nature of the common level sets of conserved
quantities will be examined in the next Chapter.

Independence of Hamiltonian and helicity on symplectic leaves M3,

So far, we examined the independence of conserved quantities on M9 ; which, however, is a
degenerate Poisson manifold. By assigning arbitrary real values to the Casimirs ¢ and m (of
{-,-},) we go to its symplectic leaves M{,. Li2 and S;» furnish coordinates on M}, with

Ak 1
Sg(Ll, Lg) = 7 ((2C — m2) — ﬁ([/% -+ Lg)) and L3 = —mk. (357)
The Hamiltonian H = Ek? (or k?s* = 2(H — c¢k* — k*/2)?)) and helicity h are conserved
quantities for the dynamics on M . Here we show that the corresponding vector fields Vg
and V}, are generically independent on each of the symplectic leaves and also identify where

the independence fails. On M | the Poisson tensor # is nondegenerate so that Vg and Vj,

are linearly independent iff dE' A dh # 0. We find

k5dE N dh - (SlLQ - SQLl) (kd51 VAN dSQ -+ )\SgdLl N dLQ)
+ > (M(SbLs — S3Ly) Lq — kSaSy) dLqg A dS) (3.58)

a,b=1,2

Here S; and L3 are as in (3.57). Interestingly, the conditions for dE A dh to vanish are
the same as the restriction to M2 of the conditions for the vanishing of the four-fold wedge
product dh A ds* A dm A de (3.55). Tt is possible to check that this wedge product vanishes
on M2 precisely when S;o and Lo satisfy the relations =1, =5 and Z3 of (3.48), where
Ss (3.57) and Lz = —mk are expressed in terms of the coordinates on M2 . Recall from
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Section 3.2.5 that (3.48) is satisfied on the singular set C C M¢ ; consisting of the union of
the circular submanifold C and its boundaries C; o2 and ¥93. We note in passing that the E
and h when regarded as functions on M9 ; (rather than MZ ) are independent everywhere
except on a curve that lies on the static submanifold 5. In fact, we find that dE A dh
vanishes iff S1o = L1o = 0 and S2 + kS3/\ = L3. Thus, on M}, , Vg and Vj, are linearly
independent away from the set (of measure zero) given by the intersection of C with M2 .
For example, the intersections of C with M are in general 2D manifolds defined by four
conditions among S and L: =Z; and =5 (with S;5 # 0) as well as the condition (3.57) on
Ss and finally L3 = —mk. This independence along with the involutive property of £ and h

allows us to conclude that the system is Liouville integrable on each of the symplectic leaves.

3.3 Stability of classical static solutions

In this section, we discuss the stability of classical static solutions of the RR model. In
Section 3.2.5, we found the static submanifolds ¥y (S12 = L12 = 0) and X3 (Si23 = 0)
on the L-S phase space of the RR model. Viewed on the R-P phase space, these solutions
are static except for a possible linear time-dependence of Rs (Rs = Ss + k/\). Here we
examine the stability of these solutions on the L-S and R-P phase spaces as well as in the
parent scalar field theory. These solutions are in general neutrally stable centers with some
additional flat directions as well as a possible direction of linear growth in time.

3.3.1 Static solutions in the L-S phase space and their stability

Recall that the Hamiltonian of the RR model in the L-S variables is

2
H= ;KS—K) + L2

Here L3 is a Casimir of the nilpotent Poisson algebra. For each value of Ly = —mk, H
attains its global minimum H = m?k?/2 at a unique ground state which lies on Xs:

(3.59)

23:52+L2 53 L
a o= o

K k
Liy=2515=,0 Ly=-mk and Ss= ;’ = -3 (3.60)
When elevated to the canonical R- P phase space each of these ground states corresponds to
a one parameter family of static ground states parametrized by the arbitrary constant value

of Ry, which is a cyclic coordinate in the Hamiltonian (see Eq. (3.14)).

We now examine the stability of all the static solutions on ¥, by considering the small
perturbations:

LLQ =0 + l172, L3 = —mk + l3 SLQ =0 + 51,2 and 83 = ak + S3. (361)
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Notice that, a = —1 /A for this to be a ground state. The linearization of the L-5 equations
of motion L = [K, S] and S = A[S, L] are

il = k’SQ, ig = —k’Sl, ig = O, 51 = )\k’(—m82 — alg), 6"2 = )\k(all + msl) and 83 =0.

(3.62)
The directions I3 and s3 are flat and [3-s3 plane is a plane of fixed points of this linear
system. The remaining variables [; o and s 2 satisfy a homogenous linear system (& = Ax)
with a nonsingular matrix A. The eigenvalues of A are

kv/2a)\ — m2X\2 + mAv/—da + m2\2
N .

When m = 0 and a = —1/\, A may be diagonalized with eigenvalues +ik, each with
multiplicity two. It is possible to see that +Ai are imaginary for all values of m and
a. Thus every point of Yo is a neutrally stable static solution (a 4D center with two flat
directions).

£A =+ (3.63)

A similar stability analysis can be done for the static submanifold X3 defined by 5123 = 0.
We consider small perturbations around any point of >3:

517273 =0+ 51,2,3, L1 = ak + ll, L2 = bk + lg and L3 = —mk + l3, (364)
which lead to the linearized equations

jl = k‘SQ, l'g = —k’Sl, l5 = 0, 5’1 = Ak(—msz — ng),
$9 = Mk(ass+msy) and $3 = A(bs; — asz). (3.65)

This system has a three parameter family of fixed points corresponding to s;23 = 0 and [;
arbitrary. The dynamics along the flat I3 direction decouples. The coefficient matrix A for
the remaining five equations has a pair of imaginary eigenvalues (£ikAv/a? + b2 + m?) with
corresponding imaginary eigenvectors. However, A is a deficient. Its other eigenvalue zero has
algebraic multiplicity 3 but only two linearly independent eigenvectors which are in the [; and
l, directions. Linearized equations become simple in the Jordan basis where S~ AS = J. The
Jordan block corresponding to the zero eigenspace can be taken as ((0,0,0), (0,0,1),(0,0,0)).
Fach of the above fized points behaves as a center in two directions with oscillatory time
dependence. In addition, there are three flat directions and one direction with linear growth
in time as in the case of the free particle.

3.3.2 Static solutions in the R-P phase space and their stability

Now, we examine the stability of static solutions in the R-P variables. The equations of
motion of the RR model in terms of R- P variables are

~ Amk . Ambk . Ak .
By = kP — 2R, R2:/<;P2+%R1, Rgszg—T(Rf%—R%), kP =0,

Amk? A2m2k2 A2k2
2 P -

kpl - -

(R? 4+ R3R;, and

— \K2Py + k2> R, —
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A2 k2
2

. )\ k?2 /\2 2]{32
kP, = 20 1—( m (R% + R2)R,. (3.66)

= 5 — \E*P; + k2) Ry —
The static solutions of these equations are a one parameter family in the R-P phase space
with values Ryo = 0, kP23 = 0 and Rs an arbitrary constant parameter (same as the
unique ground state in Y5). We consider small perturbations around these static solutions

Rl’g =0+ 1,2, Rg = Rg(O) + T3, /{P17273 =0+ kaQ,g. (367)

This leads to the linearized equations

mk . mk
re, To = kps +
b — Amk? B A2m?2k?
P11 = B D2 1
. Imk? A\2m?2k?
kps = p1 — 1

2
Using the map between R-P and L-S variables (see Egs. (2.26) and (3.12)), it is easy to
show that these equations reduce to Eq. (3.62) when S5 = —k/A or a = —1/\. The dynamics

in r3-kps subspace decouples
7;‘3 . 0 1 T3
(i) = (0 o) (i) 509

r3 and kps are like the position and momentum of a free particle: ps is constant and rj3
is linear in time. The dynamics in the r;9-kp; 2 space is oscillatory corresponding to the
four imaginary eigenvalues £AL (with a = —1/\ in Eq.(3.63)). Thus the above fized points

T = kpi — T, 13 =kps, kps=0,

ry — k*r;  and

ry — k*ry. (3.68)

behave as four dimensional centers with an additional flat direction and a direction of linear
growth in time.

3.3.3 Stability of static continuous waves in the scalar field theory

Here we examine the stability of static ‘continuous waves’ regarded as solutions of the scalar
field theory. These static solutions of the RR model form a one parameter family and are
given by Ris = 0,R3 = R3(0) and kP23 = 0 (see Eq. (3.67)). The corresponding scalar
field configurations

do(z,t) = 5" R(t)e K" + mKx = Rg<0)‘;—;:f +mKz, (3.70)

are static solutions of the equations of motion ¢ = ¢” + )\[é, ¢']. For small perturbations
¢ = ¢o + ¢, the linearized equations of motion reduce to the wave equation ¢ = ¢”. The
latter can be written as a first-order system

(i) N (8i (1)) <Z> ) (3.71)
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which may be regarded as an infinite collection of equations for the Fourier mode 1/;(1) =
f e~y(x)dr. Each Fourier mode evolves independently via the coefficient matrix A; =
((0,1), (—12,0)). For nonzero real [, A; has eigenvalues il and ¢(1),(l) are oscillatory.
When [ = 0, Ay is not diagonalizable and $(0),1(0) are like the position and momentum of
a free particle. Thus perturbations to static solutions of the RR model are oscillatory in time

in all but two directions: $(0) is a flat direction while 1(0) displays linear growth in time.

3.3.4 Weak coupling limit of classical continuous waves

In the weak coupling limit A — 0, the classical equations of motion of the RR model (2.27)
become

Ry = —k’Ry, Ry,=—k’R, and Rs;=0, (3.72)
with the general solution
Ry = Acoskt + Bsinkt, Ry=Ccoskt+ Dsinkt and Rs;= FEt+F, (3.73)

for constants A, --- , F. The corresponding continuous wave solutions of the weakly coupled
field equations ¢y = ¢, for the su(2) valued field ¢(z,t) are:

oz, t) = ef*R(t)e K 4 mKz = ¢a%
_ 1 Et+ F —mkx e**((C +iA) cos kt + (D + iB) sin kt) (3.74)
2 \e **((C —iA)coskt + (D — iB) sin kt)) —Et — F + mkx e

From this, we have the components of the classical field

¢»1 = coskx(C coskt+ Dsinkt) — sin kxz(Acos kt + Bsinkt),
¢p2 = sinkx(Ccoskt + Dsinkt) + coskx(Acoskt + Bsinkt) and ¢3 = Et+ F —mkx.(3.75)

Though these are not travelling waves, ¢, 5 are periodic in x and ¢t while ¢3 is linear cor-
responding to free particle behaviour in the z-direction, which will be discussed while com-
paring the RR model to an anharmonic oscillator in Section 5.2. These continuous waves are
not localized like solitons but shaped like a screw with axis along the third internal direction.
In fact, they have a constant energy density

1 : 1
€= o5 Tr (6" + %) = o (B + K%(A% + B2+ C* + D+ m?)). (3.76)

Thus we propose the name ‘screwons’ for these weak coupling continuous waves and their
nonlinear counterparts.



Chapter 4

Phase space structure and
action-angle variables

In this chapter, we discuss the phase-space structure, dynamics and a set of action-angle
variables for the Rajeev-Ranken model. This chapter is based on [39]. A brief outline of the
results obtained in this chapter was given in Section 1.2. Here we begin with a more detailed
summary of the results in each section and briefly mention the methods adopted.

In Section 4.1, we use the conserved quantities ¢, m,s and h of the model to reduce the
dynamics to their common level sets. To begin with, in Section 4.1.1, assigning numerical
values to the Casimirs ¢ and m of the nilpotent Poisson algebra (see Section 3.1.1), enables
us to reduce the 6D degenerate Poisson manifold of the S-L variables (M$ ;) to its nonde-
generate 4D symplectic leaves M . We also find Darboux coordinates on M, and use them
to obtain a Lagrangian. Next, assigning numerical values to energy F, we find the generically
3D energy level sets ME and use Morse theory to discuss the changes in their topology as
the energy is varied (see Section 4.1.4). In Section 4.1.2 we consider the common level sets
M:h of all four conserved quantities and argue that they are generically diffeomorphic to
2-tori. This is established by showing that they admit a pair of commuting tangent vector
fields (the canonical vector fields Vg and V}, associated to the conserved energy and helicity
h) that are linearly independent away from certain singular submanifolds. Section 4.1.3 is
devoted to a systematic identification of all common level sets of the conserved quantities
¢,m,s and h. We find that the condition for a common level set to be nonempty is the
positivity of a cubic polynomial x(u), which also appears in the nonlinear evolution equation
u? = 2X\k?x(u) for u = S3/k. Each common level set of conserved quantities may be viewed
as a bundle over a band of latitudes of the S-sphere (§ S = s2k?), with fibres given by a pair
of points that coalesce along the extremal latitudes (which must be zeros of x) (see Fig. 4.1).
By analyzing the graph of the cubic x (see Fig. 4.2) we show that the common level sets
are compact and connected and can only be of four types: 2-tori (generic), horn tori, circles
and single points (nongeneric). The nongeneric common level sets arise as limiting cases of
2-tori when the major and minor radii coincide, minor radius shrinks to zero or when both
shrink to zero.

32
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In Section 4.2, we study the dynamics on each type of common level set. The union
of single point common level sets comprises the static subset: it is the union of a 2D and
a 3D submanifold (3, and X3) of phase space. In Section 4.2.1, we discuss the 4D union
C of all circular level sets. Circular level sets arise when y has a double zero at a non
polar latitude of the S-sphere. On C, solutions reduce to trigonometric functions, the wedge
product dh A ds? A dm A dc vanishes and the conserved quantities satisfy the relation A =0,
where A is the discriminant of x. Geometrically, C may be realized as a circle bundle over
a 3D submanifold Q¢ of the space of conserved quantities. Finally, we find a set of canonical
variables on C comprising the two Casimirs ¢ and m and the action-angle pair —kh and
0 = arctan(Ly/Ly).

In Section 4.2.2, we examine the 4D union #H of horn toroidal level sets. It may be viewed
as a horn torus bundle over a 2D space of conserved quantities. Horn tori arise when the
cubic x(u) is positive between a simple zero and a double zero at a pole of the S-sphere.
Solutions to the EOM degenerate to hyperbolic functions on H and every trajectory is a
homoclinic orbit which starts and ends at the center of a horn torus (see Fig. 4.3). As a
consequence, the dynamics on H is not Hamiltonian, though we are able to express it as
a gradient flow, thus providing an example of a lower-dimensional gradient flow inside a
Hamiltonian system. Interestingly, though the conserved quantities are functionally related
on horn tori, the wedge product dh A ds* A dm A dc is nonzero away from their centers.

In Section 4.2.3, we discuss the 6D union 7T of 2-toroidal level sets, which may be realized
as a torus bundle over the subset A = 0 of the space of conserved quantities. We use two
patches of the local coordinates ¢, m, h,s,f and u to cover 7. The solutions of the EOM
are expressed in terms of elliptic functions and the trajectories are generically quasi-periodic
on the tori (see Fig 4.4). By inverting the Weierstrass- o function solution for u, we discover
one angle variable. Next, by imposing canonical Poisson brackets, we arrive at a system
of PDEs for the remaining action-angle variables, which remarkably reduce to ODEs. The
latter are reduced to quadrature allowing us to arrive at a fairly explicit formula for a family
of action-angle variables. In an appropriate limit, these action-angle variables are shown to
degenerate to those on the circular submanifold C.

4.1 Using conserved quantities to reduce the dynamics

In this section, we discuss the reduction of the six-dimensional S-L phase space (M$ ;) by
successively assigning numerical values to the conserved quantities ¢,m,s and h. For each
value of the Casimirs ¢ and m we obtain a four-dimensional manifold M2 with nondegen-
erate Poisson structure, which is expressed in local coordinates along with the equations of
motion. Next, we identify the (generically three-dimensional) constant energy submanifolds
ME < M2 . where E is a function of s and ¢ (see Eq. (3.30)). Moreover, we use Morse
theory to study the changes in topology of M§" with changing energy. Finally, the conserva-
tion of helicity h allows us to reduce the dynamics to generically two-dimensional manifolds

M:h | which are the common level sets of all four conserved quantities. By analysing the
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nature of the canonical vector fields Vg and V},, the latter are shown to be 2-tori in general.
We also argue that there cannot be any additional independent integrals of motion. Though
the common level sets of all four conserved quantities MZ" are generically 2-tori, there are
other possibilities. We show that M has the structure of a bundle over a portion of the
sphere Tr S? = s?k?, determined by the zeros of a cubic polynomial x(u). By analyzing the
possible graphs of x we show that M$" is compact, connected and of four possible types:
tori, horn tori, circles and points. In another words, we found all possible types of common
level sets of conserved quantities of the RR model.

4.1.1 Using Casimirs ¢ and m to reduce to 4D phase space M}
4.1.1.1 Symplectic leaves M} and energy and helicity vector fields

The common level sets of the Casimirs ¢ and m are the four-dimensional symplectic leaves
M2 = TR?* of the phase space M ;. On M2 . the Poisson tensor #° corresponding to the
nilpotent Poisson algebra (3.2) is nondegenerate and may be inverted to obtain the symplectic

form wgp. In Cartesian coordinates £* = (L, Lo, S, S2),

2 =ik (O 2 ) and  we = (2 V) = —% (m)\UQ %2) : (4.1)

09 —)\mag 09

This symplectic form w = (1/2)wad€* A dEP is the exterior derivative of the canonical 1-form
a = —(1/2)wpdE®. Expressing helicity h (3.29) and E (3.30) as functions on M2 by
eliminating

Ak

Sg(Ll, L2> = 7 ((2C — m2)

1

P (L] + L§)> and Ls = —mk (4.2)

we obtain the helicity and Hamiltonian vector fields on M2, :

th = L28L1 — L18L2 -+ 5'2851 — 51852 and

L
kVp = S50, — 5101, — [/\SSk 2 4 /\mSg} ds, + [A

SsLy
k

—f- )\m51:| 852. (43)

Since E and h commute, w(Vg, V),) = {E,h} = 0. It is notable that V}, is nonzero except
at the origin (S19 = L1 2 = 0), while Vz vanishes at the origin and on the circle (L% + L3 =
k*(2¢ — m?),S12 = 0). The points where Vg and Vj, vanish turn out be the intersection of
M, with the static submanifolds

22:{§,E|Sl72:[z172:0} and 23:{§,E|§:0} (44)

introduced in Section 3.2.5, where S and L are time-independent. The points where Vg
vanish will be seen in Section 4.1.4 to be critical points of the energy function.
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4.1.1.2 Darboux coordinates on symplectic leaves M}

Since M7, = R* it is natural to look for global canonical coordinates. In fact, the canonical
coordinates (R,, kP,) on the six-dimensional phase space M , (see Section 3.1.3) restrict
to Darboux coordinates on M2 :

A
kR, = —€wly and kP, =S,+ 5 L, for a,b=12 (4.5)

with {R,, kPy} = dap and {R,, Ry} = {P,, P,} = 0. The Hamiltonian is a quartic function
in these coordinates:

H P}+P; Mm A o b (D2 2 2 A 2)2 L
k2 T+7(R1P2—RQP1)+§(R1+R2) (Bi+ R +3m’ — 4c)_|_§(2c—m ) +Ct%‘

The equations of motion resulting from these canonical Poisson brackets and Hamiltonian
are cubically nonlinear ODEs. In fact, for a = 1, 2:

: A : A A2
KRy = Po— SrewRy and K7'Py = —ShenPy — - (3m? —dc+ 2RRy) Ro (A7)

A Lagrangian L, (R, R) , leading to these equations of motion can be obtained by extremizing
kP,R, — H with respect to P, and P:

1 - 2 - 2 2 2 )\2k2 2 2 2 2 2
Lo = 5 <R1 + Ry — Amk(Ri Ry — R2R1)> — So (B4 R (R + B3+ 2m’ — 4c)
A2 1
2 _n2)2 _
k (8(2c m-) +c+2)\2). (4.8)

4.1.2 Reduction to tori using conservation of energy and helicity

So far, we have chosen (arbitrary) real values for the Casimirs ¢ and m to arrive at the
reduced phase space M . Now assigning numerical values to the Hamiltonian H = Fk* we
arrive at the generically three-dimensional constant energy submanifolds MZE, which foliate
M2, . Tt follows from the formula for the Hamiltonian (3.30) that each of the S, is bounded
above in magnitude by |k|s = \/2k*(E — ¢ — 1/2)A2). Moreover, MZ is closed as it is the
inverse image of a point. Thus, constant energy manifolds are compact. Interestingly, the
topology of MZ can change with energy: this will be discussed in Section 4.1.4. In addition
to the Hamiltonian and Casimirs ¢ and m, the helicity hk* = Tr SL is a fourth (generically
independent) conserved quantity (see Section 3.2.2). Thus each trajectory must lie on one of
the level surfaces ME" of h that foliate ME, . Note that since s > 0 is uniquely determined
by E (and vice versa), the level sets of the conserved quantities ME" and M3:" are in 1-1

correspondence and we will use the two designations interchangeably.

We will see in Section 4.1.2.1 that these common level sets of conserved quantities ME"
are generically 2-tori, parameterized by the angles 6 and ¢ which (as shown in Section 3.2.2)



36 CHAPTER 4. PHASE SPACE STRUCTURE AND ACTION-ANGLE VARIABLES

evolve according to

: h +mu
=—k
f (2c—m2—2u/)\

) and ¢ = km\ + klu (h—i—mu)‘

§2 — 2

(4.9)

Here, u = S3/k is related to 6 and ¢ via helicity hk* = Tr SL and other conserved
quantities (3.29)

V(s(E,¢)2 —u2) (2c — m2 — 2u/\) cos(d — ¢) = h + mu. (4.10)

In other words, the components V2 = 0/k? and Vg = ¢/k? of the Hamiltonian vector field
Vi = V29 + V5, are functions of u alone. Though the denominators in (4.9) could vanish,
the quotients exist as limits, so that Vp is nonsingular on M:" . Interestingly, as pointed out
in [57], u evolves by itself as we deduce from (2.23):

i = s = 0) = R |7 = o) (26—t = 5 ) = (| = 2k

A
(4.11)
This cubic x(u) will be seen to play a central role in classifying the invariant tori in Section
4.1.3. The substitution u = av 4+ b, reduces this ODE to Weierstrass normal form

0? = 40° — gov — g3, where a=2/k*X and b= c\/3, (4.12)

with solution v(t) = p(t + «; g9, g3). Here, the Weierstrass invariants are:

4\2 6\4
(BAAmM A+ 2 +3s%), g3 = 108

go = (27h%* 4 18 \emh+4X2¢® — 36¢s2 +27m?>s%). (4.13)

Thus we obtain

2 cA

which oscillates periodically in time between i, and upna., Which are neighbouring zeros
of x between which y is positive. Choosing « fixes the initial condition, with its real part
fixing the origin of time. In particular, if @ = w; (the imaginary half-period of @), then
w(0) = Upin. On the other hand, u(0) = upax if @ = wr + wy, where wg is the real half-
period. The formula (4.14) will be used in Section 4.2.3 to find a set of action-angle variables
for the system.

4.1.2.1 Reduction of canonical vector fields to M:" and its topology

In this section, we use the coordinates (s? h,0,$) to show that the canonical vector fields
Vg and Vj, are tangent to the level sets M"  which are shown to be compact connected
Lagrangian submanifolds of the symplectic leaves M1 . Moreover, Vi and V;, are shown to

be generically linearly independent and to commute, so that M are generically 2-tori.
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On MZ | the coordinates (s?, h,0,¢) (as opposed to (Li, Lo, Si, S2)) are convenient since
the common level sets M3 C M2 arise as intersections of the s? and h coordinate hyper-
planes. The remaining variables § and ¢ furnish coordinates on M". The Poisson tensor

on M2 in these coordinates has a block structure, as does the symplectic form:

1/ 0 « —y =6t
ab __ _
2= <_at 5) and  wy, = k( 50 ) : (4.15)

where «, 5,7 and ¢ are the dimensionless 2 x 2 matrices:

__Qé iz) Sed) —1 ﬁ
— k k — _;7® — (—at -1 _
“ ( 1 1 )’ P eraz’ 7= (-a) " fa det o

~ det o -1 =20

1 2$ —2 ..
and § = a! ( L5 ) with  det a = k*Vdet 2= o (9 - ¢> .(4.16)
k

Here sg5 = sin(@ — ¢) and 6 and ¢ are as in (4.9), subject to the relation (4.10). From
(3.29), it follows that p and r may be expressed in terms of s% h,6 and ¢, by solving the
pair of equations
A A2

h=rpcoy — Tm (2c= (r*+m?) and s°=p*+ T (2c— (r* + m2))2. (4.17)
Here c¢gy = cos(f — ¢). In these coordinates, Vj, and Vg (4.3) have no components along 0,
or Jy:

2

kV;, = —(89 + 8¢) and kVyp = —§CQ¢(% + <)\m + );—prq% (2C — (7"2 + m2))) 8(;5- (418>

Thus, Vj, and Vg are tangent to M:". Moreover, the restriction of w to M is seen to
be identically zero as it is given by the 6-¢ block in (4.15) so that M is a Lagrangian
submanifold. Trajectories on M:" are the integral curves of V.

To identify the topology of the common level set M it is useful to investigate the linear

independence (over the space of functions) of the vector fields Vg and V,. On M2 & w is
nondegenerate so that Vg and Vj, are linearly independent iff dE' A dh # 0. We know that
this wedge product vanishes on M, precisely when S; 5 and Lo satisfy the relations (see

Section 3.2.6):
Ei: (SxL)3=0, Zp:—ALi(SxL)y=kS? and Z3: ALo(S x L); =kS;. (4.19)

Here (S x L); = S1Ly — SoLy etc., and S3 and L3 are expressed using (4.2). It was
shown in Section 3.2.6 that (4.19) are the necessary and sufficient conditions for the four-fold
wedge product dh A ds*> A dm A de to vanish on MS ;. Moreover, it was shown that this
happens precisely on the singular set C C M, which consists of the circular/trigonometric
submanifold C and its boundaries C; 2 and ¥93. Thus, Vg and V}, are linearly independent
away from the set (of measure zero) given by the intersection of C with M2 . [For given
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¢ and m, the intersection of C with M2 is in general a two-dimensional manifold defined
by four conditions among the six variables S and L: =, and =y (with Sio # 0) as well
as the conditions in Eq. (4.2).] Furthermore, since E' and h Poisson commute, [Vg, V] =
—Vigny = 0. So, as long as we stay away from these singular submanifolds, Vi and Vj,
are a pair of commuting linearly independent vector fields tangent to MSh (see Lemma 1
in Chapter 10 of [5]). Additionally, we showed at the beginning of Section 4.1.2 that the
energy level sets ME C M2 are compact manifolds. Now, M:" must also be compact as
it is a closed subset of ME (the inverse image of a point). Finally, we will show in Section
4.1.3.4 that MZ" is connected. Thus, for generic values of the conserved quantities, M3" is
a compact, connected surface with a pair of linearly independent tangent vector fields. By
Lemma 2 in Chapter 10 of [5], it follows that the common level sets of conserved quantities
Mz are generically diffeomorphic to 2-tori.

We observed in Section 3.2.2 that a generic trajectory on a 2-torus common level set
Mz is dense (see Figs. 3.1 and 4.4). This implies that any additional continuous conserved
quantity would have to be constant everywhere on the torus and cannot be independent of
the known ones. Thus, we may rule out additional independent conserved quantities.

4.1.3 Classifying all common level sets of conserved quantities

In Section 4.1.2 we showed that the common level sets of the conserved quantities ¢, m, s and
h are generically 2-tori. However, this leaves out some singular level sets. These nongeneric
common level sets occur when the conserved quantities fail to be independent and also
correspond to the degeneration of the elliptic function solutions (4.14) to hyperbolic and
circular functions. Here, we use a geometro-algebraic approach to classify all common level
sets and show that there are only four possibilities: 2-tori, horn tori, circles and single points.
Interestingly, the analysis relies on the properties of the cubic x(u) that arose in the equation
of motion for u (4.11).

4.1.3.1 Common level sets as bundles and the cubic y

We wish to identify the submanifolds of phase space M$_; obtained by successively assigning
numerical values to the four conserved quantities s, h,¢ and m. Not all real values of these
conserved quantities lead to nonempty common level sets. From (3.1), we certainly need
the Hamiltonian H > 0 and s? > 0. It follows that —s?/2 — 1/2)? < ¢ < H/k* — 1/2)2%.
However, these conditions are not always sufficient; additional conditions will be identified
below. The situation is analogous to requiring the energy (L?/2I; + L3/2I, + L3/2I; in the
principle axis frame) and square of angular momentum (L? + L2 + L2%) to be non negative
for force-free motion of a rigid body. These two conditions are necessary but not sufficient
to ensure that the angular momentum sphere and inertia ellipsoid intersect.

First, putting S,S, = s*k? defines a 2-sphere (the ‘S-sphere’) in the S-space as in
Fig. 4.1a. We may regard u (or S3 = ku) for |u| < s as the latitude on the S-sphere
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Ss

Figure 4.1: (a) The S-sphere S? + S + 553 =14 = s for k = 1. For h = 1,c = 2 and A = 1, only
latitudes below u = S3/k = 1.96 (4.20) are allowed if the L-sphere and L-plane are to intersect. However,
if we take m = —1, the upper bound u < (A\/2)(2c — m?) following from L? + L3 > 0 and (3.29) further
restricts u to lie below 1.5. Finally, the condition x > 0 for nonempty fibres restricts u to lie between the
simple zeros Umin = —3.46 and umax = 1.49. (b) The L-space above the base point S = (3,2,1) for the
same values of constants. The L-plane normal to S at a distance of 1/y/14 from (0,0,0) is the level set
h = 1. The L-sphere of radius v/2 (the level set ¢ = 2) intersects the L-plane along the L-circle. The
horizontal Ls-plane (Ls = —m = 1) intersects the L-plane along the L-line. The fibre over S is the pair of
points where the L-line intersects the L-circle. The corresponding common level set is a 2-torus as in (C1)
of Section 4.1.3.4.

with u = £sgn(k)s representing the North (N) and South (S) poles. At each point on the
S-sphere, the conservation of helicity S,L, = k?h forces L to lie on a plane (the ‘L-plane’)
perpendicular to the numerical vector S at a distance |hk|/s from the origin of the L-space.
At this point, we have assigned numerical values to s and h, which happen to be Casimirs
of the Euclidean Poisson algebra (3.4). It remains to impose the conservation of ¢ and m.

For each point on the S-sphere, the condition L2/2 + kSs/\ = ck? (3.29) defines an

1
L-sphere of radius v/2|k| (¢ — u/)\)2in the L-space provided ¢ > u/\. Since u > —s, the
conserved quantities must be chosen to satisfy ¢ > —s/A. In fact, this ensures that H > 0

and thus subsumes the latter. The L-sphere and the L-plane intersect along an L-circle
provided the radius of the L-sphere exceeds the distance of the L-plane from the origin, i.e.,

. u || . h?

- = _ — > —_— = - < —_——

|k|~" rad(L-sphere) 2 (c )\> > |k|7" dist(L-plane,0) or u<\|c¢c 52
(4.20)

Thus, for the intersection to be nonempty, depending on the sign of k&, S must lie below
or above a particular latitude determined by (4.20). Furthermore, since u > —s, we must
choose

¢ > Coin = —5/A + h? /257, (4.21)

When the inequality (4.20) is saturated, the L-plane is tangent to the L-sphere and the L-
circle shrinks to a point. In summary, the common level set of the three conserved quantities
s,h and ¢ can be viewed as a sort of fibre bundle with base given by the portion of the
S-sphere lying above or below a given latitude. The fibres are given by L-circles of varying
radii which shrink to a point along the extremal latitude.
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The final conserved quantity Tr KL = mk? restricts L to the horizontal plane L3 =
—mk. For each nonpolar point on the S-sphere, this Lz-plane intersects the above L-plane
along the L-line S1L; + SyLy = hk* +mkSs (assuming S, S, are not both zero). This line
intersects the L-sphere at a pair of points, provided the radius of the L-sphere is greater
than the distance of the L-line from the origin of the L-space, i.e.

(h + mu)?
2 _ 2

1
2
|k|~1 rad(L-sphere) = 2(c—§>2<m2+ ) — |k|"! dist(L-line, 0). (4.22)

S

The two points of intersection coincide if the inequality is saturated so that the L-line is
tangent to the L-sphere. Note that inequality (4.22) implies (4.20), provided the L-sphere is
nonempty (¢ > u/A). This is geometrically evident since the distance of the L-line from the
origin is bounded below by the distance |kh|/s of the L-plane (which contains the L-line)
from the origin.

Remark: Another way to see that (4.22) implies (4.20) is to note that if g = m? + ((h +mu)?/(s? — u?)) —
(h?/s%), then

1 (h+mu)?  h? 1.

=l o2 T +g(u) = ﬁdlst(L—plane, 0)? + g(u). (4.23)
Eq. (4.22) would then imply (4.20), if we can show that g(u) > 0 on the sphere |u| < s. To see this, we
first note that g(u) — +oo at the poles u = £s so that it suffices to show that the quadratic polynomial
g(u) = g(u)(s* — u?) is nonnegative for |u| < s. This is indeed the case since the global minimum of §(u)
attained at u* = —ms?/h is simply zero.

. . 2 2
dist(L-line, 0)* = m* + e

Assuming (4.22) holds, the common level set of all four conserved quantities may be
viewed as a sort of fibre bundle with base given by the part of the S-sphere satisfying (4.22)
and fibres given by either one or a pair of points (this is the case for nonpolar latitudes, see
below for the special circumstance that occurs above the poles). In other words, provided
¢ > Cmin, the ‘base’ space is the part of the S-sphere consisting of all latitudes u lying in the
interval —s < u < min(s, A(c — h?/2s?)) and satisfying the cubic inequality following from
(4.22)

A
X(u) = u® — Aew® — (8% + Ahm) u + 3 (2¢s® — B — m*s?) > 0. (4.24)

The roots of the cubic equation x(u) = 0 resulting from the saturation of this inequality
determine the extremal latitudes where the two-point fibres degenerate to a single point
(provided the extremal latitude does not correspond to a pole of the S-sphere). If an extremal
latitude is at one of the poles then x(£s) = —(A\/2)(h & ms)? must vanish there and the
determination of the fibre over the pole is treated below.

Recall that the discriminant A = b?c?—4¢®—4b3d—27d%+18bcd of the cubic x®+bx*+cx+d
is the product of squares of differences between its roots. It vanishes iff a pair of roots coincide.
The discriminant of the cubic x(u) will be useful in the analysis that follows. It is a function
of the four conserved quantities:

2 2 s? 3 27
A = ¢ ()\ + hm) 4 4)3 <)\ + hm) + 2013 (2es? — W2 — m?s?) — ZA2(2c32 — h? —m?s%)?
2
+9X3¢ <8)\ + hm) (2¢s® — h* — m?s?). (4.25)
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4.1.3.2 Fibres over the poles of the S-sphere

At the NV and S poles (u = +sgn(k)s) of the S-sphere, the L-plane (S3L3 = hk?) and
Ls-plane (Ls = —mk) are both horizontal: their intersection does not define an L-line. For
the common level sets of h and L3 to be nonempty, the planes must coincide:

h = Fmsgn(k) s (4.26)

with upper/lower signs corresponding to the A//S poles. This condition ensures that y
vanishes at the corresponding pole, implying that it cannot be positive at a physically allowed
pole of the S-sphere.

Now, for the L-sphere to intersect the Ls-plane, its radius must be bounded below by
|mk|:

1
E) s\ 2
k|~ rad(L-sphere) = v/2 <c T W) > |m| = |k|™! dist(Ls-plane, 0). (4.27)

When this inequality is strict, the fibre over the pole is a circle ( L-circle) while it is a single
point when the inequality is saturated. Interestingly, in the latter case, the discriminant A
(4.25) vanishes, so that the pole must either be a double or triple zero of x. On the other
hand, when the inequality is strict, x must have a simple zero at the pole. This structure
of fibres over the poles is in contrast to the two point fibres over the non polar latitudes of
the S-sphere when y > 0. For example, suppose k = A = s =1 and take h = —m =1 so
that the Ly and L-planes over the N pole (S3 = 1) coincide. These planes intersect the
L-sphere provided ¢ > 3/2 (see (4.27)). Moreover, the fibre over the N pole is a single point
if ¢ =3/2 and a circle if ¢ > 3/2.

4.1.3.3 Properties of xy and the closed, connectedness of common level sets

We observed in Section 4.1.3.2 that x must vanish at a physically allowed pole of the S-
sphere and that we must have h = +m sgn(k) s for this to happen. Here, we investigate the
possible behaviour of y near a pole, which helps in restricting the allowed graphs of y. We
find that the sign of x’ at an allowed pole is fixed and also that the allowed latitudes must
form a closed and connected set. As a consequence, we deduce that some graphs of x are
disallowed. For example, x cannot have a triple zero at a nonpolar latitude. We also deduce
that the common level sets must be both closed and connected.

Result 1: Sign of y’ at a pole which is a simple zero: Suppose x has a simple zero at
the pole u = s with nonempty fibre over it, then x'(£s) < 0.

Proof of \/(s) < 0: Suppose h = —ms, so that y(u) has a simple zero at the pole u = s
with circular fibre over it (see Eq.(4.26)). Then (4.24) implies

X' (s) = 25* — As(2c — m?). (4.28)
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Suppose X'(s) > 0, then ¢ < s/\ +m?/2. But in this case, the upper bound on the latitude
u < min[s, A\c — M\h?/(2s?)] < s so that u = s could not have been an allowed latitude. On
the other hand, if x'(s) < 0, then u = s is an allowed latitude. Thus, when the N /S pole
for & 2 0 is a simple zero of x with nonempty fibre, it is always surrounded by other allowed
latitudes. In particular, the north poles in Fig. 4.2g, j and k are not allowed latitudes, while
they are in Fig. 4.2¢ and h.

Proof of y/(—s) > 0: On the other hand, suppose h = ms so that x has a simple zero
at u = —s with nonempty fibre. Suppose x'(—s) < 0, then as before (4.24) implies ¢ <
—s/A+m?/2 < ¢y which violates (4.21). Thus x/(—s) must be positive. In other words,
when the pole u = —s is a simple zero of y with nonempty fibre, it must be surrounded by
other allowed latitudes. So the poles cannot be simple zeros unless the neighbouring latitudes
are allowed. In particular, the south poles in Fig. 4.2d, h, i and j are allowed latitudes.

Result 2: Set of allowed latitudes and common level set must be closed: The
conserved quantities ¢, m, s and h define continuous functions (quadratic in .S and L) from
the phase space Mg_L to the four-dimensional space Q of conserved quantities (which is
a subset of R? consisting of the 4-tuples (c,m,h,s) subject to the conditions s > 0 and
¢ > Cmin (4.21)). Each of their common level sets must be a closed subset of Mg as it is
the inverse image of a point in @. We may use this to deduce that y cannot approach a
positive value at a pole. We have already observed that if a pole is an allowed latitude then
x must vanish there. On the other hand, suppose a pole P is not an allowed latitude but y
is positive in a neighbourhood of P. Then the set of allowed latitudes would be an open set
and so would the common level set. In particular, y cannot have (i) only one simple zero on
the S-sphere and be nonvanishing elsewhere (as in Fig. 4.2n) (ii) three simple zeros between
the poles (see Fig. 4.2m) (iii) a double zero and a simple zero between the poles (iv) a triple
zero at a nonpolar latitude (v) two simple zeros between the poles with xy > 0 at the poles
(as in Fig. 4.20) or (vi) a double zero between the poles with x > 0 at the poles.

Common level set of conserved quantities must be connected: For the common level
set to be disconnected, the set of allowed latitudes on the S-sphere must be disconnected.
The only remaining way that this could happen is for y to have three distinct simple zeros
on latitudes u € [—s, s] of the S-sphere. Let us show that this is disallowed. Now Result 2
prevents x from having three simple zeros at nonpolar latitudes. It only remains to consider
the cases where either of the poles is a simple zero of y. If x has a simple zero at s, then by
Result 1, x/(s) < 0. Since x(00) = 0o, x can have at most one more zero on the S-sphere
so that the set of allowed latitudes is connected. On the other hand, suppose y has a simple
zero at —s, then x'(—s) > 0 by Result 1. Suppose further that y has two more simple
zeros —s < u* < u** < s on the S-sphere, then by Result 2, «** must equal s as otherwise
x would be positive at the pole © = s as in the disallowed Figs. 4.2m, n and o. So u** = s
with x’(s) > 0 as in Fig. 4.2j. But in this case, Result 1 forbids «™* from being an allowed
latitude, so that the set of allowed latitudes is again a single interval [—s, u*].
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Triple zeros of y: For x(u) (4.24) to have a triple zero, i.e., to be of the form (u — z)3,
we must have z = Ac¢/3 and the conserved quantities must satisfy two conditions:

2 3 s? 2.3 2 2 2.2

< =-7 hm + X and 2A*¢® = —27(2¢s” — h* —m?s?). (4.29)
These conditions define a two-dimensional surface in the space Q of conserved quantities.
Result 2 implies that y cannot have a triple zero at a nonpolar latitude. On the other hand,
X can have a triple zero at N' or S provided both (4.26) and (4.29) are satisfied. Putting
h = Fsgn(k)ms in (4.29), the conditions for N or S to be a triple zero become

+ 3Asgn(k) sm® = \%® +3s*> and Ac = 3s. (4.30)

The first condition implies that y cannot have a triple zero at S for kK > 0 or at N for
k < 0. On the other hand, x can have a triple zero at N for k > 0 as in Fig. 4.21.

a-Torus b-Horn torus c-Torus d-Torus e-Single point
c=[3/2 . ¢ 272 m{_: ':‘/21
~{h=1 meqheo1 m=1h> TN
f-Circle g-Circle h-Torus i-Horn torus j-Torus
C-178 _C_ 1h_1 A1 (N 30
=-1f2,h=2 ' meolhzd m =0 h’%0 m:O
k-Single point |- Smgle point m-Not possmle n-Not possmle o-Not possible
g c
' =2,lh= 7 U % > !
Figure 4.2: ) Plots of the cubic x(u) for latitudes between the south and north poles —s < u < s

for k=XA=s= 1 and ¢,m and h as indicated. The physically allowed latitudes with y > 0 are shaded in
blue. The black dots indicate a single allowed latitude with y necessarily having zeros of order more than
one. The corresponding common level sets of conserved quantities (see Section 4.1.3.4) are a 2-torus [(a),
(¢), (d), (h), (j)], a horn torus [(b), (i)], a circle [(f),(g)], and a single point [(e), (k), (1)]. In (¢), (d), (h) and
(j) the fibre over the physically allowed poles (where x has a simple zero) are circles while they are single
points in (b), (e), (k) (double zero) and (1) (triple zero). In (i) the fibre over the S pole (simple zero) is a
circle and is a point over the A/ pole (double zero). Similar figures with A/ and S exchanged arise when
k < 0. Figures (m)-(o) show cases that cannot occur for any set of physically allowed conserved quantities
as a consequence of Result 2.

4.1.3.4 Possible types of common level sets of all four conserved quantities

Here we combine the above results on the connectedness of common level sets, slope of x
at the poles and on the structure of the fibres over polar and nonpolar latitudes of the S-
sphere to identify all possible common level sets of conserved quantities. There are only four
possibilities: the degenerate or singular level sets (horn tori, circles and single points) and
the generic common level sets (2-tori). These possibilities are distinguished by the location
of roots of y. They are discussed below and illustrated in Fig 4.2. In (C1)-(C5) below we
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take k > 0 so that w = #s correspond to the A/ and S poles. Similar results hold for k& < 0
with /' and S interchanged.

(C1) For generic values of conserved quantities, x(u) is positive between two neighbouring
nonpolar simple zeros Uiy < Umax lying in (—s,s) (E.g. k=A=s=m =1, h =2 and
¢ = 3 as in Fig. 4.2a). The base space of Section 4.1.3 is the portion of the S-sphere lying
between the latitudes i, and uyay, With the two-point fibres shrinking to single point fibres
along the extremal latitudes uy;, and uy.,. The resulting common level set is homeomorphic
to a pair of finite coaxial cylinders with top as well as bottom edges identified, i.e., a 2-torus.

To visualize the above toroidal common level sets and some of its limiting cases which
follow, it helps to qualitatively relate the separation between zeros of y to the geometric
parameters of the torus embedded in three dimensions. For instance, the minor diameter
of the torus grows with the distance between wy;, and uyn.,. Thus, when the simple zeros
coalesce at a double zero, the minor diameter vanishes and the torus shrinks to a circle.
Similarly (for & > 0) the major diameter of the torus grows with the distance between i,
and N. Thus, when ., — N, the major and minor diameters become equal and we expect
the torus to become a horn torus. However, this requires the fibre over N to be a single
point, which is true only when N is a double zero of y.

(C2) A limit of (C1) where either upy — S O Unmax — N and x is positive between
them. For instance, if uyn. — N and the fibre over N is a single point, then the common
level set is homeomorphic to a horn torus (E.g. A=k=s=h=1, m=—1 and ¢ =3/2 as
in Fig. 4.2b). On the other hand, for ¢ > 3/2 the fibre over N is a circle and we expect the
common level set to be a 2-torus (see Fig. 4.2¢). It is as if the circular fibre over the single-
point latitude N plays the role of an extremal circular latitude with single point fibre in (C1),
thus the roles of base and fibre are reversed. Similarly, when u.;, — & with circular fibre
over §, the common level set is homeomorphic to a 2-torus (E.g. k=A=s=m=h=1
and ¢ > —1/2 as in Fig. 4.2d). In the limiting case where ¢ = ¢y, = —1/2, the two simple
ZeT0S Umin and Upma, merge at §. The fibre over S becomes a single point and the common
level shrinks to a point (see Fig. 4.2¢).

(C3) Another limit of (C1) where the roots wumin and um.x coalesce at a double root
uqg € (—s,s) of x. x is negative on the S-sphere except along the latitude uy and the
fibre over it is a single point. The discriminant A (4.25) must vanish for this to happen.
The common level set becomes a circle corresponding to the latitude uy. For example, if
k=X=1and s=1,m=—1/2,h=2 and ¢ = 17/8, then the equator u; = 0 is the allowed
latitude as shown in Fig. 4.2f. Another example of a circular common level set appears in
Fig. 4.2g. In this case Results 1 and 2 exclude the north pole ensuring the connectedness
of the common level set.

(C4) A limit of (C1) where the simple zeros i, and ty., move to S and N respectively,
with x > 0 in between. In this case, both poles have circular fibres and the common level
set is a 2-torus. This happens, for instance, when ¢ — 0o, irrespective of the values of m,h
and s > 0. Another way for this to happen is for m and h to vanish so that the poles are
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automatically zeros of
x(u) = u® — Aev?® — s*u+ Aes® = (u—s)(u+ 8)(u— Ac) [for m=h =0 (4.31)

and to choose ¢ > s/\ to ensure there is no zero in between. Holding s,h and m fixed,
three more possibilities arise as we decrease ¢. When ¢ = s/\, y has a double zero at N
(Fig. 4.2i) with a single point fibre over it and the common level set becomes a horn torus.
For —s/\ < ¢ < s/, the third zero of y moves from N to the latitude u = Ac. By Result
1, the allowed latitudes go from u = —s to u = Ac¢ (see Fig. 4.2j), and the common level set
returns to being a 2-torus. Finally, when ¢ = ¢,,;, = —s/, the only allowed latitude (S) is
a double zero and the common level set shrinks to a point (see Fig. 4.2k).

(C5) x has a zero at just one of the poles and is negative elsewhere on the S-sphere.
The common level set is then a single point. We encountered this as a limiting case of (C2)
where y has a double zero at S as in Fig. 4.2e. This can also happen when y is negative
on the S-sphere except for a triple zero at either S (k< 0) or N' (k> 0) (see Eq. (4.30)).
For example, when k =X =s=1, c¢=3,m =2 and h = —2, y has a triple zero at N as
in Fig. 4.21.

4.1.4 Nature of the ‘Hill’ region and energy level sets using Morse
theory

In this section, we study the ‘Hill’ region WE | which we define as the set of points on the

symplectic leaf M with energy less than or equal to E:
Wem = {p € Mg,|H(p) < E}. (4.32)

The H = Ek? energy level set ME is then the boundary of W2 . Taking R;» and P

(4.5) as coordinates on M | we treat the Hamiltonian

H P:+P; Im A2 A2 1
o= 1TQ+7(R1P2—R2P1)+§(Rf+R§) (R} + R3 + 3m* — 4c)+§(2c—m2)2+c+w
(4.33)
as a Morse function [48]. The nature of critical points of H depends on the value of 2¢ —m?.
There are two types of critical points: (a) an isolated critical point at Ry o = P2 = 0 which

exists for all values of 2c — m? and (b) a ring of critical points

A
RP+ R2=2c—m® with (P,P)= Tm (Ry, —Ry)., (4.34)
which exists only for 2¢—m? > 0 and shrinks to the isolated critical point when 2¢ —m? = 0.

The energy at these critical points is

A2 " 1 1
Eiso = g(ZC —m ) + ¢+ W and Ering =Cc+ W (435)
Upon varying ¢ and m, the isolated critical points cover all of the static submanifold >, while
the rings of critical points cover the static submanifold ¥5. By finding the eigenvalues of the
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Hessian of the Hamiltonian at these critical points, we find that for 2c —m? < 0 the isolated
critical point G is a local minimum of energy (four +ve eigenvalues). In fact, for 2c—m? < 0,
the isolated critical point has to be the global minimum of energy as the energy is bounded
below and there are no other extrema of energy. For 2¢ —m? > 0, the isolated critical point
becomes a saddle point (two +ve and two -ve eigenvalues) with energy Fg.q = Fis,. On the
other hand, the ring of critical points are degenerate global minima (three +ve and one zero
eigenvalue). To apply Morse theory, we need the indices of the critical points of H (number
of negative eigenvalues of the Hessian). From the foregoing, we see that the ground state G
has index zero, the saddle point has index two and the degenerate critical points on the ring
may be nominally assigned a vanishing index.

Change in topology of the Hill region: According to Morse theory [48], the topology of
the Hill region can change only at critical points of the Hamiltonian. (a) For 2¢ —m? < 0,
there is only one critical point, the global minimum G with index zero and energy Eg = Fig, .
Thus, as E increases beyond Eg, the Hill region WE goes from being empty to being
homeomorphic to a 4-ball (B* = {x € R® with [|x|| < 1}) arising from the addition of a
0-cell. (b) For 2¢—m? > 0, there are two critical values of energy Eiing < Egaq corresponding
to the ring of critical points and the saddle point. The index vanishes along the ring of critical
points, so when E crosses Eying, the Hill region acquires a 3-ball (0-cell) for each point on
the ring corresponding to the 3 positive eigenvalues of the Hessian. Thus WE =~ B3 x S1
for Fing < F < Ega. The saddle point with F = Egq has index two, so the topology of
WZE changes to B* upon adding a 2-cell to B® x S! (the analogous statement in one lower

m

dimension is that adding a 2-cell to the hole of the solid torus (B? x S') gives a B?).

Nature of energy level sets: The energy level set MZ is the boundary of the Hill region,
ie. ME = OWE . Tt is a 3-manifold except possibly at the critical energies. Thus for
2c —m? < 0, ME =~ 9B* =~ S3 for all energies E > Eg. On the other hand, when
2¢ —m? > 0 the energy level set undergoes a change in topology from S? x S! to S® as
crosses Fg.q.

The energy level sets at the critical values Eq, Fsq and Ein, are exceptional. For given
¢ and m with 2c —m? < 0 and E = Eq, ME is a single point on Y, (the critical point),
since G is the nondegenerate global minimum of energy. When 2¢ — m? > 0, E = E,,q fixes
s = (A/2)(2¢ — m?) leaving a range of possible values of h € (Amin, hmax), Whose values are
determined by eliminating u from the conditions x(u) = x’(u) = 0. This leads to a three-
dimensional energy level set. MEsd includes one horn torus with its center as the saddle point
for h = hg,q as well as a one parameter family of toroidal level sets for Ay, < h # hgaa < Amax
and a pair of circular level sets occurring at Ap;, and hpy.,. Interestingly, horn tori arise only
when FE = Ey,q, since s = (\/2)(2c — m?) is a necessary condition for horn tori (see Section
4.2.2). Thus, the horn torus is a bit like the figure-8 shaped separatrix one encounters in
particle motion in a double well potential. Finally, the ' = FE\;,, level manifold consists of a
ring of single point common level sets, each lying on the static submanifold 3. Unlike static
solutions and horn tori, circular and 2-toroidal level sets also arise at noncritical energies.
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4.2 Foliation of phase space by tori, horn tori, circles
and points

For generic allowed values of the conserved quantities ¢, m,s and h, their common level set
in the M9 ; phase space is a 2-torus. As noted, this happens when y has simple zeros along
a pair of latitudes of the S-sphere and is positive between them. However, this 4-parameter
family of invariant tori does not completely foliate the phase space: there are some other
‘singular’ level sets as well: horn tori, circles and points. The union of single-point level sets
is 3y U X3 (4.4), consisting of static solutions. They occur when x(u) has a triple zero at
u = s or is a local maximum at a double zero at u = +s. We will now discuss the other cases
in increasing order of complexity. In each case, we view the union of common level sets of a
given type as the state space of a self-contained dynamical system which has the structure of
a fibre bundle over an appropriate submanifold of the space Q of conserved quantities. The
fibres in each case are circles, horn tori and tori. The dynamics on the union of circles and
tori is Hamiltonian and we identify action-angle variables on them. On the other hand, we
show that the dynamics on the union of horn tori is a gradient flow.

4.2.1 Union C of circular level sets: Poisson structure & action-
angle variables

In this section, we show that the union of circular level sets is the same as the trigonomet-
ric/circular submanifold C (introduced in Section 3.2.5) where the solutions are sinusoidal
functions of time. Local coordinates on C are furnished by ¢, m,u and 6 (or equivalently ¢)
and we express the Hamiltonian in terms of them. The Poisson structure on C is degenerate
with ¢ and m generating the center and their common level sets being the symplectic leaves.
While u is a constant of motion, 6 evolves linearly in time. We exploit these features to
obtain a set of action-angle variables for the dynamics on C.

4.2.1.1 C as a circle bundle and dynamics on it

As pointed out in example (C3) of Section 4.1.3.4, the common level set of conserved quan-
tities is a circle when the cubic x(u) (4.24) has a double zero at a nonpolar latitude of
the S-sphere and is negative on either side of it. In this case, the latitude u is restricted
to the location of the double zero. To identify the three-dimensional hypersurface Q¢ in
the four-dimensional space Q of conserved quantities, where y has a double zero at a non-
polar latitude, we will proceed in two steps. First, we compare the equation y = 0 with
(u — us)?(u —uy) = 0 to arrive at the three conditions:

Qs+ur = Ac,  uz+2usuy = — (s°+hmA)  and —uju; =

N >

((2c —m?)s®> — h?) . (4.36)
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The first two may be used to express the roots us and wu; in terms of conserved quantities:

uE = (1/3) ()\c + /A2 1 3(s2 + )\hm)) and uF = Ac — 2us. (4.37)
The third equation in (4.36) then leads to the following conditions among conserved quantities
27TAR? — 36Acs? 4+ 27Am%s® + 18N\ chm + 4X3¢® = F4(3s> + A(3hm + A\c?))*/2. (4.38)

Squaring, these conditions are equivalent to A = 0, where A is the discriminant (4.25) of
X . The three-dimensional submanifold of Q defined by A = 0, however, includes 4-tuples
(¢, m, s, h) corresponding to horn toroidal (double zero at the pole u = s) or single-point
(triple zero at u = s or double zero at u = s or —s) common level sets, in addition to circular
level sets. To eliminate the former, we must impose the further conditions us # uy, |ug| < s
and x"(uz) < 0. This last condition, which says us < Ac/3, selects the roots u; o = u;, in
(4.37). These conditions define the three-dimensional hypersurface Qr C Q corresponding
to circular level sets. Now, ¢,m and s may be chosen as coordinates on Q¢, with (4.38)
allowing us to express h in terms of them. Interestingly, we find by studying examples,
that for values of ¢, m and s corresponding to a circular level set, there are generically two
distinct values of h; so we would need two such coordinate patches to cover Q. The union
of all these circular level sets may be viewed as a sort of circle bundle over Q¢ and forms a
four-dimensional ‘circular’ submanifold C of M¢ ;. As shown in Section 3.2.5 and Section
3.2.6, this circular submanifold along with its boundary coincides with the set where the
four-fold wedge product dh A ds?> A dm A dc vanishes.

The equations of motion (2.23) simplify on the circular submanifold C. Indeed, since
S3 = ku is a constant, S3 = 0 so that S;/Ss = Li/Ly implying that 6 — ¢ = nm where
n € Z. As shown in Section 3.2.5, the equations of motion then simplify to

Sl = _¢SQ, 52 = éSl, Ll = kSQ and L2 = —kSl (439)
with sinusoidal solutions:
S1/k = Asinkwt + Bcoskwt and Ss/k = Acoskwt — B sin kwt. (4.40)

Here, using (2.25), w = S12/L1s = (—1)"p/r = —¢/k = —0/k, which varies with location
on the base Q¢. It is the nondimensional angular velocity for motion in the circular fibres.
Since p and r are positive, (—1)"w = |w|. Here both § and ¢ evolve linearly in time and
the equality of

. k .

0= (—1)"+l—p and ¢ = kA (m + (—1)”K) (4.41)

r p

implies that the constant of motion u may be expressed in terms of w and m:

u=—w(m-+w/A). (4.42)

Remark: If the S-sphere shrinks to a point (s = h = 0) then one still has circular level sets consisting of

2

latitudes of the L-sphere determined by m, provided 2¢ > m*. However, each point on these exceptional

circular level sets is a static solution lying on X3 (4.4).
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4.2.1.2 Canonical coordinates on C

Local coordinates on C: For the analysis that follows, a convenient set of coordinates
on the ‘circle bundle’ C consists of ¢,m and w for the base Q¢ and # for the fibres. The
dynamics on C admits three independent conserved quantities as there is one relation among
¢,m,s and h following from (4.38). Since the common level sets of the conserved quantities
on C are circles, rather than tori, it is reasonable to expect there to be two Casimirs (say
¢ and m) for the Poisson structure on C, as we show below. In fact, C is foliated by the
common level surfaces of ¢ and m (symplectic leaves) which serve as phase spaces (with
coordinates w and #) for a system with one degree of freedom. 6 is then the coordinate
along the circular level sets of the Hamiltonian on these two-dimensional symplectic leaves.

To find the reduced Hamiltonian on C we express the remaining variables in terms of
¢,m,w and . The formula for ¢ (3.29) along with (4.42) determines r? = 2¢ — m? +
(2w/A)(m 4+ w/A) and consequently p = |w|r as well. The remaining conserved quantities
are given by

2
h = (=1)"pr —mu=uw <2c—m2+7w <m+§)> + mw (m—i—%) and
2mw  3w?
2 _ 2., .02 o 2
7 = piHut=2w (C+T+2_)\2) (4.43)
Thus, the reduction of the Hamiltonian (3.1) to the trigonometric submanifold is
2mw  3w? 1
_ g2, 2
H(c,m,w)—k (Cd <C+T+2—)\2)—|—C+2—)\2> (444)

As remarked, for given values of ¢,m and s, there are generically two possible values of h
corresponding to two points on Q¢. By considering examples, we verified that for each of
them, there is a unique w that satisfies (4.42) and both the equations in (4.43).

Poisson structure on C: We wish to identify Poisson brackets among the coordinates
¢, m,w and 6 that along with the reduced Hamiltonian (4.44) gives the equation of motion
0 = —wk on C. As noted, it is natural to take ¢ and m as Casimirs so that {c,m} =
{e,w} = {m,w} = {c,0} = {m,0} = 0. The only nontrivial Poisson bracket {#,w} is then
determined as follows from (4.44):

-1

) k 1 3
b=~k ={0.H} = 0,H{0.0} = {fw}=—5"0=—0 <c+7°" (m+§))

(4.45)
Moreover, this implies {6,u} = (2w + mA)/(k(2Ac — 6u)), which notably differs from the
original nilpotent Poisson bracket {6,u}, =0 (3.2).

Canonical action-angle variables on C: Since 6 evolves linearly in time, it is a natural
candidate for an angle variable. The corresponding canonically conjugate action variable [
must be a function of w, m and ¢ and is determined from (4.45) by the condition {0, I(w)} =
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I'(w){f,w} = 1. We thus obtain, up to an additive constant, the action variable

3mw  2w?
I(w) = —kw (2c + B + v) = —kh. (4.46)
Thus we arrive at the remarkably simple conclusion that (aside from the Casimirs ¢ and
m) —kh and 0 are action-angle variables on C. Moreover, the canonical Poisson bracket
{0, —kh} =1 agrees with that on the full phase space (see (4.67)). Our reason to work with
w rather than h as a coordinate is that the solutions (4.40) and the Hamiltonian (4.44) have
simple expressions in terms of w. By solving the cubic (4.46), w can be expressed in terms
of h, which would allow us to write the Hamiltonian in terms of the action variable —kh.

4.2.2 Union H of horn toroidal level sets: Dynamics as gradient
flow

Just as with the union of circular level sets C, the union of horn toroidal level sets H serves
as the phase space for a self-contained dynamical system. However, unlike the sinusoidal
periodic trajectories on C, all solutions on H are hyperbolic functions of time and are in
fact homoclinic orbits joining the center of a horn torus to itself (see Fig. 4.3). The centers
themselves are static solutions. Horn tori arise only when the energy is equal to the critical
value E = FEgq given in Section 4.1.4. Thus, the horn tori are like the figure-8 shaped
separatrices in the problem of a particle in a double well potential, separating two families
of 2-tori. Interestingly, though the conserved quantities satisfy a relation on each horn torus,
the four-fold wedge product dh A ds®> A dm A dc vanishes only at its center. Finally, unlike
on the circular submanifold, the flow on the horn-toroidal submanifold is not Hamiltonian,
though we are able express it as a gradient flow.

The family of horn toroidal level sets is a two-dimensional submanifold Qg7 of the four-
dimensional space of conserved quantities Q. To see this, note that a horn torus arises when
the cubic x(u) of (4.24) is positive between a simple zero and a double zero at the pole
uw = s of the S-sphere. Thus, y(u) must be of the form x(u) = (u — uy)(u — s)* where
u; = Am?/2 — s with —s < u; < s. These requirements imply x(s) = x/(s) = 0 and
X"(s) > 0. Note that each nontrivial horn torus is a smooth two-dimensional surface except
at its center which lies at the pole u = s. Trivial horn tori are those that have shrunk to the
points at their centers and arise when x”(s) = 0. The conditions x(s) = 0 and x'(s) =0
lead to two relations among conserved quantities
m2
> +

h=-ms and ¢= (4.47)

s
A’
which together imply that A = 0. The inequality x”(s) > 0 along with (4.47) restricts us

to points above a parabola in the m-s plane:
4s > Am?. (4.48)

The space Qp is given by the set of such (m,s) pairs. For each (m,s) € Q we get a horn
torus H,,s. The union of all horn tori is then given by H = Uss>am?2 H,.,.
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4.2.2.1 #H as a four-dimensional submanifold of M¢_,

Equations (4.47) and (4.48) when expressed in terms of S and L allow us to view the union
of all horn tori H as a four-dimensional submanifold of ]\/[g_ I
kSg k’2S

= and LI <

4 2
RS (aao)

S1Ly + SaLy + (S5 — ks)Ls = 0, %(L% + L3) +
For any choice of S, the first two conditions define a plane through the origin (normal to
(51,52, 53 — sk)) and a cylinder (of radius r = /(2k/A)(sk — S3) with axis along L3) in
the L-space. In general, this plane and cylinder intersect along an ellipse so that H may be
viewed as a kind of ellipse bundle over the S-space (subject to the inequality). The centers of
the horn tori are the points where S19 = L1 =0, u= S3/k = s and |L3/k| = |m| < \/4s/A
(see Section 4.2.2.2 below). Interestingly, it turns out that the inequality in (4.49) restricting
the range of L3 is automatically satisfied at all points of the base space other than when u = s
(which correspond to centers of horn tori). Indeed, let us find the range of values of L3 allowed
by the first two relations in (4.49) by parameterizing the elliptical fibre by the cylindrical
coordinate . Then Ly = rkcosf, Ly = rksinf and Ls = (2/Ar)(S; cosf + Sysinf). The
extremal values of Lz on the ellipse occur at . = arctan Sp/S; which implies that

2%k 4k
[Laf? < - (sk 4 kA) = AS — 2, (4.50)

Thus the inequality in (4.49) is automatically satisfied away from the axis r = 0 which
corresponds to the centers of horn tori.

4.2.2.2 Centers of horn tori and punctured horn tori

It turns out that the centers of horn tori are static solutions and may therefore be regarded
as forming the boundary of . In particular, a trajectory on a horn torus H,,, can reach its
center only when ¢ — 4+00. To find the space of centers O we note that they lie at the pole
u = s corresponding to S; = S = 0 and S3/k > 0. The conditions (4.49) then become
L2+ L2 kS; Kk’s 53

(S3 —ks)Ls =0, + =— and 4s> ) m® where s= 7

5 == (4.51)

The first condition is automatic, the second implies L; » = 0 while the inequality becomes
Ss > (A/4k)L%. Thus O is the two-dimensional subset of the static submanifold 35 consisting
of points on the L3-S3 plane, on or within the parabola S3 = (\/4k)L%. The points on the
parabola correspond to trivial horn tori. By eliminating their centers we obtain (nontrivial)
punctured horn tori H,,, which are smooth noncompact surfaces with the topology of infinite
cylinders on which the dynamics is everywhere non static. We let H = H \ O = Uz xm2 Hns
denote the four-dimensional space consisting of the union of punctured horn tori. Thus H
may be regarded as a cylinder bundle over the base Qg = {(m, s)|4s > Am?}. Some possible
coordinates on ‘H are (a) s,m,0,¢ (b) s,m,u,0 and (c) Si23 and either L; or Ls.
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4.2.2.3 Nonvanishing four-fold wedge product on H

We have argued that the conserved quantities satisfy the relations (4.47) on H. Despite this,
we show that the wedge product Q4 = dh A ds* Adm A dc does not vanish on H except on its
boundary O = H \ H. To see this, note that in addition to the condition A(c,m,h,s) =0
(due to the presence of the double zero at the pole u = s), all four partial derivatives of A
may be shown to vanish on H by virtue (4.47). In other words, the relation A.dc+ A,,dm +
Apdh+ A,ds = 0 following from A = 0 is vacuous on H (if not, we could wedge it, say, with
ds®> A dm A dec to show that Q4 = 0). On the other hand, we showed in Section 3.2.6 that
)4 vanishes precisely on the closure of the circular submanifold C = C LI Cy LI Cy LI (35 U X3).
Thus, to show that €4 is nonvanishing on #, it suffices to find the points common to H and
C. Now HNC is empty as x has a double/triple zero at u = s for points on H and a double
zero away from the poles for points on C. In fact, we find that H N C is contained in the
static submanifold ¥y so that €24 is nowhere zero on H and vanishes only on its boundary
O. To see that H does not have any points in common with either C; or C, we observe that
the conditions h = —ms, ¢ = s/\ + m?/2 (4.47) and the relations (S; = L; = 0 and Z3)
or (Sy = Ly, = 0 and Z,) that go into the definitions of  and C; or Cy (see Section 3.2.6),
together define a parabola in phase space

4k53 = )\L% with kSg Z 0 and L172 = 51’2 =0. (452)

This parabola is contained in Y5 but does not lie on H,C; or Cy as the inequalities 4s >
Am?,|Sy| > 0 and |S;| > 0 appearing in the definitions of H,C; and C, are saturated along
it. Points on this parabola correspond to horn tori that have shrunk to the single point at
their centers and correspond to cubics y with a triple zero at u = s. Thus, this parabola lies
along the common boundary of H,C; and C;. Combining these results we see that €y # 0
on H, but vanishes identically on its boundary consisting of the space of centers O.

4.2.2.4 Equations of motion on the horn torus:

On the horn torus H,,s the evolution equation for u (4.11) simplifies:
2
w? = 20k*x (u) = N2k* (s — u)? [X(S +u) — mz} . (4.53)

We may interpret this equation as describing the zero energy trajectory of a nonrelativis-
tic particle of mass 2 with position w(t) moving in a one-dimensional potential V(u) =
—2Mk*x(u). Since V(u) is negative between the simple and double zeros at u; and s, the
former is a turning point while the particle takes infinitely long to reach/emerge from u = s.
Thus, the trajectory is like a solitary wave of depression. Choosing «(0) to be its minimal
value u; = —s + Am?/2, the trajectory of the particle is given by

1
VK2 (4s — Am?2)’

(4.54)

t
u(t) = uy + (s — uy) tanh? (2—) where 7 =
T
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Notice that as t — +o0, u(t) — s and the solution approaches the center of the horn torus.
Interestingly, the vector field & = y/—V (u) is not smooth at u = wu;, which is a square root
branch point. Thus, there is another solution u(t) = w; with the same initial condition (IC)
u(0) = wuy, which however is consistent with the L-S equations of motion (2.23) only when
s = 0. Note that (4.54) can be obtained as a limit of the p-function solution given in Section
4.1.2. On a horn torus, one of the half periods of the p-function is imaginary while the other
diverges leading to the aperiodic solution (4.54).

To describe the trajectories on a horn torus H,,s we use the coordinates 6 = arctan(Ly/L;)
and ¢ = arctan(Sy/51) in terms of which the equations of motion (3.36) simplify to

. . 2 —_—
j— EmA ond ¢ — kmAs _ 2ks cos®(0 qb)' (4.55)

2 S+ u m

Notice that 6 is monotonic in time: increasing/decreasing according as sgn(km) = £1. It is
convenient to pick ICs on the curve u = u; resulting in the solution

o(t) = 60(0) + @ and  ¢(t) = ¢(0) + @ + arctan (%) : (4.56)

Though 6 and ¢ are both ill-defined at the center of the horn torus (L;s = S12 = 0), we
notice from (3.34) that the difference 6 — ¢ is well defined at the center:

tLirinoo(H(t) — ¢(t)) = arccos 4/ )\4—722 = lim(0 — ¢). (4.57)

Since 6 is ill-defined at the center u = s, it is convenient to switch to the ‘embedding’
variables:
(¢ — )

¢ sgn(mk) arctan (1/mAkT)
The advantage of 6, is that it approaches +m/sgn(mk) as t — +oo on any trajectory on

and ¢, = ¢. (4.58)

H,,,. We may visualize the dynamics via the following embedding of the horn torus in
Fuclidean 3-space:

r = R(1+cosb.)cosp., y=R(l+cosb,)sing. and z= Rsinb.. (4.59)

Here R is the major (as well as the minor) radius of the horn torus (see Fig. 4.3a). Alterna-
tively, we may realize the punctured horn torus as a cylinder in three-dimensional space via
the embedding

r=Rcos¢., y=Rsing, and z=70,. (4.60)

The center of the horn torus lies at 6, = 7 (mod 27) with ¢, arbitrary (see Fig. 4.3b). As
t — +oo all trajectories spiral into the center of the horn torus as shown in Fig. 4.3. Thus,
every trajectory is homoclinic, beginning and ending at the center of the horn torus.

As noted in Section 4.1.4, horn tori arise only at the saddle points of the Hamiltonian
H = k%?E,,q. Thus, they are analogs of the figure-8 shaped separatrix at energy ga* familiar
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(a) (b)

Figure 4.3: Six trajectories on a punctured horn torus (with s = 1,m = —1 and A = k = 1) displayed in
two embeddings [(a) Eq. (4.59) and (b) Eq. (4.60) with R = 1.5] passing through the points 6.(0) = 0 and
¢c(0) =0,7/3,27/3,m,47/3,57/3 extended indefinitely forward and backward in time. Trajectories emerge
from the center (at t = —oo) and approach the attractor at the center as ¢ — oo showing that the phase
space volume cannot be preserved. In (b), the top and bottom rims of the cylinder correspond to the center
of the horn torus.

from particle motion in the one-dimensional potential V(z) = g(z? — a?)?. For fixed ¢,m
with 2c —m? > 0, and E = Eq, h can take a range of values from Apyi, t0 hyax. There is
a critical value hg,q in this range at which the common level set is a horn torus. It is flanked
by 2-tori on either side. Thus, horn tori separate two families of toroidal level sets with the
real half-period wp of the p-function diverging as h — h=

sad *

4.2.2.5 Flow on H is not Hamiltonian

The equations of motion on H

. 2 _
§=1 =0, gzékm)\ and ¢:kmAs:2kscos(9 )

s+u m

, (4.61)

do not follow from any Hamiltonian and Poisson brackets on H. This is because time-
evolution does not satisfy the Liouville property of preserving phase volume: every initial
condition is attracted to the center of a horn torus. Said differently, the flow can map a subset
Iy of H into a proper subset I; C Iy. To show this, it suffices to consider the dynamics on
each H,,; separately since the dynamics preserves individual punctured horn tori. Thus,
consider the ‘upper cylinder’ subset of H,,s: Iy = {(¢¢,0.)| 0 > Oy for some — 7w < Oy < 7}.

Then p
t) — o(t
r(6(t) — 6(1)) o
sgn(km) arctan(1/kTm\)

is its image under evolution to time ¢. Since 6. is monotonic in time, we observe that for
km > 0, I; form a l-parameter family of subsets with decreasing volume (relative to any
reasonable volume measure on H,,s) while vol(l;) grows if km < 0. Thus, the Liouville
theorem would be violated if the dynamics on H,,s or H were Hamiltonian.

[t = {(@,96)‘96 > 90 -
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Interestingly, time evolution on H may be realized as a gradient flow. As before, we
focus on the dynamics on each H,,s separately. Since W = —sgn(km)f# is monotonically
decreasing in time (4.61), we choose it as the potential function for the gradient flow

y o . y 2k 2(0 — kmA\
€= (6.0) = Vi) =~ whore ve= 2SSO0 g e B
0&J m
The inverse-metric on H,,s that leads to this gradient flow must be of the form
49 = sen(km) (;E z) | (4.64)

Here T is an arbitrary function on H,,; which we may choose so that the metric is, for
simplicity, Riemannian (positive definite). This is ensured if

detg >0 < TI>¢> and trg'>0 < sgn(km)(Y +6) > 0. (4.65)

The second condition is implied by the first, so a simple choice that ensures a Riemannian
metric is T = (¢%/0) + sgn(km) e, for any € > 0. It might come as a surprise that this
gradient flow admits homoclinic orbits beginning and ending at the center. Such orbits are
typically forbidden in gradient flows. Our horn tori evade this ‘no-go theorem’ since the
potential W oc 6 is not defined at the centers of horn tori.

4.2.3 Dynamics on the union 7 of toroidal level sets

For generic values of ¢, m, s and h, i.e., for which the discriminant A # 0 (4.25), the common
level sets are 2-tori as shown in Section 4.1.2.1 and Section 4.1.3. The union 7T of these 2-tori
may be viewed as the state space of a self-contained dynamical system. Here, we express T
as a torus bundle over a space Q7 of conserved quantities, and find a convenient set of local
coordinates on it along with their Poisson brackets implied by (3.2). We use this Poisson
structure and the time evolution of w in terms of the p function (4.14) to find a family of
action-angle variables on 7. Finally, we show that these action-angle variables degenerate
to those on the union C of circular level sets when the tori degenerate to circles.

4.2.3.1 Union of toroidal level sets

Let us denote by Q7, the subset A(c,m, s, h) # 0 of the space Q of conserved quantities for
which the common level sets are 2-tori. On Q7 the cubic x(u) (4.24) is positive between two
adjacent simple zeros i, and uy., and the common level set MfoL is a torus. Thus, on Qr
the cubic takes the form x(u) = (4 — Umin) (Umax — ©) (uz —u) With —s < Uiy < Upax < s and
Umax < usz. In this case, when x(u) is written in Weierstrass normal form using v = av + b,
the invariants g, and g3 are real and the discriminant of the cubic is nonzero. It follows that
the half periods wg and w; of Section 4.1.2 are respectively real and purely imaginary. We
designate the union of these tori 7 C M$ ; and the corresponding union for fixed ¢ and m,
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T2 . Here, T may be visualised as a torus bundle over Q7. While 6 and ¢ furnish global
coordinates on the torus M:" it is more convenient, when formulating the dynamics, to work
with the local coordinates (u, ) where cos(d — ¢) = (h+mu)/rp. An advantage of w is that
unlike ¢, it commutes with h. However, since the cosine is a 2:1 function on [0, 27|, we need
two patches Uy with local coordinates (u, 6) to cover the torus with uyi, < vt < Upayx and

0 <6 <27. In the Uy patches, the formula for ¢ is

h
¢ = 6 £ arccos ( i mu) : (4.66)
P o]

where the arccos function is defined to take values between 0 and m. Whenever u reaches
either i, Or Umax, the trajectory crosses over from one patch to the other.

Figure 4.4: Trajectory on an invariant torus for the parameters k = A = 1,c = 3,h = 1,m = —1,s = 1
and R =2 for 0 <t < Thwgr (wgr ~ 1.41 is the real half-period of u (4.14)) displayed via the embedding
x = (R+ gcosb)cosg., y = (R+ pcosb,)sing. and z = gsinf,. The poloidal and toroidal angles are
0. = arcsin ((u — @)/p) and ¢ = ¢ with @ = (Umin + Umax)/2 and 9 = (Umax — Umin)/2. Unlike the angle
variables 0! and 6? (4.88), which are periodic on account of their linearity in time, neither 6, nor ¢, is
periodic.

4.2.3.2 Poisson structure on T

On 7T, we use the local coordinates ¢, m, s, h,0 and u. The Poisson structure following from
the nilpotent Poisson brackets (3.2) is degenerate with the Casimirs ¢ and m generating the
center. The Poisson brackets among the remaining coordinates (on 734, ) are:

B B B 1 _h+mu  p B 0
{87 h} - {ha u} - {eau} - 07 {h7 6} - k? {87 0} - ksr? - ksr COS(Q ¢) - /{Z25’
A 20k x (u) rpA | U
— = S22 2 _ - _ —_d) = —
{s,uz} = ¥, Vr2p? — (h4+mu)? = F Ep s sin(f — ¢) 12 (4.67)

All the Poisson brackets other than {s,u} have a common expression on both patches U, .

Here r? = 2¢ — m? — 2u/\ and p? = s — u?®.

4.2.3.3 Action-angle variables on 7

We seek angle-action variables (0*,6% I;,I,) on T satisfying canonical Poisson brackets

{0,y ={;,;} =0 and {0, I;} =0.. (4.68)
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The action variables I; and I must be conserved and therefore functions of s and h alone,
while the angles 0" and 6% must evolve linearly in time: 67 = Q;(s, h). Here we suppress the
parametric dependence of 6" and I; on the Casimirs ¢ and m which specify the symplectic
leaf. In what follows, we use the p-function solution (4.14) along with the requirement
of canonical Poisson brackets to find a family of action-angle variables. Despite some long
expressions in the intermediate steps, the final formulae (4.88) for (#°,1;) are relatively
compact. Though we work here with the nilpotent Poisson structure (4.67), it should be
possible to generalize the resulting action-angle variables to the other members of the Poisson
pencil (3.9).

Determination of ' and I;: The evolution of u (4.14) gives us one candidate for an
angle variable evolving linearly in time

m:k(p1(%%(%—%)w%%)—a@mugm>:k@+m) (4.69)

The factor of k is chosen to make #' dimensionless. Here, g, and g3 (4.13) are functions of
the conserved quantities. From the definition of 6!, it follows that the frequency Q; = k.
Choosing « to be the imaginary half-period w; of the p-function in (4.14) ensures that 6
is real. An action variable conjugate to 0! is

ks?

Li(s,h) = ==+ f(h), (4.70)
where f'(h) # 0 is an arbitrary function of h (and possibly ¢ and m) to be fixed later.
Upto the function f, I; is proportional to the Hamiltonian (3.30). Eq. (4.70) is obtained by
requiring

90" oI I(p~H(v) — ) v dI kol
1 _ovoh _ oly kol
by = s U = uas Y T i s s (4.71)
Here, v = (u—b)/a (see Section 4.1.2) and we used the relation
Op~'(vig2,93) 1 _a
=-== 472
ov v (4.72)

For future reference we also note that as a consequence, 90'/du = k/u. This derivative
diverges at Uy, and uyay, which are the roots of x.

Determination of > and I,: To identify the remaining action-angle variables I5(s, h) and
0%(u, 0, s, h) we first consider the constraints coming from the requirement that their Poisson
brackets be canonical. While {I;, I} = 0 is automatic, {#',I,} = 0 implies that I5(s,h)
must be independent of s:

I I I
a%M}+aQ L Wy (4.73)

_ 1
0=1{0" 1} = oh ds
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The remaining Poisson brackets help to constrain 6?. For instance, {62, I5(h)} = 1 forces 62
to be a linear function of §:

(0?, I(h)} = 89 (), h}——ai]/]i)_l = 0= — I,’(“h)9+g<u,s,h) (4.74)

Here ¢ is an arbitrary function which we will now try to determine. Next, {6, I;} = 0
implies that 6% evolves linearly in time:

00> 00> . 00 0% . 892
2 = — —_— = 2 = 4 P
6° 2 0+ u, s, h). 4.75
0+ s, (4.7

Comparing (4.74) and (4.75), it follows that Qo = —kf'(h)/I5(h) is independent of s. We
may use (4.75) to reduce the determination of the dependence of 6% on u to quadratures:

Q- Jg(u,s,h) .
02 = Q) 0 : 4.76
() M (4.76)
Using (3.36) and (4.11) we get
k h+mu
06? _Jg L+ w5 (Qc—m—;—Qu/)\)
— 40, . (4.77)
O Ou 20E2x (u)
Integrating,
g(u, s, h) +1 < kmA) du’ kmA <h )/“ du’ _
= 1- — + + 7h )
%~ v |\ 2700 L ) 2700 ) o ) i | T
(4.78)

where 1y = ¢/\ — m?)\/2. Recognizing these as incomplete elliptic integrals of the first and
third kinds (F and II), we get (see Section 3.131, Eq. (3) and Section 3.137, Eq. (3) of [30])

g |2 km) |[(2f(h) F(v,q) h 1 (7’ T uf:i””q) i
@_i NE 27 ( —1)+<m+uo)( +g(s, h).
(4.79)

kEmA\ U3 — Umax ug — umln) VvV U3 — Umin
Here, g(s,h) is an integration constant, u € [Umin, Umax] Where —s < Upin < Upax < U3
(which are functions of ¢, m,s and h) are the roots of the cubic y(u). Moreover, the ampli-
tude and elliptic modulus are

. U — Umin Umax — Umin
y=arcsiny/ ——— and ¢=,/——. (4.80)
Umax — Umin U3 — Umin

To find the s dependence of 62, we notice that the last Poisson bracket {6',6%} = 0 gives

the following relation among derivatives of 62:

@0y = 20y Doy 2y + O e =
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00? 06" 00? 06" 002 061 09? 061
%@*ﬂ*ﬁﬁmﬂﬁmamaﬁﬁﬁwwﬂw

Using the known formulae for the partial derivatives (4.69, 4.72, 4.75, 4.76)

90— f'(h)y du

f'(h)

we find the s dependence of 6* from (4.81):

2 2 ] 1
% Qz 06 QQ (1 i ) s aaiu = % and 85,h01 = k@sjh(p_l—w,-), (482)

o _
ds

ks
-1 -1
Qa(h) [as(@ —wr) — mah(@ - WI)] : (4.83)
In effect, we have two expressions ((4.79) and (4.83)) for 9,6*. We exploit them to reduce
the determination of the s dependence of 6* to quadrature. Comparing 9, (4.79) with (4.83)
gives

[2 km\ | (2f(h F h I (1, S
0. — 2 o1y 4|2 Fm () (v:9) Y L ( 0 )
0s Ak2 2f'(h) kmA U3 — Umax m (4o — Umin )/ U3 — Umin

k
_Wz)ah(p_l ~wr). (4.84)
Thus
j(s,) = 97! 2 hmA 200\ _Flua) | (h I (. tamsms )
g(s’ h) I \/;Qf,(h) |:< hm . 1> Uz — Umax * (m " uo) (UO - Umin)\/m
5 ks . .
. Wah(p —wy) ds" +n(h). (4.85)

Here n(h) is an arbitrary ‘constant’ of integration. Now, using (4.85) in (4.79) results in
some pleasant cancellations leading to a relatively simple formula for g:

g(ua3>h) -1 k /S / -1 /
= = —wy — —— 0 — d h). 4.86
= o e | o™ ) ds ) (1.56)
This determines the angle variable 62(0,u, s, h) = Q0/f'(h) + g(u,s,h). It is noteworthy
that o~ — wr is simply 6'/k. The integral over s’ is from oo since, for sufficiently large s,
A (4.25) is always positive so that Mf,ﬁ is a torus. However, we must take s > s.in, which

is the value at which A vanishes and the torus M:" shrinks to a circle.

Remark: Consistency requires that the RHS of (4.85) be independent of u, which enters through ~! and ~.
We verify this by showing that 9, (4.86) agrees with (4.77). In fact, from (4.86) and using @ = ++/2 k2 (u)
and (4.24),

k h+mu
R / N B / Mhtma) o, Lt phy ()
— = - — o (1 d = - ds' =+ 2 )
Gou 0wy J =TT m | e TN X (1)
(4.87)

which agrees with (4.77). As x (4.24) is a quadratic function of s’, the integrand behaves as 1/s"? for large
s, so that the lower limit does not contribute.
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Summary: Thus, aside from the Casimirs ¢ and m, the action-angle variables on the union
of toroidal level sets T are given by the following functions of s, h, v and 6:

ks? L (FA cA
L = > + fan(h), 0" =k (p ! (T (U_ ?) 592a93) —wr(e,m, s, h)) ’

1 1 s
I, = Iyh;e,m) and 67 =Qy <% + % ~ / s' 00" ds' + n(h)) . (4.88)

cm

cm oo

We have verified by explicit calculation that these variables are canonically conjugate. As
a function of u € [Umin, Umax], 0 increases from zero to kwgr (4.14). As noted, 6% depends
linearly on €, but finding its dependence on u,s and h requires the evaluation of the inte-
gral over s’ in (4.88). We have not been able to do this analytically but could evaluate it
numerically for given ¢ and m. Here, f,n and I, are arbitrary functions of h, with f’ and
I, nonzero and the frequency Qo = —kf'(h)/15(h). A simple choice is to take

F(h) = —Iy(h) = kh and n(h) = 0. (4.89)

For this choice, the Hamiltonian (3.30) acquires a simple form in terms of the action variables

H = k(I + L) + k? <C+$) : (4.90)
The corresponding frequencies §); = 0H/0I; are then both equal to k. Though the frequen-
cies are equal, the periodic coordinates #' and 62 generally have different and incommensu-
rate ranges, so that the trajectories are quasi-periodic (see Fig. 4.4). While we do not have
a simple formula for the range of 6%, that of ' is 2kwr (twice its increment as u goes from
Umin 1O Umax, see Eq. (4.14)), which depends on the symplectic leaf and invariant torus via
the four conserved quantities.

Relation to action-angle variables on the circular submanifold: Finally, we show how
the action-angle variables obtained above degenerate to those on the circular submanifold C
of Section 4.2.1, where the elliptic function solutions reduce to trigonometric functions with
the imaginary half-period w; diverging. For given ¢,m and h, we must let s — sy to
reach the circular submanifold. On C, the simple zeros of x, Umin and wum., coalesce at a
double zero so that u becomes a constant. Thus, the angle variable 0 (4.88) ceases to be
dynamical. In the same limit, from (4.88), the surviving angle variable 62 becomes a linear
function of 6 with constant coefficients. Moreover, for the simple choices of Eq. (4.89), we
get I, = —kh and 6% = 6 upto an additive constant. Pleasantly, these action-angle variables
are seen to agree with those obtained earlier on C (4.46).



Chapter 5

Quantum Rajeev-Ranken model as an
anharmonic oscillator

In this Chapter, which is based on [43], we discuss some aspects of the quantum version of the
Rajeev-Ranken model. We begin with Rajeev and Ranken’s mechanical interpretation of the
model in terms of a charged particle moving in an electromagnetic field and its quantization.
We find an error in their calculation of the effective potential seen by the particle which
unfortunately affect their results on the spectrum and strong coupling dispersion relation.
We derive the corrected effective potential in Section 5.1 and to be doubly sure we also take
a complementary approach by interpreting the RR model as a quartic oscillator. Using this
new mechanical interpretation we canonically quantize the model and separate variables in
the Schrodinger equation. Its radial equation is shown to be an ODE of type [0, 1, 14] (in
Ince’s classification, see Appendix E, Section E.4), which may be regarded as a generalization
of the Lamé equation. We analyze a weak and a novel strong coupling limit of the radial
equation to obtain dispersion relations for the corresponding quantized screw-type waves. In
another direction, we interpret the EOM of the RR model as Euler equations for a step-3
nilpotent algebra and exploit our canonical quantization to find a unitary representation of
this algebra.

5.1 Electromagnetic interpretation of the RR model

Before interpreting the RR model as an anharmonic oscillator, we revisit the mechanical
interpretation given by Rajeev and Ranken in terms of a charged particle moving in a static
electromagnetic field. Here, we implement this general idea and derive the classical and
quantum equations of motions. In the process, we notice certain errors in the analysis of
Rajeev and Ranken, which affect their results on the spectrum and dispersion relations. This
unfortunately cast doubts on their results.

The Hamiltonian of the RR model in Darboux coordinates {R,, kFPy} = 04 for a,b =

61
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1,2,3 is:
3
H P2 Am A2 4 1 m?
— = =+ — (R1P, — RyP — (R?+ R2) |R?+ R3 o P— < —.
2 a:12+2(12 2P g (B 1) | Ry R m” = 3 (B 5 )+ 5
(5.1)
Suppose the Cartesian position and momentum coordinates of a charged particle are
T,Y,z = R17273 and pIyy,Z = ]{JP17273, (52)
then the Hamiltonian in (5.1) can be rewritten as:
H 1 g mky 2+ +q)\mk::v 2+ q)\k:( 24 y?) ? +qk2( 2 o2 )
= 5 r T o \T v m-),
2u [\F 2 Py T o0 P2 "5 Y 2 Y
(5.3)

in units where the charged particle has mass pu = 1, charge ¢ = 1 and the speed of light
¢ = 1. This describes a charged particle moving in an EM field arising from the vector and
scalar potentials:

A, = Xmky Ay:—Amkx, A =2E02) and
2 2 2
Vir,y.2) = 5@ +y +m’). (5-4)

The corresponding electromagnetic field is axisymmetric with E pointing radially inward
and B having both azimuthal and axial components:

E=—k*(zd +yy) and B =Mk (yi —a)—m2). (5.5)

The Hamiltonian in (5.3) along with the canonical PBs {x,p,} = {y,p,} = {2,p.} =1 gives
the Newton-Lorentz equations ui = ¢(E + v/c x B). In fact, using

1 Amk 1 Amk 1 Ak
T = — p:p_qmy ) y:_ py‘i‘qu and 2= — pz_q (:c2+y2) ’
W 2c o 2c H 2c

(5.6)
we get the NL equations in component form
pi = —qk®r + Ik (—my +x2), pij=—qk*y+ Tk (m& +yz) and
c c
ni = —%)\k: (x4 yy) . (5.7)

These are seen to agree with (2.27) in units where y = ¢ = ¢ =1 upon use of (5.2).

5.1.1 Classical Hamiltonian in terms of cylindrical coordinates

The Hamiltonian (5.3) is invariant under rotation about and translation along the z-axis, so
we make a canonical transformation to cylindrical coordinates r = /22 + 32, 0 = arctan(y/z),
and z and their momenta p, = (xp, + ypy,)/7, P = —Yps + xp, and p, satisfying the PBs

{T7pr} = {0,]79} = {Z)pz} = 1. (58)
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The Hamiltonian corresponding to (5.3) is [57]

2
H:i p?+@+( Z—qf'z)Q + qV (r), (5.9)
where the scalar and the magnetic vector potentials are
V(r)= w and A= %(—mr@ +722). (5.10)
The resulting electric and magnetic fields are
E= k%7 and B= -\ (ré + mé) . (5.11)
In terms of velocities the canonical conjugate momenta are
pr = pir,  pp = puril + q_zje and p, = pz+ qu. (5.12)

Note that pg = rp -0 and Ay = —(Akmr?)/2 =rA - 0 are not simply the # components. In
terms of these coordinates (5.7) become

it = prfP—gk?r+ L Okrs—xmkr),  pi= -k and  prd = Dmkr—2ur6. (5.13)
C C C

5.1.2 Quantization of the electromagnetic Hamiltonian

To quantize in Cartesian coordinates we represent the canonical momenta by the differential

operators:
Py = —thdy, py, = —ihd, and p, = —ih0,, (5.14)

satisfying the canonical commutation relations [z,p,| = [y, p,] = [z, p.] = th. The Hamilto-
nian (5.3) becomes the operator

2 2 2 21\ 2
g o= 2| (—ino, - DY (g, — ATREN (g, - AR YD) (" +y7)
20 2c 2c 2c
qu 2 2 2

To facilitate separation of variables, we transform to cylindrical coordinates using

sin 6 cos 0

0, = cos 00, — " 0p and 0, =sinfo, —

By (5.16)

Thus we have

2

1 1

(—ih@w - quka) = —h? cos? 002 — K2 sin? 9—83 + 2k% cos0sin 0-9,.0
2c T r2 r
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r2
@\2m2k2r? sin® 0
4c? '

Cc r

2h% cosfsing  ihghmksin® 6 ihghmkr cos@sin®  h?sin? 6
— + B Op + — Oy

(5.17)

Similarly,

Amka\ 2 1 1
(—ihﬁy _ 1 ’272 9‘") = —R’sin00} — W cos’ 0507 — 21 cos fsin -9, 0y
2h2 cosfsinf  ihghmk cos? 9) 8 (52 cos? @ N ihg mkr cos sin9> 5
- 0 — T

r2 c
EPA2m2E2r? cos? 0
4c2 '

C

(5.18)

Adding these terms, we get

2 2
. g mky . g mkx of 0 1 1 909
—tho, — —ihd, — = —h -0y — (—h°0
<18 2¢ >+< % 2¢ ar+ra +T2( o
iha\ k2 2/\2 2k24
_zqmr89+q m-k-r
¢ 4c?

a1 1/ g mkr? 2
= —h <Tar(rar) +T2 ih0g + 90 . (5.19)

Thus, the Hamiltonian in cylindrical coordinates is:

. K1 L[ qA]®, 1 gA.(1)]?
H=——-0,[r0, —ihOy — ——— — |—ihd, — V(r), (5.20
e [r ]+2W2{ ihdy . +2u i . +qV(r), (5.20)
where o o 12,2 )
Ay = AR M d vy = M) (5.21)
2 2 2
If we introduce the momentum operators [46]
) e VT h | 0, + ! p O, d p 120) (5.22)
y = —ih—=0\/r = —ih (O, + — |, =—i an . = —ih0, :
p \/7—” o0 Do 0 p
which furnish a representation of the canonical commutation relations [r,p,] = [0, ps] =

|z,p.] = ih and are hermitian with respect to the inner product (¢|¢)) = [rdrdfdz ¢*¢,
then the Hamiltonian (5.20) may be written as':

- Ap\2 _ n? 2
o We— 5% — 7 . A,
p? + ( ;2) + 4 (pz - qc >

1
2

H= +qV (r). (5.24)

We note that this Hamiltonian differs from the direct quantization of the classical cylindri-
cal Hamiltonian (5.9) by a centripetal potential —h?/8ur?. Thus, we choose to define the
quantum theory via the canonical quantization in Cartesian coordinates.

2
ﬁi:—hQ(a +12 1). (5.23)

or2 ' ror  4r?

! Here,
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We can separate variables in the Schrodinger equation using the symmetries of (5.24).
The potentials Ay, A, and V(r) are independent of z and 6 so that H commutes with the
momentum p, = —ihd, and angular momentum py = —ihdy. Thus H,p, and py can be
chosen to have common eigenstates. Consequently, the # and z-dependence of the energy
eigenfunctions can be taken to be exp(ilf) and exp (ip,z/h), where [ must be an integer on
account of the 2m-periodicity of  and p, a real number. This leads to the separation of
variables in the wavefunciton:

U(r,0,z) = %Q('f’) exp(ilf) exp (Zpi;Z) : (5.25)

Putting H Y = Ey we get the radial eigenvalue problem

B hQQ// (7’)
24

+U(r)o(r) = Eo(r). (5.26)

The 1/4/r prefactor in (5.25) eliminates the ¢ arises from the operator p?. Here, the effective
potential

R: 1 [hl— e

2
c ] 1 qAZ

. r +qV(r)

S 8ur? 2 ur?
L[R2 [2=1]  g\kmhl  p?
— 3 + + juiliad
2 ur e
2/\2ka2 Y } 2)\2]€2T4
+7? (q 5 _ 4P —|—qk2>—|——q 5 }
dpc e dpc

+ gk*m?

(5.27)

includes centrifugal (inverse-square), quadratic and quartic terms in 7. The ‘centrifugal’
term is attractive only when [ = 0.

This effective potential (in units where p = ¢ = ¢ = 1) differs from that obtained by
Rajeev and Ranken (in Eq. 4.8 of [57]). More precisely, in the expression for U(r) obtained
by Rajeev and Ranken, the quantity Ay was wrongly taken as Amkr /2 instead of —Amkr?/2.
Thus, the corresponding radial equation they obtained in the strong coupling limit and the
subsequent analysis to obtain the dispersion relation for quantized screw-type waves needs to
be reconsidered. They proposed that the resulting dispersion relation should give a glimpse
of the nature of the degrees of freedom of the scalar field theory in the strongly coupled
high-energy limit. In addition, they suggested that the strong coupling limit of the scalar
field theory could also be interpreted as a ‘slow-light’ post-relativistic regime. However, as
we point out in Section 2.1 (also see [38]), the ‘slow-light’ limit (¢ — 0) holding A fixed is
not quite the same as the strong-coupling limit of the scalar field theory.

To be doubly sure about the formula (5.27) for the effective potential in the quantum
theory, we re-derive (5.26) and (5.27) through a complementary viewpoint, where the RR
model is interpreted as a quartic oscillator. This simple interpretation of the RR model will
facilitate our analysis of its quantum theory.
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5.2 Rajeev-Ranken model as a quartic oscillator

It is possible to interpret the classical Hamiltonian of the Rajeev-Ranken model expressed in
Darboux coordinates (see Egs. (5.1, 3.14))

dmkRy\ 2 AmkR;\ 2 e 2
(kPl— m2 2) +(k:P2+ m2 1) +<kP3—7(R§+R§))

/{32
+3(R§ + R3 +m?), (5.28)

H =

1
2

as the Hamiltonian for a particle of mass ;1 = 1, moving in a cylindrically symmetric quadratic
plus quartic potential. To see this, we regard the Darboux coordinates R; 3 and conjugate
momenta kP 23 as the Cartesian components of the position and conjugate momentum of
a particle of mass . Using this interpretation we rewrite Eq. (5.28) as a Hamiltonian for a
quartic oscillator:

2 2 2 2,212 2
24+ p2+p2 Amk(zp, — yp. Nm2k2 Mep,  k
g oo Patptes (zpy yp)+ ALY WO TN
20 20 Su 2u 2
)\2]{52 2,2
H @ (5.29)

The second term in H is proportional to the z-component of angular momentum (L, ). As
mentioned in the previous section, the Hamiltonian possesses a translational symmetry along
and rotation symmetry about the z-axis. Thus, we make a canonical transformation to cylin-
drical coordinates (r, 6, z) and their conjugate momenta (p,,py,p.) defined in Section 5.1.1,
which satisfy the Poisson brackets (5.8). Upon doing so, the Hamiltonian (5.29) becomes

2
Py
7”2

1
H:—{p?ﬂr

Amk ()\2m2k2 _ Mkp, k;_2> 2 NE?2 , KPm?
24

2
. (5.30
+pzl+2ﬂp9+ » AR TR (5.30)

Though the terms linear in py and p, are not conventionally present in an anharmonic
oscillator Hamiltonian, the RR model requires them. Notice that, when & = 0, H reduces to
the Hamiltonian of a free particle, while for A = 0 it is a cylindrically symmetric harmonic
oscillator.

Remark: Interestingly, the Hamiltonian of a quartic anharmonic oscillator
1
H=3 (p* + w?¢?) + Mg (5.31)
can be re-expressed as a quadratic Hamiltonian by introducing the new variable Q = ¢>

1
H=3 (p* +w?q?) + 2\Q%. (5.32)

However, in contrast to the step-2 nilpotent ¢-p Heisenberg algebra, the new variables satisfy a
step-3 nilpotent algebra (see Section 2.1 for the definition of step %k in a nilpotent algebra):

{Q,p}=2q¢, {g,p}=1 and {q,Q}=0. (5.33)
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Similarly, introducing X = 22 and Y = y?, we rewrite (5.29) as a quadratic Hamiltonian:

2 2 2 2,212 2
>t D0, +Dp;  Amk — YPx A k k
H = p py p + m (‘pr yp ) +< m + >(:c2+y2)

2u 2u 8u 2
Akp, A2k2 o k?m?
— X+Y X+Y 5.34
(X Y) (X V) (534)
The EOM follow from this quadratic form on the step-3 nilpotent algebra:
{z.p} = 1, {X,p} =22, {2,X}=0, {y,p}=1 {Y.p}=2y,
{y,Y} = 0 and {z,p.}=1 (5.35)

This is similar to the formulation of the RR model in terms of the variables L and S, where
the Hamiltonian (5.98) is a quadratic form on a step-3 nilpotent Lie algebra. In this sense, the
RR model joins the harmonic and anharmonic oscillators, Maxwell and Yang-Mills theory in their
formulation in terms of quadratic Hamiltonians on nilpotent Lie algebras. As mentioned in [57],
this formulation may facilitate finding the spectrum of the Hamiltonian using the representation
theory of the underlying nilpotent group [37].

Dimensional analysis: Requiring that H,p,,. and z,y,z have dimensions of energy,
momentum and length, we find that the parameters in (5.29) have the following dimensions?:

=M, [k]=M7PTt [m]=L and [N =MYV2L"L (5.37)

In particular in the classical theory, A = Am/./pt is the only independent dimensionless
combination and defines a nondimesional coupling constant. Since p, and L, are conserved
quantities, from the structure of (5.29), the energy of any classical state can be expressed as

e p_g ImkL,

_ZM

+m?k2f (N, p., L), (5.38)

for some function f of the three dimensionless variables ;\, p. = p./km/p and L, =
L,/ k:mQ\/ﬁ . Here, m?k? has dimensions of energy.

5.3 Quantum Rajeev-Ranken model

In this section, we study the quantum RR model by canonically quantizing the isotropic
anharmonic oscillator. Quantum anharmonic oscillators have been studied in various con-
texts and several results have been obtained in the literature. For instance, the Schrédinger
eigenvalue problem for the 1D quartic oscillator may be reduced [19] to the triconfluent Heun
equation ([0, 0, 1¢] in Ince’s classification, see Appendix E). The energy levels of this oscilla-
tor display remarkable analytic properties in the complex coupling constant plane [12]. Some

2However, this assignment of dimensions differs from that in the RR model [57] where m, R, P are di-

mensionless while
[k']RR =L ! and [H]RR =L2 (536)
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exact results are available for the N-dimensional isotropic sextic oscillator [23], but they do
not extend to the quartic version. Hill determinants have been used to numerically obtain
the spectrum of 1D anharmonic oscillators [13] as well as 2D isotropic quartic oscillator by
truncating a Frobenius series expansion [59]. However, we are not aware of any exact results
for the latter system. Here, we examine the analytic properties of the Schrodinger eigenvalue
problem that follows from treating the RR model as a 3D quartic oscillator and its weak and
strong coupling limits.

Even before formally quantizing the RR model, we may infer the possible dependence of
energy eigenvalues on parameters from dimensional analysis. From (5.37), since km?,/ft has
dimensions of action, in the quantum theory h = h/km?,/i is a second independent dimen-
sionless combination in addition to the classically present dimensionless coupling constant
A= Am/ /i Thus, generalizing (5.38), the energy of any quantum state must be of the
form )

7o j n mkL, N
2p 7

for some function ¢ of the four dimensionless combinations 5\, B, = mp,/h and | = L,/h.

m2k2g(\, h, ., 1), (5.39)

Canonical quantization: To quantize the system in Cartesian coordinates we represent
the canonical momenta as differential operators:

o = —ihd,, P, = —ihd, and p, = —ihd,, (5.40)

those satisfying the canonical commutation relations [z, p,] = [y, p,] = [z, p.] = th. Thus the
Hamiltonian (5.29) becomes the operator

. 1| p2+p2+p2  mkL., [ N2m2k2 \kp.
go= o |(ETh TR A +( S +k2)(:z:2+y2)
2 Ju It 4p It
)‘2k2 2 2\2 2 2
+4# (2" +y*)* + k*m*| . (5.41)

To facilitate separation of variables in the Schrodinger equation, we introduce cylindrical
coordinates (r,0,z) and the corresponding momentum operators [31,46]

1 o
B = fa T = —ih ( Z) o L.=po=—ihdy and p, = —ihd,,  (5.42)
which furnish a representation of the canonical commutation relations [r,p,] = [0, ps] =

[z, p;] = ih. They are hermitian with respect to the inner product (¢[¢)) = [ ¢*¢r dr df dz.
The Hamiltonian (5.41) then becomes:

~2 h?
Py — 1 ~2
——5 -+

~

1
H=—|p? . (5.43
2Mp+ + (5.43)

2u 2

Amk . Nm2k?: Nkp, k2N o N*R? O, KPm?
Do - + rt+——r4+

20 8 3

Notably, this Hamiltonian differs from the direct quantization of the classical cylindrical

Hamiltonian (5.30) by the addition of an attractive quantum ‘anti-centrifugal’ potential en-

ergy —h?/8ur? [15] which cancels a similar term in p? = —h? (02 + (1/r)0, — 1/41?).
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The Hamiltonian (5.43) commutes with p, = —ihd, and L. = P9 = —ih0y, so that all
three operators can be chosen to have common eigenstates. Hence, the - and z-dependence
of the energy eigenfunctions can be taken to be exp(ilf) and exp (ip,z/h) leading to the
eigenfunction:

W = p(r) exp(ilf) exp (ipgz> . (5.44)

Here, p, can be any real number while py = lh, where [ must be an integer on account of
the 2m-periodicity of #. Separating variables in Hy = E1), we arrive at a radial eigenvalue
problem

(0004 100 = o)) + U= (B MDY (s

2 24 2 2
with the potential®
Nm2k? Nkp, K2 A2k2
U(r) = ar? + Br* where a = ;nﬂ — 25 + 5 and 3= S (5.46)

For the free particle case (k = 0), the potential U(r) is absent and (5.45) reduces to the
Bessel equation [11]. In this case, F — p?/2u is simply the energy eigenvalue of the free
particle in the z-y plane (see Eq. (5.41)), so it must be > 0 irrespective of the value of [.

It is convenient to separate out the free particle motion in the z-direction and define the
2D isotropic anharmonic oscillator Hamiltonian

2 2,2 52 h?

- s D MAmk  k*m 1 (o Po—7T
H =2 _ — = S AR B U 5.47
! 24 2u 2 ou \ I T +U(r), (5.47)

with eigenvalue
2 hWamk  k*m?
g =p- L 2 T (5.48)
20 20 2

We notice that the coefficient of the quartic term in U(r) (5.46) is positive (8 > 0) while
that of the quadratic term («) can have either sign. Thus the potential is either purely
convex or shaped like a Mexican-hat*. In either case, the spectrum of H, is bounded below
and discrete.

5.3.1 Quantum RR model in terms of dimensionless variables

Assuming k,m # 0 (k = 0 corresponds to a free particle), we may re-write the Hamiltonian
(5.41) in terms of the dimensionless variables:

~ o~ o~ 1 ~ pa:, 2 -
(l’,y, Z) = E(xaya Z)v Pzy,z = 2 — _Zha@ﬂ,f?

N km./1

3Instead if we use the wave function (5.25), then this potential agrees (in units ¢ = ¢ = 1) with the
effective potential (5.27) obtained using the electromagnetic interpretation of Section 5.1. This confirms that
the effective potential in [57] has an error.

4However, the minima of the potential are not static solutions because of the py term in the Hamiltonian.
See Appendix F.
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A = Mm/yp and A= h/km*/u. (5.49)
Dividing (5.41) by k?*m?/2 we get the dimensionless Hamiltonian

2 12

N - A2 A
H=p.+p,+p:+ M.+ (Z —\p. + 1) (@ + 7% + Z(f? + %)% + 1. (5.50)

Here L, = TPy — P, . Similarly, the cylindrical coordinate Hamiltonian (5.43) may be written
in terms of dimensionless variables (7 = r/m):

H= 1|5+ 2t o + o5

- =, [ 07 10 1 07 0?
or2 | FOF | 72002 | 932

o [N d A2,
zh)\% ( +zh)\§—|—1> T +1. (5.51)

The formulation in terms of dimensionless couplings will facilitate taking strong and weak
coupling limits in Section 5.3.2.

As before, using the symmetries of the Hamiltonian we separate variables in the energy
eigenvalue problem H1 = Et (where E = 2FE/k*m?) for the wavefunction

¥ = p(F) exp(ilf) exp (iﬁ ;) : (5.52)

Thus the eigenvalue problem becomes
- 1 12 - ~ -
— R (p"m + () - ﬁpm) +Up= (B —1hA=1)p,  (5.53)

with the potential

~ > A2 20 - X2 28m?
N <2 4
U(F) = ar 4 "  where a—z—)\pz+1—k2 and 5_4_7_

As in (5.47), we define a dimensionless Hamiltonian for the 2D anharmoic oscillator by

(5.54)

separating out the free particle motion in the z-direction:

[82 19 107

H =H—p —Ilhix—1=—Hh —+——+——}+U(f), (5.55)

with eigenvalue
Ey=FE—p—1h\—1. (5.56)

Thus, the radial equation can be rewritten as
2

=i (104 200 - Go)) + U)o = Bup. (5.57)

Normalizability condition: From (5.52) and the inner product (¢¢)) = [ ¢*¢ rdr df dz,
we get the normalizability condition for radial bound states:

(plp) =m / 7) dir < oo. (5.58)

In particular, p(7) is normalizable provided it decays faster than 1/7 as 7 — oo and grows
slower than 1/7 as 7 — 0.
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5.3.2 Weak and strong coupling limits of the Schrodinger eigen-
value problem

As will be discussed in Section 5.3.3, the radial equations (5.45) and its dimensionless version
(5.57) are not solvable, in general, in terms of familiar functions. Here, we consider the weak
coupling and a suitably defined strong coupling limit of these radial equations. The energy
spectrum in the weak coupling limit is explicitly obtained. In the strong coupling limit, we
are able to find the dependence of energy levels on the wavenumber k. We use these results
to deduce dispersion relations for quantized continuous screw-type waves of the scalar field
theory in these limits.

Weak coupling limit: In the weak coupling limit A — 0, the Hamiltonian (5.50) reduces
to

H=p+p,+p+3+7 +1. (5.59)
By separating the free particle motion in the z-direction, we find that in the weak coupling
limit the above Hamiltonian reduces to that of a 2D harmonic oscillator with mass 1/2 and
angular frequency 2:

Hy =pi+p.+ 3+ 7. (5.60)

Thus we have the spectrum

B, = (ng+mn,+1)2h, where By, =FE—p.—1. (5.61)

A—0

Here, n, and n, are nonnegative integers. Re-expressing this in terms of dimensionful

variables we get the energy spectrum in the weak coupling limit:

2m2 h | /{7| p2

+ Ny +ny+1)— + ==, (5.62)
/TR T

The spectrum and the corresponding wavefunctions can also be obtained via the radial equa-

tion. In the weak coupling limit A — 0, the radial eigenvalue problem (5.53) becomes

lim £ =
A—0

F 11~ 1 //~ 12 ~ ~ "
= (104 200 - o) + = Bug_p (5.6)

This radial equation is a special case of the confluent hypergeometric equation and can be
solved in terms of generalized Laguerre polynomials. The normalizability of the wavefunction

implies the spectrum:
. - |+ 1
By = 4|h] [ n + — ) (5.64)

In terms of dimensionful parameters, this agrees with (5.62), once we identify 2n + || with
Ng + Ny

Strong coupling limit: We now consider a novel strong coupling limit of the radial equation
in dimensionless variables (5.57). We let A\, i — oo holding § = A\/h and p, finite, so that
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all terms on the LHS of (5.57) grow like A2, To get a nontrivial eigenvalue problem in this
limit, we focus on eigenvalues F; that grow quadratically with A and consequently define
Ey = E1/)\?. In the anharmonic oscillator, p, is the dimensionless conserved z-component
of momentum and can take any real value. However, in the context of the RR model,

= = 2c—m*) + =—. 5.65
kmy/p kmy/n 2m2( ) ! (5.65)
To keep p, finite in this strong coupling limit, the Casimirs ¢ and m must be chosen so that
2¢ —m? — 0, in such way that A(2¢ —m?) approaches a finite limit. Holding p. finite in
this limit, ensures that the k-dependence drops out and the radial equation in the strong
coupling limit becomes:

pz:

1 l2 ~2 _
o) + o/ () - (ﬁ + —i (7 4+ 7) — §2E2) o(F) = 0. (5.66)
The corresponding Hamiltonian (5.50) in this strong coupling limit is given by
H 0? 0? 0 0 G
o (99 izl _ 5.67
= (axfrag) (scgy yax>+ (@ + 9 + (@ +§°)%). (5.67)

It follows that the finite rescaled energy eigenvalue in this strong coupling limit Eg(g, l) is
independent of k. Thus, in this strong coupling limit, the nontrivial dimensionless energy
eigenvalues E ~ A2F5(§,1) + 1A\ + p2 + 1 must diverge quadratically in A with the last two
terms being sub-leading. Finally, the original (dimensionful) energy (see Eq. (5.53)) E is

K*m? = kEPm? o, (o~ . c+1
Estrong = 2 E ~ 2 hz (gZEQ(g7 l) + gl + p h >

2

h ~2 T [~ p +1
= E z . .
2y (g 2(g,1) + gl + 2 ) (5.68)

Thus, in the strong coupling limit (%, A — c0), the energy E is quadratically divergent but
has no leading dependence on k. Thus, unlike in the weak coupling limit (A — 0) where we
found FE) o = m?k?/2 + (ny + ny + 1)(hlk|/\/B) + p2/21 (5.62), at strong coupling we find
20m?( Esgrong/P*) o K°.

Though k does not play the role of a wavenumber in the nonrelativistic quartic oscillator
(5.43), it is a wavenumber in the screw-type wave solutions of the scalar field theory ¢ =
K R(t)e X% + mKx with K = ikos/2. Thus, the above E-k relations may be regarded
as dispersion relations for quantized screwons in the weak and strong coupling limits. The
term p?/2u in E)_, is a constant addition to the energy of the oscillator. However, in the
RR model, it depends on both k£ and A:

2 2 2
p: k(A 1

_ 9 4+ = 5.69
2 2p (2( ¢ —m’) )\) ’ (5.69)

and is seen to be a divergent constant in the weak coupling limit A — 0. But the difference
— (p?/2u), has a finite limit:

lim (B — (p2/21)) = m*k*/2 + (no + ny + 1)(h[k]/v/1). (5.70)
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The quadratic m?k?/2 term is also a constant (independent of x and t) addition to the
relativistic energy per unit length of screwons. Indeed, it arises when the screwon ansatz
¢ = X" R(t)e K" + mKx is inserted in the field energy density (1/2)(¢? + ¢/2). The term
linear in k in (5.70) is like the more conventional linear dispersion relation for free relativistic
particles.

Remark: To ensure that p, (see Eq. (5.69)) is finite, we need to impose the condition 2¢ —m? — 0
among the Casimirs. Thus, taking this strong coupling limit effectively restricts the dynamics of
the model to a special submanifold of the phase space on which the coordinates satisfy the relation:

LI+L5 283
k2 kA

(5.71)

Given the Casimirs ¢ and m, the dynamics is confined to a 3D submanifold labelled by S72 and

r = VIZ1 L3/k.

In the strong coupling limit (S\,ﬁ — 00, holding p, fixed), the terms involving Z are
sub-leading compared to those involving & and ¢ (it is an anisotropic limit) and we get the
Hamiltonian

2
= H/h? = P2+P2+gP9+Z(:L' + 7+ (@ +7°)7). (5.72)

Here P, = p,/h = —id/0%, P, = p,/h = —id/0j and Py = #P,—§P, with the commutation
relations:

[#,P,] =i and [§,P,)] =i. (5.73)

Thus, the strong coupling limit of the theory is an anisotropic scaling limit resulting in a
dimensional reduction to a 2D quartic anharmonic oscillator with an additional term propor-
tional to the conserved angular momentum. Having arrived at the strong coupling limit, we
may further send g — 0 resulting in a free particle moving on a plane. On the other hand,
when g — oo, the potential energy dominates in a manner similar to the strong coupling
limit ()\ — oo) of the i — 0 classical theory. It is noteworthy that the classical model has
only one coupling A, and its strong coupling limit is defined as the one where A= o0o0. In
this strong coupling limit, the potential energy (A\2/4)(i% + 4% + (#2 + §2)2) becomes the
dominant term in the dimensionless classical Hamiltonian H; = H — P2 — \p, — 1 (see Eq.
(5.55)). Unlike this classical strong coupling limit, our quantum strong coupling limit has a
dimensionless free parameter g. Moreover, the strong coupling limit of the quantum theory
is incompatible with this classical limit (h — 0) since in the former h— 0.

5.3.3 Properties of the radial Schrodinger equation

We now use Ince’s classification (see Appendix E) to discuss some properties of the second
order radial eigenvalue problem (5.57). The latter and its strong coupling limit (5.66) are
both of type [0,1,16]. This means they have two singular points: the regular point 7 = 0
and the irregular point 7 = co which has rank 3 since K; = —1 and Ky = 4 in Eq. (E.4).
The rank 3 irregular singularity at oo can be thought of as having being formed by the
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coalescence of four nonelementary regular singular points. Thus, we may regard our radial
equations as confluent forms of a differential equation with 10 elementary regular singularities
([10,0,0]) or of what is sometimes called a generalized Lamé equation of type [0,5,0] [16].
In particular, our radial equations cannot, in general, be solved in terms of hypergeometric,
Heun or Lamé functions or their confluent forms.

By contrast, the weak coupling limit of (5.57)

l2

= (#1004 200 = T00)) + 0 = B (5.74)

is an equation of type [0,1,14]. The rank of the irregular singularity at 7 = oo in this
equation can be reduced from 2 to 1 by the substitution #? = x, resulting in an equation of
type [0,1,15]. Tt is noteworthy that the confluent hypergeometric equation is also of type
[0,1,15]. Not surprisingly, (5.74) can be solved in terms of generalized Laguerre polynomials
which are special cases of the confluent hypergeometric function.

Returning to the radial equation (5.57), for large values of 7, the method of dominant
balance [11] gives the asymptotic behaviour

i \/g Par\\ s . X

p(F) ~exp | ——— | =+ —= | | 7%a(7), where a(f)~O(1) as 7T —o0. (5.75)
R \3 28

As noted in (E.5), the rank (three) of the singularity at co determines the dominant asymp-

totic behaviour. The same asymptotic behaviour also arises in the strong coupling limit of

Section 5.3.2, where &/B — 1 and \/E/ﬁ — g/2. See Appendix G for the details of the
asymptotic behaviour in the strong coupling limit.

Now we turn to the behaviour of (5.57) around the regular singularity 7 = 0. The
Frobenius series p(7) = 7>~ p,7" leads to the exponents 7o = £l (see (E.3)). The
condition (5.58), that the wavefunction be normalizable restricts us to n = 7;. In general
pn satisty a four-term recurrence relation. The formulae are somewhat shorter in the strong
coupling limit, where we get (see Appendix H)

_#2F <9 .
pr = 0, pp= 4l—+42f7m p3 = (372 (814 16)ps = gzpo — §°Faps, ps =0,
and (20l +n2)pp + G Espn_g — g—(pn,4 —pnsg) =0, for n=6,8,..., (5.76)

4

with poaq = 0. By contrast, one has two- and three-term recurrence relations for the hyperge-
ometric and Heun equations [36]. We observe that the number of terms ¢ in these recurrence
relations is related to the number of elementary singularities in the parent equations of type
[e,0,0] via t = (e — 2)/2.
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5.4 Separation of variables and the WKB
approximation

Here we consider the semiclassical approximation of the quantum RR model. We separate
variables in the Hamilton-Jacobi equation and obtain the WKB quantization condition in an
implicit form. In the weak coupling limit the spectrum from the WKB quantization condition
agrees with that obtained previously. It remains to estimate the spectrum for other values
of the coupling A.

5.4.1 Hamilton-Jacobi equation

The Hamilton-Jacobi (HJ) equation S; + H(q,05/0q) = 0, for the Rajeev-Ranken model is
most easily analysed in cylindrical Darboux coordinates. Putting S = W — Et, we get the
time-independent HJ equation from (5.30):

1 , 1 ) o] Amk Nm*k® Ak k2N
272.4  1.2.2
N EmT g (5.77)

8u 2
Supposing that W(r, 8, z) = W(r) + Wy(0) + W.(z), the HJ equation becomes

1

1 mk A2m?2k? Mk k?
i / 2 - / 8 2 / 2 / o _W/ v 2
2M|:W(T)+TQW9()+WZ(Z):|+—2M Wy + ( 3 2 Z+2)r
)\2]{:27,4 k2m2
= F. 5.78

From (5.30), we notice that 6 and z are cyclic coordinates so the momenta py = Jy¥V and
p., = 0, are constants of motion. Thus, we must have (using (5.46))

1 2 P2 Apgmk  k*m?

, _ ’ _ = / 2 re 2 4 :E__Z_ —
Wy(0) = py, W.(z) =p. and 2 (W(?") +r2)+ar +pr o o 5
(5.79)

for separation constants py and p., which can have either sign. Changing variables to s = 72,
W (r) is expressed as an elliptic integral:

Ved
W(r=\s) =+ / 2B — as? = Bs7) = (52 + Apomk + K2m?pn)s — p. (5.80)
S

Thus, it is possible to separate variables and obtain a complete solution of the HJ equation
involving three separation constants F,py and p,. This is perhaps not surprising since the
EOM can be solved in terms of Weierstrass elliptic functions [57].
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5.4.2 WKB approximation

Here, we find the WKB quantization condition for the energy spectrum of the RR model
(5.43). For this purpose, it is convenient to separate variables in cylindrical coordinates
using the factorized wavefunction:

(1,0, 2) = %;)exp (%) exp (ipgz) . (5.81)

Division by /7 ensures that the radial equation formally looks like the Schrodinger eigenvalue
problem for a particle on the positive half line subject to the potential Ug:
—h? ( P2 peAmk  k*m?

1
N U =
2# 0 + eff O 2,& 2# 2

) o, where Usg =U(r)+ % (5.82)

with v = (h?/2u)(p3/h* — 1/4). Here, U(r) = ar? + Br* is the potential from (5.46). We
look for radial eigenfunctions of the form o(r) = exp (iWW(r)/h). Substituting in (5.82) gives

P pedmk  kKPm® "
241 2/ 2 <)

iBW"(r) — W' (r)? +p(r)* =0, where p(r)*>=2u <E -
(5.83)

We now do a semiclassical expansion of W and E:
W(r)=Wo+mW,+--- and E=E® frE® ... (5.84)
At O(R°), we obtain

r 271/2
Wo(r) = j:/ dr [QME(O) — p2 — peAmk — K*m*p — 2pu(ar® + Brt) — 1:_3} , (5.85)

while at O(h) we get W] = ((iW//2)+uEM)/W,. W, agrees with Hamilton’s characteristic
function (5.80) upon changing variables to s = r%. Requiring o(r) ~ exp (iWy/h) to be
singlevalued, we obtain the quantization condition

Tmax 271/2

/ dr {QuE(O) —p? — peAmk — E*m*p — 2pu(ar® + Brt) — f—g] = nrh, (5.86)
where the radial quantum number n is a (large) integer. Here, rp, < rmax are the positive
zeros of the quartic polynomial limy_,o p(r)?, enclosing the classically allowed interval (there
can only be one such interval). Similarly, for ¢ to be singlevalued on the circle we must have
po = Lh for a large integer [. The quantization condition (5.86) leads to an elliptic integral,
but we have not been able to invert it to explicitly obtain the semiclassical spectrum other
than in the weak coupling limit.

Weak coupling limit: When A\ — 0, a = £%?/2,8 = 0 and the quantization condition
(5.86) simplifies to a trigonometric integral (here s = r?)

d
2—8\/ as? 4+ bs + ¢ = n7h, (5.87)
s

Smax

Smin
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where

2 122
a=—kpu, b=2uk =2u (E(O) _ b _Fm
20 2
Notice that a < 0, b > 0 (2u x energy of the 2D anharmonic oscillator at weak coupling)
and ¢ < 0. Using this, the turning points are the roots of as? + bs + ¢ = 0:

vA
BF s
"

> and c= —pj. (5.88)

1

Smin,max — ﬁ

k*p2

’ ) . (5.89)

>0, where A =0*—4ac=4,* (El2 -

The RHS of (5.89) is to be interpreted in the classical limit, where commutators and other
terms of O(h) are ignored. To get the allowed energy levels, we evaluate the LHS of (5.87)
using Eq. 2.267(1) of [30]:

Smax

ds T \//7
—Vas?+b = — | —F;| — ) .
9 as® +bs+c 5 |k:| 1 |p9| (5 90)

Smin

This leads to the spectrum

E, ~2 (n—l— M) hik] where pp=1[1h for [,n>1. (5.91)

2n ) i

This weak coupling semiclassical result agrees with the previously obtained exact spectrum
in the weak coupling limit £y, = (n, + n, + 1)h|k|/\/ (5.62), if we identify n, + n, with
2n + |I| [54] for pp/h =1 a large integer.

5.5 Unitary representation of nilpotent Lie algebra

Here we exploit the canonical quantization of the RR model in Darboux coordinates (R,, kP,)
(see Section 5.3) to obtain a representation of the Poisson algebra of the L-S variables of
the model. Classically, the latter satisfy the step-3 nilpotent Poisson brackets®

{La, Lb} = O, {Sa, Sb} = )\Eabch and {Sa, Lb} = _eachc- (592)

To relate these to the Darboux coordinates, recall that

- K
L=[K,R|+mK and S:R+X’ (5.93)

where K = ikos/2. Introducing kP y = Ry 5+ AmkRy,/2 and kPs = Rs 4+ Me(R? 4+ R2)/2,
in component form we have,

Ll = k,’RQ, L2 = —k’Rl, L3 = —mk:, KLQ = 0, Kg =—k

SInterestingly, the classical equations of motion of the RR model can be interpreted as Euler equations
for this nilpotent Lie algebra. Notably, the EOM may also be interpreted as Euler equations for a centrally
extended Euclidean algebra, which we obtained by comparing them with the Kirchhoff’s equations. (See
Appendices B and C for details.)
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A A ko Ak

S, = kP — §mkR2, Sy = kP, + Emle and Sy = kP; — 1 7(R% + R3). (5.94)

In the quantum theory, we wish to represent L,S and K as hermitian operators on a
Hilbert space obeying the commutation relations obtained by the replacement {A, B} —
(1/ih)[A, B]:

[La, Lb] = 07 [Sm Sb] = ’ih/\Eabch, and [Sa, Lb] = —ihGabCKc. (595)
More explicitly, the nonzero commutation relations among the generators are:

[Ll, SQ] = —ith,, [LQ, Sl] = ith, [Sl, SQ] = Zh/\Lg,
[Sl, Sg] == —Zh/\LQ and [SQ, Sg] == Zh)\Ll (596)

We now exploit our physical interpretation of the RR model as an anharmonic oscillator to
discover a unitary representation of this nilpotent Lie algebra. Indeed, using the canonical
Schrodinger representation of R, and kP, (5.40) and the relations (5.94) we are led to the
following representation

L1 = ]{Zy, L2 = —k‘x, L3 = —mk[, KLQ = 0, K3 = -kl

S| = —ih—aax — %mk‘y, Sy = —ih—aay + %mk‘m and
0 k Ak
s = —ih— — —] — (2% +? .
Sy Zh&z 3 5 (z° 4+ y*), (5.97)

where I is the identity. These hermitian operators on the Hilbert space LQ(Riyz) give us an
infinite-dimensional unitary representation of the nilpotent algebra (5.95).

The dynamics of the quantum RR model is specified by the hermitian and positive Hamil-

tonian )
S24+ 12 kS k2 1 K
H="07 L :—KS——) + L2

> N o2 N ! (5.98)

which is a quadratic form on this Lie algebra. Using the above commutation relations (5.95),
we find the quadratically nonlinear Heisenberg equations of motion:

. 1 . 1
Sa = 71[5@, H] = Aeachch and La = %[La, H] = GachbSc‘ (599)
7 7
Reducibility of representation: As in the classical theory, Ly = —mk and ck? = (L? +

L%+ L2)/2 + kS3/\ are Casimir operators of the nilpotent commutator algebra (5.95). We

may represent them as differential operators on LQ(Riyz):

(5.100)

2.2 2 .
Ly = —mkI and ck2:(km k)[ ihk 9

2 N2)0 N9
Evidently, Ls is a multiple of the identity while ck? is essentially 0,. These commute with all
the operators in (5.97) as the latter do not involve the coordinate z. Thus the representation
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(5.97) is reducible with invariant subspaces given by the simultaneous eigenspaces of L3 and
¢. The latter carry sub-representations labelled by the eigenvalues of Ls and ck?. The
eigenvalue problem for ck?

ik D (mR
2 A2

kp.
I Y(x,y,2) = —Y(z,y,2 5.101
LA ) 1] v = vt (5.101)
leads to the eigenfunctions ¢ (x,y, z) = F(x,y) exp(ip.z/h) corresponding to the eigenvalue
kp./X. Thus, the representation decomposes as a direct sum of sub-representations labelled
by the two real numbers m and p,. Since F(x,y) is an arbitrary function, these sub-
representations on Lz(Riy) are infinite dimensional with the generators represented as:

L1 = ky, L2 = —k'l’, L3 = —mk:], Kg = —kl

L0 A L0 A
S, = —zh% — §mky, Sy = —zha—y + §mkx and
5 — <pz - ;) 120 ), (5.102)

which continue to satisfy the step-3 nilpotent Lie algebra (5.96). Since there are no additional
Casimirs, (5.102) now furnishes a unitary irreducible representation of (5.96).



Chapter 6

Discussion

In this thesis we have discussed the dynamics and integrability of a mechanical system de-
scribing a class of nonlinear screw-type wave solutions of a scalar field theory dual to the
1+1D SU(2) principal chiral model (PCM). Unlike the PCM, this dual scalar field theory
has a positive beta function and could serve as a toy model to study strongly coupled field
theories with a perturbative Landau pole. Recently, Rajeev and Ranken found a class of
classical nonlinear wave solutions of this field theory. These novel screw-type continuous
waves could play a role similar to solitary waves in other field theories. They defined a con-
sistent reduction of the field theory to this nonlinear wave sector, which is described by a
mechanical system with three degrees of freedom [57]. We call this mechanical system the
Rajeev-Ranken model.

In Chapter 1, we motivated the study of the Rajeev-Ranken model starting from its field
theoretic precursors and also summarized the major results of this thesis. In Chapter 2,
we introduced the Rajeev-Ranken (RR) model as a consistent reduction of the pseudodual
scalar field theory. We discussed the Hamiltonian and Lagrangian formulations of the PCM
and its dual field theory. Furthermore, we compared their current algebras which are a semi-
direct product of an su(2) and an abelian algebra and a nilpotent current algebra. Finally,
we obtained a consistent mechanical reduction of the scalar field theory by restricting it
to the sector of nonlinear screw-type wave solutions. In Chapter 3, we investigated some
integrable features of the classical RR model. The Liouville integrability of the model was
discussed using Lax pairs and r-matrices leading to a complete set of conserved quantities in
involution. Moreover, we found a Poisson pencil associated with the model. In Chapter 4, we
discussed the structure of the phase space, obtaining a foliation by invariant tori of various
dimensions. We classified all possible common level sets of conserved quantities and analyzed
the nature of dynamics on them. We also found a set of action-angle variables for the Rajeev-
Ranken model. In Chapter 5, we discussed aspects of the quantum Rajeev-Ranken model
by interpreting it as a quartic oscillator. This viewpoint helped us to quantize the model
and separate variables in the Schrodinger equation. We analyzed the corresponding radial
equation in a weak and a novel strong coupling limit to understand the properties of the
quantized nonlinear wave. A more detailed summary of the results obtained in this thesis
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may be found in Section 1.2.

While working on the dynamics and integrability of the RR model, we wrote an expository
article on the idea of Lax pairs and zero curvature representations in classical mechanical
and continuum wave systems [40,41,42]. In this article, we explain the idea of realizing a
nonlinear evolution equation as a compatibility condition between a pair of linear equations
by considering the examples of the harmonic oscillator, Toda chain [26, 34|, Eulerian rigid
body [33,44], Rajeev-Ranken model [38,39,43], KAV equation [28,49,60] and the nonlinear
Schrodinger equation [25,62,63]. This introductory article can serve as a stepping stone to
the vast literature on the theory of integrable systems [1,18,20,22, 25,50, 53].

Comparison with other models and further directions for research: Comparing and
contrasting the RR model and its parent scalar field theory with other (possibly integrable)
mechanical systems and field theories is instructive and can help in discovering new features
of these models. For instance, we were able to find a new Hamiltonian formulation for
the Neumann model, which is an integrable system, by comparing it with the RR model.
Moreover, we found a kinship between the EOM of the RR model and the Kirchhoff equations.
The latter too is integrable and describes the motion of a rigid body in an ideal fluid. On the
other hand, the parent scalar field theory can be viewed as a large level weak coupling limit
of the 1+1D WZW model or as a pseudodual of the SU(2) principal chiral model. Comparing
these models has and could continue to be instructive.

There are several directions of research which arise from this work. To begin with, there
are classical aspects of the model that are yet to be addressed. For instance, we have not yet
identified a bi-Hamiltonian formulation of the model. It would also be desirable to find an
algebraic-geometric formulation based on the spectral curve and Jacobian [9]. This should
give an alternate approach for obtaining the r-matrix of the model via the associated loop
group. In addition, this approach should help in relating our Poisson bracket formulation to
the Kostant-Kirillov bracket on the dual of the Lie algebra associated with the loop group.
In another direction, bilinearization of the EOM of the scalar field theory in the sense of
Hirota could help in discovering other classes of solutions. The study of the stability of
various types of solutions of the model also needs further attention. The analysis of the
quantum Rajeev-Ranken model is far from complete. A more detailed understanding of the
spectrum of excitations is desirable. Going beyond our canonical quantization, we would
like to explore quantum R-matrices and path integral approaches to the quantum theory.
The connection between the strong coupling limit and sub-Riemannian geometry (and its
quantum counterpart) pointed out in [57] is another possible direction for research. Finally,
the possible extension of some of our results from the mechanical reduction to the scalar field
theory is an interesting but challenging task.



Appendix A

Compairson with the Neumann model

The EOM (2.23) and Lax pair (3.21) of the RR model have a formal structural similarity with
those of the (N = 3) Neumann model. The latter describes the motion of a particle on SV 1
subject to harmonic forces with frequencies ay, - -+ ,ay [9]. In other words, a particle moves
on SV~! c RN and is connected by N springs, the other ends of which are free to move on
the N coordinate hyperplanes. The EOM of the Neumann model follow from a symplectic

reduction of dynamics on a 2N dimensional phase space with coordinates xy, -,y and
Y1, ,yn. The canonical PBs {zy,y,} = d;; and Hamiltonian
1 2 1 2 A

lead to Hamilton’s equations
tp = —Jpr; and Uy = —Jy, — agzr  (no sum over k). (A.2)

Here, Ji = xry; — 21y, is the angular momentum. Introducing the column vectors X = x
and Yj = y; and the frequency matrix Q = diag(aq,--- ,ay), Hamilton’s equations become

X=-JX and Y =-JY -QX. (A.3)

It is easily seen that X'X is a constant of motion. Moreover, the Hamiltonian and PBs are
invariant under the ‘gauge’ transformation (X,Y) — (X,Y + €X) for € € R. Imposing the
gauge condition X'(Y + ¢(¢)X) = 0 along with X*X =1 allows us to reduce the dynamics
to a phase space of dimension 2(N — 1). If we define the rank 1 projection P = X X* then
J=XY!"-Y X! and P are seen to be gauge-invariant and satisfy the evolution equations

J=1[0,P] and P=IP,J]. (A.4)

The Hamiltonian (A.1) in terms of J, P and € becomes

1 1
HNeu = tr (_ZIJQ + égp) . (A5)
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The PBs following from the canonical z-y PBs

{Jkla Jpq} = 5qupl - 5pljkq + 5ql']kp - 5kaqlv
{Pkla Jpq} = 5kqul — 5plqu + 5qlPkp — 5kppql and {Pkb qu} =0 (A6)

and the Hamiltonian (A.5) imply the EOM (A.4). This Euclidean Poisson algebra is a semi-
direct product of the abelian ideal spanned by the P’s and the simple Lie algebra of the
J’s.

Notice the structural similarity between the equations of the RR model (2.23) and those

of the Neumann model (A.4). Indeed, under the mapping (L, S, K,\) — (J, P, 1), the
EOM (2.23) go over to (A.4). The Lax pair for the Neumann model [9]

L(¢) = -Q+ %J - éP and M(¢) = %P with L = [M, L] (A7)
and that of the RR model A.(¢) = —K +L/(+S/(A¢?) and B(¢) = S/¢ (3.21) are similarly

related for A = 1. Despite these similarities, there are significant differences.

(a) While L and S are Lie algebra-valued traceless anti-hermitian matrices, J and P are
a real anti-symmetric and a real symmetric rank-one projection matrix. Furthermore, while
K is a constant traceless anti-hermitian matrix ((ik/2)os for su(2)), the frequency matrix
(2 is diagonal with positive entries.

(b) The Hamiltonian (A.5) of the Neumann model also differs from that of our model
(3.1) as it does not contain a quadratic term in P. However, the addition of (1/4) tr P? to
(A.5) would not alter the EOM (A.4) as tr P? is a Casimir of the algebra (A.6).

(c) The PBs (A.6) of the Neumann model bear some resemblance to the Euclidean PBs
(3.8) of the RR model expressed in terms of the real anti-symmetric matrices S and L of
Section 3.1.1. Under the map (L,S,)\) — (J, P,1), the PBs (3.8) go over to (A.6) up to
an overall factor of —1/2. On the other hand, if we began with the {Ekl, Spq}g PB implied
by (3.8) and then applied the map, the resulting {J, P} PB would be off by a couple of
signs. These sign changes are necessary to ensure that the J-P PBs respect the symmetry
of P as opposed to the anti-symmetry of S. This also reflects the fact that the symmetry
{5k, Lpg} = {L1, Spq} is not present in the Neumann model: {Ji, Py} # { Pit, Jpg} -

(d) Though both models possess nondynamical r-matrices, they are somewhat different
as are the forms of the fundamental PBs among Lax matrices. Recall that the FPBs and
r-matrix (3.25) of the RR model, say, for the Euclidean PBs are (here, k,1,p,q = 1,2):

A kgOyp
2(C—-¢)
(A.8)
This r-matrix has a single simple pole at ( = (’. On the other hand, the FPBs of the
Neumann model may be expressed as a sum of two commutators

{L(Q) § L(C)} = [r2(¢, ¢, L(C) @ I] = [raa (¢, €), T & L(¢)]. (A.9)

{A(O) § A()}e = [re(¢, ¢, A(Q @ T+ T @ A(()] and 7<(C, ¢ kipg =
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The corresponding r-matrices have simple poles at ( = +(’ (here, k,l,p,q=1,--- | N):

5kq(5lp . Okl 5pq

- Ol Oudy
(—¢ ¢+¢

TlQ(C? C,)klpq - C, — C C/ T

and  791(¢", Q)ripg =

‘é 7A _T12(C7 C/)klpq‘
(A.10)
Note that the anti-symmetry of (A.9) is guaranteed by the relation r12(¢, (') kipg = 721(¢, ¢ )ikgp -

New Hamiltonian formulation for the Neumann model: An interesting consequence
of our analogy is a new Hamiltonian formulation for the Neumann model inspired by the
nilpotent RR model PBs (3.7). Indeed, suppose we take the Hamiltonian for the Neumann
model as

1 1 1 1
H=Hyewn+ - tr PP= tr | —=J*+ QP 4 —-P? A1l
Neu 7 0 r(4J—|—2 +4) (A.11)
and postulate the step-3 nilpotent PBs,
{Pk17 Jpq}l/ = _5kqul + 6ple’q - 5qukp + 5kaql;

{Pkla qu}y == (Skqul - 5pl‘]kq — (Sqlep + 5kaql and {Jkl, Jpq},, = O, (A.12)

then Hamilton’s equations reduce to the EOM (A.4). These PBs differ from those obtained
from (3.7) via the map (L, S, K,\) — (J,P,Q,1) by a factor of 1/2 and a couple of signs in
the {P, P}, PB. As before, these sign changes are necessary since P is symmetric while S is
anti-symmetric. It is straightforward to verify that the Jacobi identity is satisfied: the only
nontrivial case being {{P, P}, P} +cyclic = 0 where cancellations occur among the cyclically
permuted terms. In all other cases the individual PBs such as {{P,J},.J} are identically
zero. Though inspired by the su(2) case of the RR model, the PBs (A.12) are applicable to
the Neumann model for all values of N.



Appendix B

Relation to Kirchhoff’s equations and
Euler equations

Kirchhoff’s equations govern the evolution of the momentum P and angular momentum
M (in a body-fixed frame) of a rigid body moving in an incompressible, inviscid potential
flow [47]. Here, P and M satisfy the Euclidean ¢(3) algebra:

{]\4,17 Mb} = EabcMc; {Pm Pb} = 0 and {Ma, Pb} = eabcPc- (Bl)
The Hamiltonian takes the form of a quadratic expression in P and M [21]:
2H = a;M] + ) bj(PM; + MiPy) + > ci PP (B.2)

The resulting equations of motion are

ﬁ:ﬁxa—q and ]\?/:ﬁxa—lf—k]\?xa—}{.
oM oP oM

Now taking a; = 1,b;; = 0 and ¢;; = d;; and using the map M —L and P s g—l?/A, we
see that the Hamiltonian of the Kirchhoff model reduces to that of the Rajeev-Ranken model

(3.1). However, unlike in the Kirchhoff model, L and S = S — K/X in the Rajeev-Ranken
model satisfy a centrally extended e(3) algebra following from Eq. (3.4):

(B.3)

A

Thus, the equations of motion of the Rajeev-Ranken model (2.23) differ from those of the
Kirchhoff model (B.3). Nevertheless, this formulation implies that the equations of the
Rajeev-Ranken model may be viewed as Euler-like equations for a centrally extended Eu-
clidean algebra with the quadratic Hamiltonian H = (L? + S?)/2.

~ ~ ~ K
{La, Lb} = _)\Eabcha {Sa, Sb} = O and {La, Sb} = _)\Eabc (Sc —I— —C> . <B4>

Alternatively, if we use the dictionary M+ —L and P+— § , then the Poisson algebras
of both models are the same ¢(3) algebra. The differences in their equations of motion may
now be attributed to the linear term K -S/X in the Rajeev-Ranken model Hamiltonian (3.1),
which is absent in (B.2). For more on the Kirchhoff model, its variants and their integrable
cases, see for instance [14,21,58].
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Appendix C

RR equations as Euler equations for a
nilpotent Lie algebra

The equations of motion of the RR model L = [K,S] and S = A[S, L] may be viewed
as the Euler equations for a nilpotent Lie algebra. Indeed, they follow from the quadratic

Hamiltonian o KN4 2
and the step-3 nilpotent Poisson brackets nj:
{Lm Lb} = O, {Sm Sb} = )\eabcha {Saa Lb} = _Eachc and
{K,, K} = {K,, Ly} ={K, Sp} =0. (C.2)

This algebra is a central extension by the generators K, of the step-2 nilpotent algebra
ny : {La, Lb} = O, {Sa, Sb} = )\Eabch, {Sa, Lb} =0. (03)

The L, form an abelian ideal of this latter algebra with three-dimensional abelian quotient
ny/l which is generated by S,. As before, we take K3 = —Fk, K15 = 0 so that n3 is seven-
dimensional with generators (L,,S,) and the identity I. The Hamiltonian is a quadratic
form on this Lie algebra. If we use the basis L,, Sa = S, — K,/X and I then the Hamiltonian
is

H = %(52 4+ 12) (C.4)

and corresponds to inverse inertia matrix Z;; ! = Diag(1,1,1,1,1,1,0). The zero eigenvalue
of Igl in the central direction can be made nonzero by adding a constant term to the
Hamiltonian. Thus the RR model can be viewed as an Euler top for the nilpotent Lie
algebra n3. Similarly, the RR equations can also be viewed as Euler equations for a centrally
extended Euclidean algebra as mentioned in Appendix B and [39].
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Appendix D

Calculation of Tr A*(() for the Lax

matrix

In Section 3.2.2 we found that the conserved quantities Tr A"(¢) are in involution and
obtained four independent conserved quantities ¢,m,s and h by taking n = 2. Here, we
show that the conserved quantities following from Tr A*(¢) are functions of the latter. We

find that

A4

+

[CS(KaKbKCKd) —((KoKyKcLg 4+ LaKyKeKg + KoLy Ko Kg + Ko Ky Lo Kg)

KoKy K.S,
¢t (—M + LoKyKeLg+ KoLy KcLg + KoKy LeLg

A
KyK:.K K, K.K, KoKpS K,
_SaKpRela St LaLy KoKy 7“53 4} LaKyLeFg + KaLyLeKg — —2—=222=4 ;S“‘ d)
<5 Lo KyK:Sy n KoLy K:Sy n KoKpLcSq
A A A
SaKp KL KoSpyKcL KoKpScL
+ RS — LaLyKeLa + —*25=""% = LaKyLeLa — KaLpLeLa + =*—""=%
SaLp K K, LoSpy K K, SaKp LK, KoSpL K, Lo KpSc K, KoLy S:K,
abcd+abcd+abcd+abcd+abcd+abcd7LaLchKd
A A A A A A
C4 (SaKchSd _ LaLchSd KaSchSd _ LaKchSd _ KaLchSd + KaKbSch
A2 A A2 A A A2
SaLyKcLg  LaSpKcLg — SaKyLcLg  KaSpLeLg — LaKpSclg  KaLpScLg
— X — X — N — N — X — +LaLchLd
SaSchKd _ SaLchKd _ LaSchKd SaKbSch _ LaLbSch KaSbSch
A2 A A A2 A A2
o3 _ SaLpKcSq  LaSpKeSqy  SaKpLeSqg  KaSyLeSa  LaKpScSa  KaLpScSq " LaoLyLcSy
A2 A2 A2 A2 A2 A2 A
_ SaSpKcLyg SaLyLcLyg I LoSyLcLyg _ SaKpScLyg LqLypScLyg
A2 A A A2
KaSbSch SaSchKd SaLbSch LaSbSch
VD VIS V¥
o[ SaSpKeSq  SaLvLeSq  LaSyLeSq  SaKpSeSa  LaLpSeSq  KaSpSeSq
Sl e A2 A2 a3 A2 a3
SaSchLd SaLbS(:Ld LaSbSch _ SaSbSch
22 A2 A2 A3
SaSchSd SaLbSch LaSbSch SaSbSch SaSbSch
¢ ( \3 + \3 + \3 + \3 + \a tatptely. (D.1)

Evaluating the trace yields the polynomial (3.31) whose coefficients are functions of the
conserved quantities ¢,m,s and h, thus showing that Tr A* does not lead to any new
conserved quantity.
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Appendix E

Singularities of second order ordinary
differential equations

E.1 Singularities of second order ODEs

We notice that the radial equation (5.57) and its strong coupling limit (5.66) are second order
homogeneous linear ODEs with rational coefficients. To place them in context, we summarize
some features of the class of second order ODEs:

Y +p(2)y +q(2)y =0, (E.1)

for the function y(z). Here p and ¢ are meromorphic functions on the complex plane. If
both p(z) and ¢(z) are regular at a point zy, then zy is an ordinary point and any other
point is a singular point of the equation. A point zy # oo is a regular singularity if at least
one of p or ¢ has a pole at 2y in such a way that if p has a pole it is a simple pole and if ¢
has a pole it is at most a double pole. On the other hand, zy # oo is an irregular singularity
if either p has at least a double pole or ¢ has at least a triple pole [6].

The nature of the point at infinity (29 = oo) may be determined by writing (E.1) in terms

of (=1/z:
2y [2 1 (1\]ldy 1 (1)
@i a ()il (=2

z = oo is called an ordinary point/regular/irregular singularity of (E.1), if ( = 0 is a
corresponding point of (E.2). In other words, z = oo is an ordinary point if the Laurent
series of p and ¢ around z = oo are of the form p(z) =2/z+ -+ and q(z2) = q/2* +---.
On the other hand, z = oo is a regular singularity if the Laurent series of p and ¢ around
z = oo satisfy any one of the following three conditions:

1. p(z) =2/2+ -+ and q(2) = q2/2*> + q3/2% + - -+ with ¢o and g3 not both zero,

2. p(z) =pi1/z+ -+ with p; #2 and ¢(z) = qu/2* +--- or
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3. p(z) =p1/z+--- with p; #2 and ¢(2) = ¢a/2* +q3/2> +--- with ¢o and g3 not both
Z€r0.

Finally, z = oo is an irregular singularity if it is neither an ordinary nor a regular singular
point. Alternatively, it is an irregular singularity if either the Laurent series of p around
2z = 0o contains at least one nonnegative power (2% z'---) or that of ¢ contains at least
one power larger than —2 (1/z,2% ---). For example, 3" + ay’ + by = 0 with constants
a and b not both zero has an irregular singularity at z = oo, while every other point is
an ordinary point. Indeed, the solution y = cje"* + c9€"?* has an essential singularity at
z = o00. If a and b are both zero, then y = ¢;2 + ¢, has a simple pole at z = oo which is
a regular singular point. In general, at an ordinary point, the solution of (E.1) is analytic.
At a regular singular point, it is either analytic, has a pole of finite order or an algebraic or
logarithmic branch point singularity. At an irregular singular point, the solution typically
has an essential singularity [4,11].

At a regular singularity zy # oo (if 2y = oo we work with ¢ = 1/z), we may expand
the solution in a Frobenius series y = (2 — 29)” > Yn(z — 20)" with the possible exponents
p = p1,2 determined by the indicial equation

PP+ (A—1)p+B=0 where A= lim(z—2)p(z) and B = lim(z— 2)%q(z). (E.3)

Z—20 Z—20

In fact, A = B = 0 iff 2y is an ordinary point while 2, is a regular singularity iff the
limits exist with A and B not both zero. Moreover, if |p; — pa| = 1/2, then z; is called an
elementary regular singular point. Otherwise it is nonelementary [36].

E.2 Poincaré rank and species

The Poincaré rank of a singular point is a measure of its irregularity. For definiteness, suppose
2o = 00 is a singular point, then its rank ¢ is defined as

K
g =1+ max (Kl, 72) where p(z) = O(z%') and ¢(z) = O(z"?) as z— co.
(E4)
If zy = oo is a regular singularity its rank is either zero or a negative (half) integer while for
an irregular singularity it can be 1/2,1,3/2,---. Notably, it is possible to double the rank of

an irregular singular point via the quadratic transformation z = w?. Thus it is possible to
restrict to integer ranks. For example, the equation y”+(1/2)y’ +(1/z)y = 0 has an irregular
singularity of rank 1/2 at z = co. Upon putting z = w?, it becomes " — (1/2w)y’ +4y = 0,
which has a rank 1 irregular singularity at w = oo. Moving away from oo, a singular point
zp # oo of (E.1) is said to have the rank g = 1+ max(K;, K/2) if p(z) and ¢(z) have poles
of order K7+ 2 and K+ 4 respectively (see Eq. (E.2)). It is sometimes also useful to define
the species of an irregular singularity as twice its rank [6].

The rank controls the asymptotic behaviour of solutions to (E.1) at an irregular singular
point. If zg = oo is an irregular singular point of integer rank g, then we have the exponential
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asymptotic behaviour

y(2) ~exp[Ag2? + Ay 129" + -+ A12]Y(2), where Y (z) =277 Zynz’”. (E.5)

n>0

There is a loose resemblance between the rank of an irregular singularity and the genus of
an entire function.

E.3 Invariance of rank

Though the quadratic transformation z = w? doubles the rank of an irregular singularity,
there is a class of transformations that preserve it. In fact, under a fractional linear trans-
formation w = (az +b)/(cz + d), the coefficients of (E.1) remain meromorphic and the rank
of a singularity remains unchanged though its location may be altered.

On the other hand, under a linear change of dependent variable y(z) = F(z2)a(z), (E.1)
becomes

a’(z) + (2?53 —|—p(z)) a(z)+ (F;((ZZ)) +p(z)};((j)) + q(z)> a(z) = 0. (E.6)

To ensure that (E.6) has meromorphic coefficients, we will restrict to functions of the form
F = zMRief | where p is real and Ry 5(z) are rational functions. For definiteness, let us
suppose that z = oo is a rank ¢ irregular singular point of (E.1). Suppose, further that
Ry(z) ~ 2" as z — oo. Then we find that z = oo continues to be a rank g irregular
singularity of (E.6) provided n < g. In particular, there is no restriction on u or R;.
This restriction on n is understandable in view of the connection between the rank and the
asymptotic behaviour in (E.5).

Interestingly, it is possible to create irregular singular points through the confluence of
regular singularities [36]. For instance, the coalescence of two elementary regular singular
points produces a nonelementary regular singularity, while the merger of three elementary
regular singularities gives an irregular singularity of species 1 (rank 1/2). More generally, an
irregular singularity of species r is formed by the coalescence of r 4+ 2 elementary regular
singular points.

E.4 1Ince’s classification

Ince introduced a classification of the ODEs (E.1) based on the number and nature of singu-
larities. Such an equation is said to be of type [a,b, ¢;,d;,- -], if a is the number of elemen-
tary regular singular points, b is the number of nonelementary regular singular points, and
¢,d, - - are the number of irregular singularities of species i, j,--- . For example, the hyper-
geometric equation is denoted [0, 3,0] as it has three nonelementary regular singularities at
z=0,1 and oo. The confluent hypergeometric equation is denoted [0, 1, 15]. It has a regular
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(nonelementary) singularity at zero and an irregular singularity of rank 1 at oo formed by
the coalescence of regular singularities at 1 and co. The Heun equation is denoted [0, 4, 0] as
it has four nonelementary regular singular points [6]. When two of them coalesce we get the
confluent Heun equation ([0, 2, 15]) with an irregular singularity of rank one. The biconflu-
ent Heun equation ([0, 1, 14]) has an irregular singularity of rank 2 formed by the merger of
three nonelmentary regular singular points. The Lamé equation for ellipsoidal harmonics is
of type [3,1,0], it has three elementary regular singularities and one nonelementary regular
singularity at infinity. Thus, it can be viewed as a special case of the Heun equation or as a
confluent form of an equation of type [5,0,0].



Appendix F

Goldstone mode of the RR model

We have seen in Chapter 5 that the Rajeev-Ranken model can be treated as a three di-
mensional anharmonic oscillator with a quartic plus quadratic potential in the Darboux
coordinates Ry and Ry. Using cylindrical symmetry, we arrive at a one dimensional problem
for the radial coordinate r with the effective potential U(r) (see Eqn. (5.46)). As mentioned
in Section 5.3, when o < 0, the potential U(r) = ar? + fr? has a nonzero minimum at
r. = v/—a/25. This corresponds to a family of degenerate minima of the potential along a
circle on the R;- Ry plane: R? + R3 = r? = 8p,/\k — 2m? — 8u/\* > 0.

One could mistakenly treat these minima of the potential as static solutions of the anhar-
monic oscillator. This is incorrect because of the additional term proportional to the angular
momentum in the Hamiltonian (5.29) of the anharmonic oscillator. The true static solutions
are given by the solutions of the EOM (here z,y,2z = Ri23 and p,,, = kPi23):

. Amky . mkx . Ak
r = Px— 92 ) y:py+ 9 ) Z:p2_7($2+y2)7
. Amkpy Nm2k? Mkp, K2 N2,
Po = ——5 -~ s T 3 +? 233—7(56 +y*)x
Amkp, Nm?k? Akp, K? A2 k2
Dy = m2 Po _ ( n; - 2;0 + 2) 2y — 5 (22 + 9y and p. =0, (F.1)

with Rjs5 =0 and Pjy3 = 0. It is possible to show that there is a one parameter family of
static solutions parametrized by arbitrary real values of R3(t) = Rs, while the other variables
vanish: Ry9 = P23 = 0. These static solutions! that lie on the z axis are degenerate in
energy which is given by F = m?k?/2. Thus we would expect a zero mode/‘Goldstone mode’
where Rj3 varies slowly, while the other variables remain zero. However, we do not expect
Goldstone bosons in the field theory since it is two-dimensional.

These degenerate static solutions of the RR model correspond to a family of static so-
lutions of the scalar field theory given by ¢(z,t) = Rst3 + mKx, where t3 = 03/2i and
K = —kts. Thus ¢(z,t) = (Ry — mkax)(03/2i) is linear in x and points exclusively in the
third internal direction.

In terms of the L-S variables, this corresponds to a single point on the static submanifold X5 (see
Section 3.2.5), where L3 = —mk and S3 = —k/A. This is because the L-S phase space does not capture
the Rg degree of freedom.
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Appendix G

Asymptotic behaviour of the strong
coupling radial equation

The radial Schrodinger equation of the quantum Rajeev-Ranken model in the strong coupling
limit (5.66)
11~ 1 /0~ 5 gQ ~2 ~4 ~2E =\ G.1
P(r)ﬂL;/)(T)— ﬁJrZ( +7) = G2 By ) p(7) =0, (G.1)
has an irregular singular point at 7 = oo. To find the asymptotic behaviour of the radial
wavefunction, we make the substitution p(7) = exp(S(7)). This anticipates that the leading
asymptotic behaviour is of exponential type. In terms of S(7), the radial equation becomes:
1 ? g -
S"(F) + (S'(F)* + =5'(F) — (TQ + (7 + ) — g%) =0. (G.2)
T T
We make the ‘slowly varying’ assumption that S”(7) < (S'(7))? as 7 — oo, which will be
seen to be a self-consistent assumption. For large 7, the quartic term in (G.2) dominates, so
the ‘asymptotic radial equation’ is

1(=~\2 9 4
S'(7)° ~ T (G.3)

This implies
S~ £57 o S(F) = 227+ of), (G.4)

where the constant of integration ¢ of the limiting asymptotic radial equation is allowed de-
pend on 7, in order to incorporate the subleading behaviour as 7 — oo. For consistency, ¢(7)
must satisfy the condition ¢(r) < §r3/6 as 7 — oo. For normalizability, the eigenfunction
p(7) = 0 as 7 — oo. Thus, we must choose the negative sign for S(7) = —gr®/6 + (7).
Substituting this in the radial equation (G.2) we get

1 3 2 g

'(F) + d(7)* — (gfz - ;) ¢(F) = 507 = = - Tﬁ + §*Ey = 0. (G.5)
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As before, in the limit 7 — oo we may use the inequalities ¢’(7) < gr and ¢ (7)? < gr2d(r)
to obtain an asymptotic equation for ¢(7):

3 ~2
G () ~ —5g7 ng? (G.6)
Thus we have,
5 .
o(T) ~ —5 Inr — %f + constant. (G.7)

This gives the leading asymptotic behaviour of p(7):

_g(r

7'3 T
p(7) ~ a(f)f’%e H(5+3) as T — o0. (G.8)
Here, we once again allowed the constant a to depend on 7 in order to allow for further
subleading behaviour.

Remark: Note that just like (G.1), the radial equation for the variable coefficient a(7) also
has an irregular singular point of rank 3 at 7 = oco. In fact, the radial equation (G.1), under
the substitution (G.8) becomes

a"(7) — (% - g + gf2> a'(7) + (T% (% — 12> + % + g (% + E2>) a(f) =0. (G.9)

By the transformation, 7 = 1/s we obtain the equation

a2 T\ o2 T ) g 2 Tog T S

&a <4 g §>da (1-7) 3 M a(s) =0,  (G.10)

which by the rules of Appendix E has an irregular singularity of rank 3 at s = 0.



Appendix H

Frobenius method for strong coupling
limit: Local analysis

We know that the radial equation (5.66) has a regular singular point at # = 0. We consider
a series solution around this point of the form:

p(F) = pa". (H.1)

Substituting this in (5.66) gives

o0 1 00
n -1 ~n+n—2 - N ~ntn—1
gp(wrn)(wrn )7 + f;p(wrn)r
l2 §2 5 00
) (F - gE) D o = 0. (H2)
n=0
We rewrite this equation as
o0 ~9 o o (o, ¢]
Z((n+n)2—lz)pnf"+”‘2—gz (Z PuaPE Y ,on_ﬁf’?+"—2> +3°Ey Y paoi 7 =0,
n=0 n=4 n=>6 n=2

(H.3)
From this, we have the indicial exponents n = =£l. Choosing n = [ in order that the
normalizability condition (5.58) is satisfied, we get the four-term recursion relation (5.76).
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